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Abstract

The Higgs-boson lineshape is studied within the pinch technique resummation

formalism. It is shown that any resonant Higgs-boson amplitude contains a

universal part which is gauge independent, renormalization-group invariant,

satisfies the optical and equivalence theorems, and constitutes the natural

extension of the QED effective charge to the case of the Higgs scalar.
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The production of the Standard Model (SM) Higgs boson [1] and the detailed study of

its lineshape, mass and width, are expected to dominate the particle physics scene for the

next two decades. A Higgs boson with mass MH less than 100 GeV can be discovered at

the CERN Large Electron Positron collider LEP2 through the Bjorken process e+e− → ZH .

If the Higgs boson turns out to be heavier, its discovery will become again possible at the

CERN Large Hadron Collider through a variety of sub-processes, such as X → H∗ → X ′,

where X, X ′ = tt̄, ZZ, W+W−. Depending on the value of MH and the specific kinematic

circumstances, any of the above transitions may be resonant. The phenomenological im-

portance of the above processes makes the need for solving a subtle theoretical problem

[2], namely the self-consistent treatment of the Higgs boson resonance in the framework of

S-matrix perturbation theory, all the more pressing. In particular, a resummation formalism

needs be devised which complies with a set of very stringent and tightly interlocked physical

requirements. To any finite order in perturbation theory, physical amplitudes reflect the

local gauge symmetry, respect unitarity, are invariant under the renormalization group, and

satisfy the equivalence theorem [3,4]. All of the above properties should be also present after

resummation; unfortunately, resummation methods often end up violating one or more of

them, essentially because subtle cancellations are distorted when certain parts of the ampli-

tude are resummed to all orders in perturbation theory, whereas others, carrying important

physical information, are only considered to a finite order.

Recently however [5], a formalism based on the pinch technique (PT) [6] has been de-

veloped, which manifestly preserves the crucial physical properties during all intermediate

steps of the resummation procedure. The PT algorithm rearranges systematically a given

amplitude into physically meaningful sub-amplitudes, which have the same kinematic prop-

erties as their conventional counterparts, but none of their individual pathologies. In this

Letter, the above formalism is extended to the case of resonant transitions involving the

SM Higgs boson. The main novel results of our study are: (i) The PT gives rise to a Higgs

boson self-energy which is independent of the gauge-fixing parameter (GFP) in every gauge

fixing scheme, is universal in the sense that it is process-independent, it may be resummed
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following the method presented in Ref. [5], it displays only physical fermionic and bosonic

thresholds, and satisfies individually the optical theorem for both fermionic as well as bosonic

contributions. (ii) When the resummed Higgs boson propagator is multiplied by the uni-

versal quantity g2
w/M2

W , or, equivalently, by the inverse square of the vacuum expectation

value (VEV) of the Higgs field, it gives rise to a renormalization group invariant quantity,

in direct analogy to the effective charge of the photon, or the W and Z bosons [7], which

constitutes a common component in every Higgs-boson mediated process, and can be viewed

as a physical entity intrinsic to the Higgs boson. (iii) Any amplitude involving longitudinally

polarized gauge bosons satisfies the equivalence theorem, but its individual s-channel and

t-channel contributions do not. Instead, the PT rearrangement of such an amplitude gives

rise to two kinematically distinct pieces, a genuine s-channel and a genuine t-channel, which

satisfy the equivalence theorem individually. In particular, the above property persists even

after the s-channel Higgs boson self-energy has been resummed, thus solving a long-standing

problem.

We shall now analyze the above points in the context of specific examples. When the

center-of-mass (c.m.) energy
√

s approaches MH , amplitudes containing an s-channel Higgs

boson become singular, and must be regulated. The naive extension of the standard Breit-

Wigner procedure to this case would consist of replacing the free Higgs boson propagator

∆H(s) = (s − M2
H)−1 by a resummed propagator of the form [s − M2

H + ΠHH(s)]−1, where

ΠHH(s) is the one-loop Higgs boson self-energy. However, bosonic radiative corrections in-

duce an additional dependence on the GFP, as one can verify by explicit calculations in

a variety of conventional gauges, such as the renormalizable (Rξ), or axial gauges. Turn-

ing to more elaborate gauge fixing schemes does not improve the situation. For example,

within the background field gauges (BFG’s) and with irrelevant tadpole graphs omitted, the

contribution of the Z boson-loop reads: [8]

ΠĤĤ
(ZZ)(s, ξQ) =

αw

32π

s2

M2
W

{(
1 − 4

M2
Z

s
+ 12

M4
Z

s2

)
B0(s, M

2
Z , M2

Z)

−
[
1 + 4ξQ

M2
Z

s
− (M2

H + 4ξQM2
Z)

M2
H

s2

]
B0(s, ξQM2

Z , ξQM2
Z)

}
, (1)
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where αw = g2
w/(4π) is the weak fine structure constant and B0 is the usual Passarino-

Veltman function. The presence of the GFP ξQ results in bad high energy behavior and the

appearance of unphysical thresholds, as can be verified directly using ℑmB0(s, M
2, M2) =

θ(s−4M2)π(1−4M2/s)1/2. Even though to any order in perturbation theory physical ampli-

tudes are GFP-independent, and display only physical thresholds, resumming ΠĤĤ
(ZZ)(s, ξQ)

will introduce artifacts to the resonant amplitude. Even in the unitary gauge (ξQ → ∞),

where only physical thresholds survive, the s2-growth in Eq. (1) grossly contradicts the

equivalence theorem.

In the PT framework however, a modified one-loop self-energy for the Higgs boson can

be constructed, by appending to the conventional self-energy additional propagator-like

contributions concealed inside vertices and boxes. These contributions can be identified

systematically, by resorting exclusively to elementary Ward identities of the form 6 k(v +

aγ5) = (6 k+ 6 p − m)(v + aγ5) − (v − aγ5)( 6 p − m) + 2amγ5, triggered by the longitudinal

virtual momenta kµ. Following this procedure, we find the PT Higgs-boson self-energy [8]

Π̂HH
(ZZ)(s) =

αw

32π

M4
H

M2
W

[
1 + 4

M2
Z

M2
H

− 4
M2

Z

M4
H

(2s − 3M2
Z)

]
B0(s, M

2
Z , M2

Z) , (2)

which is GFP-independent in any gauge fixing scheme, universal [9], grows linearly with s,

and displays physical thresholds only. For illustration, in Fig. 1, we plot the dependence of

the running width, ℑmΠHH
(ZZ)(s), on

√
s within the PT resummation formalism, the BFG

with ξQ = 0, and the unitary gauge. The difference in the phenomenological predictions

between the three approaches is rather striking, in accordance with the discussion given

above.

The PT self-energies satisfy the optical theorem individually, as explained in [5,7]. To

verify that Π̂HH
(ZZ)(s) has this property, consider the tree-level transition amplitude T (ZZ) for

the process f(p1)f̄(p2) → Z(k1)Z(k2); it is the sum of an s- and a t- channel contribution,

denoted by T H
s (ZZ) and Tt(ZZ), respectively, given by

T H
s µν(ZZ) = ΓHZZ

0µν ∆H(s) v̄(p2)Γ
Hff̄
0 u(p1) , (3)
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Tt µν(ZZ) = v̄(p2)
(
ΓZff̄

0ν

1

6p1+ 6k1 − mf
ΓZff̄

0µ + ΓZff̄
0µ

1

6p1+ 6k2 − mf
ΓZff̄

0ν

)
u(p1) . (4)

Here, s = (p1 + p2)
2 = (k1 + k2)

2 is the c.m. energy squared, ΓHZZ
0µν = igw M2

Z/MWgµν ,

ΓHff̄
0 = −igw mf/(2MW ) and ΓZff̄

0µ = −igw/(2cw) γµ [T f
z (1 − γ5) − 2Qfs

2
w], with cw =

√
1 − s2

w = MW /MZ , are the tree-level HZZ, Hff̄ and Zff̄ couplings, respectively, and Qf

is the electric charge of the fermion f , and T f
z its z-component of the weak isospin. We then

calculate the expression [T H
s µν(ZZ)+Tt µν(ZZ)]Qµρ(k1)Q

νσ(k2)[T H
s ρσ(ZZ)+Tt ρσ(ZZ)]∗, where

Qµν(k) = −gµν +kµkν/M2
Z denotes the usual polarization tensor, and isolate its Higgs-boson

mediated part. To accomplish this, one must first use the longitudinal momenta coming from

Qµρ(k1) and Qνσ(k2) in order to extract the Higgs-boson part of T µν
t (ZZ), i.e.,

kµ
1 kν

2

M2
Z

Tt µν(ZZ) = T H
P + . . . = − igw

2MW
v̄(p2)Γ

Hff̄
0 u(p1) + . . . , (5)

where the ellipses denote genuine t-channel (not Higgs-boson related) contributions. Then,

one must append the piece T H
P T H∗

P to the “naive” Higgs-dependent part T H
s µν(ZZ) Qµρ(k1)

Qνσ(k2) T H∗

s ρσ(ZZ). Integrating the expression so obtained over the two-body phase space,

we finally arrive at the imaginary part of Eq. (2), which is the announced result.

The gauge-invariance of the S matrix imposes tree-level Ward identities on the unrenor-

malized one-loop PT Green’s functions [6,10]. The requirement that the same Ward identi-

ties should be maintained after renormalization leads to important QED-type relations for

the renormalization constants of the theory. Specifically, we find

ẐW = Ẑ−2
gw

, ẐZ = ẐW Ẑ2
cw

, ẐH = ẐW (1 + δM2
W /M2

W ) , (6)

where ẐW , ẐZ , and ẐH are the wave-function renormalizations of the W , Z and H

fields, respectively, Ẑgw
is the coupling renormalization, and Ẑcw

= (1 + δM2
W /M2

W )1/2(1 +

δM2
Z/M2

Z)−1/2. The renormalization of the bare resummed Higgs-boson propagator ∆̂H,0(s)

proceeds as follows:

∆̂H,0(s) = [ s − (M0
H)2 + Π̂HH,0(s)]−1 = ẐH [ s − M2

H + Π̂HH(s)]−1 = ẐH ∆̂H(s) , (7)
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with (M0
H)2 = M2

H + δM2
H . The renormalized Higgs-boson mass M2

H may be defined as the

real part of the complex pole position of ∆̂H(s). Notice that within the PT resummation

formalism the gauge-independent pole [11] of a resonant transition amplitude does not get

shifted [5], and the HZ mixing is absent up to two loops [12]. Employing the relations in

Eq. (6), we observe that the universal quantity

R̂H,0(s) =
(g0

w)2

(M0
W )2

∆̂H,0(s) =
g2

w

M2
W

∆̂H(s) = R̂H(s) (8)

is invariant under the renormalization group. This important universal property of the

Higgs boson is true for non-Abelian gauge theories with spontaneous symmetry breaking

(SSB), but does not hold in general. For example, in pure scalar theories any attempt

to construct quantities analogous to R̂H(s) fails to be process independent [8]. In that

sense, R̂H(s) provides a natural extension of the notion of the QED effective charge for the

SM Higgs boson, i.e., H couples universally to matter with an effective “charge” inversely

proportional to its VEV. In the high-energy limit, s ≫ M2
H , the dispersive part of Higgs self-

energy behaves as ℜeΠ̂HH(s) ∼ −αws ln(s/M2
H)(3m2

t −4M2
W −2M2

Z)/(8πM2
W ). If the heavy

top quark were assumed to be absent, the coefficient accompanying the leading logarithm in

ℜeΠ̂HH(s) would be positive. This feature is reminiscent of the PT self-energy in pure Yang-

Mills theories [6,5,7], whose leading logarithm is proportional to b1 = 11cA/3 > 0, where

cA is the Casimir eigenvalue of the adjoint representation, thus reflecting the asymptotic

freedom of the theory. On similar theoretical grounds, ℑmΠ̂HH
(ZZ)(s) turns negative for c.m.

energies much higher than MH , viz., the Higgs self-energy cannot be spectrally represented.

An additional, highly non-trivial constraint, must be imposed on resummed amplitudes;

they have to obey the (generalized) equivalence theorem (GET), which is known to be

satisfied before resummation, order by order in perturbation theory. For the specific example

of the amplitude T (ZZ) = T H
s + Tt , the GET states that

T (ZLZL) = −T (G0G0) − i T (G0z) − i T (zG0) + T (zz) , (9)

where ZL is the longitudinal component of the Z boson, G0 is its associated would-be

Goldstone boson, and zµ(k) = εµ
L(k) − kµ/MW is the energetically suppressed part of the
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longitudinal polarization vector εµ
L. It is crucial to observe, however, that already at the tree

level, the conventional s- and t- channel sub-amplitudes T H
s and Tt fail to satisfy the GET

individually. To verify that, one has to calculate T H
s (ZLZL), using explicit expressions for

the longitudinal polarization vectors, and check if the answer obtained is equal to the Higgs-

boson mediated s-channel part of the LHS of Eq. (9). In particular, in the c.m. system, we

have zµ(k1) = εµ
L(k1)−kµ

1 /MZ = −2MZkµ
2 /s+O(M4

Z/s2), and exactly analogous expressions

for zµ(k2). The residual vector zµ(k) has the properties zµk
µ = −MZ and z2 = 0. After a

straightforward calculation, we obtain T H
s (ZLZL) = −T H

s (G0G0)− iT H
s (zG0)− iT H

s (G0z)+

T H
s (zz) − T H

P , where

T H
s (G0G0) = ΓHG0G0

0 ∆H(s) v̄(p2)Γ
Hff̄
0 u(p1) , (10)

T H
s (zG0) + T H

s (G0z) = [zµ(k1) ΓHZG0

0µ + zν(k2) ΓHG0Z
0ν ] ∆H(s) v̄(p2)Γ

Hff̄
0 u(p1) ,

and T H
s (zz) = zµ(k1)z

ν(k2)T H
s µν(ZZ), with ΓHG0G0

0 = −igwM2
H/(2MW ) and ΓHZG0

0µ =

−gw(k1 + 2k2)µ/(2cw). Evidently, the presence of the term T H
P prevents T H

s (ZLZL) from

satisfying the GET. This is not surprising however, since an important Higgs-boson me-

diated s-channel part has been omitted. Specifically, the momenta kµ
1 and kν

2 stemming

from the leading parts of the longitudinal polarization vectors εµ
L(k1) and εν

L(k2) extract

such a term from Tt(ZLZL). Just as happens in Eq. (5), this term is precisely T H
P , and

must be added to T H
s (ZLZL), in order to form a well-behaved amplitude at very high en-

ergies. In other words, the amplitude T̂ H
s (ZLZL) = T H

s (ZLZL) + T H
P satisfies the GET

independently (cf. Eq. (9)). In fact, this crucial property persists after resummation. In-

deed, as shown in Fig. 2, the resummed amplitude T H
s (ZLZL) may be constructed from

T H
s (ZLZL) in Eq. (3), if ∆H(s) is replaced by the resummed Higgs-boson propagator ∆̂H(s),

and ΓHZZ
0µν by the expression ΓHZZ

0µν + Γ̂HZZ
µν , where Γ̂HZZ

µν is the one-loop HZZ vertex cal-

culated within the PT [8]. It is then straightforward to show that the Higgs-mediated

amplitude T̃ H
s (ZLZL) = T H

s (ZLZL) + T H
P respects the GET individually; to that end we

only need to employ the following tree-level-type PT WI’s:
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kν
2 Γ̂

HZZ
µν (q, k1, k2) + iMZ Γ̂HZG0

µ (q, k1, k2) = − gw

2cw

Π̂ZG0

µ (k1) ,

kµ
1 Γ̂HZG0

µ (q, k1, k2) + iMZ Γ̂HG0G0

(q, k1, k2) = − gw

2cw

[
Π̂HH(q2) + Π̂G0G0

(k2
2)

]
, (11)

kµ
1 kν

2 Γ̂
HZZ
µν (q, k1, k2) + M2

Z Γ̂HG0G0

(q, k1, k2) =
igwMZ

2cw

[
Π̂HH(q2) + Π̂G0G0

(k2
1) + Π̂G0G0

(k2
2)

]
,

where Γ̂HZG0

µ and Γ̂HG0G0

are the one-loop PT HZG0 and HG0G0 vertices, respectively.

In this derivation, one should also make use of the PT WI involving the ZG0- and G0G0-

self-energies: Π̂ZG0

µ (k) = −iMZkµ Π̂G0G0

(k2)/k2.

In conclusion, we have explicitly demonstrated that within the PT resummation ap-

proach, any resonant Higgs-mediated amplitude contains a gauge-independent universal

part, which is invariant under the renormalization group and satisfies the optical and equiv-

alence theorems individually. It would be of great phenomenological interest to confront

the theoretical predictions for this universal quantity against data obtained from future

Higgs-boson experiments.
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Kögerler, and H. Neufeld, Phys. Rev. D34, 3257 (1986).

[5] J. Papavassiliou and A. Pilaftsis, Phys. Rev. Lett. 75, 3060 (1995); Phys. Rev. D53,

2128 (1996); Phys. Rev. D54, 5315 (1996).

[6] J.M. Cornwall, Phys. Rev. D26, 1453 (1982).

[7] J. Papavassiliou, E. de Rafael, and N.J. Watson, Nucl. Phys. B503, 79 (1997).

[8] J. Papavassiliou and A. Pilaftsis, “Gauge- and Renormalization-Group- Invariant For-

mulation of the Higgs-Boson Resonance,” (in preparation).

[9] N.J. Watson, Phys. Lett. B349, 155 (1995).

[10] J. Papavassiliou, Phys. Rev. D41, 3179 (1990).

[11] A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991); Phys. Lett. B267, 240 (1991); K. Philippides

and A. Sirlin, Phys. Lett. B367, 377 (1996); Nucl. Phys. B477, 59 (1996).

9



[12] A. Pilaftsis, Phys. Rev. Lett. 77, 4996 (1996).

10



FIGURES

 √s [GeV]

 I
m

Π
H

H
(Z

Z
)(

s)
/I

m
Π

H
H

(Z
Z

)(
M

2 H
)

MH = 300 GeV

PT

BFG  ξQ = 0

unitary gauge

10
10

-1

1

10

10
2

FIG. 1. Dependence of ℑmΠHH
(ZZ)(s)/ℑmΠHH

(ZZ)(M
2
H) on s1/2 in the PT, the BFM with ξQ = 0,

and the unitary gauge.
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FIG. 2. Resummation of the Higgs-mediated amplitude pertinent to f f̄ → ZZ.
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