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ABSTRACT

A gauge- and renormalization-group- invariant approach implemented by the pinch tech-

nique is formulated for resonant transitions involving the Higgs boson. The lineshape of the

Higgs boson is shown to consist of two distinct and physically meaningful contributions:

a process-independent resonant part and a process-dependent non-resonant background,

which are separately gauge independent, invariant under the renormalization group, satisfy

naive, tree-level Ward identities, and respect the optical and equivalence theorem indi-

vidually. The former process-independent quantity serves as the natural extension of the

concept of the effective charge to the case of the Higgs scalar, and constitutes a com-

mon ingredient of every Born-improved amplitude. The difference in the phenomenological

predictions obtained within our approach and those found with other methods is briefly

discussed.
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1 Introduction

The production of the Higgs boson, the only as yet unobserved building block of the

Standard Model (SM), and the detailed study of its properties will be of central interest

for several years to come. The Higgs boson is intimately connected to the prevailing field-

theoretic mechanism for endowing gauge bosons, leptons, and quarks with masses [1]. Since

understanding the origin of mass constitutes a major challenge for all models aspiring to

describe physics beyond the SM, accurate experimental information about the Higgs sector

is indispensable for determining both their theoretical relevance and their phenomenological

viability.

Within the SM, the mass MH of the Higgs boson is a free parameter. The experimental

lower bound on the SM Higgs boson through direct searches at the CERN Large Electron

Positron collider (LEP) is MH > 65.2 GeV [2], whereas the theoretical upper bound is

about 700 GeV [3,4]. Since the SM observables depend logarithmically on MH [5], the

high precision electroweak data, even though they favour slightly a “light” Higgs boson

of about 150 GeV, they can only impose rather loose bounds on MH . In particular, from

the LEP data on sin2 θlept
eff , the electroweak observable most sensitive to MH , the upper

bound MH < 550 GeV is obtained at the 1.64σ level [6], whereas a tighter upper bound of

MH < 443 GeV at the 1.64σ has been advocated after the inclusion of two-loop top quark

effects in the calculations of sin2 θlept
eff [7].

A Higgs boson with mass of about 100 GeV can be discovered at LEP2 [8], through

the Bjorken process, or Higgs-strahlung, e+e− → ZH [9]. If the Higgs boson turns out to

be heavier, its discovery will become again possible at the CERN Large Hadron Collider

(LHC). In that case, the Higgs-boson production will proceed through a variety of sub-

processes. In all of the above scenarios, depending on the value of MH and the specific

kinematic conditions, the Higgs-boson production may be resonant. In that case, exactly

as has happened in the case of the resonant Z-boson production [10], the well-known

theoretical problems associated with the self-consistent treatment of resonant transition

amplitudes are bound to resurface, but with the additional phenomenological complication

that, in contrast to the Z-boson case, bosonic and fermionic channels give numerically

comparable contributions to the Higgs-boson decay rate.

From the theoretical point of view, the self-consistent treatment of the Higgs boson

resonance in the context of the SM has attracted significant attention, due to a variety of

open questions [11]. In the vicinity of resonances transition amplitude become singular and

must be regulated by a Breit-Wigner type of propagator. The most obvious signal that a

method more sophisticated than a standard resummation of conventional self-energy graphs
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is needed in the case of non-Abelian gauge theories, comes from the simple calculational

fact that the bosonic radiative corrections to the self-energies of vector (γ, W , Z) or scalar

(Higgs) bosons induce a non-trivial dependence on the gauge-fixing parameter (GFP),

used to define the tree-level bosonic propagators appearing in the quantum loops. This

is to be contrasted to the fermionic radiative corrections, which, even in the context of

non-Abelian gauge theories behave as in quantum electrodynamics (QED), i.e., they are

GFP independent. In addition, formal field-theoretical considerations as well as direct

calculations show that, contrary to the QED case, the non-Abelian Green’s functions do

not satisfy their naive, tree-level Ward identities (WI’s), after bosonic one-loop corrections

are included. A careful analysis shows that this fundamental difference between Abelian

and non-Abelian theories has far-reaching consequences; the naive generalization of the

Breit-Wigner method to the latter case gives rise to Born-improved amplitudes, which do

not faithfully capture the underlying dynamics. Most noticeably, due to violation of the

optical theorem (OT), unphysical thresholds and artificial resonances appear, which distort

the Higgs boson lineshape. In addition, the high energy properties of such amplitudes are

altered, and are in direct contradiction with the equivalence theorem (ET) [12,13].

Recently however, a formalism based on the pinch technique (PT) [14,15] has been

developed in a series of papers [16,17] which bypasses all the aforementioned difficulties,

and provides a self-consistent framework for dealing with unstable particles and resonant

transition amplitudes in the context of non-Abelian gauge theories. In [16] the general

methodology has been presented, whereas in [17] the crucial physical requirements for a

physically meaningful resummation have been discussed in detail. In addition, it was shown

that the resummation algorithm based on the PT satisfies all those requirements; in fact,

to the best of our knowledge, it is the only algorithm known to date which can accomplish

this. Several applications of the above formalism may be found in the literature [18]. In

this paper we employ the above formalism in order to develop a systematic approach to

resonant transition amplitudes involving the SM Higgs boson. The theoretical highlights

of our study have been presented in a short communication [19]. In this longer paper we

address in detail the most important calculational aspects of this analysis, and discuss

extensively the multitude of physical issues involved.

The paper is organized as follows: In Section 2, we use the PT to compute the GFP-

independent Higgs-boson self-energy at the one-loop level, within the context of three

different characteristic gauges, namely the Feynman-t’Hooft gauge, the general renormal-

izable Rξ gauges, and the covariant background field gauges (BFG’s). Explicit expressions

are reported, and the pathologies associated with gauge dependences in the conventional

formulation are discussed. In Section 3, we employ arguments of unitarity and analyticity
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and show how the effective Higgs-boson self-energy of the previous section may be obtained

from tree-level amplitudes involving the Higgs boson; in fact, it satisfies individually the

OT, both for fermionic as well as bosonic contributions. In addition, we apply our for-

malism to the process tt̄ → H∗ → tt̄, and discuss how our predictions differ from those

obtained by other methods. In Section 4, we review the notion of the effective charge

in QED and discuss how this concept may be extended to the case of gluon in quantum

chromodynamics (QCD), based on properties of the PT gluon self-energy under the renor-

malization group [14]. Furthermore, we demonstrate explicitly that in pure scalar theories,

e.g., (φ3)6 in six space-time dimensions, the scalar particle does not admit the construction

of a renormalization-group-invariant (RGI) quantity which could serve as the analog of the

QED effective charge. However, if the scalar theory is endowed with a global symmetry,

which, in turn, is broken spontaneously, we find that a scalar effective “charge” may still be

formed. This latter example provides useful insight and sets up the stage for addressing the

more complicated case of the full SM. The next two sections contain the main theoretical

thrust of our paper: In Section 5, after discussing how the process-independent PT self-

energies for the W and Z bosons of the SM can give rise to RGI quantities which may be

identified as effective charges [20], we show that the construction of a process-independent

and RGI quantity involving the Higgs-boson propagator is indeed possible. The above

construction of a Higgs-boson effective charge becomes only possible by virtue of the naive,

tree-level WI’s satisfied by the GFP-independent PT sub-amplitudes. In Section 6, we

show with an explicit example that the PT sub-amplitudes satisfy the ET individually, and

that with the help of the same PT WI’s, this fact remains true even after resummation. In

Section 7, we present our conclusions. Finally, lengthy analytic expressions pertaining to

the HWW and HZZ vertices are relegated to the Appendices.

2 One loop calculations in the Pinch Technique

In this section we show how the application of the PT gives rise to an effective self-

energy for the Higgs boson, which is independent of the GFP, and displays a high-energy

behaviour which is consistent with the ET. For definiteness we focus on the gauge invariant

subset of Feynman diagrams containing two W bosons (and their corresponding would-be

Goldstone bosons and ghosts) in a typical S-matrix element, e.g., tt̄ → H∗ → tt̄, shown in

Fig. 1. We carry out this calculation in three representative gauges, i.e., the renormalizable

Feynman-’t Hooft gauge, the general Rξ gauges, and the background field method (BFM)

in the covariant RξQ
gauges. We discuss the relevant technical points and present explicit

intermediate and final results.
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2.1 The Feynman–’t Hooft gauge

First we present the calculation for the special GFP choice ξ = 1 in the renormalizable Rξ

gauges. This particular choice is known to simplify computations; of course, as we will see

explicitly in the next subsection, the same final answer emerges for any other choice of ξ,

after the PT algorithm has been carried out.

We first calculate the diagrams contributing to the conventional Higgs boson self-

energy (Figs. 1(a)–(d)). A straightforward calculation yields (we omit contributions from

tadpole and seagull graphs):

ΠHH(q2) =
αw

4π

(
− q2 + 3M2

W +
M4

H

4M2
W

)
B0(q

2, M2
W , M2

W ) , (2.1)

where αw = g2
w/(4π) and

B0(p
2, m2

1, m
2
2) = (2πµ)4−d

∫
ddk

iπ2

1

(k2 − m2
1)[(k + p)2 − m2

2]
(2.2)

is the Veltman–’t Hooft function [21] defined in d = 4−2ǫ dimensions, using the conventions

of Ref. [22]. From the integrand of Eq. (2.2), it is clear that B0(p
2, m2

1, m
2
2) develops

absorptive (imaginary) parts, when
√

p2 ≥ m1 + m2. The mass parameters m1, m2 may

represent either physical masses, such as that of the W and/or Z bosons, or masses of the

respective unphysical would-be Goldstone bosons and ghosts.

According to the PT [14], we must now extract the propagator-like pieces concealed

inside vertex and box diagrams. Such pieces emerge every time longitudinal momenta

coming from propagators or vertices trigger elementary WI’s of the form

6kPL = (6k+ 6p − mb)PL − PR( 6p − mt) + mbPL − mtPR , (2.3)

where PR(L) = [1 + (−)γ5]/2 is the chirality projection operator. The first term in Eq.

(2.3) pinches out the internal propagator of the b quark, whereas the second one dies when

contracted with the spinor of the external on-shell t quark.

In the Feynman-’t Hooft gauge, the only graphs that can give rise to propagator-like

contributions are the vertex graphs of Figs. 1(f) and 1(g), denoted by VGW and VWG, and

their mirror images, Figs. 1(j) and 1(k). Setting p′ = p− q, we define Sν
R and Sν

L as follows:

Sν
R =

g2
w

2
v̄(p′) (mtPL − mbPR)

1

6k+ 6p − mb

γνPL u(p) , (2.4)

Sµ
L =

g2
w

2
v̄(p′) γµPL

1

6k+ 6p − mb
(mtPR − mbPL) u(p) . (2.5)
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The action of the longitudinal momenta from the vertices on these expressions gives

kν Sν
R =

g2
w

2
v̄(p′) mtPL u(p) + . . . ,

(k + q)µ Sµ
L =

g2
w

2
v̄(p′) mtPR u(p) + . . . , (2.6)

where the ellipses mean omission of vertex like pieces, e.g., pieces still containing the b

quark tree-level propagator, (6k+ 6p − mb)
−1. With the help of Eq. (2.6), we find

VWG + VGW = −
[
(2k + q)νS

ν
R + (2k + q)µS

µ
L

]
B0(q

2, M2
W , M2

W )

= − αw

8π
mtB0(q

2, M2
W , M2

W ) v̄(p′) u(p) + . . . (2.7)

We notice that the only propagator-like piece couples to the external tt̄ pair exactly as a

Higgs boson. In addition, no term proportional to γ5 has survived; had such a term been

present, it ought to be alloted to the effective HG0 one-loop mixing self-energy, thus break-

ing the CP invariance of the underlying theory [23]. This exercise demonstrates explicitly

how the PT preserves the discrete symmetries of the classical action after quantization.

Finally, the pinch contribution VGW to the Higgs-boson self-energy stemming from

the vertex (mirror image graphs give an extra factor of 2) is

VGW = − αw

4π
(q2 − M2

H) B0(q
2, M2

W , M2
W ) . (2.8)

Adding the contribution from Eq. (2.8) to the conventional result of Eq. (2.1), we finally

arrive at the following expression for the PT one-loop Higgs boson self-energy Π̂HH(q2),

Π̂HH
(WW )(q

2) =
αw

16π

M4
H

M2
W

[
1 + 4

M2
W

M2
H

− 4
M2

W

M4
H

(2q2 − 3M2
W )

]
B0(q

2, M2
W , M2

W ) . (2.9)

2.2 Rξ renormalizable gauges

After this introductory calculation, we turn to the general case, where the GFP ξ is kept

arbitrary. In these gauges, the free W -boson propagator is given by

∆(ξw)
µν (q) =

[
− gµν + (1 − ξw)

qµqν

q2 − ξwM2
W

] 1

q2 − M2
W

= Uµν(q) − qµqν

M2
W

D(ξw)(q2) , (2.10)

where

D(ξw)(q2) =
1

q2 − ξwM2
W

(2.11)
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is the propagator of the would-be Goldstone boson and ghost fields. A straightforward

calculation for the conventional one-loop Higgs self-energy yields

ΠHH(q2) =
αw

4π

[( (q2)2

4M2
W

− q2 + 3M2
W

)
B0(q

2, M2
W , M2

W )

+
M4

H − (q2)2

4M2
W

B0(q
2, ξwM2

W , ξwM2
W )

]
, (2.12)

where tadpole and seagull terms have again been omitted. Some comments are now in

order regarding Eq. (2.12):

(a) The term proportional to (q2)2 is absent only for the special choice ξw = 1, in which

case B0 factorizes out.

(b) The term proportional to (q2)2 is ultraviolet (UV) finite, i.e., it does not depend on

the UV regulator 1/ǫ for any value of ξw. Of course, this is expected, since we are

working within a renormalizable gauge.

(c) Even though terms proportional to B0(q
2, M2

W , ξwM2
W ) appear in intermediate calcu-

lations of individual diagrams, they finally cancel in the sum. So, there are no terms

with mixed poles; we only have thresholds at q2 = 4M2
W and q2 = 4ξwM2

W . This result

can be traced back to the fact that the tree-level HW+
µ W−

ν coupling is proportional to

gµν and hence, any contraction between the longitudinal and transverse parts of the

two W -boson propagators in the loop will vanish. The transverse part of the W -boson

propagator is associated with the physical pole at q2 = M2
W , whereas the longitudinal

one possesses an unphysical singularity at q2 = ξM2
W . Since only terms arising from

the contraction between transverse-transverse and longitudinal-longitudinal parts of

the W -boson progators can survive, the absence of mixed poles is expected. How-

ever, this last feature may change in higher orders, since new momentum-dependent

form-factors for the vertex HW+
µ W−

ν are radiatively induced, which could give rise

to mixed poles.

(d) Setting ξw = 1 in the expression of Eq. (2.12), we recover the result of Eq. (2.1).

Next we collect the pinch contributions which are kinematically akin to a Higgs boson

self-energy. Due to the additional longitudinal momenta proportional to 1− ξw, we receive

extra pinch contributions, from the vertex- as well as the box-diagrams. The only tech-

nically subtle point in this context is that the propagator-like parts related to the Higgs

boson arise from two successive contractions of the longitudinal momenta on the elementary

vertex: the first momentum pinches, giving rise to propagator-like terms whose coupling to

7



the external quarks is proportional to γµPL; clearly this coupling is not Higgs-boson-like.

In addition, a vertex-like term proportional to mt survives. After the second longitudinal

momentum is contracted with that latter vertex-like term, it removes the internal fermion

propagator and gives rise to a propagator-like contribution, which couples to the exter-

nal fermions proportionally to mt. To see that mechanism in detail, consider the typical

quantity T µν
t , appearing in the graphs in question, defined as

T µν
t =

g2
w

2
v̄(p′) γµPL

1

6k+ 6p − mb
γνPL u(p) . (2.13)

The action of the first longitudinal momentum kν gives

kν V µν =
g2

w

2
v̄(p′) γµPL u(p) + Sµ

L . (2.14)

When the second momentum kµ acts on the first term on the RHS of Eq. (2.14), by virtue

of Eq. (2.6) gives rise to a propagator-like term proportional to mt, as is also shown in

Fig. 2, according to equation Eq. (2.6). As for the second term on the RHS of Eq. (2.14),

after it gets contracted with the second momentum kµ, it will be judiciously alloted to the

various remaining effective self-energies, such as γγ, ZZ, γZ, Zγ, etc., according to the

rules established in [24]. These latter terms are not displayed in Fig. 2.

We now gather all relevant pinch contributions from the box diagrams:

BWW (q2) =
αw

16πM2
W

[
B0(q

2, M2
W , M2

W ) − 2B0(q
2, M2

W , ξwM2
W ) + B0(q

2, ξwM2
W , ξwM2

W )
]

× (q2 − M2
H)2 , (2.15)

BGW (q2) =
αw

8πM2
W

[
B0(q

2, M2
W , ξwM2

W ) − B0(q
2, ξwM2

W , ξwM2
W )

]
(q2 − M2

H)2. (2.16)

The net pinch contribution to the effective Higgs boson self-energy originating from the

box graphs may be summarized by

B(q2) =
αw

16πM2
W

[
B0(q

2, M2
W , M2

W ) − B0(q
2, ξwM2

W , ξwM2
W )

]
(q2 − M2

H)2 . (2.17)

Again, the terms proportional to B0(q
2, M2

W , ξwM2
W ) cancel. In addition, for ξw = 1, the

above expression vanishes as it should, since in the Feynman gauge there are no pinch

contributions coming from boxes.

Similarly, the individual pinch contributions from vertex graphs are listed below

VWW (q2) = −αw

4π

[(
1 +

q2

2M2
W

)
B0(q

2, M2
W , M2

W ) −
(
1 − ξw +

q2

M2
W

)
B0(q

2, M2
W , ξwM2

W )

+
( q2

2M2
W

− ξw

)
B0(q

2, ξwM2
W , ξwM2

W )
]
(q2 − M2

H) , (2.18)
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VGW (q2) = −αw

4π

[(
1 − ξw +

q2

M2
W

)
B0(q

2, M2
W , ξwM2

W )

+
(
ξw − q2

M2
W

)
B0(q

2, ξwM2
W , ξwM2

W )
]
(q2 − M2

H) , (2.19)

which gives in the sum

V(q2) = −αw

4π

[(
1 +

q2

2M2
W

)
B0(q

2, M2
W , M2

W ) − q2

2M2
W

B0(q
2, ξwM2

W , ξwM2
W )

]
(q2 − M2

H) .

(2.20)

Again, the terms proportional to B0(q
2, M2

W , ξwM2
W ) cancel in the final result, and the

analytic expression of Eq. (2.8) emerges for ξw = 1.

Adding Eq. (2.17) and Eq. (2.20), we find that in the linear renormalizable gauges

the total pinch contribution to effective Higgs boson self-energy is given by

ΠHH,P (q2) = −αw

4π

[(
1 +

q2 + M2
H

4M2
W

)
B0(q

2, M2
W , M2

W )

− q2 + M2
H

4M2
W

B0(q
2, ξwM2

W , ξwM2
W )

]
(q2 − M2

H) . (2.21)

Adding Eq. (2.21) to the conventional result given in Eq. (2.12), we see that all terms

proportional to B0(q
2, ξwM2

W , ξwM2
W ), which are the only terms depending on ξw, cancel,

and we find again the PT result given in Eq. (2.9).

2.3 The covariant background field gauge

We shall consider the BFM applied to the covariant gauges [25,26,27]; a detailed discussion

of the BFM in the non-covariant gauges may be found in [28]. The calculation here is

particularly illuminating, because it shows that the results are plagued with pathologies

away from ξQ = 1 [17].

Using the Feynman rules of the covariant background field gauge [26], we obtain for

the Higgs-boson self-energy in an arbitrary ξQ gauge

ΠĤĤ(q2) =
αw

4π

{( (q2)2

4M2
W

− q2 + 3M2
W

)
B0(q

2, M2
W , M2

W )

+
[M4

H − (q2)2

4M2
W

− ξQ(q2 − M2
H)

]
B0(q

2, ξQM2
W , ξQM2

W )
}

. (2.22)

Some important comments must be made:

(a) Setting ξQ = 1 in the expression of Eq. (2.22) , we recover the full PT answer of Eq.

(2.9), in accordance with earlier observations [26,27]
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(b) We see that for ξQ 6= 1 the (q2)2 term survives and is proportional to the difference

B0(q
2, M2

W , M2
W )−B0(q

2, ξQM2
W , ξQM2

W ). For any finite value of ξQ this term vanishes

for sufficiently large q2, i.e., q2 ≫ M2
W and q2 ≫ ξQM2

W .∗ Therefore, the quantity in

Eq. (2.22) displays good high energy behaviour in compliance with unitarity. Notice

however that the onset of this good behaviour depends crucially on the choice of

ξQ. Since ξQ is a free parameter and may be chosen to be arbitrarily large, but

finite, the restoration of unitarity may be arbitrarily delayed as well. This fact poses

no problem as long as one is restricted to the computation of physical amplitudes

at a finite order in perturbation theory. However, if the above self-energy was to

be resummed in order to regulate resonant transition amplitudes, it would lead to

an artificial delay of unitarity restoration. Specific quantitative examples of such

artifacts will be presented in Section 7.

(c) In addition to the problem described above, which becomes significant for large values

of ξQ, a serious pathology occurs for any value of ξQ 6= 1, namely the appearance of

unphysical thresholds [16,17]. Such thresholds may be particularly misleading if ξQ

is chosen in the vicinity of unity, giving rise to distortions in the lineshape of the

unstable particle.

We then proceed to isolate the propagator-like pinch parts from the BFG boxes and

vertices, for general ξQ. Clearly, the box contributions are the same as in the linear renor-

malizable gauges; they can be recovered from Eq. (2.17) by the simple replacement ξw → ξQ.

The same is true for the pinch contributions involving the WW virtual states, i.e., VWW

in Eq. (2.18). In this way, the total pinch box contribution, B, and VWW may separately

written down

B(q2) =
αw

16πM2
W

[
B0(q

2, M2
W , M2

W ) − B0(q
2, ξQM2

W , ξQM2
W )

]
(q2 − M2

H)2, (2.23)

VWW (q2) = −αw

4π

[(
1 +

q2

2M2
W

)
B0(q

2, M2
W , M2

W ) −
(
1 − ξQ +

q2

M2
W

)
B0(q

2, M2
W , ξQM2

W )

+
( q2

2M2
W

− ξQ

)
B0(q

2, ξQM2
W , ξQM2

W )
]
(q2 − M2

H) . (2.24)

However, the vertex graph VGW is different, since the coupling between ĤG±W∓ in the

BFG differs from the respective HG±W∓ coupling in the Rξ gauges (2qµ as opposed to

(2k + q)µ, respectively). Specifically, we have

VGW (q2) = − αw

4π

[(
1 − ξQ +

q2

M2
W

)
B0(q

2, M2
W , ξQM2

W ) − q2

M2
W

B0(q
2, ξQM2

W , ξQM2
W )

]

∗A noticeable exception is the unitary gauge (ξQ → ∞), in which such a term survives and, in fact,

gives rise to a divergent, non-renormalizable contribution.
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× (q2 − M2
H) . (2.25)

Adding both pinch terms in Eqs. (2.24) and (2.25), we easily obtain

V(q2) = −αw

4π

[(
1 +

q2

2M2
W

)
B0(q

2, M2
W , M2

W ) −
( q2

2M2
W

+ ξQ

)
B0(q

2, ξQM2
W , ξQM2

W )
]

× (q2 − M2
H) . (2.26)

Finally, the total pinch contribution to the Higgs boson self-energy, which is obtained by

forming the sum of Eqs. (2.23) and (2.26), is given by

ΠĤĤ,P (q2) = − αw

4π

[(
1 +

q2

4M2
W

+
M2

H

4M2
W

)
B0(q

2, M2
W , M2

W )

−
( q2

4M2
W

+
M2

H

4M2
W

+ ξQ

)
B0(q

2, ξQM2
W , ξQM2

W )
]
(q2 − M2

H) . (2.27)

Adding Eq. (2.27) to Eq. (2.22), we arrive again at the expression of Eq. (2.9)

In a similar way, we may compute the contributions of the other virtual channels (tt̄,

ZZ, and HH) to the effective Higgs boson self-energy. They are given by

Π̂HH
(tt) (q2) =

3αw

8π

m2
t

M2
W

(q2 − 4m2
t )B0(q

2, m2
t , m2

t ) , (2.28)

Π̂HH
(ZZ)(q

2) =
αw

32π

M4
H

M2
W

[
1 + 4

M2
Z

M2
H

− 4
M2

Z

M4
H

(2q2 − 3M2
Z)

]
B0(q

2, M2
Z , M2

Z) , (2.29)

Π̂HH
(HH)(q

2) =
9αw

32π

M4
H

M2
W

B0(q
2, M2

H , M2
H) . (2.30)

Note that Π̂(tt)(q
2) and Π̂(HH)(q

2) are identical to their conventionally defined counterparts,

i.e., they receive no pinch contributions.

3 The resonant Higgs boson and unitarity

In this section we show how one can obtain the results of the previous section by

resorting to the fundamental properties of unitarity and analyticity of S-matrix elements.

As explained in detail in [17], a close connection exists between gauge invariance and

unitarity, which is best established by looking at the two sides of the equation for the OT.

The OT for a given process 〈b|T |a〉 is

〈b| (T − T †) |a〉 = i
∑

m

(2π)4δ4(Pm − Pa)〈m|T |b〉∗ 〈m|T |a〉 , (3.1)
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where the sum
∑

m should be understood to be over the entire phase space and spins of all

possible on-shell intermediate particles m. The RHS of Eq. (3.1) consists of the product of

GFP-independent on shell amplitudes, thus enforcing the gauge-invariance of the imaginary

part of the amplitude on the LHS. In particular, even though the LHS contains unphysical

particles, such as ghosts and would-be Goldstone bosons, which could give rise to unphysical

thresholds, Eq.(3.1) guarantees that all such contributions will vanish. In general, the

aforementioned cancellation takes place after contributions from the propagator-, vertex-,

and box-diagrams have been combined. There are field theories however, such as scalar

theories, or QED, which allow for a stronger version of the equality given in Eq.(3.1): The

optical relationship holds individually for the propagator-, vertex-, and box-diagrams. On

the other hand, in non-Abelian gauge theories this stronger version of the OT does not

hold in general [29]; this is so because, unlike their scalar or Abelian counterparts, the

conventional self-energies, vertex and boxes are gauge-dependent. But if one rearranges

instead the amplitudes according to the PT algorithm, the same stronger version of the

OT can also be realized in the context of non-Abelian gauge theories at one loop, as has

been demonstrated in a series of papers [16,17,20]. Specifically, let us apply the PT on

both sides of Eq.(3.1): The PT rearrangement of the tree-level cross sections appearing

in the RHS gives rise to new process-independent (self-energy-like) parts, which are equal

to the imaginary part of the effective self-energies obtained by the application of the PT

on the one-loop expression for the amplitude 〈a|T |b〉 on the LHS . The same result is true

for the vertex- and box-like parts, defined by the PT on either side of Eq.(3.1). In other

words, effective sub-amplitudes obtained after the application of the PT satisfy the OT

individually, e.g.,

ℑm
(
〈a|T |a〉jPT

)
=

1

2

∑

f

∫ (
〈f |T |a〉〈f |T |a〉∗

)j

PT
, (3.2)

where the subscript “PT” indicates that the PT rearrangement has been carried out, and

the index j = S, V, B, distinguishes between effective self-energy, vertex, and boxes, respec-

tively.

Turning to a specific example involving the Higgs boson, let us apply the previous

arguments to the case of the process tt̄ → tt̄. At the tree-level this process can be mediated

by a photon, a Z boson, and a possibly resonant H scalar. We focus on the sub-amplitude

which contains two intermediate W bosons. In that case the OT yields

ℑm〈tt̄|T |tt̄〉 =
1

2

∫
dXLIPS 〈tt̄|T |W+W−〉〈W+W−|T |tt̄〉∗ , (3.3)

where the Lorentz-invariant phase-space (LIPS) measure is defined as
∫

dXLIPS =
1

(2π)2

∫
d4k1

∫
d4k2 δ+(k2

1 − M2
W )δ+(k2

2 − M2
W )δ(4)(q − k1 − k2) , (3.4)

12



and δ+(k2 − m2) ≡ θ(k0)δ(k2 − m2). We now introduce the abbreviations M =

〈t(p1)t̄(p2)|T |t(p1)t̄(p2)〉 and T = 〈t(p1)t̄(p2)|T |W+(k+)W−(k−)〉, and focus on the RHS of

Eq.(3.3). Diagrammatically, the amplitude T consists of two distinct parts: an s-channel

amplitude, Tsµν , which is given in Figs. 3(a) and 3(b), and a t-channel amplitude, Ttµν ,

which depends on the b quark propagator, as shown in Fig. 3(c). The subscript “s” and “t”

refers to the corresponding Mandelstam variables, i.e., s = q2 = (p1 + p2)
2 = (k+ + k−)2,

and t = (p1 − k+)2 = (p2 − k−)2. Tsµν can be further decomposed into two different s-

exchange amplitudes: one mediated by a Higgs boson, denoted by T H
sµν , and one mediated

by the two neutral gauge bosons γ and Z, denoted by T V
sµν , with V = γ, Z. The explicit

form of the above amplitudes reads:

T V
s µν = −g2

w

2

∑

V =γ,Z

v̄(p2)γρ(g
V
v + gV

a γ5)u(p1)U
ρλ
V (q)Γλµν(q, k+, k−) , (3.5)

T H
s µν =

g2
w

2
mt v̄(p2)u(p1)∆H(q) gµν , (3.6)

T µν
t = −g2

w

2
v̄(p2) γνPL

1

6p1− 6k+ − mb
γµPL u(p1) , (3.7)

with ∆H(q) = (q2 − M2
H)−1, gγ

v = 4 sin2 θw/3, gγ
a = 0, gZ

v = 1/2 − gγ
v , gZ

a = −1/2, and

Γλµν(q, k+, k−) = (k− − k+)λgµν − (q + k−)µgλν + (q + k+)νgµλ . (3.8)

In Eq.(3.5), Uρλ
Z (q) denotes the propagator of the Z boson in the unitary gauge, and Uρλ

γ (q)

is the photon propagator in an arbitrary gauge. The gauge dependence of the photon is

trivially canceled, as soon as T V
s µν is contracted with the polarization vectors of the W

bosons. With the definitions given above, the RHS of Eq. (3.3) becomes

ℑmM = TµνQ
µρ(k+)Qνσ(k−)T ∗

ρσ

= [T V
sµν + T H

sµν + Ttµν ]Q
µρ(k+)Qνσ(k−)[T V

sρσ + T H
sρσ + Ttρσ]∗ , (3.9)

where

Qµν(k) = −gµν +
kµkν

M2
W

(3.10)

is the W polarization tensor. Obviously, kµQµν(k) = 0, when k2 = M2
W . Furthermore, in

Eq. (3.9), we omit the integration measure 1/2
∫

dXLIPS.

Since our main interest lies in the Higgs-boson-mediated interaction contained in the

transition tt̄ → tt̄, we wish to isolate the part which depends on the Higgs boson. In doing

so particular care is needed, because, despite appearances, the t-channel amplitude T µν
t

13



contains contributions which are related to the Higgs-boson interaction. These contribu-

tions emerge by virtue of the following WI:

kµ
+kν

−

M2
W

Ttµν = T H
P + . . . ,

T H
P = −g2

w

4

mt

M2
W

v̄(p2)u(p1) , (3.11)

shown schematically in Fig. 2. The above WI is triggered by the longitudinal momenta kµ
+

and kν
−, originating from the polarization tensors Qµρ(k+) and Qνσ(k−), respectively. The

ellipses in Eq. (3.11) denote additional contributions which are not related to the Higgs

boson, i.e., their coupling to the external fermions is not proportional to mt. Notice that

the combined action of both kµ
+ and kν

− is necessary, in order for the piece related to the

Higgs boson to appear.

We then proceed to carry out the multiplication on the RHS of Eq. (3.9) (we sup-

press Lorentz indices). To begin with, the term T V
s Q(k+)Q(k−)T V ∗

s has no dependence on

the Higgs boson, and we can discard it. In addition, the terms T H
s Q(k+)Q(k−)T V ∗

s and

T V
s Q(k+)Q(k−)Tt give Higgs-boson related pieces, which are however antisymmetric under

the exchange k+ ↔ k−, and therefore vanish upon the symmetric phase-space integration.

This may be readily verified, if one employs the following two identities:

Γλµν(q, k+, k−)Qµρ(k+)Qν
ρ(k−) =

[ (q2)2

4M4
W

− 3
]
(k+ − k−)λ , (3.12)

kµ
+kν

−Γλµν(q, k+, k−) =
q2

2
(k+ − k−)λ . (3.13)

This last result is in agreement with earlier observations [23], that any non-vanishing ZH

transition would lead to CP violation, and therefore, it should be absent in a CP-invariant

theory, such as the bosonic part of the bare Lagrangian of the SM. Finally, the part of Eq.

(3.9) related to the Higgs boson reads:

ℑmMHiggs = Q(k+)Q(k−)T H
s T H∗

s + [Q(k+)Q(k−)(T H
s T ∗

t + TtT H∗
s + TtT ∗

t )]Higgs . (3.14)

This last expression will be now separated into two distinct pieces as follows:

ℑmMHiggs = ℑmM̂H

self + ℑmM̂H

vert , (3.15)

i.e., a universal, self-energy-like piece, ℑmM̂H

self , which does not depend on the propagator

of the b quark, and a vertex-like piece ℑmM̂H

vert, which explicitly contains the b quark

propagator. The propagator-like contribution may be written as

ℑmM̂H

self = T H
sµνQ

µλ(k+)Qνρ(k−)T H∗
sλρ +

( 1

2
gµν +

kµ
+kν

−

M2
W

)(
T H

sµνT H∗
P + T H

P T H∗
sµν

)

+ T H
P T H∗

P . (3.16)
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The closed expressions for the terms on the RHS of Eq. (3.16) are as follows:

T H
sµνQ

µλ(k+)Qνρ(k−)T H∗
sλρ =

( gmt

2MW

)2
v̄(p2)u(p1)∆H(q)

×
(g2

4

)
[(q2)2 − 4q2M2

W + 12M4
W ]∆H(q)ū(p1)v(p2) , (3.17)

( 1

2
gµν +

kµ
+kν

−

M2
W

)
T H

sµνT H∗
P + c.c. = −

( gmt

2MW

)2
v̄(p2)u(p1)∆H(q)

×
(g2

4

)
(q2 − M2

H)(q2 + 2M2
W )∆H(q)ū(p1)v(p2) , (3.18)

T H
P T H∗

P =
( gmt

2MW

)2
v̄(p2)u(p1)∆H(q)

(g2

4

)
(q2 − M2

H)2ū(p1)v(p2) , (3.19)

where the abbreviation c.c. stands for complex conjugation. After adding the above

propagator-like contributions and carrying out the two W -boson phase-space integration,

we define the imaginary part of the effective PT self-energy for the Higgs boson in the

conventional way, i.e., as the part of the above amplitude which is sandwiched between the

two bare Higgs boson propagators ∆H(q). In this way we obtain

ℑmΠ̂HH
(WW )(q

2) =
αw

16

M4
H

M2
W

(
1 − 4M2

W

q2

)1/2 [
1 + 4

M2
W

M2
H

− 4
M2

W

M4
H

(2q2 − 3M2
W )

]
. (3.20)

Notice the crucial cancellation of the (q2)2 terms; had such terms survived, they would have

given rise to a running width which would grossly contradict the ET (see also discussion

in Section 6). Eq. (3.20) is in agreement with the result reported in [23].

We can now easily establish contact with the results of the previous section. Starting

from Eq. (2.9), we can arrive at Eq. (3.20) by using the following relation:

1

16π2
ℑm B0(q

2, m2
1, m

2
2) = − 1

16π2
ℑm

{ ∫ 1

0
dx ln[m2

1x + m2
2(1 − x) − q2x(1 − x)]

}

= θ[q2 − (m1 + m2)
2]

1

16πq2
λ1/2(q2, m2

1, m
2
2)

=
1

2

∫
dXLIPS , (3.21)

with λ(x, y, z) = (x−y−z)2−4yz. Of course, for the case at hand, we have m1 = m2 = MW .

Conversely, we can recover from Eq. (3.20) the on-shell renormalized result of Eq. (2.9) by

means of a twice-subtracted (on shell) dispersion relation [17,20].

The contribution to the PT Higgs self-energy, which comes from two intermediate Z

bosons, may be obtained in an analogous way. For definiteness, in Fig. 4 we plot separately

the dependence of all the kinematic channels involved in ℑmΠ̂HH(s) as a function of the

centre-of-mass (c.m.) energy
√

s. The solid line corresponds to the total effect of all
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intermediate states. In Fig. 4(a), we have displayed the results of a light Higgs scenario

with a mass MH = 300 GeV, whereas predictions obtained for a heavy Higgs with MH = 700

GeV are presented in Fig. 4(b). Notice that the absorptive part of the bosonic channels

ℑmΠ̂HH
(V V )(s) = ℑmΠ̂HH

(WW )(s) + ℑmΠ̂HH
(ZZ)(s), represented by a dash-dotted line in both

plots, turns negative far above the resonant point s = M2
H , as can be readily deduced

from the closed expressions given in Eqs. (2.9) and (2.29). Specifically, ℑmΠ̂HH
(V V )(s) turns

negative when
√

s > 430 GeV for MH = 300 GeV, and
√

s > 2 TeV for MH = 700 GeV.

The dependence of −ℑmΠ̂HH
(V V )(s) on

√
s is indicated by a long-dash-dotted line. However,

we must remark that the total absorptive part of the Higgs boson self-energy stays always

positive due to the large positive contribution of the heavy top quark (mt = 170 GeV).

Thus, at c.m. energies
√

s ≫ MH , ℑmΠ̂HH(s) has the following asymptotic behaviour:

ℑmΠ̂HH(s) ∼ αw s

8M2
W

(3m2
t − 4M2

W − 2M2
Z) . (3.22)

The fact that the bosonic contributions to the absorptive part of the Higgs-boson self-energy

is negative at large s is reminiscent of the PT gauge-boson self-energies in theories with

asymptotic freedom, whose absorptive parts are also negative. For instance, the absorptive

part of the PT (or BFM) gluon self-energy in quark-less QCD has the exact same feature,

and, as a result, it does not admit the usual Källen-Lehmann spectral representation.

By analogy, far above the resonant point, the resummed Higgs-boson propagator loses its

meaning as a description of the BW dynamics of the unstable Higgs particle, but it rather

serves as the “effective charge” of the universal Higgs-mediated part of the electroweak

interaction. In Section 5.3, we will take a closer look at this issue.

In the following, we study the resonant behaviour of the resummed Higgs-boson prop-

agator

∆̂H(s) = [ s − M2
H + Π̂HH(s) ]−1 , (3.23)

within different approaches. For example, ∆̂H(s) may occur in the process tt̄ → H∗ → tt̄. In

Fig. 5, we display the dependence of the modulus of the resummed Higgs-boson propagator

as a function of the c.m. energy
√

s. The solid line refers to the result obtained in the

PT resummation approach, whereas the dashed, dotted and dash-dotted lines correspond

to resumming Higgs self-energies in the BFG with ξQ = 100, 1000, and in the unitary

gauge, respectively. Notice the characteristic presence of unphysical thresholds in the

BFG, which manifest themselves as artificial resonances. As can also be seen from Figs.

5(a) and 5(b) (for MH = 300 and 700 GeV, respectively), in the unitary gauge the width

increases as s2 and distorts the Higgs-boson lineshape. As a final remark, we point out that

the usual description of unstable particles by means of a constant width approach, where
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M2
H − Π̂HH(s) is replaced by the complex pole M2

H − iMHΓH in ∆̂H(s) for any value of s,

leads in the limit s → 0 to a non-vanishing ℑm∆̂H(s), and therefore violates the OT [16].

4 Renormalization group analysis

The ultimate goal of this program is to provide a systematic framework for constructing

physically meaningful Born-improved approximations for resonant transition amplitudes.

In doing so, we have mainly focused on gauge-invariance and unitarity, and shown how one

can manifestly maintain such crucial properties even when resonant bosonic contributions

are considered. In the next two sections we turn to another important property, namely

the invariance of the Born amplitudes under the renormalization group. In particular, we

will show explicitly that the amplitudes obtained by our resummation method are built out

of renormalization-group-invariant structures. Furthermore, we will demonstrate how one

can generalize the effective charge, a familiar concept in the context of gauge bosons such

as the W and Z bosons, to the case of the scalar Higgs boson. This scalar “effective charge”

constitutes a common component in every Higgs-boson mediated process, regardless of the

nature of incoming and outgoing states, and can thus be viewed as a universal, process-

independent entity, intrinsic to the Higgs boson.

This section is organized as follows: We first review the concept of the effective charge

in the context of QED; then we discuss its generalization to the case of a non-Abelian gauge

theories, such as QCD. The crux of this analysis is that by virtue of the WI’s present in

gauge theories the effective charge is both invariant under the renormalization group and

process-independent. At the end of this section we discuss a counter-example, i.e., the case

of an asymptotically free scalar model in six space-time dimensions, and analyze the reasons

which make the construction of an effective charge not possible. In particular, we explain

why in this theory one cannot reconcile invariance under renormalization group and process

independence. Interestingly enough, the construction of an effective charge in a scalar

context becomes again possible after adding, and subsequently breaking spontaneously, a

global symmetry, as we will show at the end of this section.

4.1 Effective charge in QED

We start our discussion with the case of QED. The Abelian gauge symmetry of the theory

gives rise to the fundamental WI: qµΓ
µ,0(p, p+q) = S0−1(p+q)−S0−1(p), where Γµ,0 is the

bare photon-electron vertex and S0(k) the dressed electron propagator. The above identity

is valid both perturbatively to all orders, as well as non-perturbatively. The requirement
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that the renormalized vertex Γµ = Z1Γ
µ,0 and the renormalized self-energy S = Z−1

f S0

satisfy the same identity imposes the equality between the vertex renormalization constant

Z1 and the electron wave-function renormalization constant Zf , namely Z1 = Zf . As a re-

sult, the photon wave-function renormalization constant ZA and the charge renormalization

constant Ze = Z1Z
−1
2 Z

−1/2
3 are related by the following fundamental equation:

Ze = Z
−1/2
A . (4.1)

The unrenormalized photon self-energy is Π0
µν(q) = (−q2gµν + qµqν)Π

0(q2), where

Π0(q2) is a GFP-independent function to all orders in perturbation theory. After perform-

ing the standard Dyson summation, we obtain the dressed propagator between conserved

external currents

∆0
µν(q) =

−gµν

q2 [1 + Π0(q2)]
. (4.2)

The above quantity is universal, in the sense that is process independent. We can now

form the following RGI combination:

Re
µν(q

2) ≡ αeff(q2)
−gµν

q2
, (4.3)

where

αeff(q2) =
(e0)2

4π

1

1 + Π0(q2)
=

e2

4π

1

1 + Π(q2)
. (4.4)

The last equality in Eq. (4.4) can be readily obtained if one uses the relations between

renormalized and unrenormalized parameters: e2 = (Z2
fZA/Z2

1)(e
0)2, 1 + Π(q2) = ZA[1 +

Π0(q2)], and Z1 = Zf . For q2 ≫ m2
e, αeff(q2) coincides with the one-loop running coupling

of the theory. We must remark that the effective charge has a non-trivial dependence on

the masses of the particles appearing in the quantum loops, which allows its reconstruction

from physical amplitudes [20]. In general, the transition amplitude of a QED process, such

as e+e− → e+e−, consists of two RGI combinations: a process-independent one, namely

the effective QED charge defined above, and a process-dependent one, namely the sum of

vertex and box diagrams.

4.2 Effective charge in QCD

In non-Abelian gauge theories the crucial equality Z1 = Zf does not hold in general.

Furthermore, in contrast to the photon case, the gluon vacuum polarization depends on

the GFP, already at one loop order. These facts make the non-Abelian generalization of

the QED concept of the effective charge non-trivial. The possibility of defining an effective
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charge for QCD in the framework of the PT was discussed first by Cornwall [14], and was

further investigated in a series of recent papers [16,30,31].

The PT rearrangement of physical amplitudes gives rise to a GFP-independent effec-

tive gluon self-energy, and restores at the same time the equalities

Ẑ1 = Ẑf , Ẑg = Ẑ
−1/2
A , (4.5)

where the carets denote the corresponding renormalization constants in the PT, and g is

the QCD coupling. Having restored QED-like WI’s and GFP independence, and using the

additional fact that the one-loop PT self-energy is process-independent [32] and can be

Dyson-resummed to all orders [16,31], the construction of the universal RGI combination

and the corresponding QCD effective charge is immediate. We have

R̂g
µν(q

2) ≡ αs,eff(q2)
−gµν

q2
, (4.6)

where

αs,eff(q2) =
(g0)2

4π

1

1 + Π̂0(q2)
=

g2

4π

1

1 + Π̂(q2)
. (4.7)

It is interesting to note that in the BFM formulation of QCD the Green’s functions satisfy

by construction QED WI’s, to all orders in perturbation theory. On the other hand, the

BFM Green’s functions still depend on the GFP ξQ. In the case of the gluon vacuum

polarization this dependence on ξQ is trivial, since it does not affect the prefactor of the

leading logarithm, and is just an additive constant. This constant may be considered as

an arbitrariness in the renormalization scheme, and will hence disappear when forming the

scheme-independent RGI quantity given in Eq. (4.6). This is however not true in the case

of massive gauge bosons; there, the dependence on the GFP cannot be removed by means

of an appropriate choice of renormalization scheme.

4.3 The scalar case

The ability to define a process-independent RGI quantity is not a common characteristic of

all scalar field theories; for example this is not what happens in the case of pure scalar theo-

ries. However, if the scalar theory is spontaneously broken, then a RGI effective charge may

be defined for the Higgs boson, which is inversely proportional to its vacuum expectation

value (VEV). In the following, we shall examine both situations.

Let us first study (φ3)6, i.e., scalar φ3 in six space-time dimensions. The theory is

asymptotically free, gauge invariance is of course not an issue, and just as in QED, the
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OT holds for individual Feynman diagrams, and the self-energy can be formally Dyson-

resummed. However, unlike QED, if one was to use this formally resummed self-energy

inside a tree-level amplitude, the resulting expression would not be renormalization group

invariant. The reason is that there is no QED-like WI enforcing the equality between

vertex and wave-function renormalization. As a result of that, it is only after the vertex

correction have been included that the resulting combination becomes a RGI combination.

The drawback of this is that the inclusion of the vertices introduces process-dependence.

In other words, in the (φ3)6 case it is not possible to construct a RGI quantity which is, at

the same time, process independent, i.e., one cannot reconcile process independence and

renormalization group invariance [33].

To see this in detail, let us study the Veltman model [34] at d = 6 instead of d = 4.

This theory contains a light scalar, φ, and a heavy scalar, Φ, with a mass MΦ > 2Mφ. The

heavy scalar decays into two φ’s, via the interaction term in the Lagrangian

Lint =
λ

2
φ2Φ, (4.8)

where λ is a non-zero coupling constant. The wave-function renormalization constants Zφ

and ZΦ, corresponding to the fields φ and Φ, respectively, and the vertex renormalization

Zφ2Φ have been calculated in the minimal subtraction scheme [35]. They are

Zφ = ZΦ = 1 +
(1

6

) g2

64π3ǫ
, Zλ = 1 +

g2

64π3ǫ
. (4.9)

Clearly, one has ZΦ 6= Zλ. Of course, since the pole terms of ZΦ and Zλ are different,

the above inequality will be true in any other renormalization scheme. Consequently,

the charge renormalization Zλ, defined by the equation λ0 = Zλλ. As a result, for the

combination (λ0)2∆0(s), which is the direct analog of the QED effective charge, we have

that (λ0)2∆0(s) 6= λ2∆(s). Therefore, in order to arrive at a RGI expression, the vertex

correction must be supplemented. So, the combination

φ0φ0 Γ0 ∆0 Γ0 φ0φ0 = φφ Γ ∆ Γ φφ (4.10)

is a RGI quantity, but unlike the QED case, it cannot be written as the product of a

process-independent and a process-dependent part, which are individually RGI.

To explore further how the process-dependence enters, it is instructive to add yet

another set of scalar fields χ, such that MΦ > 2Mχ > 2Mφ, and an extra interaction term

L′
int =

g

2
χ2Φ , (4.11)

where g is another non-zero coupling constant, with g 6= λ in general. We will ignore for

simplicity additional interaction terms such as φ3, χ3, φ2χ, χ2φ. Several of them may be
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eliminated by imposing an extra mirror symmetry of the type φ → −φ and χ → −χ; in

any case the presence of such terms does not alter our conclusions qualitatively [36].

In order to mimic gauge theories, we next set g = λ. Let us consider two different

processes, φφ → φφ and χχ → χχ, both mediated by an s-channel resonant Φ. The

RGI quantities for the two processes are φφΓφ2Φ(s, MΦ, Mφ)∆(s)Γφ2Φ(s, MΦ, Mφ)φφ and

χχΓχ2Φ(s, MΦ, Mχ)∆(s)Γχ2Φ(s, MΦ, Mχ)χχ, where we have explicitly displayed the depen-

dence of the vertices Γφ2Φ and Γχ2Φ on the masses. It is now easy to see that the process

dependence enters through the simple fact that Γφ2Φ depends on Mφ but not on Mχ, whereas

the reverse is true for Γχ2Φ.∗ Evidently, there is no RGI quantity common in these two

amplitudes.

Let us now consider a four-dimensional Φ4 scalar theory which has a U(1) global

invariance and includes a fermion f . The fermion f is introduced in order to prevent

the scalar theory from being super-renormalizable, so that one is able to study non-trivial

renormalization effects. The part of the Lagrangian related to the Higgs potential of the

model has the form

LV = µ2Φ∗Φ + λ(Φ∗Φ)2 . (4.12)

The interaction of the scalar Φ to the fermion f is given by

Lint = gΦ f̄LfR + H.c. (4.13)

The global U(1) symmetry of LV in Eq. (4.12) breaks down spontaneously and the resulting

theory resembles the un-gauged SM, where the fermion f may represent for example the top

quark. Specifically, the field Φ must be expanded around its VEV, i.e., Φ = (v+H+iJ)/
√

2,

where the field H is a CP-even Higgs boson with mass MH =
√

2µ and J is the massless

CP-odd Goldstone boson associated with the breaking of the continuous U(1) symmetry.

After the SSB of the U(1) symmetry, the fermion f acquires a mass mf = gv/
√

2. If

MH > 2mf , then the decay process H → f f̄ is kinematically allowed and the Higgs boson

becomes an unstable particle.

Beyond the Born approximation, the wave-function renormalization of the Higgs field

Z
1/2
Φ renders the VEV 〈Φ0〉 ≡ v0 UV finite, viz., v0 = Z

1/2
Φ (v+δv), with vanishing divergent

part (δv)div = 0. As a consequence, the expression ∆0(s)/(v0)2, involving the resummed

Higgs-boson propagator is RGI, i.e.,

1

(v0)2
∆0(s) =

1

v2
∆(s). (4.14)

∗It is elementary to verify that the functional dependence of the vertex functions on the respective

masses is non-trivial.
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It is then obvious that the VEV of the field Φ in a SSB scalar theory plays an instrumental

role in defining a RGI effective charge for the Higgs interactions, very much in analogy to

the QED and QCD cases discussed earlier. The Higgs field couples universally to matter

with a “charge” inversely proportional to its VEV in the symmetric U(1) limit. If one now

wishes to embed this scalar SSB model into a gauge theory, the situation becomes more

involved. In fact, within conventional gauge-fixing schemes such as Rξ gauges, δv is not

UV finite and hence, Eq. (4.14) does no longer hold. In the next section, we shall discuss

the possibility of identifying RGI effective charges for the gauge and Higgs bosons in the

electroweak sector of the SM.

5 Effective charges in the electroweak sector of

the SM

In the previous section we established in detail the conditions which enable the construction

of process-independent RGI combinations for the gauge bosons of both Abelian and non-

Abelian theories (QED and QCD, respectively). In this section we extend this analysis to

the electroweak sector of the SM. First, we review how the construction of effective charges

associated to the gauge bosons of the theory is possible by virtue of the WI’s relating the PT

effective n-point functions [20]. Furthermore, we discuss for the first time various subtleties

related to the definition of the W and Z effective charges, which originate from the fact

that the corresponding gauge bosons are unstable. We then turn to the case of the Higgs

boson and examine the possibility of constructing a process-independent RGI quantity for

the case of the Higgs boson. The answer to this question is by no means obvious, since the

Higgs boson results from the SSB of the gauge group SU(2)L⊗U(1)Y , and gauge-fixing and

ghost terms spoil in general the equality (4.14). However, it turns out that because of the

PT WI’s, it is possible to construct a Higgs-boson “effective charge,” in direct analogy to

the gauge boson case.

5.1 The PT Ward identities of the SM

It is well-known that in the PT effective n-point functions satisfy (at least at one loop) naive,

tree-level like WI’s, as happens in QED. This is to be contrasted to the conventional n-

point functions, which in general satisfy Slavnov-Taylor identities, which involve the Green’s

functions of the unphysical ghosts of the theory. The PT WI’s are a direct consequence of

the requirement that the S-matrix be GFP independent. The PT WI’s for the electroweak
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sector of the SM have been derived in [24,16]. In fact, based on these WI’s, it is possible to

prove a stronger version of this GFP independence of the S-matrix: The S-matrix satisfies

the “dual gauge-fixing property,” which states that one is free to choose different GFP’s for

the gauge bosons inside and outside the quantum loops [37]. The above property is intrinsic

to the S-matrix, and is not linked to any special gauge-fixing procedure. Its derivation is

based on the observation that the PT rearrangement gives rise to one-loop n-point functions

for which all dependence on the GFP stemming from the gauge bosons inside the quantum

loops has disappeared, regardless of the choice of the GFP for the gauge bosons outside the

loops. For the final cancellation of this latter gauge dependence to go through, the n-point

functions constructed via the PT must satisfy tree-level WI’s. Explicit calculations have

demonstrated that this is indeed the case. The above “dual gauge-fixing property” holds

for the unrenormalized S-matrix. If one imposes the requirement that the renormalized PT

n-point functions satisfy exactly the same set of WI as their unrenormalized counterparts,

one then concludes that the “dual gauge-fixing property” holds also after renormalization.

After enforcing this last requirement one finally arrives at a set of conditions relating the

various wave-function- and coupling- renormalization constants of the theory.

To see this in detail, we start by listing the relations between the bare and renormal-

ized parameters for the electroweak sector of the SM. We indicate all (bare) unrenormalized

quantities with the superscript ‘0’. For the masses we have

(M0
W )2 = M2

W + δM2
W , (M0

Z)2 = M2
Z + δM2

Z ,

(M0
H)2 = M2

H + δM2
H , m0

f = mf + δmf . (5.1)

In addition, the wave-function renormalizations are given by

W±,0
µ = Ẑ

1/2
W W±

µ , Z0
µ = Ẑ

1/2
Z Zµ ,

G±,0 = Ẑ
1/2
G±G± , G0,0 = Ẑ

1/2
G0 G0 ,

H0 = Ẑ
1/2
H H , f 0

L(R) = Ẑ
L(R)1/2
f fL(R) ,

g0
w = Ẑgw

gw , c0
w = Ẑcw

cw , (5.2)

with

Ẑcw
=

(
1 +

δM2
W

M2
W

)1/2(
1 +

δM2
Z

M2
Z

)−1/2
. (5.3)

If we expand Ẑcw
perturbatively, we have

Ẑcw
= 1 +

1

2

δc2
w

c2
w

+ . . . , (5.4)

with
δc2

w

c2
w

=
δM2

W

M2
W

− δM2
Z

M2
Z

, (5.5)
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which is the usual one-loop result. The carets in the above formulas indicate as usual that

both the calculations as well as the renormalization procedure are carried out in the PT

framework.

Imposing the requirement that the PT Green’s functions should respect the same

WI’s before and after renormalization we arrive at the following relations:

ẐW = Ẑ−2
gw

, (5.6)

ẐZ = ẐW Ẑ2
cw

, (5.7)

ẐG0 = ẐG± = ẐW

(
1 +

δM2
W

M2
W

)
, (5.8)

ẐL
u = ẐL

d . (5.9)

In deriving the above expressions, the following exact algebraic identity may be used

(
1 +

δM2
W

M2
W

) (
1 − δM2

W

(M0
W )2

)
= 1 . (5.10)

It is important to notice that the relations listed above are exact to all orders in

perturbation theory. Instead, in the usual perturbative treatment, one sets Ẑ
1/2
i = 1+ 1

2
δẐi,

for i = W, Z, H, f , and neglects higher order terms. For example, at one loop order, i.e., if

we neglect terms of order g4 and higher, the relation Eq. (5.8) becomes

δẐG0 = δẐG± = δẐW +
δM2

W

M2
W

. (5.11)

It is instructive to show with an explicit example how the relations in Eq. (5.8) may

be derived. To this end, we first define the proper unrenormalized one-loop vertices:

Γ
W+ūd,0
µ (q, pū, pd) ≡ ΓW+ūd,0

0µ + Γ̂W+ūd,0
µ (q, pū, pd) ,

Γ
G+ūd,0

(q, pū, pd) ≡ ΓG+ūd,0
0 + Γ̂G+ūd,0(q, pū, pd) , (5.12)

where ΓW+ūd,0
0µ and Γ̂W+ūd,0

µ are the tree-level and one-loop PT W+ūd vertices, respectively.

Correspondingly, ΓG+ūd,0
0 and Γ̂G+ūd,0 are the Born-level and one-loop PT G+ūd vertices.

Furthermore, if one neglects quark mixing, the bare dressed u- and d- type quark propa-

gators are given by

Ŝ0
u(pu) = [ 6pu − m0

u + Σ̂ūu,0(pu) ]−1 ,

Ŝ0
d(pd) = [ 6pd − m0

d + Σ̂d̄d,0(pd) ]−1 . (5.13)

Because of the fact that the bare effective PT vertices and self-energies satisfy tree-level

WI’s, one then has

qµ Γ
W+ūd,0
µ (q, pū, pd) + M0

WΓ
G+ūd,0

(q, pū, pd) = − ig0
w√
2

[
Ŝ0−1

u (pū)PL − PRŜ0−1
d (pd)

]
. (5.14)
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The renormalized quantities are defined as follows:

1

gw
Γ

W+ūd
µ = ẐW+ūd

1

g0
w

Γ
W+ūd,0
µ ,

1

gw
Γ

G+ūd
= ẐG+ūd

1

g0
w

Γ
G+ūd,0

, (5.15)

Ŝ0
d(pd) = Ẑ

1/2
d Ŝd(pd)Ẑ

1/2†
d , Ŝ0

u(pū) = Ẑ1/2
u Ŝu(pū)Ẑ

1/2†
u , (5.16)

where Ẑ
1/2
f = Ẑ

L1/2
f PL + Ẑ

R1/2
f PR and ẐG+ūd = ẐL

G+ūdPL + ẐR
G+ūdPR. Then, the vertex

renormalization constants ẐW+ūd and ẐL,R
G+ūd are related to the renormalization constants

introduced in Eq. (5.2) as follows:

ẐW+ūd = Ẑgw
Ẑ

1/2
W Ẑ

L1/2
d ẐL1/2

u , (5.17)

ẐL
G+ūd = Ẑgw

Ẑ
1/2
G+ Ẑ

L1/2
d ẐR1/2

u , ẐR
G+ūd = Ẑgw

Ẑ
1/2
G+ ẐL1/2

u Ẑ
R1/2
d . (5.18)

After replacing the bare by the renormalized quantities in Eq. (5.14) by means of Eqs. (5.16),

(5.17), (5.18) and (5.1) for the mass renormalization, we require that the renormalized WI

retains its original form, i.e.,

qµΓ
W+ūd
µ (q, pū, pd) + MW Γ

G+ūd
(q, pū, pd) = − igw√

2

[
Ŝ−1

u (pū)PL − PRŜ−1
d (pd)

]
. (5.19)

The above requirement leads to relations among the renormalization constants within

the framework of perturbation theory. From the WI involving the chirality structure

PRΓ
W+ūd,0
µ PL in Eq. (5.14), we thus obtain that Ẑgw

= Ẑ
−1/2
W and ẐL

u = ẐL
d , which are Eqs.

(5.6) and (5.9), respectively. Furthermore, imposing that the form of WI for PLΓ
W+ūd,0
µ PL or

PRΓ
W+ūd,0
µ PR remains the same after renormalization yields Ẑ

1/2
G+ = Ẑ

1/2
W (1+δM2

W/M2
W )1/2,

which is the last equality of Eq. (5.8).

Following an exactly similar procedure we can derive the rest of the relations listed

in Eqs. (5.7) and (5.8).

5.2 Effective charges for the gauge bosons

In this sub-section we show how the relations among the renormalization constants derived

above enable one to construct a process-independent RGI quantity for the gauge bosons of

the theory. For definiteness, we concentrate on the W boson, but similar arguments apply

for the photon and the Z boson.

First, we shall show that the bare and renormalized PT resummed W -boson propa-

gators, ∆W,0
µν (q) and ∆̂W

µν(q), respectively, satisfy the following relation

∆W,0
µν (q) = ẐW ∆̂W

µν(q) . (5.20)
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We start with the most general form of ∆̂W,0
µν (q) given by

∆̂W,0
µν (q) = ∆̂W,0

T (q2)tµν + ∆̂W,0
L (q2)ℓµν , (5.21)

where

tµν(q) = − gµν +
qµqν

q2
, ℓµν(q) =

qµqν

q2
.

As was shown in detail in [16], if we decompose the bare one-loop PT W -boson self-energy

Π̂W,0
µν (q) in the form

Π̂W,0
µν (q) = Π̂W,0

T (q2)tµν + Π̂W,0
L (q2)ℓµν , (5.22)

then in the PT resummation formalism the quantities ∆̂W,0
T (q2) and ∆̂W,0

L (q2) are given by

∆̂W,0
T (q2) = [ q2 − (M0

W )2 + Π̂W,0
T (q2) ]−1 , (5.23)

∆̂W,0
L (q2) = [ (M0

W )2 − Π̂W,0
L (q2) ]−1 . (5.24)

The standard renormalization procedure is to define the wave function renormalization,

ẐW , by means of the transverse part of the resummed W -boson propagator:

ẐW [ q2 − (M0
W )2 + Π̂W,0

T (q2) ] = q2 − M2
W + Π̂W

T (q2) , (5.25)

where the explicit form of ẐW depends on the renormalization scheme. Similarly, the

propagator of the associated would-be Goldstone boson G+ is renormalized as usual, i.e.,

D̂G+,0(q2) = [ q2 − Ω̂0(q2) ]−1 = ẐG+ [ q2 − Ω̂(q2) ]−1 , (5.26)

with

G±,0 = ẐG+G± . (5.27)

Note that we only need to carry out a wave-function renormalization for the Goldstone

boson self-energy Ω̂0(q2) (with tadpole and seagull graphs included), since Ω̂0(0) = 0, in

agreement with the Goldstone theorem, which states that Goldstone bosons are massless

to all orders in perturbation theory. The latter is a result of the gauge invariance of the

diagrammatic PT method.

From the PT WI’s involving the self-energies, we have

Π̂W,0
L (q2) =

(M0
W )2

q2
Ω̂0(q2) , (5.28)

which implies that

∆̂W,0
L (q2) =

q2

(M0
W )2

D̂G+,0(q2) . (5.29)
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This last identity allows us to write the resummed W -boson propagator in the form

∆̂W,0
µν (q) = ẐW [ ∆̂W

T (q2)tµν + Ẑ−1
W ∆̂W,0

L (q2)ℓµν ]

= ẐW [ ∆̂W
T (q2)tµν + Ẑ−1

W ẐG+(1 +
δM2

W

M2
W

)−1 q2

M2
W

D̂G+

(q2)ℓµν ] . (5.30)

Imposing that Eq. (5.28), or equivalently Eq. (5.29), holds for the renormalized quantities

as well, we find

∆̂W,0
µν (q) = ẐW [ ∆̂W

T (q2)tµν + Ẑ−1
W ẐG+(1 +

δM2
W

M2
W

)−1∆̂W
L (q2)ℓµν ] . (5.31)

Finally, using the last equality of Eq. (5.8) we arrive at Eq. (5.20).

It is now straightforward to see that the process-independent RGI quantity for the W

boson is given by

R̂W,0
µν (q) =

(g0
w)2

4π
∆̂W,0

µν (q) =
(gw)2

4π
∆̂W

µν(q)

= R̂W
µν(q) . (5.32)

At this point one might be tempted to separate the above quantity into the product of

a dimension-full kinematic factor and a dimensionless quantity, which could be identified

with an effective charge, in direct analogy to the QED and QCD cases. This kind of

factorization may however introduce artifacts into both components, which are absent from

the original RGI expression. For example, take the simple case where R̂W
µν is sandwiched

between conserved external currents (massless external fermions), and let us decompose

R̂W
µν in the form

R̂W
µν(q) = αw,eff(q2)

−gµν

q2 − s̄(q2)
, (5.33)

where s̄(q2) denotes the position of the physical complex pole of the W boson which

appears on the second Riemann sheet. Two possible parameterizations of the pole are

s̄ = M2
W − iMW ΓW (constant imaginary part) or s̄(q2) = M2

W − iq2ΓW/MW (q2-dependent

imaginary part), where ΓW is the constant width of the W boson on the pole. In the first

case, we see that at q2 = 0 for example, the kinematic factor is complex, whereas the RGI

quantity is real, i.e., ℑmR̂W
µν(0) = 0, since, by construction, it only develops an imaginary

part at the lowest physical threshold q2 > m2
e. Consequently, αw,eff(0) is also imaginary,

i.e., it contains thresholds which are artifacts of the decomposition. The second parameter-

ization of s̄(q2) does not have the above problems, but still, the effective charge so defined

contains erroneous information about the position of the various decay channels. Similar

considerations apply to the case of the Z boson, or other possible gauge bosons appearing

in extensions of the SM.
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Apart from identifying the process-independent RGI quantity for the W boson R̂W
µν(q)

in Eq. (5.32), one can also introduce process-dependent RGI quantities. For instance, to

one-loop, the γW−W+ vertex may be written in the form

R̂γW−W+

µνλ (q, k−, k+) =
(4π

g2
w

) 1

e
Γ

γW−W+

µνλ (q, k−, k+) , (5.34)

with

Γ
γW−W+

µνλ (q, k−, k+) = ΓγW−W+

0µνλ + Γ̂γW−W+

µνλ (q, k−, k+) . (5.35)

Here, ΓγW−W+

0µνλ and Γ̂γW−W+

µνλ (q, k−, k+) are the tree-level and one-loop PT γW−W+ cou-

plings, respectively. The quantity R̂γW−W+

µνλ (q, k−, k+) is UV finite and invariant under the

renormalization group. This can easily be shown by means of the one-loop PT WI, which

can also be written in a RGI form, viz.,

qµ R̂γW−W+

µνλ (q, k−, k+) = R̂W−1
νλ (k−) − R̂W−1

νλ (k+) . (5.36)

This last equation shows how the action of qµ on R̂γW−W+

µνλ projects out the process-

independent part of the γW−W+ vertex, which is related to the W -boson effective charge.

Similarly, one can construct RGI combinations for all the PT vertices related to couplings,

e.g., γW−G+, ZW−W+, ZG−G+, etc. In particular, at LEP2, it is very advantageous to

use the RGI expressions R̂γW−W+

µνλ and R̂ZW−W+

µνλ , which lead to UV finite form-factors for

the γW−W+ and ZW−W+ vertices.

5.3 The effective charge of the Higgs boson

We now proceed to extend the notion of the effective charge to the case of the Higgs boson.

For this purpose, we first express the unrenormalized Higgs-boson propagator in terms of

the renormalized one as follows:

∆̂H,0(q2) = [ q2 − (M0
H)2 + Π̂HH,0(q2) ]−1 = ẐH [ q2 − M2

H + Π̂HH(q2) ]−1

= ẐH ∆̂H(q2) , (5.37)

where MH may be defined to be the real part of the complex pole position of ∆̂H(q2).

Following a procedure rather similar to that given in Section 5.1, we should exploit the gauge

symmetry of the SM, in order to deduce relations between ẐH and the other renormalization

constants.

We start again with the PT WI relating the one-loop vertices HZG0 and HG0G0,

i.e.,

kµ
1 Γ

HZG0,0
µ (q, k1, k2) + iM0

ZΓ
HG0G0,0

(q, k1, k2) = − g0
w

2c0
w

[ (
∆̂H,0(q2)

)−1 −
(
D̂G0,0(k2

2)
)−1 ]

,

(5.38)
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where D̂G0,0(k2) = [k2 − Π̂G0G0,0(k2)]−1 = ẐG0 [k2 − Π̂G0G0

(k2)]−1 and

Γ
HZG0,0
µ ≡ ΓHZG0,0

0µ + Γ̂HZG0,0
µ , Γ

HG0G0,0 ≡ ΓHG0G0,0
0 + Γ̂HG0G0,0 . (5.39)

As before, in Eq. (5.39), the subscript ‘0’ denotes tree level couplings, while the caret

indicates one-loop vertices obtained in the PT.

As usual, we write the unrenormalized HZG0 and HG0G0 vertices as a product of

the renormalized ones and a vertex renormalization constant,

2cw

gw
Γ

HZG0

µ = ẐHZG0

2c0
w

g0
w

Γ
HZG0,0
µ ,

2cw

gw
Γ

HG0G0

= ẐHG0G0

2c0
w

g0
w

Γ
HG0G0,0

. (5.40)

Making use of the fact that the effective HZG0 and HG0G0 vertices are completely renor-

malized by a redefinition of the fields and the couplings given in Eq. (5.2), we find

ẐHZG0 = Ẑgw
Ẑ−1

cw
Ẑ

1/2
Z Ẑ

1/2
H Ẑ

1/2
G0 = Ẑ

1/2
H Ẑ

1/2
G0 , (5.41)

ẐHG0G0 = Ẑgw
Ẑ−1

cw
Ẑ

1/2
H ẐG0 = Ẑ

1/2
H Ẑ

1/2
G0

(
1 +

δM2
Z

M2
Z

)1/2
. (5.42)

In the last step of Eqs. (5.41) and (5.42), we have used the relations given in Eqs. (5.6)–(5.8).

In order that the PT WI in Eq. (5.38) maintains the same form after renormalization,

it is necessary to have

ẐH = ẐG0 . (5.43)

Employing Eqs. (5.6), (5.8) and (5.43), it is easy to show that

R̂H,0(q2) =
(g0

w)2

(M0
W )2

∆̂H,0(q2) =
[ g2

w

M2
W

∆̂H(q2)
]
Ẑ2

g ẐH

(
1 +

δM2
W

M2
W

)−1

= R̂H(q2) (5.44)

is a process-independent RGI quantity, in close analogy to the RGI quantity of the W

boson R̂W
µν(q). As a byproduct of this, we also find that R̂G+

(k2) = (g2
w/M2

W )D̂G+

(k2) and

R̂G0

(k2) = (g2
w/M2

W )D̂G0

(k2) are invariant under the renormalization group. Hence, we

conclude that the quantity R̂H(q2) provides a natural generalization of the concept of the

effective charge in the case of the Higgs boson. It is interesting to notice the exact analogy

between the form of the Higgs boson effective charge of Eq. (5.44) obtained within a theory

with a non-Abelian gauge symmetry such as the SM, and that of Eq. (4.14) derived in the

context of a much simpler model with Abelian global (un-gauged) symmetry.

Finally, a direct derivation of the above general result may be obtained if one adopts

the symmetric formulation of the classical action in the BFM [38]. Within this formulation
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one is led to the minimal on-shell scheme, with the relevant renormalization constants

satisfying

Φ̂0 = Z
1/2

Φ̂
Φ̂ , v̂0 = Z

1/2

Φ̂
(v̂ + δv̂) . (5.45)

Using the above relations, and the additional fact that, due to the background symmetry,

in this formulation δv̂ = 0, one can immediately show that

(v̂0)−2 〈0| T : Φ̂0(x) Φ̂0(y) : |0〉 = v̂−2 〈0| T : Φ̂(x) Φ̂(y) : |0〉 , (5.46)

which is Eq. (5.44). Even though the analysis of this subsection which led to Eq. (5.44)

is more general since it does not rely on any particular gauge-fixing procedure or renor-

malization scheme, this latter derivation within the symmetric BFM framework has the

advantage of directly generalizing the construction of the scalar effective charge given for

the toy model of Section 4.3 to the realistic case of the SM.

6 Diagrammatic analysis of the equivalence

theorem

Cornwall, Levin and Tiktopoulos, and shortly afterwards Vayonakis, showed that at

very high energies the amplitude for emission or absorption of a longitudinally polarized

gauge boson becomes equal to the amplitude in which the gauge boson is replaced by the

corresponding would-be Goldstone boson [12]. The above statement is a consequence of

the underlying local gauge invariance of the SM, and is known as the equivalence theorem

(ET); it has been proven to hold to all orders in perturbation theory for multiple absorptions

and emissions of massive vector bosons [13]. Compliance with this theorem is a necessary

requirement for any resummation algorithm, since any Born-improved amplitude which fails

to satisfy it is bound to be missing important physical information. The reason why most

resummation methods are at odds with the ET is that in the usual diagrammatic analysis

the underlying symmetry of the amplitudes is not manifest; just as happens in the case

of the OT, the conventional sub-amplitudes defined in terms of Feynman diagrams do not

satisfy the ET individually. The resummation of such a sub-amplitude will in turn distort

several subtle cancellations, thus giving rise to artifacts and unphysical effects. Instead, as

we will show in detail in this section, the PT sub-amplitudes satisfy the ET individually.

As is common in the PT framework, the only non-trivial step for accomplishing this is

the proper exploitation of elementary WI’s. In addition, the part of the Born-improved

amplitude containing the resummed Higgs boson self-energy (or the RGI quantity defined

in Section 5.3) satisfies the ET independently of the rest of the (non-resummed) amplitude.
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This is explicitly demonstrated by resorting almost exclusively to the fact that, in contrast

to their conventional counterparts, the one-loop Higgs-boson vertices defined within the

PT satisfy naive, tree-level WI’s.

The formal derivation of the ET is based on the observation [13] that, by virtue of

the Becchi–Rouet–Stora (BRS) invariance of the theory, the connected transition amplitude

between physical states of any number n of insertions of the gauge-fixing term F a vanishes,

i.e.,

〈f | T : F a1(x1)F
a2(x2) . . . F an(xn) : |i〉con. = 0 . (6.1)

In the renormalizable Rξ gauges, F a assumes the form

F a(x) = ∂µV a
µ (x) + ξaMV aGa(x) , (6.2)

where V a
µ denotes the massive gauge boson, e.g., W± or Z, Ga its corresponding would-

be Goldstone boson, e.g., G± or G0, ξa its GFP, and MV a its mass. Since for energies

EV ≫ MV the longitudinal polarization vector εµ
L(k) of the gauge boson V behaves as

εµ
L(k) =

kµ

MV
+ vµ(k) , (6.3)

with vµ(k) = O(MV /EV ), in the configuration space εµ
L(k) may be represented naively by

the derivative ∂µ/MV , which in turn enables one to use the identities derived from Eq.

(6.1). Beyond the tree level, one has in general to include correction factors [39], denoted

here as Kai , which take into account renormalization effects. Finally, given that, due to

the unitarity of the SM, amplitudes involving only would-be Goldstone bosons cannot grow

faster than a constant at high energies, one finally arrives at

T (V a1

L . . . V an

L ; X) =
n∏

i=1

Kai T (Ga1 . . . Gan ; X) + O(M/E) , (6.4)

where V α
L ≡ εµ

LV α
µ , and X denotes all other fields. The above equality represents the

ET in its most basic form. Note that the ET cannot give any interesting information for

amplitudes which decrease in magnitude as 1/
√

s or faster with increasing energy E ≈ √
s.

In order to obtain non-trivial information for the energetically suppressed terms of order

M/
√

s and their higher powers, one has to invoke the so-called generalized ET (GET) [13],

whose derivation again relies on the identities of Eq. (6.1). In the case of amplitudes with

two longitudinal W+ bosons for example, the GET establishes the following relation:

T [W+,µ
L (k+)W−,ν

L (k−); X]

= K+K− T [G+(k+)G−(k−); X] + K+ T [G+(k+)w−,ν(k−); X]

+ K− T [w+,µ(k+)G−(k−); X] + T [w+,µ(k+)w−,ν(k−); X] , (6.5)
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and for two longitudinal Z bosons:

T [Zµ
L(k1)Z

ν
L(k2); X] = (K0)2 T [G0(k1)G

0(k2); X] + K0 T [G0(k1)z
ν(k2); X]

+ K0 T [zµ(k1)G
0(k2); X] + T [zµ(k1)z

ν(k2); X] , (6.6)

where w±,µ(k±) = εµ
L(k±) − kµ

±/MZ and zµ(k1,2) = εµ
L(k1,2) − kµ

1,2/MW are the energeti-

cally suppressed parts of the longitudinally polarized W± and Z bosons, respectively. In

addition, K± and K0 are renormalization correction factors mentioned above. In the Born

approximation, they take the values K+ = −1, K− = 1, and K0 = −i, if the four-momenta

of the gauge bosons are incoming [40], and reverse their sign in the opposite case. Formulas

analogous to (6.5) and (6.6) can be derived for an arbitrary number of longitudinally polar-

ized W and Z bosons. In the following, we will restrict ourselves to amplitudes involving

two vector bosons only.

Let us consider the process ν(p1)ν̄(p2) → Zµ
L(k1)Z

ν
L(k2) at the tree level, where ν is

a Dirac neutrino with mass m and the four-momenta of the Z boson are defined to enter

the interaction vertices as shown in Fig. 6. The total matrix element T (νν̄ → ZLZL) is the

sum of two amplitudes:

T (νν̄ → ZLZL) = T H
s (ZLZL) + Tt(ZLZL) , (6.7)

where

T H
s (ZLZL) = εµ

L(k1)ε
ν
L(k2) T H

s µν(ZZ) , (6.8)

Tt(ZLZL) = εµ
L(k1)ε

ν
L(k2) Tt µν(ZZ) , (6.9)

with

T H
s µν(ZZ) = −iΓHZZ

0µν ∆H(k1 + k2)
( gwm

2MW

)
v̄(p2)u(p1) , (6.10)

Tt µν(ZZ) = −
( gw

2cw

)2
v̄(p2)

(
γνPL

1

6p1+ 6k1 − m
γµPL

+ γµPL
1

6p1+ 6k2 − m
γνPL

)
u(p1) . (6.11)

In Eq. (6.10), the tree-level HZZ coupling is defined as ΓHZZ
0µν = igw M2

Z/MWgµν . The

entire amplitude T (νν̄ → ZLZL) satisfies of course the GET (and hence the ET). What

we wish to investigate here is whether the GET holds for the Higgs-mediated part of the

amplitude independently. The reason we turn directly to the GET instead of the ET, is

simply that both the T H
s (ZLZL) of Eq. (6.10) and the amplitude T H

s (G0G0) given by

T H
s (G0G0) = −iΓHG0G0

0 ∆H(k1 + k2)
( gwm

2MW

)
v̄(p2)u(p1) , (6.12)

32



where ΓHG0G0

0 = −igwM2
H/(2MW ), decrease at very high energies as 1/s, because of the

presence of the Higgs-boson propagator in the s channel. So, the ET in this case will

only furnish trivial information. Instead, according to the GET [13], additional amplitudes

should be taken into account if one wishes to keep track of energetically suppressed terms

to order M2
Z/s.

In order to address the question raised above, we will calculate the LHS of Eq. (6.6)

explicitly, using full expressions for the longitudinal polarization vectors involved, and check

whether the result so obtained coincides or not with the sum of the Higgs-boson-dependent

parts of the amplitudes appearing on the RHS of Eq. (6.6) (with X = νν̄). For that

purpose, we first write the longitudinal polarization vector of the gauge boson V in the

covariant form

εµ
L(k) =

1

2βMV
[(1 + β2)kµ − (1 − β2)k̃µ] , (6.13)

where kµ = (EV , ~kV ) is the four-momentum of the V boson, k̃µ = kµ and β = |~kV |/EV

is the V -boson velocity. It is convenient to work in the c.m. system of the process νν̄ →
Zµ

L(k1)Z
ν
L(k2); in that case the polarization vector εµ

L(k1) of the Zµ boson can be expressed

in terms of the four-momenta kµ
1 and k̃µ

1 = kµ
2 , and β = (1 − 4M2

Z/s)1/2. Likewise, εν
L(k2)

is written in terms of kν
2 and k̃ν

2 = kν
1 . To order M4

Z/s2, the energetically subleading part

zµ(k1) of εµ
L(k1) is obtained by

zµ(k1) = εµ
L(k1) − kµ

1

MZ
= − 2MZ

s
kµ

2 + O
( M4

Z

s2

)
. (6.14)

Furthermore, the residual vector zµ(k1) has the following properties:

zµ(k1) kµ
1 = −MZ , zµ(k1) zµ(k1) = 0 . (6.15)

Exactly analogous formulas and relations hold for εν
L(k2). Using the decomposition (6.3)

for εµ,ν
L (k1,2) and the properties (6.15) for zµ,ν(k1,2), we find for the part of the amplitude

depending on the Higgs boson

T H
s (ZLZL) = −T H

s (G0G0) + ∆T H
s + T H

s (zz) − T H
P (ZLZL) , (6.16)

where T H
s (zz) = zµzνT H

s µν(ZZ) and

∆T H
s = −

( gwm

2MW

) (gwM2
Z

MW

)
∆H(k1 + k2) v̄(p2)u(p1) , (6.17)

and T H
P (ZLZL) is the expression given in Eq. (3.11), with mt replaced by m. It is now

straightforward to verify that

∆T H
s = − iT H

s (zG0) − iT H
s (G0z) , (6.18)
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with

T H
s (zG0) + T H

s (G0z) = zµ(k1) T H
s µ(ZG0) + zν(k2) T H

s ν (G0Z)

= −i[zµ(k1) ΓHZG0

0µ + zν(k2) ΓHG0Z
0ν ]

×
( gwm

2MW

)
∆H(k1 + k2) v̄(p2)u(p1) . (6.19)

The tree-level H(q)Zµ(k1)G
0(k2) coupling in Eq. (6.19) is given by ΓHZG0

0µ = gw(q −
k2)µ/(2cw), with all momenta defined as incoming. Clearly, the first three terms on the RHS

of Eq. (6.16) are nothing but the sum of the Higgs-boson-dependent parts of the ampli-

tudes T [G0(k1)G
0(k2); νν̄], T [z(k1)G

0(k2); νν̄] + T [G0(k1)z(k2); νν̄] and T [z(k1)z(k2); νν̄].

Evidently, the only reason preventing T H
s (ZLZL) from satisfying individually the GET is

the presence of the term T H
P (ZLZL) on the RHS of Eq. (6.16).

However, according to the PT, the genuine Higgs-boson-dependent part of the ampli-

tude, T̂ H
s (ZLZL), is obtained after recognizing that the momenta kµ

1 and kν
2 coming from

the polarization vectors of the longitudinal Z bosons can extract a s-channel-like, Higgs-

boson-dependent part from the non-resonant amplitude Tt µν , in exactly the same way as

happens in Eq. (3.11), namely

kµ
1

MZ

kν
2

MZ
Tt µν(ZZ) = T H

P (ZLZL) + . . . , (6.20)

where, as in Eq. (3.11), the ellipses denote additional contributions not related to the Higgs

boson. Thus, T̂ H
s (ZLZL) = T H

s (ZLZL) + T H
P (ZLZL).

We now want to check if T̂ H
s (ZLZL) satisfies the GET; for that to happen one must

show that

T̂ H
s (ZLZL) = T̂ H

s (G0G0) + T̂ H
s (G0z) + T̂ H

s (zG0) + T̂ H
s (zz)

= −T H
s (G0G0) − iT H

s (zG0) − iT H
s (G0z) + T H

s (zz)

−T H
P (G0G0) − iT H

P (G0z) − iT H
P (zG0) + T H

P (zz) , (6.21)

where the amplitudes T H
P (G0G0), T H

P (G0z), T H
P (zG0), and T H

P (zz) denote possible Higgs-

boson- dependent s- channel pinch parts coming from the t-channel amplitudes Tt(G
0G0),

Tt(G
0z), Tt(zG

0), and Tt(zz), respectively. It is easy to convince oneself however that

T H
P (G0G0) = T H

P (G0z) = T H
P (zG0) = T H

P (zz) = 0; this is so because, according to Eq.

(6.14), the energetically subleading parts zµ(k1) and zν(k2) are proportional to the “wrong”

momenta, i.e. kµ
2 and kν

1 , respectively, instead of kµ
1 and kν

2 , which are necessary for pinching.

Therefore, Eq. (6.21) reduces to

T̂ H
s (ZLZL) = −T H

s (G0G0) − iT H
s (zG0) − iT H

s (G0z) + T H
s (zz) . (6.22)
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But this last equation is immediately true, by virtue of Eq. (6.16) and the definition of

T̂ H
s (ZLZL).

It is important to stress that Eq. (6.22) demonstrates explicitly how the tree-level

Higgs-mediated part of the amplitude T H
s satisfies the GET independently, provided the

pinching contribution T H
P residing in the non-resonant amplitude is taken properly into

consideration. This fact reveals an underlying relation between the PT and the ET at the

diagrammatic level, and constitutes a major result of this paper.

We will now show that within the PT framework the equality (6.22) remains valid

even after the Higgs-boson propagator has been resummed. As explained in [16,17], the

effective one-loop PT HZZ vertex Γ̂HZZ
µν (q, k1, k2) must be included in the amplitude con-

taining the resummed Higgs boson propagator ∆̂H(q); this is so, because the one-loop PT

H(q)Zµ(k1)Z
ν(k2) vertex satisfies a number of tree-level WI’s which are crucial for ensuring

the gauge invariance of the resummed Higgs-mediated part of the amplitude

T H
s µν(ZLZL) = −i[ΓHZZ

0µν + Γ̂HZZ
µν (q, k1, k2)]

( gwm

2MW

)
∆̂H(q) v̄(p2)u(p1) . (6.23)

The PT WI’s identities are

kν
2 Γ̂

HZZ
µν (q, k1, k2) + iMZ Γ̂HZG0

µ (q, k1, k2) = − gw

2cw
Π̂ZG0

µ (k1) , (6.24)

kµ
1 Γ̂HZG0

µ (q, k1, k2) + iMZ Γ̂HG0G0

(q, k1, k2) = − gw

2cw

[
Π̂HH(q2) + Π̂G0G0

(k2
2)

]
, (6.25)

kµ
1kν

2 Γ̂HZZ
µν (q, k1, k2) + M2

Z Γ̂HG0G0

(q, k1, k2) =
igwMZ

2cw

[
Π̂HH(q2) + Π̂G0G0

(k2
1)

+ Π̂G0G0

(k2
2)

]
. (6.26)

As before, we define all momenta to flow into the HZZ vertex with q + k1 + k2 = 0.

The closed form of the effective one-loop PT HZZ coupling is given in Appendix B. Note

that exactly the same WI’s hold true for the tree-level HZZ coupling before quantizing

the classical action by introducing gauge-fixing terms and ghost fields. To be specific, the

tree-level WI’s derived from the classical action are recovered from Eqs. (6.24)–(6.26) if

Π̂HH(q2) and −Π̂G0G0

(k2) are replaced with the inverse free propagators of the Higgs boson

∆−1
H (q) = q2−M2

H and the G0 Goldstone boson ∆−1
G0(k) = k2, respectively, while Π̂ZG0

µ (k) is

substituted by iMZkµ, which represents the G0Z mixing. Of course, in the Rξ gauges there

is no G0Z mixing at tree level because it cancels against the corresponding gauge-fixing

term.

Within our Born-improved approximation the neutrino-exchange amplitude Tt(ZLZL)

retains its tree-level form; its only function is to provide the PT term T H
P (ZLZL). This latter

term is responsible for the bad high-energy behaviour of both the resonant and non-resonant
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amplitudes, which violate the ET separately. The validity of the ET for the individual

amplitudes can be restored only after the PT term T H
P (ZLZL) is added to the s-channel

amplitude T H
s (ZLZL), exactly as happens in the case of the tree-level (non-resummed)

T̂ H
s (ZLZL). Indeed, it is not difficult to show that the amplitudes T H

s (ZLZL) + T H
P and

Tt(ZLZL)−T H
P satisfy the GET and hence the ET individually. For example, by employing

the PT WI’s in Eq. (6.24)–(6.26), we have that

T H
s (ZLZL) + T H

P = −T H
s (G0G0) − iT H

s (zG0) − iT H
s (G0z) + T H

s (zz) , (6.27)

where

T H
s (G0G0) = −i[ΓHG0G0

0 + Γ̂HG0G0

(q, k1, k2)] ∆̂
H(q)

( gwm

2MW

)
v̄(p2)u(p1) , (6.28)

and the sum of the resummed amplitudes T H
s (zG0) + T H

s (G0z) is defined analogously to

Eq. (6.19), i.e.,

T H

s (zG0) + T H

s (G0z) = zµ(k1) T H

s µ(ZG0) + zν(k2) T H

s ν(G
0Z)

= −i
{

zµ(k1) [ΓHZG0

0µ + Γ̂HZG0

µ (q, k1, k2)] + zν(k2) [ΓHG0Z
0ν

+Γ̂HG0Z
ν (q, k1, k2)]

} ( gwm

2MW

)
∆̂H(q) v̄(p2)u(p1) . (6.29)

Finally, we have defined T H
s (zz) = zµ(k1)z

ν(k2)T H
s µν(ZLZL). In the derivation of Eq.

(6.27), we have also used the PT WI: Π̂ZG0

µ (k) = −iMZkµΠ̂
G0G0

(k2)/k2.

The above considerations can be straightforwardly extended to processes involving

the HWW vertex, e.g., the reaction tt̄ → H∗ → W+
L W−

L . As has been discussed in Section

3, one has to extract from the b-quark exchange graph the PT term related to the Higgs-

mediated part of the amplitude (cf. Eq. (3.11)). Similarly, after adding the PT term T H
P

to the resummed Higgs-exchange amplitude T H
s (W+

L W−
L ), we can show that

T H

s (W+
L W−

L ) + T H
P = −T H

s (G+G−) +T H

s (w+G−) − T H

s (G+w−) + T H

s (w+w−) , (6.30)

which is in agreement with GET in Eq. (6.5). Again, the derivation relies on effective

one-loop PT WI’s, which are the same as those naively deduced from the classical action in

the Born approximation. In this case, the PT WI’s pertaining to the H(q)W+(k+)W−(k−)

vertex are given by

kµ
+Γ̂HW+W−

µν (q, k+, k−) + MW Γ̂HG+W−

ν (q, k+, k−) = − igw

2
Π̂W−G+

ν (k−) , (6.31)

kν
−Γ̂HW+W−

µν (q, k+, k−) − MW Γ̂HW+G−

µ (q, k+, k−) =
igw

2
Π̂W+G−

µ (k+) , (6.32)
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kµ
±Γ̂HW±G∓

µ (q, k±, k∓) ± MW Γ̂HG+G−

(q, k+, k−) = ± igw

2

[
Π̂HH(q2) + Ω̂(k2

∓)
]
,(6.33)

kµ
+kν

−Γ̂HW+W−

µν (q, k+, k−) + M2
W Γ̂HG+G−

(q, k+, k−) =
igwMW

2

[
Π̂HH(q2) + Ω̂(k2

+)

+ Ω̂(k2
−)

]
. (6.34)

The analytic form of the PT vertex Γ̂HW+W−

µν (q, k+, k−) is given in Appendix A. The one-

loop PT vertices Γ̂HW±G∓

µ (q, k±, k∓) and Γ̂HG+G−
(q, k+, k−) may be gained by using the

WI’s in Eqs. (6.31)–(6.34) and known expressions for the PT Higgs- and G+- boson self-

energies [24].

At this point we should note that the GET is still valid for the Higgs-mediated

part of the amplitude even if we use the RGI expression for the resummed Higgs boson

propagator R̂H(s) defined in Section 5.3. Similarly, one can define the process-dependent

RGI combinations involving, e.g., the HW+W− vertex:

R̂HW+W−

µν (q, k+, k−) =
(M2

W

g2
w

) 1

gwMW
Γ

HW+W−

µν (q, k+, k−),

R̂HW+G−

µ (q, k+, k−) =
(M2

W

g2
w

) 1

gw
Γ

HW+G−

µ (q, k+, k−),

R̂HG+G−

(q, k+, k−) =
(M2

W

g2
w

) MW

gw
Γ

HG+G−

(q, k+, k−) . (6.35)

As before, “barred” quantities denote the sum over the tree-level and one-loop PT vertices.

The UV finite, RGI quantities R̂H , R̂G+

, R̂HW+W−

µν , R̂HW+G−

µ and R̂HG+G−
satisfy tree-level-

type PT WI’s in direct analogy to those given in Eqs. (6.31)–(6.34). In this formulation, any

resummed transition amplitude can be written in terms of a product of RGI quantities,

where the vertices are replaced by the respective R̂ expressions. As a consequence of

this formulation, the factors K± and K0 retain their tree-level values after renormalization

provided the wave-function renormalizations for the external Goldstone bosons are properly

taken into account.

In summary, we have shown how the diagrammatic method based on the PT enables

the decomposition of the amplitude into a resummed propagator-like amplitude and a non-

resonant background which satisfy the GET as well as the ET individually. This feature

provides an additional non-trivial consistency check for the PT resummation approach,

and, at the same time, renders the ET conceptually more intuitive.
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7 Conclusions

The formulation of the PT resummation approach is extended to analyze resonant transition

amplitudes which involve the SM Higgs boson as an intermediate state. The main results

of our study may be summarized as follows:

(i) The PT rearrangement of the amplitude gives rise to a self-energy for the Higgs boson

which is independent of the GFP in every gauge-fixing scheme. This self-energy is

universal, in the sense that it is process independent, and may be resummed following

the method presented in Ref. [16]. In addition, it only displays physical fermionic and

bosonic thresholds, in contrast to the gauge-dependent self-energies obtained by the

conventional methods, where unphysical bosonic thresholds appear. Furthermore, it

satisfies individually the OT, both for fermionic as well as bosonic contributions.

(ii) When the resummed Higgs boson propagator is multiplied by the universal quantity

g2
w/M2

W , or, equivalently, by the inverse square of the vacuum expectation value of

the Higgs field, it gives rise to a renormalization-group-invariant quantity, in direct

analogy to the effective charge of the photon in QED. The above construction becomes

possible by virtue of the naive, tree-level WI’s satisfied by the GFP-independent PT

sub-amplitudes.

(iii) At high energies any amplitude involving longitudinally polarized gauge bosons satis-

fies the ET, but the individual s-channel and t-channel contributions of the amplitude

do not. Instead, the PT decomposition of such an amplitude gives rise to two kine-

matically distinct pieces, a genuine s-channel and a genuine t-channel, which satisfy

the ET individually. Most importantly, the above property persists even after the

s-channel Higgs boson self-energy has been resummed, thus solving a long-standing

problem.

The significance of the above analysis when computing the theoretical predictions for

the Higgs-boson lineshape is clear. The Born-improved amplitudes constructed with the

above formalism are in accordance with all physical requirements imposed, and reliably

capture the underlying dynamics. Most noticeably, the ability to construct a universal

Higgs-mediated component, in direct analogy to the QED effective charge, is rather in-

triguing. This universal part is common to every Higgs-boson-mediated process, and, even

though the process-dependent background must be eventually taken into account, it de-

termines the Higgs-boson lineshape comfortably away from the resonance. It would be

of great phenomenological importance to confront the predictions for Higgs- production
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and decay processes computed within the PT resummation approach against future data

obtained from planned high-energy colliders such as the LHC, the next-linear e+e− collider

with c.m. energy 500 GeV, and the first muon collider.
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A One-loop absorptive HWW coupling in the PT

Based on the established equivalence between the PT and the covariant background field

gauge for ξQ = 1, we calculate the absorptive part of the effective PT HWW vertex at one

loop, using the Feynman rules listed in [26]. The analytic results are expressed in terms of

standard loop integrals introduced by ’t-Hooft and Veltman [21]. For definiteness, we use

the conventions of Ref. [22].

If one assumes that the external W bosons are contracted with physical polarization

vectors or conserved currents, the one-loop PT HWW coupling Γ̂HW+W−

µν (q, k+, k−) may

then be decomposed in general as follows:

Γ̂HW+W−

µν (Q, p, k) = gwMW

[ (
1 + A(Q2)

)
gµν + B(Q2)

kµ pν

M2
W

+ iC(Q2)
1

M2
W

εµνλρk
λpρ

]
, (A.1)

where Q + p + k = 0 and A(Q2), B(Q2) and C(Q2) are general form-factors. Only A(Q2)

must be renormalized, whereas B(Q2) and C(Q2) are UV finite. The form-factor C(Q2)

occurs in CP-violating scenarios only, i.e., C(Q2) = 0.

In the improved Born-level approximation, only the absorptive parts of the form-

factors A(Q2) and B(Q2) are of relevance, as the dispersive parts participate in the one-

loop renormalization. The diagrams contributing to the absorptive form-factors Ā and B̄

are shown in Fig. 7. To a good approximation, the external W bosons are considered to be

stable and the b quark massless. The analytic results for the absorptive form-factor Ā(Q2)

are then given by

iĀ(a) =
αw

16π

m2
t

M2
W

[
8C̄24 + (Q2 + k2 − p2 + 4m2

t )C̄0 + (3Q2 − 3k2 − p2)C̄11

+(Q2 + 5k2 − p2)C̄12

]
(m2

t , 0, m
2
t ) , (A.2)

iĀ(b1) = − αw

π

[
B̄0(Q

2, M2
W , M2

W ) + 2
M2

W

M2
Z

B̄0(Q
2, M2

Z , M2
Z)

]
, (A.3)

iĀ(b2) = iĀ(c5) = iĀ(c6) = 0 , (A.4)

iĀ(b3) = − αw

16π

[( M2
H

M2
W

+ 2
)
B̄0(Q

2, M2
W , M2

W ) +
1

2

( M2
H

M2
W

+2
M2

Z

M2
W

)
B̄0(Q

2, M2
Z , M2

Z) +
3

2

M2
H

M2
W

B̄0(Q
2, M2

H , M2
H)

]
, (A.5)

iĀ(b4) =
αw

2π

[
B̄0(Q

2, M2
W , M2

W ) + B̄0(Q
2, M2

Z , M2
Z)

]
, (A.6)

iĀ(c1) =
αw

π

[(
1 − M2

W

M2
Z

)(
4C̄24 + (Q2 − k2 − p2)C̄0

)
(M2

W , 0, M2
W )
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+
M2

W

M2
Z

(
4C̄24 + (Q2 − k2 − p2)C̄0

)
(M2

W , M2
Z , M2

W )

+
M2

Z

M2
W

(
4C̄24 + (Q2 − k2 − p2)C̄0

)
(M2

Z , M2
W , M2

Z)
]
, (A.7)

iĀ(c2) + iĀ(c3) =
αw

2π
Q2

[(
2
M2

W

M2
Z

− 1
)
C̄0(M

2
W , M2

Z , M2
W ) +

(
2
M2

W

M2
Z

− 1
)
C̄0(M

2
W , 0, M2

W )

+ C̄0(M
2
Z , M2

W , M2
Z)

]
, (A.8)

iĀ(c4) = − αw

4π

[ M4
Z

M2
W

(
2
M2

W

M2
Z

− 1
)2

C̄0(M
2
Z , M2

W , M2
Z) + M2

W C̄0(M
2
W , M2

Z , M2
W )

+ M2
W C̄0(M

2
W , M2

H , M2
W )

]
, (A.9)

iĀ(c7) = − αw

8π

[
M2

Z

( M2
H

M2
W

+ 2
)(

2
M2

W

M2
Z

− 1
)2

C̄0(M
2
W , M2

Z , M2
W )

+ 4M2
W

( M2
H

M2
W

+ 2
)(

1 − M2
W

M2
Z

)
C̄0(M

2
W , 0, M2

W ) + M2
W

( M2
H

M2
W

+2
M2

Z

M2
W

)
C̄0(M

2
Z , M2

W , M2
Z) + 3M2

HC̄0(M
2
H , M2

W , M2
H)

]
, (A.10)

iĀ(c8) = − αw

8π

[( M2
H

M2
W

+ 2
)(

C̄24(M
2
W , M2

Z , M2
W ) + C̄24(M

2
W , M2

H , M2
W )

)

+
( M2

H

M2
W

+ 2
M2

Z

M2
W

)
C̄24(M

2
Z , M2

W , M2
Z) + 3

M2
H

M2
W

C̄24(M
2
H , M2

W , M2
H)

]
,

(A.11)

iĀ(c9) + iĀ(c10) =
2αw

π

[M2
W

M2
Z

C̄24(M
2
W , M2

Z , M2
W ) +

(
1 − M2

W

M2
Z

)
C̄24(M

2
W , 0, M2

W )

+ C̄24(M
2
Z , M2

W , M2
Z)

]
. (A.12)

Here and in the following, we do not display the first three arguments of the C functions

(p2, k2, Q2), which are common. The bar on the loop functions symbolizes that only the

absorptive part should be considered.

Similarly, the individual contributions to the absorptive form-factor B̄(Q2) are found

to give

iB̄(a) = − αw

8π
m2

t (4C̄23 + C̄0 + 3C̄11 + C̄12)(m
2
t , 0, m

2
t ) , (A.13)

iB̄(b1) = iB̄(b2) = iB̄(b3) = iB̄(b4) = iB̄(c4) = iB̄(c7) = 0 , (A.14)

iB̄(c1) =
2αw

π

[
M2

W

(
1 − M2

W

M2
Z

)
(2C̄11 + 2C̄23 + C̄0)(M

2
W , 0, M2

W )

+
M4

W

M2
Z

(2C̄11 + 2C̄23 + C̄0)(M
2
W , M2

Z , M2
W ) + M2

W (2C̄11 + 2C̄23

+C̄0)(M
2
Z , M2

W , M2
Z)

]
, (A.15)
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iB̄(c2) + iB̄(c3) =
αw

2π

[
M2

W

(
2
M2

W

M2
Z

− 1
)
(C̄0 + C̄11 + C̄12)(M

2
W , M2

Z , M2
W )

+ 2M2
W

(
1 − M2

W

M2
Z

)
(C̄0 + C̄11 + C̄12)(M

2
W , 0, M2

W )

+ M2
W (C̄0 + C̄11 + C̄12)(M

2
Z , M2

W , M2
Z)

]
, (A.16)

iB̄(c5) + iB̄(c6) =
αw

4π

[
(M2

Z − 2M2
W )(C̄0 + C̄12 − C̄11)(M

2
Z , M2

W , M2
Z) − M2

W (C̄0 + C̄12

−C̄11)(M
2
W , M2

Z , M2
W ) + M2

W (C̄0 + C̄12 − C̄11)(M
2
W , M2

H , M2
W )

]
,(A.17)

iB̄(c8) =
αw

8π

{
(M2

H + 2M2
W )

[
(C̄11 + C̄23)(M

2
W , M2

Z , M2
W ) + (C̄11

+C̄23)(M
2
W , M2

H , M2
W )

]
+ (M2

H + 2M2
Z)(C̄11 + C̄23)(M

2
Z , M2

W , M2
Z)

+ 3M2
H(C̄11 + C̄23)(M

2
H , M2

W , M2
H)

}
, (A.18)

iB̄(c9) + iB̄(c10) = − 2αw

π

[M4
W

M2
Z

(C̄11 + C̄23)(M
2
W , M2

Z , M2
W ) + M2

W

(
1 − M2

W

M2
Z

)
(C̄11

+C̄23)(M
2
W , 0, M2

W ) + M2
W (C̄11 + C̄23)(M

2
Z , M2

W , M2
Z)

]
. (A.19)

B One-loop absorptive HZZ coupling in the PT

Here we present the one-loop results for the absorptive form-factors Ā and B̄ of the HZZ

coupling in terms of standard loop integrals. We consider the general decomposition of the

one-loop HZZ vertex

Γ̂HZZ
µν (Q, p, k) =

gw

cw

MZ

[ (
1 + A(Q2)

)
gµν + B(Q2)

kµ pν

M2
Z

]
, (B.1)

where the CP-violating form-factor C(Q2) analogous to Eq. (A.1) is absent at one-loop in

the SM. In particular, we are interested in the absorptive part of the form-factors A(Q2)

and B(Q2). Calculating the graphs shown in Fig. 8, we obtain

iĀ(a) =
αw

16π

m2
t

M2
W

{
(g2

L + g2
R)

[
8C̄24 + (Q2 + k2 − p2 + 4m2

t )C̄0

+ (3Q2 − 3k2 − p2)C̄11 + (Q2 + 5k2 − p2)C̄12

]
(m2

t , m
2
t , m

2
t )

+ 2gLgR

[
4m2

t C̄0 + (Q2 − k2 + p2)C̄11

+ (Q2 + k2 − p2)C̄12

]
(m2

t , m
2
t , m

2
t )

}
, (B.2)

iĀ(b1) = − 2αw

π

M4
W

M4
Z

B̄0(Q
2, M2

W , M2
W ) , (B.3)

iĀ(b2) = iĀ(c5) = iĀ(c6) = 0 , (B.4)

iĀ(b3) = − αw

16π

[( M2
H

M2
W

+ 2
)(

2
M2

W

M2
Z

− 1
)2

B̄0(Q
2, M2

W , M2
W ) +

1

2

( M2
H

M2
W
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+ 2
M2

Z

M2
W

)
B̄0(Q

2, M2
Z , M2

Z) +
3

2

M2
H

M2
W

B̄0(Q
2, M2

H , M2
H)

]
, (B.5)

iĀ(b4) =
αw

π

M4
W

M4
Z

B̄0(Q
2, M2

W , M2
W ) , (B.6)

iĀ(c1) =
2αw

π

M4
W

M4
Z

[
4C̄24 + (Q2 − k2 − p2)C̄0

]
(M2

W , M2
W , M2

W ) , (B.7)

iĀ(c2) + iĀ(c3) = − αw

2π

M2
W

M2
Z

Q2 C̄0(M
2
W , M2

W , M2
W ) , (B.8)

iĀ(c4) = − αw

4π

[
2M2

W C̄0(M
2
W , M2

W , M2
W ) +

M4
Z

M2
W

C̄0(M
2
Z , M2

H , M2
Z)

]
, (B.9)

iĀ(c7) = − αw

8π

[
2(M2

H + 2M2
W )C̄0(M

2
W , M2

W , M2
W )

+ 3M2
Z

M2
H

M2
W

C̄0(M
2
H , M2

Z , M2
H)

]
, (B.10)

iĀ(c8) = − αw

4π

[(
2
M2

W

M2
Z

− 1
)2( M2

H

M2
W

+ 2
)
C̄24(M

2
W , M2

W , M2
W ) +

1

2

( M2
H

M2
W

+ 2
M2

Z

M2
W

)
C̄24(M

2
Z , M2

H , M2
Z) +

3

2

M2
H

M2
W

C̄24(M
2
H , M2

Z , M2
H)

]
, (B.11)

iĀ(c9) + iĀ(c10) =
4αw

π

M4
W

M4
Z

C̄24(M
2
W , M2

W , M2
W ) . (B.12)

In Eq. (B.2), we have defined as gL = (2M2
W /M2

Z) − 1 and gR = −2(1 − M2
W /M2

Z).

Furthermore, the individual contributions to the B form-factor are given by

iB̄(a) = − αw

8π
M2

Z

m2
t

M2
W

{
(g2

L + g2
R) (4C̄23 + C̄0 + 3C̄11 + C̄12)(m

2
t , m

2
t , m

2
t )

+ 2gLgR (C̄11 − C̄12)(m
2
t , m

2
t , m

2
t )

}
, (B.13)

iB̄(b1) = iB̄(b2) = iB̄(b3) = iB̄(b4) = iB̄(c4) = iB̄(c7) = 0 , (B.14)

iB̄(c1) =
4αw

π

M4
W

M2
Z

(2C̄11 + 2C̄23 + C̄0)(M
2
W , M2

W , M2
W ) , (B.15)

iB̄(c2) + iB̄(c3) = − αw

2π
M2

W (C̄0 + C̄11 + C̄12)(M
2
W , M2

W , M2
W ) , (B.16)

iB̄(c5) + iB̄(c6) =
αw

4π

[
2(2M2

W − M2
Z)(C̄0 + C̄12 − C̄11)(M

2
W , M2

W , M2
W )

− M4
Z

M2
W

(C̄0 + C̄12 − C̄11)(M
2
Z , M2

H , M2
Z)

]
, (B.17)

iB̄(c8) =
αw

4π
M2

Z

[ (
2
M2

W

M2
Z

− 1
)2( M2

H

M2
W

+ 2
)
(C̄11 + C̄23)(M

2
W , M2

W , M2
W )

+
1

2

( M2
H

M2
W

+ 2
M2

Z

M2
W

)
(C̄11 + C̄23)(M

2
Z , M2

H , M2
Z)

]
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+
3

2

M2
H

M2
W

(C̄11 + C̄23)(M
2
H , M2

Z , M2
H)

]
, (B.18)

iB̄(c9) + iB̄(c10) = − 4αw

π

M4
W

M2
Z

(C̄11 + C̄23)(M
2
W , M2

W , M2
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Fig. 1: The Higgs-mediated part of the one-loop amplitude tt̄ → tt̄.
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