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in the massless case, and we therefore infer that the massive vacuum is thus
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that such a mass can indeed be generated dynamically in a self–consistent

way by appealing to the superfield Dyson–Schwinger gap equation for the full

matter propagator.
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I. INTRODUCTION.

Three dimensional U(1) gauge field theories, whether as toy models of four dimensional
physics or as interesting physical theories in their own right, have attracted considerable
attention [1–8]. In particular, they have been shown to exhibit a rich and non–trivial infrared
structure, exhibiting dynamical mass generation and critical behaviour; the study of these
phenomena requires non–perturbative techniques. The question of how the incorporation of
supersymmetry affects the infrared physics of these theories has also been addressed [1,9,10]
and it has been found that when N =1 mass can be generated dynamically without breaking
the supersymmetry, while mass generation in the N =2 model is forbidden. For the N =1
model an important question remains unanswered: whether the massive or massless solutions
are selected by the theory. In non–supersymmetric theories this question can be addressed
by appealing to the effective potential and energetic favourability [1, 2]; in supersymmetric
theories the effective potential vanishes and this argument fails. It has been suggested [1]
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that the issue can be resolved in supersymmetric theories at the level of the (quantum)
effective action (which does not vanish) and the Ward identities arising from supersymmetry.
The Ward identities have been found to play a crucial rôle in this selection in models
which have additional constraints [11, 12], but do not yield any extra information for the
unconstrained U(1) gauge field theory [10]. In this paper we propose a resolution of this
problem for the basic N–flavour N = 1 U(1) theory at the level of the effective action: by
considering an appropriate set of Dyson–Schwinger equations we show that a mass can be
self–consistently generated without breaking supersymmetry, and that this mass stabilizes
the infrared effective gauge coupling which in the massless case oscillates without definite
sign.

We adopt a superfield formalism throughout this paper, and work with a large number
N of matter flavours. We consider the superfield Dyson–Schwinger equation for the semi–
amputated full three–point vertex [13–15] which corresponds to the effective (running) gauge
coupling [16], and compute the infrared dynamics of this vertex in the presence of vanishing
and non–vanishing masses for the matter multiplet. In the massless case the dynamics are
described by a non–linear differential equation of Emden–Fowler type [17,18], which admits
only oscillatory solutions in the infrared; we interpret this as indicating instabilities in the
(quantum) effective action. Repeating the computation with the insertion (by hand) of
a finite mass for the matter multiplet we find that these instabilities disappear, and the
solution shows the existence of a non–trivial infrared fixed point for the running coupling.
We then demonstrate that a mass for the matter superfield can be dynamically generated
in a self–consistent way in this approach by appealing to the Dyson–Schwinger equation for
the full matter propagator cast in terms of the semi–amputated full vertex. In agreement
with reference [10] we find no evidence for a critical flavour number, above which dynamical
mass generation does not occur.

In reference [10] the gap equation for the full matter propagator was studied incorpo-
rating a full vertex which by construction satisfied the U(1) Ward identity; instead, in this
work, the form of the full vertex in the deep infrared will be determined self–consistently
from the Dyson–Schwinger equation. The truncated form of the Dyson–Schwinger equation
is not manifestly gauge invariant, i.e. it does not respect the Ward identity for general
incoming momenta and there is a residual explicit dependence on the covariant gauge fixing
parameter. However in the physical, on–shell limit of vanishing incoming momenta we find
that the Ward identity is satisfied and that the dependence on the gauge fixing parameter
drops out. Since in the present work we are interested only in obtaining and analysing the
structure of the vertex in the deep infrared, the lack of gauge invariance away from vanishing
incoming momentum will not adversely affect our conclusions. The superfield formalism we
adopt keeps supersymmetry manifest and thereby radically simplifies the system of equa-
tions one would obtain for the full vertices in a component computation. The disadvantages
of the superfield formalism [19,20] lie in the propagation of gauge artifacts in the connexion
superfield which result in spurious infrared divergences. By working in a general (covariant)
gauge we will have enough flexibility to remove these divergences by an appropriate gauge
choice.

This paper is organized as follows: in section II we construct the action functional for
N =1 supersymmetric QED3 in superfield formalism and give the form of the dressed prop-
agators for the matter and connexion superfields. In section III we introduce the superfield
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semi–amputated vertex and construct its Dyson–Schwinger equation; we then solve the
Dyson–Schwinger equation in the presence of vanishing and non–vanishing masses for the
matter superfield and interpret the results. In section IV we discuss the infrared proper-
ties of the matter and connexion superfield propagators, in association with approximations
made in section III; we show in section V that when the previously computed vertex is in-
corporated in the gap equation for the matter propagator, a mass is dynamically generated
self–consistently. Finally we present our conclusions in section VI.

II. THE ACTION.

We consider a model with N = 1 supersymmetry, N matter flavours and local U(1)
gauge invariance. The required action functional then comprises three parts: the gauge
invariant classical field strength term for the (spinor) connexion Γα, a (Lorentz) gauge fixing
term, and a locally U(1) invariant kinetic term for the matter superfields Φ and Φ∗:

S = Sclass
g + SGF

g + Sm; (2.1)

Sclass
g =

∫

d3x d2θ Γα

(

−1

8
DηDαDβDη

)

Γβ,

SGF
g =

∫

d3x d2θ Γα

(

1

4ξ
DαD2Dβ

)

Γβ,

Sm =

∫

d3x d2θ

(

−1

2

)

[∇αΦ]∗ [∇αΦ] . (2.2)

We have included in the matter part an implicit sum over N flavours, which do not interact
with each other directly, but interact with the same connexion superfield. The U(1) covariant
derivative ∇α is given by

∇α .
= Dα − ieΓα,

where e is the (dimensionful) gauge coupling. We work within large–N , in which the quantity

e2N

4
= α

is kept fixed (but large) as N becomes large. From the action (2.1) it is easy to derive the
dressed propagators for the matter and connexion superfields:

∆(p; 12) =
i

A(p)

D2(p) − M(p)

p2 + M2(p)
δ2(12),

∆αβ(p; 12) = −i
1

p4

1

B(p)

[

(1+ξ) pαβ D2 − (1−ξ) Cαβ p2
]

δ2(12). (2.3)

The matter superfield contains a possible dynamically generated mass function M(p) and the
scalar functions A and B parameterize the dressing of the matter and connexion superfields
respectively. The unknown functions A, B, and M can at least in principle be determined
from the appropriate Dyson–Schwinger equations; we return to these in sections IV and V.
The dressed three–point vertex derived from the action above is shown in figure 1.
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p q

p−q

Φ Φ∗

Γα

: − e
2
G(p, p−q, q) Cαβ Dβ(q)

FIG. 1. Structure and momentum assignments of the dressed three–point vertex; solid lines

represent matter superfields and wavy lines the connexion superfield.

In this paper we use a convenient spinor index notation for three–vectors, in which they
are represented as symmetric second rank spinors; spinor indices are raised and lowered by
the antisymmetric metric C. We collect here some useful identities which will be used in
what follows [21] ({∂µ, θν} = δν

µ):

Aα = CαβAβ,

Aβ = AαCαβ

A2 .
=

1

2
AαAα,

CµνC
αβ = δα

[µ δβ
ν],

pµνq
να = δα

µ p · q,
Dµ(q) = ∂µ + θνqµν ,

D2(q) = ∂2 + θµqµν∂
ν + q2θ2,

Dµ(q)D2(q) = qµλDλ(q),

Dµ(q)Dν(q) = qµν + CνµD2(q). (2.4)

In the next section we construct and analyse the truncated Dyson–Schwinger equation
for the full three–point vertex shown in figure 1 with and without a mass for the matter
multiplet and demonstrate that oscillations present in the massless case disappear when a
mass for the matter multiplet is included.

III. DYSON–SCHWINGER EQUATION FOR THE VERTEX.

Throughout this paper we use a truncation to leading order in 1/N ; the truncated
Dyson–Schwinger equation for the full vertex is shown schematically in figure 2.

= +

FIG. 2. Schematic form of the Dyson–Schwinger equation for the full vertex. Solid lines represent

matter superfields, and wavy lines the connexion superfield. Blobs indicate full non–perturbative

quantities.
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The graph on the left hand side of figure 2 is written as follows

(

−e

2
G(p, p − q, q)

)

∫

d2θ Φ(−p, θ)Γα(p − q, θ) Dα(q)Φ∗(q, θ), (3.1)

where we have assumed that we can perform the factorization into a scalar function G
multiplying the superspace structure shown above; the first graph on the right of figure 2
is of the same form but with G 7→ 1. This factorization is similar in effect to the approach
taken in non–supersymmetric QED3 in which the vertex is assumed to be a scalar function
multiplying the usual Dirac matrix. This approximation is computationally convenient,
but does not satisfy the Ward identity except at vanishing incoming momentum, where
the full vertex becomes on–shell. Given this limitation we will only be interested in the
behaviour of the theory in this regime; as we will show, even with this restriction we can
obtain interesting information about the infrared fixed point structure. As we will see in
section V, the present approach gives rise to the same qualitative picture as that obtained
in reference [10], namely that a mass can be generated dynamically for the matter multiplet
without breaking supersymmetry.

Following references [13–15] we define the semi–amputated full non–perturbative vertex
Ĝ as

Ĝ(p1, p2, p3)
.
= Z(p1, p2, p3) G(p1, p2, p3), (3.2)

where Z is defined in terms of the functions A and B appearing in the dressed propagators
(2.3) as

Z(p1, p2, p3)
.
= A−1/2(p1) B−1/2(p2) A−1/2(p3) > 0. (3.3)

The quantity eĜ is the appropriate and natural generalization of the running charge in super–
renormalizable gauge field theories [16]. This definition is the same as the generalization of
the running charge in non–supersymmetric QED3 [15]. As we will show, this definition also
simplifies the structure of the integral equation for the vertex function considerably.

A. Vertex With Vanishing Mass.

The one–loop graph on the right of figure 2 reads as follows:

− e

2

(

−i
e2

4

)
∫

d3k d2θ1d
2θ2d

2θ3 G3

[

Dµ(p + k)D2(p + k)

A(p + k) (p + k)2
δ2(12)

]

×

×
[

Dα(q + k)D2(q + k)

A(q + k) (q + k)2
δ2(23)

] [

(1+ξ)kµν − (1−ξ)Cµνk
2

B(k) k4
δ2(31)

]

×

×Φ(−p, θ1) Γα(p − q, θ2) Dν(q)Φ∗(q, θ3), (3.4)

where

G3 = G(p,−k, p + k) G(p + k, p − q, q + k) G(q + k, k, q). (3.5)
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Following [15] we consider the external connexion superfield momentum to be vanishingly
small, leaving one external scale p in the problem; computing the superspace part of equa-
tion (3.4) using the identities (2.4) we obtain an integral equation for the full vertex G.
Multiplying this equation through by Z(p) we obtain the desired integral equation for the
semi–amputated vertex Ĝ from the Dyson–Schwinger equation in figure 2:

Ĝ(p) = Z(p) +
1

4
e2

∫

d3k Ĝ3(k)
(1+ξ)k · (p + k) + (1−ξ)k2

(p + k)2 k4
. (3.6)

We have made the approximation that Ĝ3 is the cube of one scalar function dependent on
the scale k only [15]: this is justified by the self–consistency of our results. Note that in the
absence of the inhomogeneous term Z on the right hand side of equation (3.6) one obtains
a integral equation involving only Ĝ, which can in principle be solved. In the following we
will drop this inhomogeneous term, returning in section IV to a discussion of why this may
be done with safety.

The angular integration is easy to perform, leaving the following equation, which we have
recast in the dimensionless variables x

.
= p/α, y

.
= k/α:

Ĝ(x) =
1

4π2N

∫

dy
Ĝ3

y2

{

(1+ξ)

(

1 +
y2 − x2

2xy
ln

∣

∣

∣

∣

y + x

y − x

∣

∣

∣

∣

)

+ (1−ξ)
y

x
ln

∣

∣

∣

∣

y + x

y − x

∣

∣

∣

∣

}

. (3.7)

Since we are interested in the deep infrared we consider the limit x ≪ 1, expand the
logarithms in the above equation to second order and obtain

x2Ĝ ≃ (2−ξ)

3π2N

∫ x

0

dy Ĝ3(y) +
x2

π2N

∫

∞

x

dy
Ĝ3(y)

y2
+

x4ξ

3π2N

∫

∞

x

dy
Ĝ3(y)

y4
. (3.8)

We drop the last term in the limit x ≪ 1 and after appropriate differentiations with respect
to x we arrive the equivalent differential equation:

x3Ĝ′′ +

[

3x2 +
x(1+ξ)

π2N
Ĝ2

]

Ĝ′ +
5 − ξ

3π2N
Ĝ3 = 0. (3.9)

In the gauge ξ = −1 and changing variables x 7→ w = x−2 the above equation can be recast
as a differential equation of Emden–Fowler type [17, 18]:

d2

dw2
Ĝ +

1

2π2N
w−3/2Ĝ3 = 0; (3.10)

in the limit w → ∞ it has been shown [18] that the only (real and non–divergent) solutions
of this equation are oscillatory. We interpret this as indicating that in the absence of a
mass for the matter multiplet the gauge coupling is subject to instabilities which render it
unphysical. In the next subsection we study the effects of a mass introduced by hand and
show that these instabilities are removed, and that the coupling is driven to an non–trivial
infrared fixed point.
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B. Vertex With Non–Vanishing Mass.

In this subsection we repeat the computation above retaining the effects of a constant
mass M(p) ≃ M(0) = M 6= 0 in the propagators (2.3). Here we will put in the mass by
hand, in section V we will show that the semi–amputated full vertex we consider admits the
dynamical generation of a mass. The one–loop graph on the right of figure 2 now reads

− e

2

(

−i
e2

4

)
∫

d3k d2θ1d
2θ2d

2θ3 G3

[

Dµ(p + k) (D2(p + k) − M)

A(p + k) ((p + k)2 + M2)
δ2(12)

]

×

×
[

Dα(q + k) (D2(q + k) − M)

A(q + k) ((q + k)2 + M2)
δ2(23)

] [

(1+ξ)kµν − (1−ξ)Cµνk
2

B(k) k4
δ2(31)

]

×

×Φ(−p, θ1) Γα(p − q, θ2) Dν(q)Φ∗(q, θ3), (3.11)

where as before G3 is given by equation (3.5). Again the superspace parts of this equation can
be evaluated using the identities (2.4); in contrast to the case of non–supersymmetric QED3,
where the inclusion of a mass for the fermions significantly alters the structure of the integral
equation, here the mass terms only appear in the denominators of the matter propagators,
for the terms linear in M in the numerator cancel. In this respect, a mass for the matter
superfield behaves like a trivial infrared regulator, similar to the effect of a photon mass
in the non–supersymmetric model [15]. On considering the external connexion momentum
vanishingly small and multiplying through by Z(p) as before, the integral equation to be
compared with (3.6) reads

Ĝ(p) = Z(p) +
1

4
e2

∫

d3k Ĝ3(k)
(1+ξ)k · (p + k) + (1−ξ)k2

((p + k)2 + M2) k4
. (3.12)

As before, it is easy to perform the angular integration, the result of which reads (in dimen-
sionless variables x

.
= p/α, y

.
= k/α and m

.
= M/α)

Ĝ(x) =
1

4π2N

∫

dy
Ĝ3

y2

{

(1+ξ)

(

1 +
y2 − x2 − m2

4xy
ln

[

(y + x)2 + m2

(y − x)2 + m2

])

+ (1−ξ)
y

2x
ln

[

(y + x)2 + m2

(y − x)2 + m2

]}

. (3.13)

We have again dropped the inhomogeneous term Z (see section IV); considering the deep
infrared limit x ≪ 1, and now also x ≪ m, we can expand the logarithms above to second
order to obtain the approximate form:

Ĝ ≃ (3−ξ)

4π2N

1

m2

∫ x

0

dy Ĝ3(y) − (1+ξ)

4π2N

x2

m2

∫ x

0

dy
Ĝ3(y)

y2
+

1

π2N

∫

∞

x

dy
Ĝ3(y)

y2 + m2

−(1+ξ)

4π2N
x2

∫

∞

x

dy
Ĝ3(y)

y2 (y2 + m2)
. (3.14)

Differentiation with respect to x yields the integral–differential equation
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Ĝ′(x) =
(3−ξ)

4π2N

Ĝ3(x)

m2
− 1

π2N

Ĝ3(x)

x2 + m2
− (1+ξ)

4π2N

Ĝ3(x)

m2
+

(1+ξ)

4π2N

Ĝ3(x)

x2 + m2

−(1+ξ)

2π2N

x

m2

∫ x

0

dy
Ĝ3(y)

y2
− (1+ξ)

2π2N
x

∫

∞

x

dy
Ĝ3(y)

y2 (y2 + x2)
. (3.15)

By the convenient choice of gauge ξ = −1 this can be reduced to a first order non–linear
differential equation, which can be integrated with ease to yield

Ĝ(x) =
1

[

c + 2
π2Nm2

(

m arctan
(

x
m

)

− x
)]1/2

, (3.16)

where c is an integration constant to be determined from the boundary condition obtained
from the original integral equation. In the limit x → 0 the renormalization group β function
vanishes:

lim
x→0

x
dĜ(x)

dx
= lim

x→0

1

π2N

Ĝ3(x) x3

m2 (x2 + m2)
→ 0, (3.17)

and hence there is a non–trivial (N–independent) fixed point at x = 0 given by

Ĝ(0) = c−1/2. (3.18)

Returning to the integral equation (3.12) and taking the limit x → 0 we can investigate the
constraints on the integration constant c:

Ĝ(0) =
1

π2N

∫

∞

0

dy
Ĝ3(y)

y2 + m2
. (3.19)

Since the right hand side of this equation is manifestly positive definite, the trivial solution
Ĝ(0) = 1/

√
c = 0 is ruled out, unless Ĝ is trivially zero. Noting that in the small x limit Ĝ

differs from its fixed point value by a quantity of order O(x3), we can crudely approximate
the integral in (3.19) as follows

Ĝ(0) =
1

π2N

∫ m

0

dy
Ĝ3(0)

y2 + m2
+

1

π2N

∫

∞

m

dy
1

y2 + m2
, (3.20)

where we have set Ĝ in the second integral to its ultraviolet asymptote of unity: both of
these approximations are underestimates, and therefore after performing the integrations we
have

4πmĜ(0) >
1

N

(

1 + Ĝ3(0)
)

. (3.21)

In principle for a given m this leads to a (small) critical coupling, below which there is no
mass generation. Note that even on restoring the inhomogeneous term Z (see section IV)
the inequality is only modified to

4πm
(

Ĝ(0) − Z(0)
)

>
1

N

(

1 + Ĝ3(0)
)

. (3.22)
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Since at the level of the original integral equation (3.12) in the gauge ξ = −1 it is obvious
that Ĝ > Z, we obtain again a (small) critical coupling. Note that in the above analysis
there is no evidence for a critical flavour number.

To conclude this section we should check our assertion that the value of Ĝ at vanishing
x is indeed ξ–independent. To accomplish this we return to the integral equation (3.14)
and retain the general gauge dependence. The equation can then readily be converted to a
differential equation:

xĜ′′ +

[

−1 − 3

2m2π2N
(1−ξ)xĜ2 +

3

4π2N
(3−ξ)

x

x2 + m2
Ĝ2

]

Ĝ′

+
1

π2N

[

1

m2
− (5+ξ)

4

1

x2 + m2
− 2x2

(x2 + m2)2

]

Ĝ3 = 0. (3.23)

Considering the limit x → 0 this reduces to a first order differential equation (in which the
term xĜ′′ has been dropped as subleading in x)

Ĝ′ +
(1+ξ)

4π2m2
Ĝ3 = 0

which can be integrated easily to give for small x

Ĝ(x) ≃ 1
(

c + (1+ξ)
4π2Nm2 x

)1/2
, (3.24)

demonstrating that the term in Ĝ′′ is indeed subleading and also that all the ξ dependence
vanishes at x = 0, so information about the fixed point is ξ independent as expected from
the on–shell nature of Ĝ(0).

We have shown in this section that in the presence of a mass for the matter multiplet
the full vertex is stabilized and driven to a non–trivial infrared fixed point. In the above
analysis the mass for the matter multiplet has been included by hand; however we will show
in section V that a mass can be dynamically generated self–consistently by coupling the
vertex equation to the corresponding Dyson–Schwinger equation for the matter propagator.
In the next section we turn to a discussion of the inhomogeneous term Z and why it can be
safely omitted.

IV. THE INHOMOGENEOUS TERM Z AND THE FUNCTIONS A AND B.

In this section we analyse the Dyson–Schwinger equations for the functions A and B with
which we have respectively dressed the matter and connexion superfield propagators. First
we consider the Dyson–Schwinger equation for the matter propagator, shown schematically
in figure 3.

The difference between the graphs on the left of figure 3 is easily computed to be

− i(A(p) − 1)

∫

d2θ Φ(−p, θ)D2(p)Φ∗(p, θ) − i
M(p)

A(p)

∫

d2θ Φ(−p, θ)Φ∗(p, θ). (4.1)
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We adopt the one–loop dressed approximation to the Dyson–Schwinger equation in which
both vertices in figure 3 are fully dressed and all two–particle irreducible corrections are
dropped [22]. In doing so the resulting integral equation can be cast in terms of Ĝ alone.

(

p

Φ Φ∗)
−1

−
( )

−1

p

Φ Φ∗

=

q

p

Φ Φ∗

−

p − q

Φ Φ∗

q

FIG. 3. Schematic form of the Dyson–Schwinger equation for the full matter propagator. Solid

lines represent matter superfield propagators, and wavy lines gauge superfield propagators; blobs

indicate full non–perturbative quantities.

The graphs on the right hand side of figure 3 can be manipulated to obtain functions
multiplying the two superspace structures

∫

d2θ Φ(−p, θ) D2(p) Φ∗(p, θ),
∫

d2θ Φ(−p, θ) Φ∗(p, θ); (4.2)

comparison with equation (4.1) shows that the function multiplying the first of these struc-
tures is to be identified with the contribution to the wavefunction renormalization A(p) and
the function which multiplies the second corresponds to the self energy M(p)/A(p), to which
we will return in the next section. The first “seagull” graph on the right hand side gives
only an irrelevant p–independent contribution to the wavefunction renormalization while
the last graph on the right hand side of the figure contributes both to the wavefunction
renormalization and the self energy. Evaluating the superspace parts of the last graph leads
to the following integral equation for A(p)

A(p) = 1 + (1+ξ)A(p)
ie2

2

∫

d3k
Ĝ2(k)

k2 + M2(k)

k · (k − p)

(k − p)4
. (4.3)

In the gauge ξ = −1 which we adopt throughout this paper, this reduces to unity, leav-
ing a constant A(p). Note that this is in line with the result of reference [10], where the
wavefunction renormalization was computed to be

A(p) =
( p

α

)2(1+ξ)/Nπ2

. (4.4)

We turn now to the connexion superfield and the function B(p). In standard large–N
treatments [9, 10] the function B includes the effects of massless matter loops resummed to
leading order in 1/N , giving

B(p) ∼ 1 + α/p.

Therefore in the deep infrared we find
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Z(x) = A−1(x) B−1/2(x) ∼ x1/2 (4.5)

and the inhomogeneous term goes to zero and can be safely dropped compared with a
non–vanishing Ĝ(0) in a large–N framework.

For completeness it is instructive to consider the function B outside this large–N resum-
mation, and consider the Dyson–Schwinger equation shown schematically in figure 4. Again
we adopt the one–loop dressed approximation, which enables us to recast the equation in
terms of Ĝ alone.

( )

−1

p

α β
−

( )

−1

p

α β
= k

α β

FIG. 4. Schematic form of the Dyson–Schwinger equation for the full connexion propagator.

Solid lines represent matter superfields and wavy lines represent connexion superfields; blobs indi-

cate full non–perturbative quantities.

The difference between the graphs on the left of figure 4 is easily computed (in the gauge
ξ = −1) to be

(B(p) − 1)
1

2
Cαβp2

∫

d2θ Γα(−p, θ) Γβ(p, θ). (4.6)

In computing the graph on the right of figure 4 the superspace structure in equation (4.6)
naturally appears, and the resulting integral equation for B is (in which we have already
performed the simple angular integration)

p3 (B(p) − 1) =
e2N

16π2
B(p)

∫

dk kĜ2(k) ln

(

(k + p)2 + M2

(k − p)2 + M2

)

. (4.7)

Converting to dimensionless variables, considering constant M and expanding the logarithm
as usual we can convert to an equivalent differential equation in which we have approximated
Ĝ by its constant value at x = 0, noting from equation (3.16) that in doing so we have only
dropped terms of order O(x3):

d

dx

(

x2B−1(x)
)

= 2x − Ĝ2(0)

π2

x2

m2
+

Ĝ2(0)

π2

x2

x2 + m2
. (4.8)

This can be integrated easily with result

B−1(x) = 1 − 1

3

Ĝ2(0)

π2

x

m2
+

Ĝ2(0)

π2

1

x
− Ĝ2(0)

π2

m

x2
arctan

( x

m

)

; (4.9)

for finite solutions the constant of integration must vanish. In the limit of small x there are
cancellations to order O(x3) and B reduces to

B(x) ≃ 1

1 + O(x3)
. (4.10)

From this analysis it is clear that even when the connexion propagator is not resummed to
leading order in 1/N , the inhomogeneous term Z reduces to a finite constant in the infrared
and can still be dropped with safety, justifying fully our assumption in section III.
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V. MASS.

In this section we demonstrate that a mass for the matter multiplet can be generated
dynamically when we feed the solution for the full vertex (3.16) into the Dyson–Schwinger
equation for the matter propagator. The latter is shown schematically in figure 3, and now
we evaluate the terms in the graph on the right hand side which multiply the second of
the superspace structures in equation (4.2). Evaluating the superspace integrals leaves the
following integral equation for the mass function

M(p) =
ie2

2

∫

d3k
Ĝ2(k) M(k)

(k2 + M2(k)) (k − p)4

[

(1+ξ)k · (k − p) + (1−ξ)(k − p)2
]

. (5.1)

Choosing again the gauge ξ = −1, we see that it removes the spurious infrared divergences
and simplifies the equation considerably. After performing the angular integration and
expanding the resulting logarithms, we obtain in dimensionless variables

m(x) =
2

π2Nx2

∫ x

0

dy
y2 m(y) Ĝ2(y)

y2 + m2(y)
+

2

π2N

∫

∞

x

dy
m(y) Ĝ2(y)

y2 + m2(y)
. (5.2)

Differentiating with respect to x this can be converted to an equivalent differential equation,

xm′′ + 3m′ +
4

π2N

m Ĝ2

x2 + m2
= 0. (5.3)

In the deep infrared x ≪ m, and approximating Ĝ(x) by Ĝ(0), noting again that the
corrections to this approximation are of order O(x3) (see equation (3.16)); equation (5.3)
then admits the following approximate solution:

m(x) ≃ m(0)
(

1 − ax −O(x2)
)

a > 0 (5.4)

which exhibits a constant dynamical mass m(0) and has the correct (decreasing) behaviour
away from x = 0; note that this solution is similar to the small x expansion of the mass
found using the same method for non–supersymmetric QED3 in reference [15]. The solution
above is to be compared with the case when the vertex is chosen to satisfy the U(1) Ward
identity for general momenta [10], where the solution for the mass behaves as

m(x) = m(0)e−x2 ≃ m(0)
(

1 − x2 + O(x4)
)

.

The semi–amputated vertex considered here only satisfies the Ward identity at x = 0 where
the vertex is on–shell, and therefore the small–x dependence may differ from the more
complete solution, though the qualitative (decreasing) behaviour is retained.

VI. CONCLUSION.

In this paper we have proposed that the dynamical generation of a mass in N = 1
supersymmetric QED3 is selected by the dynamics over the massless alternative, for it sta-
bilizes the running gauge coupling against oscillations. In particular the picture which has

12



emerged from our analysis is that in the absence of a mass for the matter multiplet, the full
vertex oscillates in the infrared, leading to instability in the effective action. When a finite
dynamical mass is added, the infrared physics is stabilized and there exists a non–trivial in-
frared fixed point. We have demonstrated that the incorporation of our full vertex solution
into the Dyson–Schwinger equation for the matter propagator leads self–consistently to the
dynamical generation of a mass.

Supersymmetry has been kept manifest throughout by adopting a superfield formalism
which has the additional advantage of simplifying considerably the system of equations and
Ward identities which would have to be solved in a component calculation. By working in a
general gauge we have retained enough freedom to remove infrared divergences which arise
from the propagation of spurious degrees of freedom in the connexion superfield [19, 20],
and we have been able to simplify the analysis significantly. We have employed a large–N
framework consistently throughout this paper; this in combination with the concept of a
semi–amputated full vertex allowed us to decouple the Dyson–Schwinger equations so that
the functions A and B used to dress the full propagators do not appear in the analysis of
the vertex.

There is the interesting possibility that the techniques employed in this paper and in
reference [15] could be extended to models in higher dimensions and with non–Abelian
gauge groups.
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