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ABSTRACT

We show that in the framework of the pinch technique the univer-

sal part of the � parameter can be meaningfully de�ned, beyond one

loop. The universal part so obtained satis�es the crucial requirements

of gauge-independence, �niteness, and process-independence, even when

subleading contributions of the top quark are included. The mechanism

which enforces the aforementioned properties is explained in detail, and

several subtle �eld theoretical issues are discussed. Explicit calculations

of the sub-leading two-loop corrections of order O(G

2

�

m

2

t

M

2

Z

) are car-

ried out in the context of an SU(2) model, withM

W

=M

Z

, and various

intermediate and �nal results are reported.
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1. Introduction

One of the most important quantities of the standardmodel is the �-parameter [1], de-

�ned as the ratio of the relative strength between neutral and charged current interactions,

at low momentum transfer, namely

� =

G

NC

(0)

G

CC

(0)

=

1

1���

: (1:1)

The �-parameter displays a strong dependence on m

t

and a�ects most electroweak param-

eters such as �r, M

W

, and sin

2

�

eff

(M

Z

). The � parameter de�ned above as the ratio of

two amplitudes is a gauge independent and �nite quantity. In addition, it is manifestly

process dependent, and its value depends on the quantum numbers of the external parti-

cles chosen. To fully determine the value of � for a given neutral and charged process, one

must compute the complete set of Feynman diagrams ( self-energy, vertex and box graphs)

to a given order in perturbation theory. However, traditionally one focuses instead on the

quantity �, de�ned as

� =

A

W

(0)

M

2

W

�

A

Z

(0) + (2s=c)A

Z

(0)

M

2

Z

; (1:2)

where A

W

, A

Z

and A

Z

are the cofactors of g

��

in the WW and ZZ self-energies, respec-

tively, and s = sin �

W

and c = cos �

W

. The parameter � is often called the \universal"

part of �, since, by de�nition, does not depend on the details of the process. According to

the standard lore � contains the dominant contribution to �.

In this paper we address theoretical issues related to the de�nition and calculation of

the universal part of the � parameter. Several of the ingredients of the subsequent analysis

are known, but they exist in a fragmented fashion and their relevance in the context of �-

parameter calculations has not been fully recognized. The purpose of the present work is to

provide a uni�ed view of all relevant facts, incorporating them into a coherent framework.
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The leading m

t

contributions to �, both from one-loop and two-loop diagrams, are

gauge-independent and ultraviolet �nite However, as soon as the subleading contribu-

tions are considered, � becomes gauge-dependent and ultraviolet divergent. More specif-

icaly, the leading one-loop m

t

contributions to � (of order G

�

m

2

t

) are manifestly gauge-

independent, since the gauge �xing parameter does not appear inside fermion loops, and

ultraviolet (UV) �nite. On the other hand, as was explicitly shown by Degrassi, Kniehl,

and Sirlin [2], the one-loop bosonic contributions to � (subleading in m

2

t

, of order g

2

m

0

t

)

are gauge dependent and, except when formulated within a restricted class of gauges, UV

divergent [3]. Similarly, the leading two-loop contributions to � [4-6](of order G

2

�

m

4

t

)

are also gauge-independent and UV-�nite, exactly as their one-loop counterparts. On the

other hand, the straighforward calculation of the subleading two-loopm

t

contributions (of

order G

2

�

m

2

t

M

2

Z

) to �, carried out in the renormalizable Feynman gauge (�

W

= �

Z

= 1),

gives rise to an answer which is ultraviolet divergent, in the sence that

1

�

terms survive

[7-8]. In addition, as stated in [7], the result for � is gauge dependent, in the context of

the R

�

gauges. The reason for this rather striking analogy between the one-loop and the

two-loop analysis, is the fact that, as soon as the subleading contributions (of order m

0

t

at one-loop, and of order m

2

t

at two-loops) are considered, Feynmam graphs containing

the W and Z gauge-bosons must be included. It is the inclusion of such graphs, which,

when carried out without a concrete guiding principle, gives rise to the aforementioned

pathologies.

In order to understand the origin of the problems associated with the subleading

contributions one has to �rst establish the mechanism which enforces the good behavior

of the leading contributions, in particular their UV �niteness. If we denote the leading

contributions (both at one and two loops) to the to WW and ZZ self-energies by [�

��

W

]

(`)

and [�

��

Z

]

(`)

, respectively (the superscript ` stands for "leading"), and use the fact that
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A

(`)

Z

(0) = 0, we can write for �

(`)

:

�

(`)

=

A

(`)

W

(0)

M

2

W

�

A

(`)

Z

(0)

M

2

Z

: (1:3)

It is elementary to show (see section 3) that �

(`)

is �nite as long as the following relation

holds

1

Z

(`)

W

=

1

Z

(`)

Z

+

�

�c

2

c

2

�

(`)

(1:4)

where Z

W

and Z

Z

are the wave function renormalization constants of the W and Z �elds,

respectively, and

�

�c

2

c

2

�

(`)

=

Re[A

(`)

W

(M

2

W

)]

M

2

W

�

Re[A

(`)

Z

(M

2

Z

)]

M

2

Z

: (1:5)

Eq. (1.4) is indeed true for the leading contributions, due to a set of QED-like Ward

identities relating the vertex and fermion wave function renormalization constants (the

QED analog of Z

1

= Z

2

). An equivalent way for establishing the �niteness of the leading

contributions is to resort to the following Ward identities:

q

�

q

�

[�

��

W

]

(`)

=M

2

W

�

(`)

�

q

�

q

�

[�

��

Z

]

(`)

=M

2

Z

�

(`)

�

;

(1:6)

where �

�

and �

�

are the �� and �� self-energies, respectively, with � (�) the charged

(neutral) would-be Goldstone bosons. Writing the general self-energy in the form

�

��

(q

2

) = A(q

2

)g

��

+B(q

2

)

q

�

q

�

q

2

; (1:7)

and using the algebraic identity

A(0) =

�

d

dq

2

fq

�

q

�

�

��

(q

2

)g

�

;

�

�

�

�

q

2

=0

(1:8)

together with the Ward identities of Eq. (1.6), and the fact that A

(`)

Z

(0) = 0, we can write

for �

(`)

:

�

(`)

=

A

(`)

W

(0)

M

2

W

�

A

(`)

Z

(0)

M

2

Z

=

�

d

dq

2

f�

(`)

�

��

(`)

�

g

�

�

�

�

�

q

2

=0

: (1:9)
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The �nal ingredient which enforces the �niteness of the result for the leading �� con-

tributions, is the equality Z

(`)

�

= Z

(`)

�

, where Z

(`)

�

and Z

(`)

�

are the wave-function renor-

malization constants of �

(`)

�

and �

(`)

�

, respectively (see section III). However, none of the

above conditions are valid anymore, when one calculates the subleading parts of the W

and Z self-energies in the framework of the R

�

gauges. Consequently, since the mechanism

enforcing the �niteness does not operate any more, the resulting expressions do not have

to be UV �nite, and, indeed, they are not.

The standard way to circumvent the above problems is to readily abandon the notion

of a \universal" part of ��, by stating that, instead of only �, the entire process must

now be considered, in order to restore the �niteness and gauge-independence of the �nal

answer. So, one has to introduce vertex and box corrections, which render the result

gauge-idependent and �nite, at the expense of making it process-dependent, and therefore

non-\universal".

This unpleasant trade-o� between gauge-independence and process-independence can

be avoided however [2] if one de�nes the universal part of � within the framework of

the pinch technique (PT) [9-15]. As shown in Ref [2], the PT at one-loop gives rise to

a gauge-independent and UV �nite answer, without introducing any process-dependence.

This is so because all PT self-energies are individually gauge-independent, and in addi-

tion, all conditions which enforce the �niteness are valid for both leading and subleading

contributions. Evidently, the PT restores the mechanism for the cancellation of the UV

divergences, and at the same time guarantees the gauge-and process-independence of the

�nal answer.

In this paper we propose to elevate the � de�ned in terms of the PT self-energies as

the truly universal part of ��, beyond one-loop, in the spirit originally suggested in Ref [2].

This new quantity, which we denote by

^

�, is endowed with three crucial properties:

i)

^

� is independent of the gauge-�xing procedure and the gauge-�xing parameter,

ii)

^

� is ultraviolet �nite, and
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iii)

^

� is process-independent.

In addition to the above obvious theoretical advantages, the calculation of

^

� is sig-

ni�cantly fascilitated by the fact that only self-energy-like graphs need be considered. In

particular, no vertex or box diagrams need be calculated, in order to render the answer

�nite, as is the case in the conventional treatment [16]. Therefore

^

� lends itself as the

natural generalization of the conventional �, which can consistently accomodate both lead-

ing and subleading contributions, and can be expressed in a closed analytic form up to two

loops.

In Ref [7] the nature of the two-loop subleading contributions, as well as their nu-

merical importance for the conventionally de�ned �, were studied in the context of an

SU(2) model, with M

W

= M

Z

= M , and no photon. In Ref [8] the previous analysis

was extended to the full standard model; the two answers turned out to be numerically

rather close. Since we are mainly interested in addressing the conceptual issues involved, in

this paper we also restrict ourselves to the study of this simpli�ed version of the standard

model. Of course, we have no a priori knowledge if the

^

� of the SU(2) and the

^

� of the

full stadard model will be numerically close, as was the case between the results of Ref [7]

and Ref [8].

The paper is organized as follows: In section 2 we briey review the PT, mainly as it

applies in the present context. In section 3 we de�ne the universal quantity

^

� and discuss

some of its properties. In section 4 we calculate the subleading top quark contributions to

^

�

in the framework of the SU(2) model. This section is rather technical and contains several

intermediate results. Finally, we present our conclusions in section 5. In addition, we

present two Appendixes concerning scalar two loop integrals at zero momentum transfer,

and the Feynman rules we have used.
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2. The pinch technique

Gauge-invariant e�ective self-energies

The simplest example that demonstrates how the PT works is the gluon two point

function. [10] Consider the S-matrix element T for the elastic scattering such as q

1

�q

2

!

q

1

�q

2

, where q

1

,q

2

are two on-shell test quarks with masses m

1

and m

2

. To any order in

perturbation theory T is independent of the gauge �xing parameter �. On the other hand,

as an explicit calculation shows, the conventionally de�ned proper self-energy depends on

� de�ned through the tree level gluon propagator

�

��

(k; �) =

�i

k

2

[g

��

� (1 � �)

k

�

k

�

k

2

] : (2:1)

At the one loop level this dependence is canceled by contributions from other graphs,

which, at �rst glance, do not seem to be propagator-like. That this cancellation must

occur and can be employed to de�ne a g.i. self-energy, is evident from the decomposition:

T (s; t;m

1

;m

2

) = T

0

(t; �) + T

1

(t;m

1

; �) + T

2

(t;m

2

; �) + T

3

(s; t;m

1

;m

2

; �) ; (2:2)

where the function T

0

(t; �) depends kinematically only on the Mandelstam variable t =

�(p̂

1

� p

1

)

2

= �q

2

, and not on s = (p

1

+ p

2

)

2

or on the external masses. Typically,

self-energy, vertex, and box diagrams contribute to T

0

, T

1

, T

2

, and T

3

, respectively. Such

contributions are � dependent, in general. However, as the sum T (s; t;m

1

;m

2

) is g.i., it is

easy to show that Eq. (2.2) can be recast in the form

T (s; t;m

1

;m

2

) =

^

T

0

(t) +

^

T

1

(t;m

1

) +

^

T

2

(t;m

2

) +

^

T

3

(s; t;m

1

;m

2

) ; (2:3)

where the

^

T

i

(i = 0; 1; 2; 3) are individually �-independent. The propagator-like parts of

vertex and box graphs which enforce the gauge independence of T

0

(t), are called pinch

parts. They emerge every time a gluon propagator or an elementary three-gluon vertex

contributes a longitudinal k

�

to the original graph's numerator. The action of such a term
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is to trigger an elementary Ward identity of the form /k = (/p + /k �m) � (/p �m) when it

gets contracted with a  matrix. The �rst term removes (pinches out) the internal fermion

propagator, whereas the second vanishes on shell. From the g.i. functions

^

T

i

(i = 1; 2; 3)

one may now extract a g.i. e�ective gluon (G) self-energy

^

�

��

(q), g.i. Gq

i

�q

i

vertices

^

�

(i)

�

,

and a g.i. box

^

B, in the following way:

^

T

0

= g

2

�u

1



�

u

1

[(

1

q

2

)

^

�

��

(q)(

1

q

2

)]�u

2



�

u

2

;

^

T

1

= g

2

�u

1

^

�

(1)

�

u

1

(

1

q

2

)�u

2



�

u

2

;

^

T

2

= g

2

�u

1



�

u

1

(

1

q

2

)�u

2

^

�

(2)

�

u

2

;

^

T

3

=

^

B ;

(2:4)

where u

i

are the external spinors, and g is the gauge coupling.

The one-loop expression for

^

�

��

(q), calculated in the Feynman gauge � = 1 is given

by [10]:

b

�

��

(q) = �

(�=1)

��

(q) + t

��

�

P

(q) ; (2:5)

where t

��

= �g

��

+ q

�

q

�

=q

2

; l

��

= q

�

q

�

=q

2

are the usual transverse and longitudinal

projectors, and

�

P

(q) = 2ic

a

g

2

q

2

Z

D

1

k

2

(k + q)

2

; (2:6)

where

R

D

� �

4�D

R

d

D

k

(2�)

D

is the dimensionally regularized loop integral, D is the dimen-

sionality of space-time, and c

a

is the quadratic Casimir operator for the adjoint represen-

tation [for SU(N), c

a

= N ]. After integration and renormalization we �nd

�

P

(q) = 2c

a

(

g

2

16�

2

)q

2

ln(

�q

2

�

2

)] : (2:7)

Adding this to the Feynman-gauge proper self-energy

�

(�=1)

��

(q) = [

5

3

c

a

(

g

2

16�

2

)q

2

ln(

�q

2

�

2

)]t

��

; (2:8)

we obtain for �

��

(q)

b

�

��

(q) = bg

2

ln(

�q

2

�

2

)t

��

; (2:9)
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where b =

1

16�

2

11c

a

3

is the coe�cient of �g

3

in the usual � function of QCD without

fermions. This procedure can be extended to an arbitrary n-point function; of particular

physical interest are the g.i. three and four point functions

^

�

���

[17-18] and

^

�

����

[19].

Finally, the generalization of the PT to the case of non-conserved external currents is

technically more involved, but conceptually straightforward [20-21].

The current algebra formulation of the pinch technique

An important alternative formulation of the PT in the context of the SM has been

introduced by Degrassi and Sirlin Ref. [12]. In this approach the interaction of gauge bosons

with external fermions is expressed in terms of current correlation functions, i.e. matrix

elements of Fourier transforms of time-ordered products of current operators [22]. This

is particularly economical because these amplitudes automatically include several closely

related Feynman diagrams. When one of the current operators is contracted with its four-

momentum (i.e. the four momentum absorbed by the current), a Ward identity is triggered.

The pinch part is then identi�ed with the contributions involving equal-time commutators

in the Ward identities, and therefore involve amplitudes in which the number of current

operators has been decreased by one or more. As emphasized in Ref. [12], this procedure

has an important advantage when one considers external particles endowed with strong

interactions. Because the contributions from the equal-time commutators are not a�ected

by the dynamics of the strong interactions, the aforementioned identi�cation ensures the

universality of the "pinch parts". That is, the cofactors of the current operators in the

pinch parts are the same whether the external particles are leptons or strongly interacting

fermions. To illustrate the method with an example, consider the vertex function iU

�

z

(W )

that contributes to Fig.(1b), where now the gauge particles in the loop are W's, the

incoming one is a Z, and the incoming and outgoing fermions are massless. It can be

9



written as

iU

�

z

(W ) =

ig

3

c

2

Z

d

n

k

(2�)

n

�

W

��

(k)�

W

��

(k + q)[g

��

(2k + q)

�

� g

��

(2q + k)

�

� g

��

(k � q)

�

]

�

Z

d

n

xe

ikx

< f jT

�

[J

�y

W

(x)J

�

W

(0)]ji >;

(2:10)

where

�

��

i

(k; �

i

) =

�i

k

2

�M

2

[g

��

� (1� �

i

)

k

�

k

�

k

2

� �

i

M

2

i

] (2:11)

with i = W;Z;  and M



= 0, are the propagators of the gauge bosons in a general R

�

gauge. An appropriate momentum, say k

�

, from the three gauge boson vertex or the

longitudinal part of the propagator can be transformed into a derivative

d

dx

�

acting on

the T

�

product. Invoking current conservation this leads to an equal-time commutator of

current operators. Thus, such contribution are proportional to the matrix element of a

single current operator, namely < f jJ

�

3

ji >; these are precisely the pinch parts. Calling

iU

�

z

(W )

P

the total pinch contribution from Eq. (2.10), we �nd in the � = 1 gauge

U

�

z

(W )

P

= ig

3

c < f jJ

�

3

ji >

Z

1

(k

2

�M

2

w

)[(k + q)

2

�M

2

w

]

: (2:12)

Clearly, the integral in Eq. (2.12) is the generalization of the QCD expression Eq. (2.6) to

the massive gauge boson case.

Ward identities of the PT

Another important fact is that the PT Green's functions satisfy tree-level Ward iden-

tities. Most noticeably, the g.i. QCD vertex Gq

i

�q

i

satis�es the following Ward-identity:

q

�

^

�

�

=

^

�(p+ q) �

^

�(p) (2:13)

where

^

�(p) is the g.i. quark self-energy [23] The above QED-like Ward identity, which

is not true for the conventional �

(i)

�

, enforces the equality

^

Z

1

=

^

Z

2

between the vertex

renormalization constant

^

Z

1

and the quark wave function renormalization constant

^

Z

2

.

Consequently, exactly as happens in QED, the PT vacuum polarization contains the entire

10



running of the QCD coupling, as shown already by the explicit result of Eq. (2.9) [10],

[24].

The above QCD results have been generalized for the electroweak part of the standard

model, where it was found that the one-loop PT Green's functions satisfy again tree-level

Ward identities [18], [21], [25]. Therefore, the wave function renormalizations for the

PT  and WW self-energy contain the running of the gauge couplings e

2

(q

2

) and g

2

(q

2

),

respectively [12], [13]. Denoting by

^

�

��

the gauge boson PT self energies (

^

�

W

��

or

^

�

Z

��

),

by

^

�

�

the mixed PT self energy of a gauge boson and its associated unphysical scalar

(

^

�

W

�

�

+

�

�

^

�

+

�

= �

^

�

�

�

, or

^

�

Z�

�

), and by 
 the PT self energies of the unphysical scalars

(

^

�

�

or

^

�

�

), the following WI hold [26]:

q

�

b

�

��

� iM

b

�

�

= 0

q

�

b

�

�

+ iM

b


 = 0

q

�

q

�

b

�

��

�M

2

b


 = 0 :

(2:14)

Additional WI between other PT Green's functions can be found in the literature. As

was explained in detail in [21], the PT Ward identities are instrumental for the �nal

cancellation of gauge dependences in S-matrix elements.

Imposing the elementary requirement that the renormalized PT Green's functions

should respect the same Ward identities as their unrenormalized counterparts, we obtain

the following relationships between the standard model renormalization constants:

b

Z

W

=

b

Z

�2

g

(2:15)

b

Z

�1

Z

=

b

Z

�1

W

+

�ĉ

2

ĉ

2

; (2:16)

and

b

Z

H

=

b

Z

�

=

b

Z

�

=

b

Z

W

+

�

^

M

2

W

^

M

2

W

; (2:17)

with

�ĉ

2

ĉ

2

=

�

^

M

2

W

^

M

2

W

�

�

^

M

2

Z

^

M

2

Z

: (2:18)
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In the simpli�ed SU(2) model we will use laetr we have:

b

Z

Z

=

b

Z

W

=

b

Z

�2

g

(2:19)

and

b

Z

H

=

b

Z

�

=

b

Z

�

=

b

Z

�2

g

+

�

^

M

2

^

M

2

: (2:20)

As usual, gauge boson self energies are cast in the form

b

�

��

(q) = g

��

^

A(q

2

) +

q

�

q

�

q

2

^

B(q

2

) (2:21)

and the renormalization constants are de�ned from the expansion

^

A(q

2

) =

^

A(M

2

) + (q

2

�M

2

)

d

^

A(q

2

)

dq

2

�

�

�

�

q

2

=M

2

+

^

A(q

2

)

finite

(2:22)

as

�

^

M

2

= Re

�

^

A(M

2

)

�

;

b

Z

�1

= 1�

d

^

A(q

2

)

dq

2

�

�

�

�

q

2

=M

2

: (2:23)

3. The universal

^

�

In this section we focus on the universal part of � de�ned by the PT. In particular we

will emphasize issues of gauge-independence and �niteness.

Traditionally the universal part � is de�ned as in Eq. (1.2). � vanishes in the limit of

exact SU(2)

V

custodial symmetry, e.g. forM

W

=M

Z

(no hypercharge) and for degenerate

fermion doublets, m

u

= m

d

[27].

The fermionic one-loop contribution is given by [1]

��

1

f

= N

c

G

�

8

p

2 �

2

�

m

2

u

+m

2

d

+

2m

2

u

m

2

d

m

2

u

�m

2

d

ln

m

2

d

m

2

u

�

(3:1)

12



Clearly, ��

1

! 0 as m

u

! m

d

. When the mass splitting in the fermion doublet is large,

as in the case of the top and bottom quarks, the factor in square brackets in Eq. (3.1)

is replaced by m

2

t

, the heavy fermion mass. By neglecting the contribution of all light

fermions the one loop fermionic contribution is written as

��

1

f

= N

c

x

t

(3:2)

where

x

t

=

G

�

m

2

t

8

p

2 �

2

=

g

2

16�

2

m

2

t

4M

2

W

(3:3)

If one attempts to use the de�nition of Eq. (1.2) to include bosonic one loop corrections

one is faced with two problems

(a) The result is � � dependent

(b) Unless computed in a special class of gauges, it is ultraviolet divergent.

In particular, regarding the �rst point, the dependence on the gauge �xing parameter

enters through the tree-level propagators for the W , the Z and the photon which, in the

R

�

gauges they are given by Eq. (2.11). In addition, the tree-level propagators of the

unphysical Goldstone bosons are given by

�

s

(q; �

i

) =

i

q

2

� �

i

M

2

i

; (3:4)

with (s; i) = (�;W ) or (

�

;Z), and they also explicitly depend on �

i

. The conventional

one-loop self-energies depend explicitly on the gauge-�xing parameters, even at q

2

= 0.

Regarding point (b), unless the relation

�

W

= �



sin

2

� + �

Z

cos

2

� : (3:5)

between the gauge �xing parameters �

i

is satis�ed, the resulting expression for � contains

a term proportional to

1

�

.

The problems mentioned above persist when one computes the two-loop contributions

to �. Again, as happens in the one-loop case, the leading contributions are both gauge-

independent and �nite. As soon as the subleading contributions are taken into account the

13



pathologies familiar from the one-loop, reappear: The results are again gauge-dependent

and, even when computed in the Feynman gauges �

W

= �

Z

= �



= 1, which obviously

satis�es the one-loop condition of Eq. (3.5), are ultraviolet divergent. Evidently, Eq. (3.5)

breaks down beyond one loop.

Before we proceed to the study of � de�ned via the PT, it is worthwhile to fur-

ther elaborate on the gauge independence of the leading two-loop contributions to the

conventional � mentioned above. The reason for it is simply that the S-matrix is gauge-

independent, and there are no vertex or box contributions proportional to m

4

t

which could

cancell any possible gauge-dependences coming from the self-energy graphs. Consequently,

one is allowed to choose any convenient gauge for calculating these leading self-energy con-

tributions. In particular, in the Feynman gauge (� = 1)only graphs with scalars and

fermions contribute to this order. This is not generally true however for an arbitrary value

of the gauge �xing parameter �. The graphs of Fig.9 for example will give rise to leading

m

4

t

contributions, due to the longitudinal parts of the gauge boson propagators. Obvi-

ously the characterization of individual Feynman graphs as "leading" and "subleading"

is a gauge dependent statement. When all relevant graphs are correctly accounted for,

they will indeed conspire to furnish a unique �-independent answer, which will clearly be

identical to the one obtained in the Feynman gauge. It is instructive to briey highlight

the mechanism enforcing the cancellations of the gauge-dependences. To that end we can

employ the elementary algebraic identity

1

q

2

� �M

2

=

1

q

2

�M

2

+

(1� �)M

2

(q

2

�M

2

)(q

2

� �M

2

)

(3:6)

in the graphs containing scalars and fermions. The �rst term in r.h.s. of Eq. (3.6) is the

Feynam gauge scalar propagator, whereas the second term resembles the longitudinal part

of the corresponding gauge boson propagator. The �nal cancellation proceeds after using

the elementary Ward identity

k

�



�

P

L

� /kP

L

= S

�1

i

(p + k)P

L

� P

R

S

�1

j

(p) +m

i

P

L

�m

j

P

R

; (3:7)
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where P

R;L

= (1 � 

5

)=2, triggered by the longitudinal term k

�

k

�

of the gauge boson

propagator. It is this Ward identity, which when applied for both k

�

and k

�

, gives rise

to an extra power of m

2

t

, thus converting pieces of a diagram, which is subleading in the

Feynman gauge, into leading.

If one de�nes � instead in terms of the e�ective WW and ZZ propagators obtained

via the PT all problems associated with the gauge-independence and �niteness of the

subleading parts are automatically solved. We denote

^

� the universal part of �� de�ned

via the PT as follows

^

� =

^

A

W

(0)

M

2

W

�

^

A

Z

(0)

M

2

Z

(3:8)

It is important to notice the absence of the Z mixing term in the above de�nition; this

is so because in the PT the Z self-energy vanishes at q

2

= 0, e.g.

^

�

Z

��

(0) = 0. The

PT self-energies are individually independent of the gauge-�xing parameters, and when

combined according to Eq. (3.8) they give a UV �nite answer.

Although the gauge-invariance of the result in the context of the PT is guaranteed

by construction, its �niteness may be less obvious. There are two equivalent ways of

understanding why the PT de�nition gives rise to a �nite expression, both relying on the

Ward identities presented in section 2. Writing the WW and ZZ self-energies in the form

^

A

W

(q

2

) =

^

A

W

(M

2

W

) + (q

2

�M

2

W

)[1�

^

Z

�1

W

] +

^

A

f

W

(q

2

) ; (3:9)

and

^

A

Z

(q

2

) =

^

A

Z

(M

2

Z

) + (q

2

�M

2

Z

)[1�

^

Z

�1

Z

] +

^

A

f

Z

(q

2

) ; (3:10)

Eq. (3.8) yields

^

� =

^

�

�

�

div

+

^

A

f

W

(0)

M

2

W

�

^

A

f

Z

(0)

M

2

Z

(3:11)

^

�

�

�

div

, which contains the terms proportional to

1

�

( and possibly �nite pieces, which we

neglect at this point), is given by

^

�

�

�

div

=

"

^

A

W

(M

2

W

)

M

2

W

�

^

A

Z

(M

2

Z

)

M

2

Z

#

+ (

^

Z

�1

W

�

^

Z

�1

Z

)

= 0

(3:12)
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where in the last step we used Eq. (2.16). So,

^

� of Eq. (3.11) is �nite for leading, sublead-

ing, and bosonic contributions.

Another way to establish the �niteness of

^

� is the following: After computing the

o�-shell WW and ZZ self-energies, which have the form of Eq. (1.7), we use Eq. (1.8)

together with the Ward identities of Eq. (1.6), we can write for

^

�:

^

� =

^

A

W

(0)

M

2

W

�

^

A

Z

(0)

M

2

Z

=[

d

dq

2

f

^

�

�

��

�

g]j

q

2

=0

(3:13)

We than use the fact that

�

�

(q

2

) = �

�

(M

2

W

) + (q

2

�M

2

W

)[1 �

b

Z

�1

�

] + �

f

�

(q

2

)

and

�

�

(q

2

) = �

�

(M

2

Z

) + (q

2

�M

2

Z

)[1�

b

Z

�1

�

] + �

f

�

(q

2

)

where 1 �

b

Z

�1

�

=

d

b

�

�

(q

2

)

dq

2

j

q

2

=M

2

W

and 1 �

b

Z

�1

�

=

d

b

�

�

(q

2

)

dq

2

j

q

2

=M

2

Z

. Taking the di�erence of

the two scalar self-energies, and using the fact that

b

Z

�

=

b

Z

�

�

b

Z we have

b

�

�

(q

2

)�

b

�

�

(q

2

) = [

b

�

�

(M

2

W

)�

b

�

�

(M

2

Z

)]+(1�

b

Z

�1

)[M

2

Z

�M

2

W

]+[

b

�

f

�

(q

2

)�

b

�

f

�

(q

2

)] : (3:14)

The �rst two terms on r.h.s. of the last equation are proportional to

1

�

, but they are

constant, independent of q

2

. Therefore, upon di�erentiation with respect to q

2

they vanish.

The third term is q

2

-dependent and �nite, and after diferentiating it with respect to q

2

and subsequently setting q

2

= 0 we obtain the UV �nite expression for

^

�. Clearly, the

above proof of �niteness does not depend on the choice of the renormalization point; so

instead of expanding around q

2

=M

2

W

and q

2

=M

2

Z

, we can equally well expand around

q

2

= �

2

1

and q

2

= �

2

2

, respectively.

It is important to emphasize that all properties of the PT self-energies stemming from

the PT Ward identities hold for the corresponding conventional self-energies computed in
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the background �eld method (BFM) [28], for every value of the gauge-�xing parameter

�

W

Q

and �

Z

Q

, used for the quantum �elds, and to all orders in perturbation theory [29].

Consequently, in the BFM the �niteness of � is true for every value of the gauge �xing

parameter and to all loops [30]. The �nal answer is however not gauge-invariant. This

is so because in the BFM the gauge boson self-energies depend in general on the choice

of gauge-�xing parameters [23](these gauge dependent terms are however UV �nite); this

remaining gauge-dependence does not cancel when the di�erence of the WW and ZZ self-

energies is formed, in order to construct �, already at the one-loop level. So, the one loop

bosonic contribution �

1

b

�

�

BFM

, de�ned via the BFM o� shell �� and ��, which are both

explicitly �

Q

-dependent, has the form

�

1

b

�

�

BFM

= �

1

b

�

�

�

Q

=1

+�

1

b

(�

Q

): (3:15)

�

�

�

�

Q

=1

=

^

�

1

b

is the gauge independent bosonic PT result, given by

^

�

1

b

=

g

2

64�

2

�

1 +

9c

2

� 8c

4

+ h(5c

2

� 6)

s

2

(c

2

� h)

log(c

2

)�

3s

2

h

2

c

2

(c

2

� h)(1 � h)

log(h)

�

; (3:16)

where h =M

2

H

=m

2

t

, and M

H

is the mass of the Higgs scalar. �

1

b

(�

Q

) carries explicitly the

gauge parameter dependence (one sets for simplicity �

Z

Q

= �

W

Q

� �

Q

). �

1

b

(�

Q

) vanishes at

�

Q

= 1, and when M

W

= M

Z

(s = 0), but is non-zero otherwise; its explicit expression

has been reported in [31]. As one can see from Fig.1, the gauge dependent term �

1

b

(�

Q

) is

unbounded from above and below, and is numerically signi�cant. We observe that although

the BFM endows the Green's function with the desirable theoretical properties, it fails to

address the crucial issue of gauge-�xing parameter independence, as any other gauge �xing

procedure for that matter. Nevertheless, it provides a convenient starting point for the

implementation of the PT [23].
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4. Subleading top contributions to

^

� in the SU (2)model

In this section we apply the formalism developed thus far to the case of an SU(2)

model, which corresponds to the standard SU(2) � U(1), with electromagnetism turned

o�. This means that s = 0 and c = 1, or equivalently M

W

= M

Z

� M , and there is no

photon. In such a model, a non-vanishing

^

� comes only from the mass-splitting within

a fermion iso-doublet; in particular, there are no genuinely bosonic contributions to

^

�,

since M

W

= M

Z

. We ignore the contributions of all light fermions, and concentrate on

the top quark contribution. Since at one loop

^

� contains only fermionic contributions it is

automatically gauge independent and UV �nite. Obviously, at one loop the PT de�nition

coincides with the conventional one.

At two loops there are two kinds of contributions:

(i) The leading, of order m

4

t

, which originate from graphs containing fermions and

only scalars, without gauge bosons.

(ii) The sub-leading, of orderm

2

t

, which originate from the graphs of (i), if scalars are

replaced by gauge bosons (W or Z).

The leading contributions of a very heavy top quark to the conventionally de�ned �

have been �rst computed in [4], in the limit where M

W

=M

Z

=M

H

= 0. The case of an

arbitrary Higgs massM

H

, but stillM

W

=M

Z

= 0, was computed in [5], [6], and the case

M

W

= M

Z

= M 6= 0 was presented in [7]. In the above calculations the Feynman gauge

was used; as already explained in section 3, this convenient choice of gauge is legitimate,

since the result is guaranteed to be gauge-independent and UV �nite. Clearly, the PT and

the conventional de�nitions are identical for the leading part of the calculation.

The sub-leading top contributions to the conventionally de�ned � were �rst addressed

in [7]; it was explicitly shown that the resulting expressions contain left-over terms pro-

portional to

1

�

. In addition, it was pointed out that this result, calculated in the renor-

malizable Feynman gauge, was in fact gauge-dependent, and was correctly argued that
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due to this theoretical shortcommings the inclusion of subleading corrections deprives the

conventionally de�ned � of any physical meaning. In order to restore gauge invariance

and �niteness several contributions from vertex and box diagrams were included; however,

since no guiding principle such as the PT was followed, these contributions rendered the

answer process-dependent. Furthermore, it was sugested that, since the sub-leading con-

tributions cannot be de�ned in a process-independent way, the possibility of resumming

them [32] should probably be abadoned. Since no closed expressions for two-loop vertex

and box graphs exist yet in the literature, the process-dependent parts were calculated ap-

proximately, up to order O(M

2

=m

2

t

), for the case of �

�

e scattering. The �nal conclussion

was that the part of �� that one extracts with their method, for the case of �

�

e scattering

receives sizable corrections due to sub-leading top contributions.

In the context of the PT all aforementioned pathologies are automatically bypassed.

The answer is gauge-independent by construction, UV �nite, and manifestly process-

independent. We conclude therefore that in the context of the PT there is no limitation

whatsoever in de�ning the subleading top contributions to the universal

^

�. In particular,

the necessary condition for attempting the resummation of the universal part of �, i.e.

the process-idependence, is still valid. It turns out that the relative size of the subleading

contributions compared to the leading is in accordance to what one would naively expect

from a power series whose expansion parameter r =M

2

=m

2

t

is of the order of 1=4.

We now proceed to the more technical aspects of our calculations.

(a) It has been known for years that when computing the PT Green's functions any

convenient gauge may be chosen, as long as one properly accounts for the pinch contri-

butions within that gauge [10]. In the context of the \renormalizable" R

�

gauges the

most convenient gauge-�xing choice is the Feynman gauge (� = 1). This is so because

the longitudinal parts of the gauge boson propagators, which can pinch, vanish for � = 1,

and the only possibility for pinching stems from the tree-boson vertices. As was recently

realized [29], the task of the PT rearrangment of the S-matrix can be further fascilitated,
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if one quantizes the theory in the context of the BFM. Even though the Feynman rules

obtained via the BFM are rather involved, they become particularly suited for one-loop

pinching, if one chooses the Feynman gauge (�

Q

= 1) inside the quantum loops. In fact, all

possible one-loop pinch contribution are zero in this gauge; consequently, the one-loop PT

Green's functions (which one can obtain for every gauge) are identical to the conventional

Green's functions, calculated in the Feynman gauge of the BFM. This property of the

Feynman gauge in the BFM persists in two loop calculations, only for the subset of dia-

grams which contain at least one fermion-loop [33], which is precisely the type of graphs

we are interested in [34]. We therefore choose to work in the BFM Feynman gauge. This

correspondence between PT and BFM at �

Q

= 1 [35] breaks down for the two-loop purely

bosonic part [36]. The technical details leading to this conclusion will be presented in

[37].

(b) Using the algebraic identity of Eq. (1.8), and the WI of Eq. (2.14), we write

^

� as

in Eq. (3.13). Therefore, the entire calculation boils down to calculating the derivative of

each Feynman graph shown in Fig.2-Fig.7, at q

2

= 0. In these �gures we show the complete

set of two-loop irreducible graphs that contribute onlym

2

t

terms to

^

�, in the SU(2) model.

Graphs with photons or with couplings proportional to sin �

W

in the standard model are

omitted. For example, graphs such as those shown in Fig.8 for the self-energies of the

scalars do not contribute, since they contain couplings proportional to sin �

W

= 0. In

our calculation we have used a fully anticommuting 

5

since this does not produce any

inconsistencies for the graphs we have to compute.

The validity of the Ward identity of Eq. (2.14) for the full standard model has been

veri�ed by directly contracting individual graphs by q

�

q

�

, before carrying out any loop

integrations. In fact, the Ward identities of Eq. (2.14) hold individually for each of the

graphs shown in Fig.2- Fig.7, where the corresponding graph of the gauge boson self energy

{which is to be contracted by q

�

q

�

{ can be obtained by replacing the external

^

�

^

� (

�̂�̂

)

legs by

^

W

^

W (

^

Z

^

Z), respectively. The only exceptions are some of the triangle graphs, i.e.
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Fig.5(a,c), that need to be combined with graphs such as those depicted in Fig.8, in order

to yield zero in the r.h.s. of the WI. For example we have

q

�

q

�

h

�

W (5:a)

��

+�

W (8:c)

��

i

�M

2

W

h

�

� (5:a)

+�

� (8:d)

i

= 0 (4:1)

q

�

q

�

h

�

W (5:c)

��

+�

W (8:a)

��

i

�M

2

W

h

�

� (5:c)

+�

� (8:b)

i

= 0 (4:2)

In the above equations, we note that although the graphs of Fig.8 for the self energies of

the scalars vanish for sin �

W

= 0, the corresponding ones for the gauge bosons do not.

Using the notation

G

k

(q

2

) � �i (Feynman�Graph k)

we �nd it more convenient to act with the four-Laplacian instead of the regular derivative

of q

2

. Namely

dG

k

(q

2

)

dq

2

�

�

�

�

q

2

=0

�

1

2D

�

q

G

k

(q

2

)

�

q=0

: (4:3)

This facilitates the computation enormously since it reduces it to straightforward alge-

bra that can be carried out easily by hand. This procedure reduces each graph down to

standard scalar two loop integrals at zero external momentum, for which explicit expres-

sions can easily be found (see Appendix I). As it turns out the result can be analyticaly

expressed, like the leading corrections, in terms of logarithms, dilogarithms and the two

functions g(x) and f(x; 1). The function g(x) stems from the on-shell counterterms, while

f(x; 1) from the two loop scalar integrals; they too can be expressed in terms of logarithms

and dilogarithms. Explicit intermediate results for each of the set of graphs of Fig.2-Fig.7

are given in the next section.
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5. Calculations and results

In this section we present the explicit results of the two loop one particle irreducible

contributions

^

�

(2)

to the universal part

^

� of the � parameter. We neglect the contributions

of the light fermions and consider only the e�ect of a single fermion doublet (t; b), with large

mass splitting. The mass of the lightest partner in the doublet has been set equal to zero

(m

b

= 0) from the beginning of the calculation; this has produced no mass singularities.

We decompose �

(2)

in three parts as :

^

�

(2)

=

^

�

(2)

lead

+

^

�

(2)

sub

+

^

�

(2)

bos

(5:1)

where

^

�

(2)

lead

are the graphs with scalars and fermions that contain leading contributions

proportional tom

4

t

as well asm

2

t

,

^

�

(2)

sub

are the graphs with fermions and gauge bosons that

contain contributions of order m

2

t

only, and �nally

^

�

(2)

bos

is the pure bosonic contribution

which is independent of m

t

and in our approximation is zero. The results are given in

terms of two variables h =M

2

H

=m

2

t

, and r =M

2

=m

2

t

, where M

H

is the mass of the Higgs

boson and m

t

is the pole mass of the heavy quark (top) in the doublet.

The leading contributions
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are given by [38]
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where f(x; 1) is a function stemming from the two-loop scalar integrals [39-40], [6]
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and g(x) is a function that originates from the on-shell counterterms

g(x) =
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4� x [� � �] 0 � x � 4

= 0 x = 4
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The variables y;

�

; and � are de�ned as in [6]

y =

4

x

;

�

=

p

1� y � 1

p

1� y + 1

; and � = 2 arcsin

�
p

x

2

�

:

By taking the r ! 0 limit in Eq. (5.2) one can recover the result of Eq.(12) of [6] where

the leading contributions were calculated in the approximation M

Z

= M

W

= 0. In the

analytic formula of Eq. (5.2) the apparent mass singularities cancell in the relevant limits

h ! r and r ! 4. For example, in the r ! 4 limit the terms that contain r � 4 in their

denominator give 4(2 ln r+f(r; 1))=(4�r) ! (4=3)(�1+ln 2) . In the limit h! r Eq. (5.2)

reduces to
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Finally taking the limit r ! 0 one obtains the result of [4]
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where the leading contributions of a very heavy quark were calculated with all other masses

neglected.

We now present our result for

^

�

(2)

sub

in full analytic form. We decompose the result as
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and give the analytic form of each intermediate result
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i

as well. Each

^

�

(2)

i

equals the

contribution coming from the graphs shown in Fig.2{Fig.7 respectively. This grouping of

graphs is dictated by their topology, the particles they contain in the loops, and the WI

of Eq. (2.14).

The graphs of Fig.2 give
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In the di�erence of the self energies the graphs (2.a ) and (2.� ) cancell for M

W

= M

Z

and need not be computed. In the h = r limit the above formula reduces to
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For the uninteresting value r = 4 the above result as well as the results that follow are all

regular as can be seen from the explicit values of f(4; 1) and f

0

(4; 1) given in the Appendix.

The contribution of the graphs of Fig.3 is given by
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When h = r this reduces to
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The graphs of Fig.4 give
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Graphs (4.a) and (4.�) as well as (4.c ) with (4.) are equal for M

Z

=M

W

and cancell in

the di�erence.

From the graphs of Fig.5 we obtain
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The graphs of Fig.6 give
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From the graphs of Fig.7 we obtain
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where `

m

= 

E

+ ln(�m

2

).

This last set of graphs requires counterterms which are solely due to the one-loop mass

renormalization of the top quark. We perform the renormalization on-shell. The fermion

two-point function �

f

is written as

�

f

(p) = i(/p �m

0f

)� i�

f

(p) (5:16)
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where �

f

is the fermion self-energy function. The superscript G will denote the gauge

boson's contribution to �

f

shown in Fig.9. It is given by
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The mass counterterm is de�ned by
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and is determined by the on-shell renormalization conditions
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This renormalization of the top mass gives rise to two kinds of counterterms for

^

�

(2)

sub

.

The mass-insertion counterterms shown in Fig.7(ct1,ct3) and the vertex counterterms

shown in Fig.7(ct2,ct4). The mass insertion counterterms diverge as 1=�, which cancells
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in the di�erence, and they give a �nite contribution to
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sub

. In terms of scalar integrals

this contribution equals
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where henceforth m � m

t

. The vertex counterterms turn out to be just the one loop

fermion graphs multiplied by the factor

�m

m

. In terms of scalar integrals they are given by
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To see how this comes about, we note that upon renormalization the �

�

  (and similarly

the
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  ) vertex will get modi�ed to
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where we have ommited wave function renormalization of the fermion �elds, since it will

cancell agianst the correspondingwave function renormalization of the fermion propagators

inside the loop. Then, at one loop the modi�cation reads
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where in the last step we have used Eq. (2.20). Finally the result for the counterterms is
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We note that after the inclusion of the counterterms, the terms proportional to 1=�

present in �

(2)

6

cancell, and the �nal result emerges �nite as expected. In the limit where

the mass spliting in the doublet is zero, which in our case means m

t

= m

b

= 0, all of the

above expressions vanish, as can be seen from the asymptotic expressions of the functions

g(x); f(x; 0); and f(x; 1), if we take x!1 (for x = r or h).
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Adding together Eq. (5.8) to Eq. (5.27) we report as our �nal result
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In Figure 10 we show together the functions R(h; r) and S(h; r), which describe re-

spectively the leading and subleading contributions, forM=m

t

= 0:5 or r = 0:25 and a wide

range of values for the mass of the Higgs boson, M

H

, where h = M

2

H

=m

2

t

. The function

R(h; r) of the leading contributions grows asymptoticaly in the way described in [6]. On

the other hand, the function S(h; r) of the subleading contributions becomes independent

M

H

for a very heavy Higgs boson (as pointed out in [7]). For the phenomenologically

interesting range of values forM

H

, the two functions have opposite sign. In Table 1 we give

numerical results for

^

�

(2)

for di�erent values of the ratios M=m

t

and M

H

=m

t

in units of

N

c

x

2

t

. The �rst entry of each column corresponds to the leading contribution

^

�

(2)

lead

, while

the second gives the total correction

^

�

(2)

lead

+

^

�

(2)

sub

. We notice that for a light Higgs boson,

where

^

�

(2)

is small, the two contributions

^

�

(2)

lead

and

^

�

(2)

sub

are comparable in magnitude,

as can be seen from the entries in the �rst three lines of the �rst four columns. We also

observe that for a light top (M=m

t

= 0:6, �fth column) the two corrections come with the

same negative sign forM

H

� m

t

. On the other hand, for the largest part of the parameter
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space of m

t

and M

H

, the subleading contributions

^

�

(2)

sub

are approximately 22-27% of the

leading

^

�

(2)

lead

contributions, which is what one would naively expect. Finally, in Figure

11 we give the two loop correction

^

�

(2)

as a function of M

H

for M = 91:19 GeV and

m

t

= 175 GeV.

6. Conclussions

In this paper we showed that in the framework of the PT one can de�ne a universal

part of the � parameter, which satis�es all necessary �eld theoretical requirements, for both

leading and sub-leading two-loop corrections. Most noticeably, the PT universal part is

by construction independent of the gauge-�xing parameter, and, at the same time, process

independent; furthermore, by virtue of the PT Ward identities it is also UV �nite.

We have calculated the two loop contributions at the subleading order O(G

2

�

m

2

t

M

2

Z

),

in the limit M

W

= M

Z

, and s = 0. Their relative size was found to be around 25% with

respect to the leading ones. From the technical point of view, the computation involved

self-energy garphs only, which exist in closed analytic form. The computational part was

signi�cantly fascilitated by the PT Ward identities, relating the self-energies of the gauge

bosons (WW and ZZ) to the corresponding self-energies of the would-be Goldstone bosons

(�� and

��

). These Ward identities, which are valid for both leading and sub-leading

contributions, reduce the task into calculating Goldstone boson self-energies only.

Having laid out the framework of how such calculations should proceed, it is straight-

forward to compute the two loop corrections to the universal part of � de�ned via the PT,

for the full SU(2)

L

� U(1)

Y

standard model. Results in this direction will be presented

elsewhere.
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8. Figure captions

Figure 1 : The �

Q

dependent part of � in the background �eld gauges at one loop

(for M

H

= 300 GeV and in units of g

2

=(16�

2

)).

Figure 2 : Subleading two loop graphs containing self energy insertions of a Higgs

boson or a gauge boson.

Figure 3 : The subleading fermionic triangle graphs that contain a Higgs boson.

Figure 4 : The rest of the subleading graphs containing bosonic self energy insertions.

Figure 5 : The rest of the subleading triangle graphs.

Figure 6 : Subleading fermionic bubble graphs with a vertex correction.

Figure 7 : Subleading fermionic bubble graphs with self energy insertions and their

relevant counterterms.

Figure 8 : Subleading graphs that contain a mixed self energy insertion. The graphs

that correspond to the scalar self energy �� vanish for sin �

W

= 0.

Figure 9 : The gauge boson contributions to the one loop top self energy.

Figure 10 : The functions R(h; r) and S(h; r) describing respectively the leading and

the subleading contributions to

^

�, for r = 0:25.

Figure 11 : The universal two loop

^

�

(2)

correction to the � parameter as a function

of the Higgs boson mass, for di�erent approximations, in units of N

c

x

2

t

. Dotted line : the
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leading result in the approximation M

W

= M

Z

= 0, [5], [6]. Dashed line : The leading

contribution in the approximation M

W

= M

Z

= M [7]. Solid line : the total correction,

leading and subleading, for M

W

=M

Z

=M . (m

t

= 175 GeV, M = 91:19 GeV).

Table 1 : Numerical values for

^

�

(2)

in units of N

c

x

2

t

, for di�erent values of

p

h =

M

H

=m

t

and

p

r = M=m

t

. The �rst entry of each column corresponds to the leading

contribution
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in the approximationM
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=M , while the second gives the total

result
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=
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Appendix I.

Scalar two loop integrals

The scalar two loop integrals at zero external momentum are de�ned as in [39] and

[40]:
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Note that, within each of the three groups of masses in Eq. (I.1), all masses are equal. Any

other integral, for which di�erent masses appear within the same group, can be brought

in the form of Eq. (I.1) by use of partial fractions
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All of these integrals can be calculated from the knowledge of a single master integral, either

by use of recurrence relations, derived through integration by parts, or by di�erentiation

with respect to one of the masses. For example
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For our purposes, we have found the following two recursion relations very useful
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and
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The integrals of the type (MM), are one loop integrals and are de�ned at the end of this

Appendix. To prove Eq. (I.5) we consider
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which is zero as can be easily seen by the shift of variables `! `+ q. Then from
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one obtains Eq. (I.5). To prove the identity of Eq. (I.6), which has also been given in [39],

we use
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and Eq. (I.5).

In [39], the master integral (MM jM

1

jM

2

) has been calculated . In [40] the same

integrals have been discussed in a di�erent mathematical framework and the master integral

(M jM

1
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2

) is given. In what follows we use the notation of [39]. With D = 4 � 2� the

result for the master integral is :
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The real function f(a; b) is symmetric in its arguments and de�ned as
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The explicit form of f(a; b) is
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It turns out that all of our results can be expressed in terms of f(a; 0) and f(a; 1).

These functions are explicitly given by :

f(a; 0) = Li

2

(1� a) =

�

2

6

� Li

2

(a) � ln a ln(1� a) ; (I:13)

and

f(a; 1) =�

1

p

4� y

�

�

2

6

+ 2Li

2

(

�

) +

1

2

ln

2

�

�

4 < a

= �4 ln 2 a = 4

= �

2

p

y � 4

Cl

2

(') a > 4

(I:14)

where Cl
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(x) is the Clausen function
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and the variables y;

�

; and � are de�ned as in [6]
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The derivatives of f(a; 1) and f(a; 0) are given by
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We will also need the following derivative
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which we obtain directly from Eq. (I.12).

The following relationships are useful in expressing the results in terms of only these

two functions
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In our calculations we have encountered two loop integrals with three, four, and �ve

propagators. All integrals with three propagators are converted to integrals with four

propagators using Eq. (I.6). Most of the integrals with four propagators can be directly

obtained from Eq. (I.10). For the integrals (00jmjM) and (00j0jM) we use Eq. (I.5), and

write them as
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as usual.

The integrals with �ve propagators that we encountered are the following :
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Besides the two loop integrals our results also contain products of one loop integrals.

These integrals can all be computed from the integral (m) through di�erentiation.
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Appendix II.

Feynman rules in the background �eld gauges

In this appendix we give the Feynman rules that are relevant for the calculation of the

subleading two loop contributions to

^

�. The rules are given for the full standard model,

and the calculations in the text were carried out in the approximation : M

W

=M

Z

, s = 0,

m

b

= 0.
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MH=mt

M=mt

0:40 0:45 0:50 0:55 0:60

leading total leading total leading total leading total leading total

0:4 �1:926 � 0:691 �1:617 � 0:540 �1:328 � 0:576 �1:062 � 0:833 �0:822 � 1:345

0:6 �3:083 � 1:737 �2:782 � 1:582 �2:500 � 1:615 �2:243 � 1:871 �2:012 � 2:383

0:8 �4:032 � 2:581 �3:737 � 2:417 �3:462 � 2:443 �3:212 � 2:693 �2:989 � 3:201

1:0 �4:828 � 3:284 �4:538 � 3:110 �4:270 � 3:127 �4:026 � 3:369 �3:809 � 3:869

1:2 �5:506 � 3:880 �5:221 � 3:697 �4:957 � 3:704 �4:718 � 3:937 �4:508 � 4:429
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