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ABSTRACT

The consistent description of unstable particles, renormalons, or other Schwinger–Dyson-

type of solutions within the framework of perturbative gauge field theories necessitates

the definition and resummation of off-shell Green’s functions, which must respect several

crucial physical requirements. A formalism is presented for resummation of off-shell two-

point correlation functions, which is mainly based on arguments of analyticity, unitarity,

gauge invariance and renormalizability. The analytic results obtained with various methods,

including the background field gauges and the pinch technique are confronted with the

physical requirements imposed; to one-loop order the pinch technique approach satisfies all

of them. Using renormalization group arguments, we discuss issues of uniqueness of the

resummation procedure related to the latter method.
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1 Introduction

It is well known that in non-Abelian gauge theories individual off-shell Green’s func-

tions are in general plagued with various pathologies, such as gauge dependences, bad high

energy behaviour, or lack of renormalizability, which, strictly speaking, render them void

of any physical meaning. To the extend that the physical issues at hand can be dealt with

within the confines of conventional perturbation theory, the aforementioned pathologies

pose no real problem. Indeed, when combined together to form observables, the individu-

ally pathological Green’s functions conspire in such a way as to give a physically meaningful

answer, order by order in perturbation theory. A classic example of the subtle cancellation

mechanisms in effect is the computation of electroweak S-matrix elements in the unitary

gauge; there, even though the conventional two-, three- and four- point functions are not

even renormalizable, the final S-matrix element turns out to be well-defined.

There is, however, a plethora of physically important questions, which cannot be

treated in the framework of conventional perturbation theory. In quantum chromodynamics

(QCD) for example, the only known way to study in the continuum phenomena, such

as chiral symmetry breaking or gluon mass generation, is by means of the Schwinger-

Dyson equations [1]. Here, the pathologies of the Green’s functions start playing a rôle.

Indeed, the Schwinger-Dyson equation are build up by off-shell Green’s functions; if one

could solve these equations exactly, the Green’s functions obtained would again conspire to

yield physically meaningful answers. However, since the Schwinger-Dyson series constitutes

an infinite set of coupled non-linear integral equations, a truncation is necessary, which,

if carried out casually, may give rise to physically meaningless answers, such as gauge-

dependent expressions for ostensibly gauge independent, physical quantities.

Even though the need for a self-consistent scheme for constructing off-shell Green’s

functions is more or less expected when dealing with a strongly coupled theory such as

QCD, perhaps the most compelling physical circumstances advocating its necessity have

been encountered in the context of a “weakly” coupled theory, namely the electroweak

SU(2)L⊗U(1)Y model [2,3,4]. Indeed, the presence of unstable particles makes it impossible

to compute physical amplitudes for arbitrary values of the kinematic parameters, unless

a resummation has first taken place. Simply stated, perturbation theory breaks down in

the vicinity of resonances, and information about the dynamics to “all orders” needs be

encoded already at the level of Born amplitudes. As was already pointed out in [2], if

one attempts to naively promote Veltman’s formalism for scalar theories [5] to the case of
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gauge theories, one is invariably led to gross violations of gauge invariance and unitarity. As

explained in [4], resumming the conventional two-point function of a gauge boson in order

to construct a Breit-Wigner type of propagator, takes into account higher order corrections

for only certain parts of the Born amplitude, whereas crucial contributions originating

from box and vertex graphs are not included properly. As a result, the subtle cancellation

mechanism alluded to before, even though in reality is still in effect, gets distorted by the

casual resummation, resulting in artifacts, which thwart the predictive power of S-matrix

perturbation theory.

Given the subtle nature of the problem, the question naturally arises, what set of

physical criteria must be satisfied by a resummation algorithm, in order for it to qualify

as “physical”. In other words, what are the guiding principles, which will allow one to

determine whether or not the resummed quantity carries any physically meaningful infor-

mation, and to what extend it captures the essential underlying dynamics? To address these

questions in this paper, we postulate a set of field-theoretical requirements that we con-

sider crucial when attempting to define a proper resummed propagator. Our considerations

propose an answer to the question of how to analytically continue the Lehmann–Symanzik–

Zimmermann (LSZ) formalism [6] in the off-shell region of Green’s functions in a way which

is manifestly gauge-invariant and consistent with unitarity. In addition, we demonstrate

that the off-shell Green’s functions obtained by the Pinch Technique (PT) [7,8,9,10] satisfy

all these requirements. In fact, these requirements are, in a way, inherent within the PT

approach, as we will see in detail in what follows.

In particular, the following is required from an off-shell, one-particle irreducible (1PI),

effective two-point function:

(i) Resummability. The effective two-point functions must be resummable. For the

conventionally defined two-point functions, the resummability can be formally derived

from the path integral. In the S-matrix PT approach, the resummability of the

effective two-point functions is more involved and must be based on a careful analysis

of the structure of the S-matrix to higher orders in perturbation theory [4].

(ii) Analyticity of the off-shell Green’s function. An analytic two-point function has the

property that its real and imaginary parts are related by a dispersion relation (DR),

up to a maximum number of two subtractions. The latter is a necessary condition

when considering renormalizable Green’s functions, as we will discuss in Section 2.

(iii) Unitarity and the optical relation. In the conventional framework, unitarity is defined
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only for on-shell S-matrix elements, leading to the familiar optical theorem (OT) for

the forward scattering. Here, we postulate the validity of the optical relation for the

off-shell Green’s function, when embedded in an S-matrix element, in a way which

will become clear in what follows. An important consequence of this requirement

is that the imaginary part of the off-shell Green’s function should not contain any

unphysical thresholds. As a counter-example, in Section 7, it will be shown that

this pathology is in fact induced by the quantum fields in the background-field-gauge

(BFG) method [11] for ξQ 6= 1.

(iv) Gauge invariance. As has been mentioned above, one has to require that the effective

Green’s functions are gauge-fixing parameter (GFP) independent and satisfy WIs

in compliance with the classical action. For instance, the latter is guaranteed in

the BFG method but not the former. This condition also guarantees that gauge

invariance does not get spoiled after Dyson summation of the GFP-independent self-

energies. In some of the recent literature, the terms of gauge invariance and gauge

independence have been used for two different aspects. For example, in the BFG the

classical background fields respect gauge invariance in the classical action. However,

this fact does not ensure that the quantum fields respect some form of quantum

gauge invariance, neither does imply that some kind of a Becchi-Rouet-Stora (BRS)

symmetry [12] is present for the fields inside the quantum loops after fixing the gauge

of the theory [13,14]. In our discussion, when referring to gauge invariance, we will

encompass both meanings, i.e., gauge invariance of the tree-level classical particles as

well as BRS invariance of the quantum fields. A direct but non-trivial consequence of

the gauge invariance and of the abelian-type WIs that the effective off-shell Green’s

functions satisfy is that for large asymptotic momenta transfers (s → ∞), the self-

energy under construction must capture the running of the gauge coupling, as it

happens in quantum electrodynamics (QED). Because of the abelian-type WIs and on

account of resummation, the above argument can be generalized to n-point functions.

In addition, the off-shell n-point transition amplitudes should display the correct

high-energy limit as is dictated by the Equivalence Theorem [15].

(v) Multiplicative renormalization. Since we are interested in renormalizable theories, i.e.,

theories containing operators of dimension no higher than four, the off-shell Green’s

functions calculated within an approach should admit renormalization. However, this

requirement alone is not sufficient when resummation is considered. The appearance

of a two-point function in the denominator of a resummed propagator makes it un-
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avoidable to demand that renormalization be multiplicative; otherwise, the analytic

expressions will suffer from spurious ultraviolet (UV) divergences. Particular exam-

ples of the kind are some ghost-free gauges, such as the light-cone or planar gauge

[16].

(vi) Position of the pole. Since the position of the pole is the only gauge-invariant quantity

that one can extract from conventional self-energies, any acceptable resummation

procedure should give rise to effective self-energies which do not shift the position

of the pole. This requirement drastically reduces the arbitrariness in constructing

effective two-point correlation function.

A closer look at these requirements reveals that they are in fact very tightly interwo-

ven; relaxing even one of them could give rise to unphysical results, sometimes in rather

subtle ways. As an example of the subtleties involved, we investigate the BFG [11,17] in

Section 8. Despite the fact that the background fields of the BFG obey the Ward identities

(WIs) of the classical Lagrangian, even after quantizing the theory, the BFG expressions for

the self-energies depend explicitly on the quantum gauge parameter ξQ; in turn, in theories

with spontaneous symmetry breaking (SSB), this dependence on ξQ gives rise to unphysical

threshold channels for ξQ 6= 1. Obviously, such unphysical absorptive contributions should

not be resummed to all orders. In fact, we find that the sub-amplitudes containing physical

Landau singularities and those, which do not, satisfy the same BFG WIs. Only the case

of BFG with ξQ = 1 is free from unphysical poles, and the results of the Green’s functions

collapse to these of the PT. Evidently, relaxing the requirement of GFP independence, by

allowing ξQ to survive, interferes with unitarity in a non-trivial way.

We now present a roadmap of our paper: In Section 2, we review the crucial properties

of analyticity of two-point correlation functions. We then derive some important conse-

quences arising from DRs, which should be satisfied by a consistent analytic approach. The

results of this analysis may also be applied to eliminate a large degree of arbitrariness in

defining off-shell transition amplitudes. Issues of renormalization are also discussed.

In Section 3, we discuss the rôle of unitarity and OT and elucidate its connection with

gauge invariance. In Section 4, we show how to employ unitarity, analyticity and elementary

tree-level WIs (EWIs), in order to obtain a self-consistent picture in the context of QCD.

In particular, we work with the right hand side (RHS) of the OT, where only physical

particles (no ghosts) appear as intermediate states. In Section 5, we focus again on the

same process as in the previous section and present a different (equivalent but non-trivial)

5



point of view. In particular, we start again from the RHS of the OT and show how the

unitarity of an on-shell transition amplitude and the BRS symmetry [12] of the quantum

action can be exploited to reinforce gauge invariance and GFP independence for off-shell

Green’s functions. In the context of one-loop QCD, these properties rigorously prove the

independence of the PT on the gauge-fixing procedure.

In Section 6, the analysis of Section 5 is extended to the case of the minimal Standard

Model (SM). We concentrate on a charged process with non-conserved external currents and

resort again to the (slightly more involved) EWIs. The propagator-like expression obtained

by working with the RHS of the OT is then fed into a twice subtracted DR. The result

obtained is identical to the real part of the PT W -boson self-energy, already known from

previous considerations. This example convincingly demonstrates the combined power of

unitarity and analyticity. In Section 7, we take a different point of view and work directly

with the left-hand-side (LHS) of the OT, where “unphysical” degrees of freedom, such as

ghosts and would-be Goldstone bosons, appear now as intermediate states. Using the usual

Cutkosky rules, and exploiting again the EWIs of the theory to the fullest, we arrive at

the imaginary part of the PT W -boson self-energy. This constitutes a highly non-trivial

self-consistency check, demonstrating that as long as one fully exploits the elementary

symmetries of the theory, one can work freely with either side of the optical relation,

arriving at the same physically consistent results.

In Section 8, we turn our attention to the BFG and show that the dependence of

the resummed BFG two-point functions on the “quantum” GFP ξQ is far from innocuous,

leading to the violation of unitarity, because of the appearance of unphysical thresholds.

Furthermore, the physical and unphysical expressions are found to satisfy exactly the same

tree-level WIs. This fact demonstrates beyond any doubt that a combination of require-

ments need be imposed in order to arrive at a physically reliable result. Indeed, satisfying

external tree-level WIs is a necessary but not sufficient requirement in this context.

In Section 9, we show under mild assumptions that the PT resummation gives rise to

“unique” results [18]. By “unique”, we mean that at the end of the PT rearrangement, and

after renormalization has been completed, no further pieces may be moved around without

leading to a violation of some of the physical properties characterizing the PT Green’s

functions. Finally, we present our conclusions in Section 10.
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2 Analyticity and renormalization

Analyticity is one of the most important properties that governs physical transition

amplitudes. Correlation functions are considered to be analytic in their kinematic variables,

which is expressed by means of the so-called DRs [19,20,21]. In this section, we briefly

review some important facts about DRs and renormalization and discuss the subtleties

encountered in non-Abelian gauge theories.

If a complex function f(z) is analytic in the interior of and upon a closed curve, C↑

say in Fig. 1, and x + iε (with x, ε ∈ R and ε > 0) is a point within the closed curve C↑,

we then have the Cauchy’s integral form,

f(x + iε) =
1

2πi

∮

C↑

dz
f(z)

z − x − iε
, (2.1)

where
∮

denotes that the path C↑ is singly wound. Using Schwartz’s reflection principle,

one also obtains

f(x − iε) = − 1

2πi

∮

C↓

dz
f(z)

z − x + iε
. (2.2)

Note that C∗
↑ = C↓. Sometimes, an analytic function is called holomorphic; both terms are

equivalent for complex functions.

ℜez

ℑmz

•
•

x + iε

x − iε

R

R

θ

C↑

C↓

Fig. 1: Contours of complex integration

Of significant importance in the discussion of physical processes is a DR, which relates

the imaginary part of an analytic function f(x) to its real part, and vice versa. We assume

for the moment that the analytic function f(z) has the asymptotic behaviour, |f(z)| ≤
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C/Rk, for large radii R as shown in Fig. 1, where C is a real nonnegative constant and

k > 0; this assumption will be relaxed later on, giving rise to more involved DR. Taking

now the limit ε → 0, it is easy to evaluate ℜef(x) through

2ℜef(x) = ‘ lim
ε→0

’
[
f(x+iε)+f ∗(x−iε)

]
= ‘ lim

ε→0
’
1

π

+∞∫

−∞

dx′ ℑm

(
f(x′)

x′ − x − iε

)
+ Γ∞. (2.3)

Here, ‘ limε→0 ’ means that the limit should be taken after the integration has been per-

formed, and

Γ∞ =
1

π
lim

R→∞
ℜe

∫ π

0
dθ f(Reiθ) . (2.4)

Because of the assumed asymptotic behaviour of f(z) at infinity, the integral over the upper

infinite semicircle in Fig. 1, Γ∞, can be easily shown to vanish. Employing the well-known

identity for distributions,

‘ lim
ε→0

’
1

x′ − x − iε
= P

1

x′ − x
+ iπδ(x′ − x),

we arrive at the unsubtracted DR,

ℜef(x) =
1

π
P

+∞∫

−∞

dx′ ℑmf(x′)

x′ − x
. (2.5)

In Eq. (2.5), the symbol P in front of the integral stands for principle value integration.

Following a similar line of arguments, one can express the imaginary part of f(x) as an

integral over ℜef(x).

In the previous derivation, the assumption that |f(z)| approaches zero sufficiently

fast at infinity has been crucial, since it guarantees that Γ∞ → 0. However, if we were

to relax this assumption, additional subtractions need be included in order to arrive at a

finite expression. For instance, for |f(z)| ≤ CRk with k < 1, it is sufficient to carry out a

single subtraction at a point x = a. In this way, one has

ℜef(x) = ℜef(a) +
(x − a)

π
P

+∞∫

−∞

dx′ ℑmf(x′)

(x′ − a)(x′ − x)
. (2.6)

From Eq. (2.6), it is obvious that ℜef(x) can entirely be obtained from ℑmf(x), up to a

unknown, real constant ℜef(a). Usually, the point a is chosen in a way such that ℜef(a)

takes a specific value on account of some physical requirement. For example, if ℑmf(q2)

is the imaginary part of the magnetic form factor of an electron with photon virtuality q2,

one can prescribe that the physical condition ℜef(0) = 0 should hold true in the Thomson

limit.
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We next focus on the study of some crucial analytic properties of off-shell transition

amplitudes within the context of renormalizable field theories. In such theories, one is

allowed to have at most two subtractions for a two-point correlation function. If Π(s)

is the self-energy function of a scalar particle with mass m and off-shell momentum q

(s = q2) —the fermionic or vector case is analogous— then the real (or dispersive) part

of this amplitude can be fully determined by its imaginary (or absorptive) part via the

expression

ℜeΠ(s) = ℜeΠ(m2) + (s − m2)ℜeΠ′(m2) +
(s − m2)2

π
P

+∞∫

0

ds′
ℑmΠ(s′)

(s′ − m2)2(s′ − s)
.

(2.7)

From Eq. (2.7), one can readily see that the two subtractions, ℜeΠ(m2) and the deriva-

tive ℜeΠ′(m2), correspond to the mass and wave-function renormalization constants in the

on-mass shell (OS) scheme, respectively. At higher orders, internal renormalizations of

ℑmΠ(s), due to counterterms (CTs) coming from lower orders, should also be taken into

account. Then, Eq. (2.7) is still valid, i.e., it holds to order n provided ℑmΠ(s) is renormal-

ized to order n−1. In general, the function ℑmΠ(s) has its support in the non-negative real

axis, i.e., for s ≥ 0. This can be attributed to the semi-boundness of the spectrum of the

Hamiltonian, SpecH ≥ 0 [22]. Note that for spectrally represented two-point correlation

functions, we have the additional condition ℑmΠ(m2) ≥ 0 [23,24].

As has been mentioned above, in renormalizable field theories it is required that Π(s)

should be finite after two subtractions have been performed. This implies that

|Π(s)| ≤ Csk , with k < 2, (2.8)

as s → ∞. Obviously, the same inequality holds true for the real as well as the imagi-

nary part of Π(s). In pure non-abelian Yang-Mills theories, such as quark-less QCD, the

transverse part, ΠT (s), of the gluon vacuum polarization behaves asymptotically as

ΠT (s) → C s
(

ln
s

µ2

)n
.

This result is consistent with Eq. (2.8), for any n < ∞. Furthermore, we mention in passing

that the Froissart–Martin bound [25],

|Π(s)| ≤ C s3
(

ln
s

s0

)2
, (2.9)

at s → ∞, which may be derived from axiomatic methods of field theory [26], is weaker

than Eq. (2.8). The analytic expression of gluon vacuum polarization satisfies Eq. (2.9). As
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a counter-example to this situation, we may consider the Higgs self-energy in the unitary

gauge; the absorptive part of the Higgs self-energy has an s2 dependence at high energies,

and its resummation [27] is therefore not justified.

We will now illustrate how DRs work in practice in the context of a scalar field theory.

As an example, we consider a toy model with interaction Lagrangian,

Lint =
λ

2
φ2Φ , (2.10)

where λ is a non-vanishing coupling constant of dimensions of mass. We denote the mass

of the scalar φ by m and the one of the Φ by M and assume that M ≥ m.

Φ(p) Φ(p)

φ

φ

Fig. 2: Two-point correlation function ΠΦ(s) at one loop

One can calculate the imaginary part of the one-loop self-energy ΠΦ(s) by using

Cutkosky rules. The self-energy ΠΦ(s) develops a branch cut for s = p2 > 4m2, which

arises from the on-shell φ-pair contribution shown in Fig. 2. Thus, it is not difficult to

obtain

ℑmΠΦ(s) =
λ2

32π

(
1 − 4m2

s

)1/2

θ(s − 4m2) . (2.11)

On the other hand, adopting dimensional regularization in dimensions D = 4−2ǫ, we have

ΠΦ(s) =
λ2

32π2

{
1

ǫ
− γE + ln

4πµ2

m2
+ 2 −

(
1 − 4m2

s

)1/2

× ln

[(1 − 4m2

s

)1/2
+ 1

(
1 − 4m2

s

)1/2 − 1

]}
, (2.12)

where s should be analytically continued to s + iε. In fact, for s > 4m2, the logarithmic

function in Eq. (2.12) assumes the form

ln

[1 +
(
1 − 4m2

s

)1/2

1 −
(
1 − 4m2

s

)1/2

]
− iπθ(s − 4m2) .
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Evidently, the absorptive part of ΠΦ(s) obtained from Eq. (2.12) is equal to ℑmΠΦ(s) in

Eq. (2.11). Furthermore, one can verify the validity of a DR of Eq. (2.6), singly subtracted

at s = 0. Since

ℜeΠΦ(0) =
λ2

32π2

[1
ǫ
− γE + ln

4πµ2

m2

]
, (2.13)

one can check that indeed,

s

π
P

∞∫

4m2

ds′
ℑmΠΦ(s′)

s′(s′ − s)
= ℜeΠΦ(s) − ℜeΠΦ(0) .

This simple example explicitly demonstrates the analytic nature of a two-point correlation

function.

In the context of gauge field theories, one should anticipate a similar analytic struc-

ture for two-point correlation functions. However, an extra complication appears in such

theories when off-shell transition amplitudes are considered. In a theory with SSB, such

as the SM for example, this complication originates from the fact that, in addition to the

physical particles of the spectrum of the Hamiltonian, unphysical, gauge dependent degrees

of freedom, such as would-be Goldstone bosons and ghost fields make their appearance.

Although on-shell transition amplitudes contain only the physical degrees of freedom of

the particles involved on account of unitarity, their continuation to the off-shell region is

ambiguous, because of the presence unphysical Landau poles, introduced by the aforemen-

tioned unphysical particles. A reasonable prescription for accomplishing such an off-shell

continuation, which is very close in spirit to the previous example of the scalar theory,

would be to continue analytically an off-shell amplitude by taking only physical Landau

singularities into account.

Consider for example the off-shell propagator of a gauge particle in the conventional

Rξ gauges or BFGs, which runs inside a quantum loop, viz.

∆
(ξQ)
0µν (q) = tµν(q)

1

q2 − M2
− ℓµν(q)

ξQ

q2 − ξQM2
, (2.14)

with

tµν(q) = − gµν +
qµqν

q2
, ℓµν(q) =

qµqν

q2
.

One can write two separate DRs for the transverse self-energy, ΠT , of a massive gauge

boson, which crucially depend on the pole structure of Eq. (2.14), namely

ℜeΠ̄T (s) = ℜeΠ̄T (M2) + (s − M2)ℜeΠ̄′
T (M2) +

(s − M2)2

π

11



×P

+∞∫

{M2
phys

}

ds′
ℑmΠ̄T (s′)

(s′ − M2)2(s′ − s)
, (2.15)

ℜeΠ̄
(ξQ)
T (s) = (s − M2)ℜeΠ̄

′(ξQ)
T (M2) +

(s − M2)2

π
P

+∞∫

{M2
unphys

}

ds′
ℑmΠ̄

(ξQ)
T (s′)

(s′ − M2)2(s′ − s)
.

(2.16)

In the first DR given in Eq. (2.15), the real part of ΠT , ℜeΠ̄T , is determined from branch

cuts induced by physical poles, where the masses of the real on-shell particles in the loop

are collectively denoted by {M2
phys}. In what follows we refer to such a DR as physical DR.

Note that ℜeΠ̄T depends only implicitly on the gauge choice. In fact, ℜeΠ̄T can be viewed

as the truncated part of the self-energy that will survive if ℜeΠT is embedded in a S-matrix

element. In Eq. (2.16), the dispersive part of the two-point function depends explicitly on

ξQ-dependent unphysical thresholds, collectively denoted by {M2
unphys}, which are induced

by the longitudinal parts of the gauge propagators contained in ℑmΠ̄
(ξQ)
T . Evidently, one

has the decomposition

ℑmΠT (s) = ℑmΠ̄T (s) + ℑmΠ̄
(ξQ)
T (s) , ℜeΠT (s) = ℜeΠ̄T (s) + ℜeΠ̄

(ξQ)
T (s) . (2.17)

From Eq. (2.14), one can now isolate that part of the propagator that should be used in a

physical DR. For ξQ 6= 1, one has

∆
(ξQ)
0µν → Uµν(q) ≡ ∆

(∞)
0µν (q) . (2.18)

It is therefore obvious that the ‘physical’ sector of an off-shell transition amplitude in BFG

(for ξQ 6= 1) —or equivalently, the part of the off-shell matrix element that satisfies a

physical DR— is effectively obtained by considering all the internal propagators in the

unitary gauge (ξQ → ∞), but leaving the Feynman rules for the vertices in the general ξQ

gauge.

In view of a physical DR, the gauge ξQ = 1 is very specific, since the physical and

unphysical poles coincide in such a case, making them indistinguishable. At one-loop order,

the results of this gauge are found to collapse to those obtained via the PT [17]. Finally

we remark in passing that, if Π̄T in ξQ 6= 1 is used for a definition of a ‘physical’ self-

energy, one encounters problems with the high-energy unitarity behaviour, even though

the full Π(ξQ) is asymptotically well-behaved. In the case of the one-loop Z self-energy for

example, for ξQ 6= 1 [17], Π̄T contains terms proportional to q4; all such terms eventually

cancel in the entire Π(ξQ) against the part that contains the unphysical poles. Incidentally,
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it is interesting to notice that the recovery of the correct asymptotic behaviour is the more

delayed, i.e., it happens for larger values of q2, the larger the value of ξQ. However, if one

was to resum only the Π̄T part, the terms proportional to q4 would survive, leading to bad

high energy behaviour. If, on the other hand, one had resummed the full Π(ξQ), then one

would have introduced unphysical poles, as explained above.

3 Unitarity and gauge invariance

In this section, we will briefly discuss the basic field-theoretical consequences resulting

from the unitarity of the S-matrix theory, and establish its connection with gauge invari-

ance. In addition to the requirement of explicit gauge invariance, the necessary conditions

derived from unitarity will constitute our guiding principle to analytically continue n-point

correlation functions in the off-shell region. Furthermore, we arrive at the important con-

clusion that the resummed self-energies, in addition to being GFP independent, must also

be “unitary”, in the sense that they do not spoil unitarity when embedded in an S-matrix

element.

The T -matrix element of a reaction i → f is defined via the relation

〈f |S|i〉 = δfi + i(2π)4δ(4)(Pf − Pi)〈f |T |i〉, (3.1)

where Pi (Pf) is the sum of all initial (final) momenta of the |i〉 (|f〉) state. Furthermore,

imposing the unitarity relation S†S = 1 leads to the OT:

〈f |T |i〉 − 〈i|T |f〉∗ = i
∑

i′
(2π)4δ(4)(Pi′ − Pi)〈i′|T |f〉∗〈i′|T |i〉. (3.2)

In Eq. (3.2), the sum
∑

i′ should be understood to be over the entire phase space and spins

of all possible on-shell intermediate particles i′. A corollary of this theorem is obtained if

i = f . In this particular case, we have

ℑm〈i|T |i〉 =
1

2

∑

f

(2π)4δ(4)(Pf − Pi)|〈f |T |i〉|2. (3.3)

In the conventional S-matrix theory with stable particles, Eqs. (3.2) and (3.3) hold also

perturbatively. To be precise, if one expands the transition T = T (1)+T (2)+ · · ·+T (n)+ · · ·,
to a given order n, one has

T
(n)
fi − T

(n)∗
if = i

∑

i′
(2π)4δ(4)(Pi′ − Pi)

n−1∑

k=1

T
(k)∗
i′f T

(n−k)
i′i . (3.4)
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There are two important conclusions that can be drawn from Eq. (3.4). First, the anti-

hermitian part of the LHS of Eq. (3.4) contains, in general, would-be Goldstone bosons

or ghost fields [28]. Such contributions manifest themselves as Landau singularities at

unphysical points, e.g., q2 = ξQM2
W for a W propagator in a general BFG. However,

unitarity requires that these unphysical contributions should vanish, as can be read off

from the RHS of Eq. (3.4). Second, the RHS explicitly shows the connection between

gauge invariance and unitarity at the quantum loop level. To lowest order for example, the

RHS consists of the product of GFP independent on-shell tree amplitudes, thus enforcing

the gauge-invariance of the imaginary part of the one-loop amplitude on the LHS.

The above powerful constraints imposed by unitarity will be in effect as long as one

computes full amplitudes to a finite order in perturbation theory. However, for resumma-

tion purposes, a certain sub-amplitude, i.e., a part of the full amplitude, must be singled

out and subsequently undergo a Dyson summation, while the rest of the S-matrix is com-

puted to a finite order n. Therefore, if the resummed amplitude contains gauge artifacts

and/or unphysical thresholds, the cancellations imposed by Eq. (3.4) will only operate up

to order n, introducing unphysical contributions of order n + 1 or higher. To avoid the

contamination of the physical amplitudes by such unphysical artifacts, we impose the fol-

lowing two requirements on the effective Green’s functions, when one attempts to continue

them analytically in the off-shell region for the purpose of resummation:

(i) The off-shell n-point correlation functions ought to be derivable from or embeddable

into S-matrix elements.

(ii) The off-shell Green’s functions should not display unphysical thresholds induced by

unphysical Landau singularities, as has been described above.

Even though property (i) is automatic for Green’s functions generated by the func-

tional differentiation of the conventional path-integral functional, in general the off-shell

amplitudes so obtained fail to satisfy property (ii). In the PT framework instead, both

conditions are satisfied: effective Green’s functions are directly derived from the S-matrix

amplitudes (so condition (i) is satisfied by construction) and contain only physical thresh-

olds, so that unitarity is not explicitly violated [4].

In our discussion of unitarity at one-loop, we will make extensive use of the following

two-body Lorentz-invariant phase-space (LIPS) integrals: The scalar integral
∫

dXLIPS =
1

(2π)2

∫
d4k1

∫
d4k2 δ+(k2

1 − m2
1)δ+(k2

2 − m2
2)δ

(4)(q − k1 − k2)
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= θ(q0)θ[q2 − (m1 + m2)
2]

1

8π q2
λ1/2(q2, m2

1, m
2
2) , (3.5)

where λ(x, y, z) = (x − y − z)2 − 4yz and δ+(k2 − m2) ≡ θ(k0)δ(k2 − m2), and the tensor

integral:

∫
dXLIPS(k1 − k2)µ(k1 − k2)ν =

{λ(q2, m2
1, m

2
2)

3q2
tµν(q) +

[λ(q2, m2
1, m

2
2)

q2
− q2

+2(m2
1 + m2

2)
]
ℓµν(q)

}
×
∫

dXLIPS . (3.6)

The Lorentz projection tensors, tµν(q) and ℓµν(q), have been defined after Eq. (2.14).

4 The case of QCD

In this section, we show that a self-consistent picture may be obtained by resorting to

such fundamental properties of the S-matrix as unitarity and analyticity, using as additional

input only EWIs for tree-level, on-shell processes, and tree-level vertices and propagators. It

is important to emphasize that the GFP independence of the results emerges automatically

from the previous considerations.

We begin from the RHS of the optical relation given in Eq. (3.3). The RHS involves

on-shell physical processes, which satisfy the EWIs. It turns out that the full exploitation

of those EWIs leads unambiguously to a decomposition of the tree-level amplitude into

propagator-, vertex- and box-like structures. The propagator-like structure corresponds

to the imaginary part of the effective propagator under construction. By imposing the

additional requirement that the effective propagator be an analytic function of q2 one

arrives at a DR, which, up to renormalization-scheme choices, leads to a unique result for

the real part.

Consider the forward scattering process qq̄ → qq̄. From the OT, we then have

ℑm〈qq̄|T |qq̄〉 =
1

2

(
1

2

) ∫
dXLIPS 〈qq̄|T |gg〉〈gg|T |qq̄〉∗ . (4.1)

In Eq. (4.1), the statistical factor 1/2 in parentheses arises from the fact that the final on-

shell gluons should be considered as identical particles in the total rate. We now set M =

〈qq̄|T |qq̄〉 and T = 〈qq̄|T |gg〉, and focus on the RHS of Eq. (4.1). Diagrammatically, the

amplitude T consists of two distinct parts: t and u-channel graphs that contain an internal

quark propagator, Tt
ab
µν , as shown in Figs. 3(a) and 3(b), and an s-channel amplitude,
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Ts
ab
µν , which is given in Fig. 3(c). The subscript “s” and “t” refers to the corresponding

Mandelstam variables, i.e. s = q2 = (p1 + p2)
2 = (k1 +k2)

2, and t = (p1 −k1)
2 = (p2 −k2)

2.

Defining

V c
ρ = gv̄(p2)

λc

2
γρ u(p1) , (4.2)

we have that

T ab
µν = Ts

ab
µν(ξ) + Tt

ab
µν , (4.3)

with

Ts
ab
µν(ξ) = −gfabc ∆

(ξ),ρλ
0 (q)Γλµν(q,−k1,−k2) V c

ρ , (4.4)

Tt
ab
µν = −ig2v̄(p2)

( λb

2
γν 1

6p1− 6k1 − m

λa

2
γµ +

λa

2
γµ 1

6p1− 6k2 − m
γν λb

2

)
u(p1) , (4.5)

where

Γλµν(q,−k1,−k2) = (k1 − k2)λgµν + (q + k2)µgλν − (q + k1)νgλν . (4.6)

q(p1)

q

q̄(p2)

g(k1), µ, a

g(k2), ν, b

(a)

q

(b)

λ, c

(c)

λ, c
cg, a

c̄g, b

(d)

Fig. 3: Diagrams (a)–(c) contribute to T ab
µν , and diagram (d) to Sab.

Notice that Ts depends explicitly on the GFP ξ, through the tree-level gluon propagator

∆
(ξ)
0µν(q), whereas Tt does not. The explicit expression of ∆

(ξ)
0µν(q) depends on the specific
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gauge fixing procedure chosen. In addition, we define the quantities Sab and Rab
µ as follows:

Sab = gfabc kσ
1

q2
V c

σ

= −gfabc kσ
2

q2
V c

σ (4.7)

and

Rab
µ = gfabc V c

µ . (4.8)

Clearly,

kσ
1Rab

σ = −kσ
2Rab

σ = q2Sab. (4.9)

We then have

ℑmM =
1

4
T ab

µν P µσ(k1, η1) P νλ(k2, η2) T ab∗
σλ

=
1

4

[
Ts

ab
µν(ξ) + Tt

ab
µν

]
P µσ(k1, η1) P νλ(k2, η2)

[
Ts

ab∗
σλ (ξ) + Tt

ab∗
σλ

]
, (4.10)

where the polarization tensor P µν(k, η) is given by

Pµν(k, η) = −gµν +
ηµkν + ηνkµ

ηk
+ η2 kµkν

(ηk)2 . (4.11)

Moreover, we have that on-shell, i.e., for k2 = 0, kµPµν = 0. By virtue of this last property,

we see immediately that if we write the three-gluon vertex of Eq. (4.6) in the form

Γλµν(q,−k1,−k2) = [(k1 − k2)λgµν + 2qµgλν − 2qνgλµ] + (−k1µgλν + k2νgλµ)

= ΓF
λµν(q,−k1,−k2) + ΓP

λµν(q,−k1,−k2) , (4.12)

the term ΓP
ρµν dies after hitting the polarization vectors Pµσ(k1, η1) and Pνλ(k2, η2). There-

fore, if we denote by T F
s (ξ) the part of Ts which survives, Eq. (4.10) becomes

ℑmM =
1

4
[T F

s (ξ) + Tt]
ab
µν P µσ(k1, η1) P νλ(k2, η2) [T F

s (ξ) + Tt]
ab∗
σλ . (4.13)

The next step is to verify that any dependence on the GFP inside the propagator ∆
(ξ)
0µν(q)

of the off-shell gluon will disappear. This is indeed so, because the longitudinal parts of

∆0µν either vanish because the external quark current is conserved, or because they trigger

the following EWI:

qµΓF
µαβ(q,−k1,−k2) = (k2

1 − k2
2)gαβ , (4.14)
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which vanishes on shell. This last EWI is crucial, because in general, current conservation

alone is not sufficient to guarantee the GFP independence of the final answer. In the covari-

ant gauges for example, the gauge fixing term is proportional to qµqν ; current conservation

kills such a term. But if we had chosen an axial gauge instead, i.e.

∆
(η̃)
0µν(q) =

Pµν(q, η̃)

q2
, (4.15)

where η̃ 6= η in general, then only the term η̃νqµ vanishes because of current conservation,

whereas the term η̃νqµ can only disappear if Eq. (4.14) holds. So, Eq. (4.13) becomes

ℑmM =
1

4
(T F

s + Tt)
ab
µν P µσ(k1, η1) P νλ(k2, η2) (T F

s + Tt)
ab∗
σλ , (4.16)

where the GFP-independent quantity T F
s is given by

Ts
F,ab
µν = −gfabc gρλ

q2
ΓF

λµν(q,−k1,−k2) V c
ρ . (4.17)

Next, we want to show that the dependence on ηµ and η2 stemming from the polarization

vectors disappears. Using the on shell conditions k2
1 = k2

2 = 0, we can easily verify the

following EWIs:

kµ
1Ts

F,ab
µν = 2k2νSab − Rab

ν , (4.18)

kν
2Ts

F,ab
µν = 2k1µSab + Rab

µ , (4.19)

kµ
1Tt

ab
µν = Rab

ν , (4.20)

kν
2Tt

ab
µν = −Rab

µ , (4.21)

from which we have that

kµ
1 kν

2Ts
F,ab
µν = q2Sab , (4.22)

kµ
1 kν

2Tt
ab
µν = −q2Sab . (4.23)

Using the above EWIs, it is now easy to check that indeed, all dependence on both ηµ

and η2 cancels in Eq. (4.16), as it should, and we are finally left with (omitting the fully

contracted colour and Lorentz indices):

ℑmM =
1

4

[(
T F

s T F
s

∗ − 8SS∗
)

+
(
T F

s T ∗
t + T F

s

∗Tt

)
+ TtT ∗

t

]

= ℑmM̂1 + ℑmM̂2 + ℑmM̂3 . (4.24)

The first part is the genuine propagator-like piece, the second is the vertex, and the third

the box. Employing the fact that

ΓF
ρµνΓ

F,µν
λ = −8q2tρλ(q) + 4(k1 − k2)ρ(k1 − k2)λ (4.25)
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and

SS∗ = g2 cA V c
ρ

kρ
1k

λ
1

(q2)2
V c

λ

=
g2

4
cA V c

ρ

(k1 − k2)
ρ(k1 − k2)

λ

(q2)2
V c

λ , (4.26)

where cA is the eigenvalue of the Casimir operator in the adjoint representation (cA = N

for SU(N)), we obtain for ℑmM̂1

ℑmM̂1 =
g2

2
cAV c

µ

1

q2

[
− 4q2tµν(q) + (k1 − k2)

µ(k1 − k2)
ν
] 1

q2
V c

ν . (4.27)

This last expression must be integrated over the available phase space. With the help of

Eqs. (3.5) and (3.6), we arrive at the final expression

ℑmM̂1 = V c
µ

1

q2
ℑmΠ̂µν(q)

1

q2
V c

ν , (4.28)

with

ℑmΠ̂µν(q) = − αs

4

11cA

3
q2tµν(q) , (4.29)

and αs = g2/(4π).

Before we proceed, we make the following remark. It is well-known that the vanishing

of the longitudinal part of the gluon self-energy is an important consequence of gauge

invariance. One might naively expect that even if a non-vanishing longitudinal part had

been induced by some contributions which do not respect gauge invariance, it would not

have contributed to physical processes, since the gluon self-energy couples to conserved

fermionic currents, thus projecting out only the transverse degrees of the gluon vacuum

polarization. However, this expectation is not true in general. Indeed, if one uses, for

example, the tree-level gluon propagator in the axial gauge, as given in Eq. (4.15), then

there will be residual η-dependent terms induced by the longitudinal component of the

gluon vacuum polarization, which would not vanish, despite the fact that the external quark

currents are conserved. Such terms are obviously gauge dependent. Evidently, projecting

out only the transverse parts of Green’s functions will not necessarily render them gauge

invariant.

The vacuum polarization of the gluon within the PT is given by [7]

Π̂µν(q) =
αs

4π

11cA

3
tµν(q) q2

[
ln
(
− q2

µ2

)
+ CUV

]
. (4.30)
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Here, CUV = 1/ǫ − γE + ln 4π + C, with C being some constant and µ is a subtraction

point. In Eq. (4.30), it is interesting to notice that a change of µ2 → µ′2 gives rise to a

variation of the constant C by an amount C ′ − C = ln µ′2/µ2. Thus, a general µ-scheme

renormalization yields

Π̂R
T (s) = Π̂T (s) − (s − µ2)ℜeΠ̂′

T (µ2) − ℜeΠ̂T (µ2)

=
αs

4π

11cA

3
s
[
ln
(
− s

µ2

)
− 1 +

µ2

s

]
. (4.31)

From Eq. (2.7), one can readily see that ℜeΠ̂R
T (s) can be calculated by the following double

subtracted DR:

ℜeΠ̂R
T (s) =

(s − µ2)2

π
P

∞∫

0

ds′
ℑmΠ̂T (s′)

(s′ − µ2)2(s′ − s)
. (4.32)

Inserting Eq. (4.29) into Eq. (4.32), it is not difficult to show that it leads to the result

given in Eq. (4.31), a fact that demonstrates the analytic power of the DR.

It is important to emphasize that the above derivation rigorously proves the GFP in-

dependence of the one-loop PT effective Green’s functions, for every gauge fixing procedure.

Indeed, in our derivation, we have solely relied on the RHS of the OT, which we have rear-

ranged in a well-defined way, after having explicitly demonstrated its GFP-independence.

The proof of the GFP-independence of the RHS presented here is, of course, expected

on physical grounds, since it only relies on the use of EWIs, triggered by the longitudi-

nal parts of the gluon tree-level propagators. Note that the tree-level tri-gluon coupling,

Γλµν , is uniquely given by Eq. (4.6). Since the GFP-dependence is carried entirely by the

longitudinal parts of the gluon tree-level propagator in any gauge-fixing scheme whereas

the gµν part is GFP-independent and universal, the proof presented here is generally true.

Obviously, the final step of reconstructing the real part from the imaginary by means of a

DR does not introduce any gauge-dependences.

5 The QCD analysis from BRS considerations

In this section, we will show how we can obtain the same answer by resorting only to

the EWIs that one obtains as a direct consequence of the BRS symmetry of the quantum

Lagrangian.

If we consider T ab
µν as before, it is easy to show that it satisfies the following BRS
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identities [29]:

kµ
1T ab

µν = k2νSab ,

kν
2T ab

µν = k1µSab ,

kµ
1 kν

2T ab
µν = 0 , (5.1)

where Sab is the ghost amplitude shown in Fig. 3(d); its closed form is given in Eq. (4.7).

Notice that the BRS identities of Eq. (5.1) are different from those listed in Eqs.

(4.18)–(4.23), because the term ΓP
µνρ had been removed in the latter case. Here, we follow

a different sequence and do not kill the term ΓP
µνρ; instead, we will exploit the exact BRS

identities from the very beginning.

We start again with the expression for ℑmM given in Eq. (4.10). First of all, it is

easy to verify again that the dependence on the GFP of the off-shell gluon vanishes. This

is so because of the tree-level EWI, involving the full vertex Γµνρ,

qλΓλµν(q,−k1,−k2) = k2
2 tµν(k2) − k2

1 tµν(k1) . (5.2)

The RHS vanishes after contracting with the polarization vectors, and employing the on-

shell condition k2
1 = k2

2 = 0. Again, by virtue of the BRS identities and the on-shell

condition k2
1 = k2

2 = 0, the dependence of ℑmM on the parameters ηµ and η2 cancels, and

we eventually obtain

ℑmM =
1

4
Tµν P µρ(k1, η1) P νσ(k2, η2) T ∗

ρσ

=
1

4

(
T µνT ∗

µν − 2SS∗
)

=
1

4

[
(T F

s + T P
s + Tt)

µν(T F
s + T P

s + Tt)
∗
µν − 2SS∗

]
, (5.3)

where

Ts
P,ab
µν = −gfabc gρλ

q2
ΓP

λµν(q,−k1,−k2) V c
ρ . (5.4)

At this point, one must recognize that due to the four-momenta of the trilinear vertex

ΓP inside T P
s , one can further trigger the EWIs, exactly as one did in order to derive from

Eq. (4.10) the last step of Eq. (5.3). In fact, only the process-independent terms contained

in ℑmM will be projected out on account of the BRS identities of Eq. (5.1). It is important

to emphasize that T F
s and Tt do not contain any pinching momenta. This is particular to

this example, where we have only two gluons as final states, but is not true for more gluons.
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To further exploit the EWIs derived from BRS symmetries, we re-write the RHS of Eq.

(5.3) in the following way (we omit the fully contracted Lorentz indices):

ℑmM =
1

4

[
(Tt + T P

s + T F
s )(Tt + T P

s + T F
s )∗ − 2SS∗

]

=
1

4

[
(T F

s T F
s

∗ − T P
s T P

s

∗
+ T P

s T ∗ + T T P
s

∗ − 2SS∗) + (TtT F
s

∗
+ T F

s T ∗
t ) + TtT ∗

t

]

= ℑmM̂1 + ℑmM̂2 + ℑmM̂3 . (5.5)

In Eq. (5.5), the reader may recognize the rearrangement characteristic of the “intrinsic”

PT, presented in [30].

Inserting the explicit form of T P
s given in Eq. (5.4) into Eq. (5.5) and using the BRS

identities,

T P
s T ∗ = −2SS∗ ,

T P
s T P∗

s = 2SS∗ , (5.6)

we obtain

ℑmM̂1 =
1

4

(
T F

s T F
s

∗ − T P
s T P

s

∗
+ T P

s T ∗ + T P
s

∗T − 2SS∗
)

=
1

4

(
T F

s T F
s

∗ − 8SS∗
)

, (5.7)

which is the same result found in the previous section, i.e., Eq. (4.24).

An interesting by-product of the above analysis is that one is able to show the inde-

pendence of the PT results of the number of the external fermionic currents [10]. Indeed,

the BRS identities in Eqs. (5.1), as well as those given in Eq. (5.6), will still hold for any

transition amplitude of n-fermionic currents to two gluons. By analogy, one can decompose

the transition amplitude into Tt and Ts structures. Similarly, the form of the sub-structures

T F
s and T P

s will then change accordingly. In fact, the only modification will be that the

vector current, V c
ρ , contained in Eqs. (4.17) and (5.4) will now represent the transition of

one gluon to n-fermionic currents. Making use of the “intrinsic” PT, one then obtains the

result given in Eq. (5.7). Hence, we can conclude that the PT does not depend on the

number of the external fermionic currents attached to gluons.

6 The electroweak case

In this section, we will show how the same considerations apply directly to the case of

the electroweak sector of the SM. We consider the charged current process e−ν → e−ν and
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assume that the electron mass me is non-zero, so that the external current is not conserved.

We focus on the part of the amplitude which has a threshold at q2 = M2
W . This corresponds

the virtual process W− → W−γ, where γ is the photon. From the OT, we have

ℑm〈e−ν|T |e−ν〉 =
1

2

∫
dXLIPS 〈e−ν|T |W−γ〉〈W−γ|T |e−ν〉∗ . (6.1)

e(p1)

e

ν̄(p2)

γ(k2), ν

W−(k1), µ

(a)

G−

(b)

W−, ρ

(c)

Fig. 4: Amplitudes contributing to the reaction e−ν̄ → W−γ

We set again M = 〈e−ν|T |e−ν〉 and T = 〈e−ν|T |W−γ〉. As in the case of QCD, the

amplitude consists of two distinct parts, a part that contains an electron propagator (Fig.

4(a)) and a part that does not, which is shown in Figs. 4(b) and 4(c). As before, we denote

them by Tt and Ts(ξw), respectively. We first define

V µ
L =

gw

2
√

2
v̄(p2)γ

µ(1 − γ5)u(p1) (6.2)

and

SR =
gw

2
√

2

me

MW
v̄(p2)(1 + γ5)u(p1) . (6.3)

Clearly, one has the EWI

qµV
µ
L = MW SR . (6.4)

The amplitude Ts can the be written down in the closed form

Tsµν(ξw) = iV λ
L ∆

(ξw),ρ
0λ (q) ΓγW−W+

νρµ + iSR D
(ξw)
0 (q) ΓγG−W+

νµ , (6.5)

where ΓγW−W+

νρµ = eΓνρµ(−k2, q,−k1) is the tree-level γW−W+ vertex and ΓγG−W+

νµ =

eMW gµν is the tree-level γG−W+ vertex. In the expression (6.5), we explicitly display
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the dependence on the GFP ξw. In addition, the amplitude Tt is given by

T µν
t =

iegw

2
√

2
v̄(p2) γµ(1 − γ5)

1

6p1− 6k2 − me
γν u(p1) . (6.6)

Notice that T µν
t does not depend on ξw. Denoting by k1 the four-momentum of the W and

by k2 that of the photon, Eq. (6.1) becomes

ℑmM = TµνQ
µρ(k1)P

νσ(k2, η)T ∗
ρσ , (6.7)

where P µν is the photon polarization tensor given in Eq. (4.11), and

Qµν(k) = −gµν +
kµkν

M2
W

(6.8)

is the W polarization tensor. The polarization tensor Qµν(k) shares the property that, on

shell, i.e., for k2 = M2
W , kµQµν(k) = 0. Furthermore, in Eq. (6.7), we omit the integration

measure 1/2
∫

dXLIPS.

First, we will show how the dependence on the GFP ξw cancels. To that end, we

employ the usual decomposition

∆
(ξw)
0µν (q) = Uµν(q) − qµqν

M2
W

D
(ξw)
0 (q2) , (6.9)

the EWI

qρΓγW−W+

νρµ (−k2, q,−k1) Qµλ(k1)P
νσ(k2, η) = MW ΓγG−W+

µν Qµλ(k1)P
νσ(k2, η) (6.10)

and the EWI of Eq. (6.4), and we obtain the following ξw-independent expression for T µν
s

T µν
s = ieV λ

L Uλρ(q)Γ
νρµ(−k2, q,−k1) = ieV λ

L Uλρ(q) ΓF,νρµ(−k2, q,−k1)

= Ts
F,µν , (6.11)

where contraction over the polarization tensors Qµν and Pµν is implied. In the last step

of Eq. (6.11), we have used the fact that the ΓP part of the vertex, defined in Eq. (4.12),

vanishes when contracted with the polarization tensors.

Next, we show how the dependence on the four-vector ηµ and the parameter η2

vanishes. First, it is straightforward to verify the following EWI:

kµ
1 ΓF

νρµ(−k2, q,−k1) = [U−1
γ (k2) − U−1(q) − U−1(k1)]νρ

+2M2
W gνρ + (k1 − k2)νk1ρ

= −U−1
νρ (q) + 2M2

Wgνρ − k2ν(k1 − k2)ρ , (6.12)
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where the on-shell conditions k2
1 = M2

W and k2
2 = 0 are used in the last equality of Eq.

(6.12). Similarly, one has

kν
2ΓF

νρµ(−k2, q,−k1) = [U−1(q) − U−1(k1) + U−1
γ (k2)]ρµ

+k2ρ(k1 − k2)µ

= U−1
ρµ (q) − (k1 − k2)ρk1µ , (6.13)

with

U−1
αβ (q) = (q2 − M2

W ) tαβ + M2
W ℓαβ ,

U−1
γ αβ

(q) = q2 tαβ . (6.14)

So, when the ησkν
2 term from Pνσ(k2, η) gets contracted with Tµν , we have

ησkν
2Tsµν = ieησV λ

L

[
gλµ − Uα

λ (q) U−1
αµ (k1)

]
,

ησkν
2Ttµν = −ieησVLµ . (6.15)

Adding the last two equations by parts, we find

ησkν
2Tµν = ieησV λ

L Uα
λ (q) U−1

αµ (k1) . (6.16)

Since the result is proportional to k1µ, the four-momentum of the external W boson, we

immediately see that

ησkν
2TµνQ

µρ(k1) = 0 . (6.17)

For the same reasons, the term proportional to η2 vanishes as well. Consequently, ℑmM
takes on the form

ℑmM = −(T F
s + Tt)µνQ

µρ(k1)(T F
s + Tt)

∗
ρν

= (T F
s + Tt)

µν(T F
s + Tt)

∗
µν − (T F

s + Tt)
µν k1µk

ρ
1

M2
W

(T F
s + Tt)

∗
ρν

= ℑmMa + ℑmMb. (6.18)

The absorptive sub-amplitude, ℑmMa, consists of three terms,

ℑmMa = T F
s T F

s

∗
+ (T F

s T ∗
t + TtT F

s

∗
) + TtT ∗

t

= ℑmM̂a
1 + ℑmM̂a

2 + ℑmM̂a
3 . (6.19)

The first term, ℑmM̂a
1, can easily be identified with a propagator-like contribution. In

particular, using Eq. (4.25), we find

ℑmM̂a
1 = e2 V ρ

L Uρµ(q)
[
− 8q2tµν(q) + 4(k1 − k2)

µ(k1 − k2)
ν
]
Uνλ(q) V λ

L . (6.20)
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The amplitudes, ℑmM̂a
2 and ℑmM̂a

3, are vertex- and box-like contributions, respectively,

and they will not be considered any further here.

We must now isolate the corresponding propagator-like piece from ℑmMb. By virtue

of the EWI of Eq. (6.12), we have

kµ
1Ts

F
µν = −ieVLν − ieVLλ Uλρ(q)

[
(k1 − k2)ρk2ν − 2M2

W gρν

]
. (6.21)

In addition, we evaluate the EWI

kµ
1Ttµν = ieVLν + MW

iegwme

2
√

2MW

v̄(p2) (1 + γ5)
1

6p1− 6k2 − me
γν u(p1)

= ieVLν + MWLν , (6.22)

which is shown diagrammatically in Fig. 5.

e(p1)

e

ν̄(p2)

γ(k2), ν

W−(k1), µ

· kµ
1

(a)

=

γ

W−

(b)

+ MW · e

γ

G−

(c)

Fig. 5: Elementary BRS identity for the e-dependent amplitude T µν
t

Adding Eqs. (6.21) and (6.22) by parts, we obtain

kµ
1 (T F

s + Tt)µν = −ieVLλ Uλρ(q)
[
(k1 − k2)ρk2ν − 2M2

Wgρν

]
+ MWLν . (6.23)

Making now use of the EWI of Eq. (6.4) and writing

SR = MW VLµ Uµν(q) qν (6.24)

yields the following WI for Lσ:

kν
2 Lν = −ieSR = −ieMW VLα Uαβ(q) qβ . (6.25)
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We also use the following algebraic identity

qµ(k1 − k2)
ν = 2kµ

2 (k1 − k2)
ν + (k1 − k2)

µ(k1 − k2)
ν . (6.26)

Taking the above relations into account, we eventually obtain

ℑmMb = −e2 VLρ Uρµ(q)
[
4M2

W gµν + 2(k1 − k2)µ(k1 − k2)ν

]
Uνλ(q) VLλ

−2ieMW

[
VLρ Uρν(q)L∗

ν − Lν Uνλ(q) VLλ

]
− LνL∗

ν

= ℑmM̂b
1 + ℑmM̂b

2 + ℑmM̂b
3 . (6.27)

Adding the two propagator-like parts ℑmM̂a
1 and ℑmM̂b

1 from Eqs. (6.20) and (6.27),

respectively, we find

ℑmM̂1 = ℑmM̂a
1 + ℑmM̂b

1

= e2 V ρ
L Uρµ(q)

[
− 8q2tµν(q) − 4M2

W gµν + 2(k1 − k2)
µ(k1 − k2)

ν
]
Uνλ(q) V λ

L .

(6.28)

Next, we carry out the phase-space integration over 1/2
∫

dXLIPS, using the formulas given

in Eqs. (3.5) and (3.6), and the fact that λ1/2(q2, M2
W , 0) = q2 − M2

W > 0. In this way, we

have

ℑmM̂1 = VLρU
ρµ(q) ℑmΠ̂W

µν Uνλ(q) VLλ , (6.29)

with

ℑmΠ̂W
µν(q) = ℑmΠ̂W

T (q2) tµν(q) + ℑmΠ̂W
L (q2) ℓµν(q),

ℑmΠ̂W
T (q2) =

αem

2
(q2 − M2

W )
(
− 11

3
+

4M2
W

3q2
+

M4
W

3q4

)
,

ℑmΠ̂W
L (q2) =

αem

2
(q2 − M2

W )
(
− 2M2

W

q2
+

M4
W

q4

)
. (6.30)

Here, αem = e2/(4π) is the electromagnetic fine structure constant. The real part of the

transverse, on-shell renormalized, W -boson self-energy, ℜeΠ̂W,R
T (s), can be determined by

means of a doubly subtracted DR given in Eq. (2.7). Furthermore, we have to assume

a fictitious photon mass, µγ, in order to regulate the infra-red (IR) divergences. More

explicitly, the DR of our interest reads

ℜeΠ̂W,R
T (s) = ℜeΠ̂W

T (s) − (s − M2
W )ℜeΠ̂W

T
′(M2

W ) − ℜeΠ̂W
T (M2

W )

= lim
Λ→∞

lim
µγ→0

(s − M2
W )2

π
P

Λ∫

(MW +µγ)2

ds′ ℑmΠ̂W
T (s′)

(s′ − M2
W )2(s′ − s)

. (6.31)

27



To obtain the analytic form of ℜeΠ̂W,R
T (s), we first evaluate the following integrals:

F0(s) = (s − M2
W ) P

∞∫

(MW +µγ)2

ds′
1

(s′ − M2
W )(s′ − s)

= − ln
( |s − M2

W |
2MW µγ

)
, (6.32)

F1(s) = (s − M2
W ) P

∞∫

(MW +µγ)2

ds′
1

(s′ − M2
W )(s′ − s)

M2
W

s′

= − M2
W

s
ln
( |s − M2

W |
2MWµγ

)
−
(
1 − M2

W

s

)
ln
(MW

2µγ

)
, (6.33)

F2(s) = (s − M2
W ) P

∞∫

(MW +µγ)2

ds′
1

(s′ − M2
W )(s′ − s)

M4
W

s′2

= − M4
W

s2
ln
( |s − M2

W |
2MWµγ

)
− ln

(MW

2µγ

)
+ 1 − M2

W

s
, (6.34)

Armed with the integrals defined in Eqs. (6.32)–(6.34), one then obtains

ℜeΠ̂W
T (s) =

αem

2
(s − M2

W )
(
− 11

3
F0 +

4

3
F1 +

1

3
F2

)
. (6.35)

Eq. (6.35) coincides with the PT W -boson self-energy [8] or equivalently with the W -boson

self-energy computed in the BFG for ξQ = 1 [17].

7 Cutkosky considerations

In this section, we focus on the LHS of the OT and present a different point of view

and a self-consistency check. In particular, we consider the one-loop S-matrix element

for a given process and compute its imaginary part by direct application of the Cutkosky

rules. The expressions so obtained consist of the product of tree-level amplitudes, with

the important difference that now “unphysical” degrees of freedom appear as intermediate

states, giving in turn rise to “unphysical” thresholds. These tree-level amplitudes are

related by EWIs. We show that, when fully exploited, these EWIs give rise to propagator-,

vertex- and box-like expressions, which contain physical thresholds only, whereas all the

unphysical thresholds disappear completely. The expressions so derived are identical to the

imaginary parts of the corresponding PT Green’s functions, which one can obtain directly
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from the S-matrix. Also, both real and imaginary parts are related via a DR, as has been

discussed in Section 2.

For the process lνl → W−(p)H(pH), we have in an arbitrary ξ gauge

pµ

MW
T

(ξ)
(a) µ = T

(ξ)
(b) +

igw

2MW
SR, (7.1)

pµ

MW
T

(ξ)
(c) µ = T

(ξ)
(d) − igw

2MW
SR . (7.2)

e

ν̄

W−

H(pH)

W−(p), µ

e

ν̄

G−

H

W−, µ

(a)

e

ν̄

W−

H

G−

e

ν̄

G−

H

G−

(b)

e

e

ν̄

H

W−, µ

(c)

e

e

ν̄

H

G−

(d)

Fig. 6: Graphs contributing to the amplitudes T
(ξ)
(a)µ, T

(ξ)
(b) , T(c), and T(d).
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We will carry out an explicit calculation of the ℑmM̂1 of the process eν̄e → eν̄e at the

one-loop electroweak order, working on the LHS of the OT. To simplify the algebra, we

will assume that only the W and H particles can come kinematically on the mass shell, as

shown in Fig. 6. In what follows, we omit the common integration measure of the loop,

1/[2(2π)4]
∫

d4pd4pHδ(4)(pH + p− pe − pν). Then, the absorptive amplitude, ℑmM, for the

aforementioned process may be written as (suppressing contraction over Lorentz indices,

and using the on-shell conditions p2
H = M2

H , p2 = M2
W )

ℑmM = ∆̃0H(pH)
[
T

(ξ)
(a) ∆̃

(ξ)
0 (p)T

(ξ)∗
(a) + T

(ξ)
(b) D̃

(ξ)
0 (p)T

(ξ)∗
(b) + T

(ξ)
(c) ∆̃

(ξ)
0 (p)T

(ξ)∗
(a)

+ T
(ξ)
(a) ∆̃

(ξ)
0 (p)T

(ξ)∗
(c) + T

(ξ)
(d) D̃

(ξ)
0 (p)T

(ξ)∗
(b) + T

(ξ)
(b) D̃

(ξ)
0 (p)T

(ξ)∗
(d)

+ T
(ξ)
(c) ∆̃

(ξ)
0 (p)T

(ξ)∗
(c) + T

(ξ)
(d) D̃

(ξ)
0 (p)T

(ξ)∗
(d)

]
, (7.3)

where the tilde acting on the tree-level propagators simply projects out the corresponding

absorptive parts. Such a projection can effectively be obtained by applying the Cutkosky

rules. More explicitly, we have

∆̃0H(pH) = 2π δ+(p2
H − M2

H) , (7.4)

D̃
(ξ)
0 (p) = 2π δ+(p2 − ξM2

W ) , (7.5)

∆̃
(ξ)
0 µν(p) = 2π

[
Qµν(p) δ+(p2 − M2

W ) − pµpν

M2
W

δ+(p2 − ξM2
W )
]

= Ũµν(p) − pµpν

M2
W

D̃
(ξ)
0 (p) , (7.6)

where the W -boson polarization tensor Qµν(p) is given in Eq. (6.8) and δ+(p2 − M2) =

δ(p2 − M2)θ(p0). After identifying the PT piece, TP = −igwSR/(2MW ), which is obtained

from Eq. (7.2) each time the pµpν-dependent part of ∆̃
(ξ)
0µν gets contracted with T

(ξ)
(c) , we

observe that the imaginary propagator-like part may be decomposed as follows:

ℑmM̂1 = ℑmM̂(phys)
1 + δM̂1 , (7.7)

where

ℑmM̂(phys)
1 = ∆̃0H(pH)(2π)δ+(p2 − M2

W )
(
T

(ξ)
(a)µQµν(p)T

(ξ)∗
(a)ν + TP

pν

MW
T

(ξ)∗
(a) ν

+T
(ξ)
(a) λ

pλ

MW

T ∗
P + TP T ∗

P

)
(7.8)

and

δM̂1 = − ∆̃0H(pH)D̃
(ξ)
0 (p)

(
T

(ξ)∗
(a) λ

pλpν

M2
W

T
(ξ)∗
(a) ν − T

(ξ)
(b) T

(ξ)∗
(b) + TP

pν

MW

T
(ξ)∗
(a) ν

+T
(ξ)
(a) λ

pλ

MW
T ∗

P + TP T ∗
P

)
. (7.9)
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In the first term, ℑmM̂(phys)
1 , we have collected all contributions originating from the

physical poles at p2
H = M2

H and p2 = M2
W , whereas all those occuring at p2 = ξM2

W and

are proportional to D̃
(ξ)
0 (p) are included in δM̂1.

The first important observation is that δM̂1 = 0, which can be shown with the help

of the EWI in Eq. (7.1). So, the full exploitation of this WI gives rise to a propagator-like

imaginary part where all unphysical thresholds have been cancelled. In addition, with the

help of the same WI, we obtain for ℑmM̂(phys)
1 ,

ℑmM̂1 = ℑmM̂(phys)
1 =

1

2

∫
dXLIPS

(
− T

(ξ)
(a) T

(ξ)∗
(a) + T

(ξ)
(b) T

(ξ)∗
(b)

)
. (7.10)

We must now demonstrate that the final dependence on ξ cancels in the above equation.

Notice that even though we use the on shell conditions p2 = M2
W and p2

H = M2
H , the

amplitudes T in the last equation are not really “on shell”, because they are not contracted

by the corresponding polarization vectors; therefore the ξ-cancellation is not immediate. To

verify the cancellation, we must employ the identity of Eq. (6.9) to decompose the internal

tree-level W propagators, and the WIs, which relate the tree-level vertices involved, i.e.,

qνΓHW+W−

0µν = −MW ΓHW+G−

0µ +
igw

2
MW pµ ,

qνΓHG+W−

0ν = −MW ΓHG+G−

0 − igw

2
M2

W . (7.11)

Thus, the final expression can be cast into the form

ℑmM̂1 =
1

2

∫
dXLIPS

(
− T

(∞)
(a1) T

(∞)∗
(a1) + T

(∞)
(b1) T

(∞)∗
(b1)

)
, (7.12)

where by the index a1 (b1) denotes the first graph in Fig. 6a (6b), and the superscript “∞”

means that the internal tree-level W propagators are in the unitary gauge.

This is precisely what one would obtain from the straightforward computation of the

imaginary part of the one-loop PT WW self-energy, presented in [8]. The expression for

the GFP-independent propagator-like part of M̂, M̂1, in terms of the PT WW self-energy,

Π̂µν(q), is given by

M̂1 = VLσU
σµ(q) Π̂µν(q) Uνρ(q) VLρ . (7.13)

The Higgs-dependent part of Π̂µν , call it Π̂(HW )
µν , is given by [31]

Π̂(HW )
µν (q) = παw

∫
dnk

i(2π)n
I(q, k) [(2k + q)µ(2k + q)ν − 4M2

Wgµν ] , (7.14)

where αw = g2
w/(4π) is the SU(2)L fine structure constant and

I(q, k) =
1

(k2 − M2
W )[(k + q)2 − M2

H ]
. (7.15)
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It is now easy to see that the imaginary part of Π̂(HW )
µν is indeed equal to Eq. (7.12). This

can be verified by an explicit application of the Cutkosky rules on the expression in the

RHS of Eq. (7.14). Actually, this amounts to determining where the logarithmic terms,

which are obtained after the integration over the virtual momenta, turn negative. One

could then compare that result with the result we will obtain after integrating Eq. (7.1)

over the phase space integral given above. To that end, we must make use of the fact that

the typical integral over the Feynman parameter x

ℑm
[ ∫ dnk

i(2π)n
I(q, k)

]
= − 1

16π2
ℑm

{ ∫ 1

0
dx ln[M2

Hx + M2
W (1 − x) − q2x(1 − x)]

}

=
θ[q2 − (MW + MH)2]

8πq2
λ1/2(q2, M2

H , M2
W )

=
1

2

∫
dXLIPS . (7.16)

The above relation gives an explicit connection between Cutkosky rules and the two-body

LIPS given in Eq. (3.5). As has been discussed in Section 2, the analytic continuation of the

logarithmic function in the RHS of Eq. (7.16) is uniquely determined via the prescription

s → s + iε.

It is important to emphasize the conclusions of this section: We have proceeded in two

different ways. First, we have calculated the propagator-like imaginary part by applying the

Cutkosky rule, and exploiting the tree-level EWIs. Then, we have computed the imaginary

part of the one-loop PT W self-energy, obtained by the usual S-matrix PT rules. The

two analytic results have turned out to be identical. We can therefore conclude that the

PT Green’s functions, contrary to their conventional counterparts, satisfy individually the

OT. We consider that a crucial point for the success of our resummation algorithm. In

addition, the above analysis demonstrates that one can work freely on either side of the

OT and arrive at a unique result, just by following the same rules, i.e., by fully exploiting

the EWIs of the theory.

8 The Background Field Gauge

The formulation of non-Abelian gauge field theories in the framework of the BFG

endows the n-point functions obtained from the generating functional with a number of

characteristic properties. Most remarkably, the BFG n-point functions satisfy tree-level

Ward identities, to all orders in perturbation theory. This fact is to be contrasted with the
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Slavnov-Taylor identities of the conventional covariant formulation, where the tree-level WI

are spoiled by the appearance of “ghost” Green’s function, as soon as quantum corrections

are introduced. On the other hand, the BFG n-point functions display in general a residual

dependence on the quantum GFP ξQ, which is used to “gauge-fix” the gauge fields inside

the quantum loops. As we will show in this section, the functional dependence of the BFG

two-point functions on ξQ is such that it leads to the appearance of unphysical thresholds,

at q2 = ξQM2.

What is rather striking in this context is the following observation. Consider a BFG

two-point function computed at one-loop at some arbitrary ξQ. Let us then separate it

into two parts: the part that has only physical thresholds (at q2 = M2) and the part that

has unphysical thresholds (at q2 = ξQM2). Interestingly enough, one finds that each part

satisfies separately the correct tree-level WI.

Ŵ+ Ŵ+

W+

H

(a)

Ŵ+ Ŵ+

G+

H

(b)

Ĝ+ Ĝ+

W+

H

(c)

Ĝ+ Ĝ+

G+

H

(d)

Fig. 7: WH contributions to ΠŴ+Ŵ+

µν [(a),(b)] and ΠĜ+Ĝ+

µν [(c),(d)].
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Defining IQ as follows:

IQ(q, k) =
1

(k2 − ξQM2
W )[(k + q)2 − M2

H ]
(8.1)

and using the identity

1 − ξQ

(k2 − M2
W )(k2 − ξQM2

W )
=

1

M2
W

[ 1

k2 − M2
W

− 1

k2 − ξQM2
W

]
, (8.2)

we have for the Feynman diagrams (a) and (b) in Fig. 7 (loop integration,
∫

dnk/i(2π)n,

implied)

(a) = g2
wM2

W

[(
− gµν +

kµkν

M2
W

)
I(q, k) − kµkν

M2
W

IQ(q, k)
]
,

(b) =
g2

w

4
(2k + q)µ(2k + q)ν IQ(q, k) , (8.3)

from which follows that

Π(HW )
µν (q) = g2

wM2
W

[(
− gµν +

kµkν

M2
W

)
I(q, k) +

1

4M2
W

(
(2k + q)µ(2k + q)ν

− 4kµkν

)
IQ(q, k)

]

= Π̄µν(q) + ΠQ
µν(q) , (8.4)

where Π̄µν contains only physical thresholds, at q2 = (MW + MH)2, whereas ΠQ
µν contains

unphysical thresholds at q2 = (
√

ξQMW + MH)2. Similarly, from Figs. 7(c) and 7(d), we

calculate

(c) = g2
wqρqσ

[(
− gρσ +

kρkσ

M2
W

)
I(q, k) − kρkσ

M2
W

IQ(q, k)
]
, (8.5)

(d) =
g2

w

4M2
W

(M2
H − ξQM2

W )2IQ(q, k) , (8.6)

and so

Ω(HW )(q) = g2
w

[ (qk)2

M2
W

− q2
]
I(q, k) + g2

w

[(M2
H − ξQM2

W )2

4M2
W

− (qk)2

M2
W

]
IQ(q, k)

= Ω̄(q) + ΩQ(q) . (8.7)

It is elementary to check that up to irrelevant tadpole terms, the following WIs hold:

qµqνΠ̄µν(q) − M2
W Ω̄(q) = 0 (8.8)

and

qµqνΠQ
µν(q) − M2

W ΩQ(q) = 0 . (8.9)
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It is worth noticing that the tree-level Ward identities, Eqs. (8.8) and (8.9), are individually

satisfied by the contributions having physical and gauge-dependent unphysical thresholds,

respectively. This property is not an accidental feature of the specific example considered

above, but, as we will argue in a moment, it must be valid for any individual contribution

to an analytic two-point correlation function. On the other hand, it is obvious that neither

Π̄ nor ΠQ can be obtained from a specific choice of the ξQ value. An exception to this is the

value ξQ = 1. In this gauge, the physical and unphysical sectors are not distinguishable. If

we impose the constraint of the absence of unphysical thresholds in the BFG —a property

which is always preserved within the PT framework [4], then the two-point correlation

functions of the PT and the BFG for ξQ = 1 have to coincide at one loop. This feature

should also hold true for all n-point functions at one loop.

In the following, we argue that the reason which forces Π̄µν(q) and ΠQ
µν(q) to satisfy

individually the same tree-like Ward identities as those of the full Πµν(q), is the analyticity

of Πµν(q). In fact, it is sufficient to show that ℑmΠµν(q) = ℑmΠ̄µν(q) 6= 0 for a finite

domain of q2 (for ξQ 6= 1). Then, Eq. (8.8) will be valid for the finite kinematic region and

will also hold true for any q2, since ℑmΠ̄µν is analytic. That ℜeΠ̄µν will also satisfy Eq.

(8.8) is guaranteed through a DR. Finally, it is evident that ΠQ
µν(q) = Πµν(q)− Π̄µν(q) will

obey the same WI (8.9).

To give a specific example, let us consider the absorptive part of the WW self-energy

in the BFG at one loop, in which only the Wγ contributions are considered. It is clear

that, for the finite domain M2
W < q2 < min[

√
ξQM2

W , (MW + MZ)2] (ξQ 6= 1), ℑmΠµν(q) =

ℑmΠ̄(γW )
µν (q). The latter leads to the fact that Π̄(γW )

µν (q) satisfies Eq. (8.8) independently,

for any q2. Similar arguments can carry over to the other distinct threshold contributions.

9 Issues of uniqueness

In this section, we will address issues related to the uniqueness of the PT rearrange-

ment. We know that the PT rearrangement gives rise to effective self-energies (Π̂), vertices

(Γ̂) and box graphs (B̂), endowed with several characteristic properties. The question nat-

urally arises whether these effective Green’s functions are unique. By “unique” we mean,

whether after the PT rearrangement has been completed, one could still define new Green’s

functions, by moving GFP-independent terms around, in such a way as:

(i) The new Green’s functions have the same properties with the old ones.
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(ii) The above reshuffling does not change the unique value of the S-matrix, order by

order in perturbation theory.

In what follows, we will show a “mild” version of uniqueness, namely that the one-loop

PT effective Green’s functions are unique, provided that:

(i) The PT procedure can be generalized to higher orders in perturbation theory, as

described in [4]. In particular, we assume that effective GFP-independent Green’s

functions can be constructed, satisfying the simple QED-like WI known from the one-

loop explicit constructions, and that the effective self-energies so constructed can be

Dyson resummed. Regarding the last point, the resummation algorithm proposed in

[4] not only is inextricably connected to the fact that the PT self-energies do not shift

the position of the pole [4], but has already passed another non-trivial consistency

check [32]; still, one has not conclusively shown its validity for the most general of

cases.

(ii) The renormalization has been successfully carried out, giving rise to UV finite effec-

tive PT Green’s functions. This assumption is crucial, and is the main reason why

we characterize the uniqueness proved here as “mild”. Things may be different if

one attempts the aforementioned reshuffling before renormalization, but this will not

concern us in the present work.

It is known [7] that the PT self-energy in QCD, Π̂(q2) (the lower and upper indices

T and R are dropped for convenience), captures the running of the coupling, exactly as

happens in QED. To be specific, setting

d̂1(q
2) =

[
q2 + Π̂1(q

2)
]−1

, (9.1)

at one-loop, then the combination,

D̂1(q
2) = g2d̂1(q

2) , (9.2)

obeys the following renormalization group equation (RGE):

(
µ

∂

∂µ
+ gβ1

∂

∂g

)
D̂1(q

2) = 0 , (9.3)

where β1 = −b1αs/(4π). The reason for this is exactly the same as in QED, namely the fact

that the PT vertex and quark self energy satisfy an Abelian, tree-level type Ward identity,

i.e.,

qµΓ̂µ = Σ̂(p + q) − Σ̂(p) (9.4)
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or equivalently Ẑg = Ẑ
−1/2
A , where Ẑg, ẐA are the gluon-field and strong-coupling-constant

renormalizations, respectively.

Let us now assume that the PT rearrangement, as described in [4], works to higher

orders in perturbation theory. In particular, let us assume that Eq. (9.3) holds to all orders

of perturbation, i.e., for

β = −
[
b1

(αs

4π

)
+ b2

(αs

4π

)2
+ · · · + bn

(αs

4π

)n
+ · · ·

]
, (9.5)

and

Π̂(q2) = Π̂1(q
2) + Π̂2(q

2) + · · ·+ Π̂n(q2) + · · · , (9.6)

where Π̂n are one-particle irreducible of n-loop order and independent of the GFP. Note

that the coefficients bn in Eq.(9.5) are renormalization prescription dependent, for n > 2.

The first three coefficients for quark-less QCD are:

b1 =
11

3
cA , b2 =

34

3
c2
A , b3 =

2857

54
c3
A , (9.7)

and have been evaluated in Refs. [33], [34] and [35], respectively. The values of b1 and

b2 quoted above are renormalization scheme independent, whereas b3 has been evaluated

within the minimal subtraction (MS) scheme [36].

Substituting Eqs. (9.5) and (9.6) into Eq. (9.3), and equating powers of g2, it is easy

to obtain

µ
∂Π̂n(q2)

∂µ
= 2βnq2 + 2

n−1∑

k=1

(1 − k)βn−kΠ̂k(q
2) , (9.8)

with βn = −bn(as/4π)n. Notice that Eq. (9.8) is identical to the one obtained for the

photon vacuum polarization in QED [37]. As happens in the QED case, for n = 1, 2 the

dependence of Π̂n on the renormalization point µ is logarithmic, whereas for n > 2, higher

powers of logarithms start appearing.

Let us now assume that we were to change by hand the value of Π̂1, Γ̂1 and B̂1, in such

a way as to not change the value of the S-matrix at one loop. So, we make the following

replacements:

Π̂1 → Π̃1 ≡ Π̂1 + f1 ,

Γ̂1 → Γ̃1 ≡ Γ̂1 + u1 ,

B̂1 → B̃1 ≡ B̂1 + h1 , (9.9)

where f1, u1 and h1 are in principle arbitrary functions of q2, subject to the constraint

f1 + 2q2u1 + q4h1 = 0 , (9.10)
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which guarantees that the value of the S-matrix does not change at one loop, after the

substitution given in Eq. (9.9).

The functions f1, u1 and h1 do not depend on the gauge fixing parameter, and are

UV and IR finite. Therefore, they do not depend on the renormalization point µ, viz.

∂f1

∂µ
=

∂u1

∂µ
=

∂h1

∂µ
= 0 .

In the case of QCD, the only physical choice for f1 would be f1 = Cq2, where C is a

numerical constant, since the only available mass scale is q2. In other words, since f

does not depend on µ, we cannot have ratios of momenta q2/µ2. At the same time, one

does not want to use the mass of the external fermions, since that would convert Π̂1 to a

process-dependent quantity. Moreover, the RGE in Eq. (9.8) would then be modified by

the µ dependence of the running quark masses. For the sake of argument, let us, however,

assume that one uses a “universal” mass scale Mu, such as the Planck mass, or some

combination involving the sum of all quark masses. So, f1 may contain ratios of q2/M2
u .

For example, f1 could be of the form f1 = q2 exp(−q2/M2
u). However, it is important to

emphasize that Mu should not depend on µ, i.e., ∂Mu/∂µ = 0.

q1 q1

q2 q2

Π̂1

Π̂1

(a)

Γ̂1

Π̂1

(b)

Γ̂1

Π̂1

(c)

Γ̂1

Γ̂1

(d)

Fig. 8: PT resummation at two loops in QCD.

Returning to the uniqueness issue, since the PT self-energies can be Dyson summed [4],

one should impose the same property on their new counterparts. Therefore, following the

method developed in [4], a string of the form Π̂1 (1/q2) Π̂1 must be converted to Π̃1 (1/q2) Π̃1.

To accomplish this, one must provide the appropriate combinations involving the functions

f1, u1, and h1, just as we had to provide the missing pinch parts in going from Π1 (1/q2) Π1
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to Π̂1 (1/q2) Π̂1 (see [4]). To see this in detail, we return to the diagrams of Fig. 8, and

assume that the PT rearrangement has already been completed. So, now all bubbles and

vertices in these graphs refer to the PT objects. The relevant equations are

Π̃1Π̃1 = (Π̂1 + f1)(Π̂1 + f1)

= Π̂1Π̂1 + 2Π̂1f1 + f 2
1 , (9.11)

Π̃1Γ̃1 = (Π̂1 + f1)(Γ̂1 + u1)

= Π̂1Γ̂1 + f1Γ̂1 + u1Π̂1 + f1u1 , (9.12)

Γ̃1Γ̃1 = (Γ̂1 + u1)(Γ̂1 + u1)

= Γ̂1Γ̂1 + 2u1Γ̂1 + u2
1 . (9.13)

Hereafter, the explicit q2 dependence of the functions Π̃, Π̂, Γ̃, etc., will not be displayed for

brevity. Omitting a common factor of (1/q2)3, we obtain for the afore-mentioned diagrams,

Π̂1Π̂1 + 2q2Π̂1Γ̂1 + q4Γ̂1Γ̂1 = Π̃1Π̃1 + 2q2Π̃1Γ̃1 + q4Γ̃1Γ̃1 − R , (9.14)

with

R = (f1 + q2u1)
[
2Π̂1 + 2Γ̂1 + (f1 + q2u1)

]
. (9.15)

At one loop, the new effective charge D̃1 satisfies the correct RGE. In particular, since

∂f/∂µ = 0 by assumption, we have that

µ
∂Π̃1

∂µ
= µ

∂(Π̂1 + f1)

∂µ
= 2β1q

2 , (9.16)

which is what Eq. (9.8) yields for n = 1.

According to the method in [4], the propagator-like parts of R must be allotted to Π2.

The second term in Eq. (9.15) is process-dependent, since it is proportional to Γ̂1. This

term should be given to the two loop vertex or box graphs. In any case, as we will see,

this will make no difference in our analysis. But Π2 has already been converted into Π̂2,

because we assumed that the PT procedure has been completed. Therefore, Π̃2 must be

defined as follows:

Π̃2 = Π̂2 + Rp
2 , (9.17)

where Rp
2 is the propagator-like part of R2. After all appropriate powers of 1/q2 have been

restored, Rp
2 is given by

Rp
2 =

2

q2
(f1 + q2u1)Π̂1 + . . . , (9.18)
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where the ellipses denote the optional inclusion of the third term in Eq. (9.15), which is

irrelevant for what follows, because it is µ-independent.

It is now clear that Π̃2 fails to satisfy the correct RGE, since its µ-dependence is not

in compliance with the result deduced from Eq. (9.8) for n = 2. In particular, we have

µ
∂Π̃2

∂µ
= µ

∂

∂µ

[
Π̂2 +

2

q2
(f1 + q2u1)Π̂1

]

= 2β2q
2 + 4β1(f1 + q2u1)

6= 2β2q
2 . (9.19)

So, in order to reconcile Dyson summation and the correct RGE behaviour to the next

order, we must impose the additional constraint that

f1 + q2u1 = 0 . (9.20)

Combining this together with Eq. (9.10) we find that h1 = −u1/q
4. Thus, the entire

expression for R in Eq. (9.15) vanishes, and Eq. (9.14) becomes

Π̂1Π̂1 + 2q2Π̂1Γ̂1 + q4Γ̂1Γ̂1 = Π̃1Π̃1 + 2q2Π̃1Γ̃1 + q4Γ̃1Γ̃1 . (9.21)

It appears at this point that we have succeeded in implementing the substitution

given in Eq. (9.9), without compromising any of the PT properties, at the seemingly modest

expense of imposing on f1 and u1 the additional constraint given in Eq. (9.20). However,

as we will see in a moment, Eq. (9.20) is very crucial, because it actually guarantees the

uniqueness of our gauge-invariant resummation method [4], at one-loop.

To make this explicit, we proceed to the next order in perturbation theory. The

situation may be slightly more cumbersome calculationally, but the conceptual issues are

the same. By converting the old strings into new strings, we pick up additional terms,

which, when allotted to Π̃3, these extra terms will invalidate the RGE that Π̃3 is expected

to satisfy, i.e., Eq. (9.8) for n = 3, unless a further constraint is imposed on f1. To

determine that constraint, we focus on the three-loop diagrams shown in Fig. 9.
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q1 q1

q2 q2

Π̂1

Π̂1

Π̂1

(a)

Π̂2

Π̂1

(b)

Γ̂1

Π̂2

(c)

Γ̂2

Π̂1

(d)

Γ̂1

Π̂1

Π̂1

(e)

Γ̂1

Π̂1

Γ̂1

(f)

Γ̂2

Γ̂1

(g)

Fig. 9: PT resummation at three loops in QCD.

Again, in order to be as general as possible, we assume that one can reshuffle the

second order PT Green’s functions, without affecting the value of the S-matrix to that

order. In other words, we allow the additional substitutions

Π̂2 → Π̃2 ≡ Π̂2 + f2 ,

Γ̂2 → Γ̃2 ≡ Γ̂2 + u2 ,
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B̂2 → B̃2 ≡ B̂2 + h2 , (9.22)

with

f2 + 2q2u2 + q4h2 = 0 . (9.23)

Of course the proof becomes easier if we assume f2 = u2 = h2 = 0, but we do not have to.

We will need the following algebraic relations:

Π̃3
1 = (Π̂1 + f1)

3

= Π̂3
1 + 3Π̂2

1f1 + 3Π̂1f
2
1 + f 3

1 , (9.24)

Π̃1Π̃2 = (Π̂1 + f1)(Π̂2 + f2)

= Π̂1Π̂2 + Π̂1f2 + Π̂2f1 + f1f2 , (9.25)

Π̃1Γ̃2 = (Π̂1 + f1)(Γ̂2 + u2)

= Π̂1Γ̂2 + Π̂1u2 + f1Γ̂2 + f1u2 , (9.26)

Π̃2Γ̃1 = (Π̂2 + f2)(Γ̂1 + u1)

= Π̂2Γ̂1 + Π̂2u1 + f2Γ̂1 + f2u1 , (9.27)

Π̃2
1Γ̃1 = (Π̂1 + f1)

2(Γ̂1 + u1)

= Π̂2
1Γ̂1 + u1Π̂

2
1 + 2f1u1Π̂1 + 2f1Π̂1Γ̂1 + f 2

1 Γ̂1 + f 2
1 u1 , (9.28)

Π̃1Γ̃
2
1 = (Π̂1 + f1)(Γ̂1 + u1)

2

= Π̂1Γ̂
2
1 + u2

1Π̂1 + 2u1Π̂1Γ̂1 + f1Γ̂
2
1 + 2f1u1Γ̂1 + f1u

2
1 , (9.29)

Γ̃1Γ̃2 = (Γ̂1 + u1)(Γ̂2 + u2)

= Γ̂1Γ̂2 + u2Γ̂1 + u1Γ̂2 + u1u2 . (9.30)

Using the above formulas, the crucial constraint of Eq. (9.20), and remembering that the

graphs of the Figs. 9(b)–(e) and 9(g) must be multiplied by a factor of 2, which takes

account of the symmetric (mirror image) graphs, we have that the original set of graphs,

call Â (we factor out a factor (1/q2)4 )

Â = Π̂3
1 + 2q2(Π̂1Π̂2 + Π̂2

1Γ̂1) + q4(2Π̂1Γ̂2 + 2Π̂2Γ̂1 + Π̂1Γ̂
2
1) + 2q6Γ̂1Γ̂2 (9.31)

and the new one, Ã say, which is obtained by replacing all “hatted” quantities in Eq. (9.31)

by “tilded” ones, are related by

Â = Ã − R3 , (9.32)
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where R3 is given by

R3 = f1Π̂
2
1 + 2q2(f2 + q2u2)Π̂1 + 2q2f1Π̂1Γ̂1 + q4f1Γ̂

2
1

+2q4(f2 + q2u2)Γ̂1 . (9.33)

Clearly, the first two terms in Eq. (9.33) must be allotted to Π̂3, thus converting it to

Π̃3. The rest of the terms cannot be absorbed by Π̃3, since they are explicitly process-

dependent, because they contain Γ̂1. Therefore, the remaining terms must be distributed

among the two-loop vertex and/or box graphs. So, after all powers of 1/q2 are restored,

the propagator-like part Rp
3 of R3 reads

Rp
3 =

f1

q4
Π̂2

1 +
2

q2
(f2 + q2u2)Π̂1 , (9.34)

and so

Π̃3 = Π̂3 + Rp
3 . (9.35)

It is now important to observe that, because of the particular structure of Rp
3, the

RGE satisfied by Π̃3 will be modified. Indeed, from Eq. (9.8), we derive for n = 3

µ
∂Π̂3

∂µ
= 2β3q

2 − 2β1Π̂2 (9.36)

and after the substitution Π̂i → Π̃i, we must have

µ
∂Π̃3

∂µ
= 2β3q

2 − 2β1Π̃2 . (9.37)

Subtracting the two last equations by parts, we obtain

µ
∂

∂µ
(Π̃3 − Π̂3) = −2β1(Π̃2 − Π̂2)

= −2β1f2 . (9.38)

Instead, from Eqs. (9.34) and (9.35), we find

µ
∂

∂µ
(Π̃3 − Π̂3) = µ

∂Rp
3

∂µ

=
4f1

q2
β1Π̂1 + 4β1(f2 + q2u2) . (9.39)

Given the fact that Π̂1 depends explicitly on µ, in order to reconcile Eqs. (9.38) and

(9.39) one must necessarily choose f1 = 0. Thus, the only possible solution for the set of
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substitutions described in Eq. (9.9) is the trivial one, i.e., f1 = u1 = h1 = 0, which proves

the uniqueness of the PT resummation approach to one-loop, after renormalization.

After setting f1 = 0, we must impose the additional constraint 3f2 + 2q2u2 = 0, in

order that Eqs. (9.38) and (9.39) become equal. Evidently, the same arguments presented

above must be repeated to the next order, which will finally determine the value of f2;

we will not pursue this issue any further here. Instead, we add some further clarifications

regarding the assumptions made in the previous proof of the one-loop uniqueness of the

PT resummation formalism. As emphasized at the beginning of this section, we assume

that the PT can be extended to higher orders, giving rise to effective Green’s function

with all the characteristics known from the explicit one-loop analysis. We further assume

that the renormalization programme has been carried out to all orders. Thus, all “hatted”

Green’s functions appearing are UV finite. So far, the renormalization scheme chosen has

been left unspecified. Because of Eq. (9.8), the effect of adopting different renormalization-

scheme choices will be to modify the values of bn, for n > 2. However, within a specific

renormalization scheme, the values of bn are fixed, and this is what we have implicitly

assumed.

The resummation formalism discussed for the case of Yang-Mills theories such as QCD

can equally carry over to SSB models such as the SM. In the SM, W and Z bosons are

considered to be unstable gauge particles. In the case of the W boson, a RGE similar to Eq.

(9.8) will hold for the leading logarithmic part of the transverse W -boson self-energy. Again,

one can form the RGE invariant combination involving the W -boson Green’s function

g2
w

[
q2 + Π̂W

T (q2)
]−1

.

Analogously with Eq. (9.4), one can derive a similar relation between the weak-coupling-

constant renormalization Ẑgw
and the wave-function renormalization of the W boson ẐW ,

i.e., Ẑgw
= Ẑ

−1/2
W . Hence, one can show the uniqueness of this expression by following a

line of arguments similar to the case of QCD. Furthermore, possible modifications of the

longitudinal part of the W -boson self-energy, Π̂W
L , will result in direct violations of the

tree-level WIs, which govern the gauge invariance of the classical action.

10 Conclusions

We have presented a formalism for resummation of off-shell two-point correlation

functions, which relies entirely on arguments of analyticity, unitarity, gauge invariance and
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multiplicative renormalization. In addition, several crucial aspects of the GFP-independent

resummation approach presented in [4] have been clarified. Specifically, we have shown

that unitarity requires the absence of unphysical thresholds for the resummed Green’s

functions at the quantum loop level. Within the PT resummation approach this property

is satisfied, since the effective gauge-invariant Green’s functions are directly derived from

S-matrix elements, with the only additional input the use of elementary tree-level WIs and

analyticity.

This is, however, not true in other approaches. For instance, we have explicitly shown

that ξQ-dependent unphysical thresholds appear in the BFG, even though the Green’s

functions obey the same tree-level WIs as the PT Green’s functions. For the very specific

value of ξQ = 1, the results of BFG and PT coincide to one-loop, as this is the only

gauge that avoids unphysical propagator poles. The situation may change in higher orders.

Furthermore, we have found that the BFG Green’s functions can be decomposed into

two parts, one containing only physical poles and one containing ξQ-dependent unphysical

thresholds, which separately satisfy the same WIs as the total BFG Green’s functions.

Furthermore, we have addressed issues of gauge invariance by resorting to the BRS

symmetries at the one-loop quantum level. We have explicitly demonstrated that the PT

two-point correlation function may be obtained from its absorptive part through a DR. The

absorptive part of the PT Green’s functions can equally well be calculated from the optical

relation of the anti-hermitian part of the transition amplitude. As a result of this, we

have also been able to identify the pinching parts of the PT algorithm, as those terms that

quantify the deviation from the intrinsic BRS symmetries. Most importantly, we have been

able to show how gauge invariance is restored, within the PT framework, by reinforcing

BRS symmetries inside the quantum loops.

In Section 9, we have examined the issue of “uniqueness” of the gauge-invariant

resummation approach proposed in [4]. In the context of QCD, we have focused on the

most basic RGE invariant quantity involving the PT two-point correlation function, namely

the effective (running) strong coupling. By means of a three-loop analysis, we have shown

that, at one-loop, the PT resummation method gives rise to unique results. We have

also briefly outlined how these considerations can be naturally extended to spontaneously

broken gauge theories.

Considering the fact that all the basic field-theoretical requirements imposed thus far

are preserved within the PT resummation approach that was introduced in [4] and was

further analysed in the present paper, one might be tempted to argue that some deeper
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underlying principle is in effect, which has yet to be discovered. Here we wish to point out

two possibly relevant directions in such a quest. First, there is a interesting recent result

of “stringy” origin [38], which seems to single out the one-loop BFG Green’s functions for

the special value of ξQ = 1, which are, of course, identical to the PT Green’s functions.

This observation makes the question of whether the correspondence between the PT and

the BFG at ξQ = 1 persists beyond one loop even more pressing. Second, one should

investigate possible connections between the PT and the Vilkovisky-DeWitt formalism

[39]. In particular, the gauge invariant and GFP-independent Green’s functions obtained

from the Vilkovisky-DeWitt effective action must be compared with their PT counterparts,

establishing the origin and the physical significance of any possible difference between them.
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Les Houches, Dispersion Relations and Elementary Particles, eds C. de Witt and R.

Omnes (Herman Paris, 1960). According to M.L. Goldberger in these proceedings, the

earliest reference one might find for the use of dispersion relations is due to Sellmeier,

Pogg. Ann. 143, 271 (1871), who discussed the relation between the real and imaginary

parts of a complex index of refraction.

[21] R.J. Eden, P.V. Landshoff, P.J. Olive, and J.C. Polkinghorne, The analytic S matrix,

Cambridge University Press, Cambridge, (1966).

[22] L. Khalfin, Zh. Eksper. Teor. Fiz. 33, 1371 (1957) [Sov. Phys. JETP 6, 1053 (1958)].

[23] See, e.g., J.D. Bjorken and S.D. Drell, Relativistic Quantum Field Theory, Mc Graw-

Hill, Inc. 1965.

[24] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Ox-

ford, 1989.

[25] M. Froissart, Phys. Rev. 123, 1053 (1961); A. Martin, Phys. Rev. 129, 1432 (1963).

[26] In fact, the Froissart-Martin bound [25] refers to the asymptotic behaviour of a total

cross section, σ(s), in the limit s → ∞. This is expressed as σ(s) ≤ C[ln(s/s0)]
2.

Furthermore, the OT gives the relation s σ(s) = ℑmT (s), where T (s) is the forward-

scattering amplitude. If one assumes the absence of accidental cancellations between

the two-point function, Π(s), and higher n-point functions within the expression

ℑmT (s), one can derive that |ℑmΠ(s)| ≤ Cs2ℑmT (s) ≤ Cs3[ln(s/s0)]
2. Because

of analyticity, the s-dependence of ℑmΠ(s) will affect the high-s behaviour of |Π(s)|.
Even if we assume that the s-dependence thus induced on |Π(s)| is the most modest

possible, i.e., |Π(s)| ∼ ℑmΠ(s) as s → ∞, still the tightest upper bound one could

obtain from these considerations is that of Eq. (2.9).

[27] G. Valencia and S. Willenbrock, Phys. Rev. D46, 2247 (1992).

[28] L.D. Fadeev and Y.N. Popov, Phys. Lett. B25, 29 (1967).

[29] See, e.g., T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary Particle Physics,

Clarendon Press, Oxford, 1985, p. 277.

49



[30] See, J.M. Cornwall and J. Papavassiliou in [7].

[31] See Eqs. (4.4), (4.5), and (4.17) in [8].

[32] K. Philippides and A. Sirlin, Consistency condition for the Pinch Technique self-

energies at two-loops, hep-ph/9602404.

[33] H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. Gross and F. Wilczek, Phys. Rev.

Lett. 30, 1343 (1973).

[34] W.E. Caswell, Phys. Rev. Lett. 33, 1346 (1973); D.R.T. Jones, Nucl. Phys. B75, 531

(1974).

[35] O.V. Tarasov, A.A. Vladimirov, and A. Yu. Zakharov, Phys. Lett. B93, 429 (1980).

[36] G. ’t Hooft, Nucl. Phys. B61, 455 (1973).

[37] E. de Rafael and J.L. Rosner, Ann. Phys. (NY) 82, 369 (1973).

[38] P. Di Vecchia, L. Magnea, A. Lerda, R. Russo, and R. Marotta, String techniques

for the calculation of renormalization constants in field theory, Nordita preprint 1996,

NORDITA/95-85-P (hep-th/9601143).

[39] G.A. Vilkovisky, Nucl. Phys. B234, 125 (1984); A. Rebhan, Nucl. Phys. B288, 832

(1987), and references therein.

50

http://arxiv.org/abs/hep-ph/9602404
http://arxiv.org/abs/hep-th/9601143

