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The pinch technique at two-loops:

The case of mass-less Yang-Mills theories
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ABSTRACT

The generalization of the pinch technique beyond one loop is presented. It is shown that the crucial physical principles
of gauge-invariance, unitarity, and gauge-fixing-parameter independence are instrumental for accomplishing this task,
and is explained how the aforementioned requirements single out at two loops exactly the same algorithm which has
been used to define the pinch technique at one loop, without any additional assumptions. The two-loop construction of
the pinch technique gluon self-energy, and quark-gluon vertex are carried out in detail for the case of mass-less Yang-
Mills theories, such as perturbative QCD. We present two different but complementary derivations. First we carry
out the construction by directly rearranging two-loop diagrams. The analysis reveals that, quite interestingly, the
well-known one-loop correspondence between the pinch technique and the background field method in the Feynman
gauge persists also at two-loops. Since we use dimensional regularization the entire construction does not depend
on the value of the space-time dimension d. The renormalization (when d = 4) is discussed in detail, and is shown
to respect the aforementioned correspondence. Second, we present an absorptive derivation, exploiting the unitarity
of the S-matrix and the underlying BRS symmetry; at this stage we deal only with tree-level and one-loop physical
amplitudes. The gauge-invariant sub-amplitudes defined by means of this absorptive construction correspond precisely
to the imaginary parts of the n-point functions defined in the full two-loop derivation, thus furnishing a highly non-
trivial self-consistency check for the entire method. Various future applications are briefly discussed.

e-mail: Joannis.Papavassiliou@cern.ch;@uv.es

FTUV-99-12-15

PACS numbers: 11.15.-q, 12.38.Bx, 14.70.Dj, 11.55.Fv

1

http://arxiv.org/abs/hep-ph/9912338v1


I. INTRODUCTION

The pinch technique (PT) was introduced by Cornwall [1], as the first step in the development of a self-consistent
truncation scheme for the Schwinger-Dyson equations of QCD [2]. It was further developed in [3], and was generalized
to theories with spontaneous symmetry breaking [4], and subsequently to the full Standard Model [5,6]. Various phe-
nomenological applications were presented [7], and the one-loop correspondence between the PT and the background
field method (BFM) [8–10] was established [11]. The important rôle of unitarity and analyticity was appreciated and
exploited in a series of papers [12–15], which allowed the generalization of the Breit-Wigner formalism for unstable
particles to the non-abelian sector of the Standard Model. Parallel developments took place in the field of finite
temperature QCD [16], the concept of the QCD effective charge [2] was examined in detail [17], and subsequently
applied to the field of renormalon calculus [18], and the generalized PT was presented [19]. In addition, a formalism for
studying resonant CP violation [20] has been developed [21], and various issues related to the high-energy behaviour
of the W-fusion process [22] have been resolved [23].

The PT reorganises systematically a given physical amplitude into sub-amplitudes, which have the same kinematic
properties as conventional n-point functions, (propagators, vertices, boxes) [24], and are in addition endowed with
important physical properties. The essential ingredient one uses in this rearrangement is the full exploitation of the
elementary Ward identities (WI) of the theory, in order to enforce crucial cancellations. The various types of physical
problems for which the PT can serve as a useful tool have been discussed frequently in the literature, most recently
in [25] and [26].

So far the PT program has been carried out only at one-loop order, and its generalization to higher orders has
been a long-standing question [27]. The general methodology of how the extension of the PT proceeds at two-loops
has been presented in a recent brief communication [26]. There it was explained how the one-loop formalism, when
properly interpreted and suitably adopted to the two-loop context, leads naturally to the PT extension. In this paper
we will address the technical aspects of this procedure in detail, and will discuss extensively the plethora of physical
issues involved.

We will present two independent constructions, which are however inextricably connected. The first one deals
directly with the two-loop S-matrix element for the scattering process qq̄ → qq̄, exactly as was the case in the early
one-loop PT applications. The first crucial ingredient is that of gauge-fixing parameter (GFP) independence. S-
matrix elements are guaranteed to be GFP independent; in fact, as happens in the one-loop case, the cancellation
of all GFP dependent terms proceeds by exploiting tree-level WI only, without having to carry out sub-integrations.
This property is important, because it preserves the diagrammatic representation of the S-matrix, as well as the
kinematic identity of the sub-amplitudes appearing in it (propagators,vertices,boxes). One can therefore, without
loss of generality, choose a convenient gauge, such as the renormalizable Feynman gauge (RFG), provided that one
considers the entire set of two-loop Feynman graphs contributing to the given S-matrix element

In the one-loop case the next step would be to split the bare three-gluon vertex appearing inside the one-loop
quark-gluon vertex into a pinching and non-pinching contribution. This splitting is very special because it guarantees
that the resulting effective Green’s functions satisfy (at one-loop) naive, QED-like WI [2], instead of the usual Slavnov-
Taylor identities [28]. As a consequence the effective one-loop gluon self-energy captures the running of the QCD
coupling, exactly as happens with the photon vacuum polarization in QED. In the two-loop case the construction is
lengthier but the crucial operation is precisely the same. One carries out the aforementioned splitting to all vertices
whose one of the incoming momenta is the physical momentum transfer (or center-of-mass energy) of the process. As
we will see in detail this splitting is sufficient to give rise to two-loop PT effective Green’s functions which have the
exact same properties as their one-loop counterparts.

The reason why all other three-gluon vertices inside the loops should remain unchanged (no splitting) can be
understood by resorting to the special unitarity properties that the PT sub-amplitude must satisfy, a point which
brings us to the second derivation. For this derivation we employ the unitarity and analyticity properties of the
S-matrix, very much in the spirit presented in the more recent one-loop PT literature [13,14]. There, the precise
diagrammatic correspondence between the one-loop (forward) process qq̄ → qq̄ and the tree-level process qq̄ → gg
provided very useful, stringent constraints on the entire construction, rendering the method all the more powerful.
These constraints are automatically encoded in the two-loop PT construction presented here; in fact they are even
more constraining than in the previous order, for reasons that we will describe qualitatively now, and in great detail
in the main body of the paper. The imaginary parts of the two-loop PT Green’s functions are related by the optical
theorem to precisely identifiable and very special parts of two different on-shell processes, the one-loop process qq̄ → gg
and the tree-level process qq̄ → ggg. In particular, the two-particle Cutkosky cuts of the two-loop PT self-energy

2



are related to the PT rearranged s-channel part of the one-loop qq̄ → gg, while, at the same time, the three-particle
Cutkosky cuts of the same quantity are related to the PT rearranged s-channel part of the tree-level qq̄ → ggg; the
latter is the exact analogue of the PT rearranged s-channel part of the tree-level qq̄ → gg, already studied in the
literature cited above.

The paper is organized as follows: In section II we present a brief overview of the one-loop PT algorithm, and
discuss the most characteristic properties of the one-loop PT effective Green’s functions. Here we follow the original
PT formulation [2,3], and postpone the overview of the one-loop absorptive PT construction [13,14] until section
V. In section III we present the full two-loop construction. This section contains three sub-sections, where we deal
separately with the one-particle reducible graphs, the two-loop quark-gluon vertex, and the two-loop gluon self-energy.
In the second sub-section we use at intermediate steps various results for the one-loop three-gluon vertex which are
derived in section VI, and are more naturally integrated in the analysis presented there. Section III contains the main
results of this paper; a major highlight is the proof that the correspondence between the PT and the Background Field
Method Feynman gauge (BFMFG) persists at two-loops. In section IV we carry out the renormalization program in
detail. We show that the two-loop PT Green’s function can be renormalized by judiciously rearranging the existing
counterterms, and that this procedure respects the correspondence between PT and BFMFG established in the
previous section. In section V we present the general formalism and methodology of the absorptive PT construction;
this second derivation is completely independent of the first, but at the same time is deeply connected to it. In this
section we first derive various formulas which will be used in the next section, and present a thorough overview of
the one-loop case. In section VI we present the two-loop absorptive derivation. There are two sub-sections: the first
one contains a detailed discussion of the one-loop process qq̄ → gg, and its rôle in enforcing the unitarity of the
individual two-loop PT Green’s functions; the second sub-section contains the study of the PT rearranged tree-level
process qq̄ → ggg, which demonstrates the crucial function of this process in realizing the aforementioned unitarity
properties. Finally, in section VII we present our conclusions, and discuss possible connections with other work as
well as future applications.

II. OVERVIEW OF THE ONE-LOOP CASE

In this section we briefly review the one-loop PT construction and establish some useful notation.

The fundamental tree-level three-gluon vertex Γ
(0)
αµν(q, p1, p2) is given by the following manifestly Bose-symmetric

expression (all momenta are incoming, i.e. q + p1 + p2 = 0)

Γ(0)
αµν(q, p1, p2) = (q − p1)νgαµ + (p1 − p2)αgµν + (p2 − q)µgαν . (2.1)

Γ
(0)
αµν(q, p1, p2) may be split into two parts [29]

Γ(0)
αµν(q, p1, p2) = Γ

(0)
Fαµν(q, p1, p2) + Γ

(0)
Pαµν(q, p1, p2) , (2.2)

with

Γ
(0)
Fαµν(q, p1, p2) = (p1 − p2)αgµν + 2qνgαµ − 2qµgαν ,

Γ
(0)
Pαµν(q, p1, p2) = p2νgαµ − p1µgαν . (2.3)

The vertex Γ
(0)
Fαµν(q, p1, p2) is Bose-symmetric only with respect to the µ and ν legs. The first term in Γ

(0)
Fαµν is a

convective vertex describing the coupling of a gluon to a scalar field, whereas the other two terms originate from gluon

spin or magnetic moment. Γ
(0)
Fαµν(q, p1, p2) coincides with the BFMFG bare vertex involving one background (q) and

two quantum (p1,p2) gluons [11]. Evidently the above decomposition assigns a special rôle to the q-leg, and allows

Γ
(0)
Fαµν to satisfy the Ward identity

qαΓ
(0)
Fαµν(q, p1, p2) = (p2

2 − p2
1)gµν , (2.4)

where the right hand-side (RHS) is the difference of two-inverse propagators in the FG, and vanishes “on shell”,
i.e. when p2

1 = p2
2 = 0. As has been explained in detail in [13,14], and as we will discuss extensively later on, the

splitting of Γ
(0)
αµν(q, p1, p2) into Γ

(0)
Fαµν(q, p1, p2) and Γ

(0)
Pαµν(q, p1, p2) given in Eq. (2.2) has a natural interpretation

in the context of the tree-level process q(P )q̄(P ′) → g(p1) + g(p2) (annihilation channel), leading to an interesting
connection with the optical theorem.
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Consider next the S-matrix element for the quark (q)-antiquark (q̄) elastic scattering process q(P )q̄(P ′) → q(Q)q̄(Q′)
in QCD; we set q = P ′ − P = Q′ − Q, and s = q2 is the square of the momentum transfer. One could equally well
study the annihilation channel, in which case s would be the centre-of-mass energy. We will work in the RFG; this
constitutes no loss of generality, as long as one studies the entire gauge-independent process. It is a straightforward
but tedious exercise to convince one-self that through pinching, i.e. by simply exploiting the fundamental WI of Eq.
(2.10), one can arrive at the set of diagrams of the RFG starting from the set of diagrams at any other value of ξ (see
for example [30]), or even from the diagrams corresponding to non-covariant gauge-fixing schemes [31].

Let us define

tµν(q) = q2gµν − qµqν , (2.5)

d(q) =
−i

q2
, (2.6)

S0(p) =
i

6p − m
, (2.7)

ρµν(p) = γµS0(p)γν . (2.8)

tµν(q) is the dimensionful transverse tensor, and S0(p) is the tree-level quark propagator. In what follows we will

use the short-hand notation [dk] = µ2ǫ ddk
(2π)d with d = 4 − 2ǫ the dimension of space-time and µ the ’t Hooft mass.

Furthermore we define the scalar quantities

J1(q, k) = g2CA[k2(k + q)2]−1 ,

J2(q, k) = g2CA[k4(k + q)2]−1 ,

J3(q, ℓ, k) =
i

2
g2CA[k2(k + ℓ)2(k + ℓ − q)2]−1 , (2.9)

where CA is the Casimir eigenvalue of the adjoint representation ( CA = N for SU(N)). The quantities J2(q, k) and
J3(q, ℓ, k) will be used in later sections.

We then implement the vertex decomposition of Eq.(2.2) inside the non-Abelian one-loop quark-gluon vertex graph

of Fig.1a, to be denoted by Γ
(1),nab
α (Q, Q′), where now p1µ = −kµ, p2ν = (k − q)ν . The Γ

(0)
Pαµν(q, p1, p2) term triggers

the elementary Ward identity

6k = (6k+ 6Q − m) − (6Q − m) ; (2.10)

thus, a self-energy like piece is generated (Fig.1c), which is to be alloted to the conventional self-energy. In particular,

Γ(1),nab
α (Q, Q′) = Γ̂(1),nab

α (Q, Q′) +
1

2
V

(1)
Pασ(q)γσ

+X
(1)
1α (Q, Q′)(6Q′ − m) + (6Q − m)X

(1)
2α (Q, Q′) , (2.11)

where

Γ̂(1),nab
α (Q, Q′) =

∫
[dk]J1(q, k)Γ

(0)
Fαµν(q,−k, k − q)ρµν(Q′) ,

V
(1)
Pασ(q) = 2

∫
[dk]J1(q, k) gασ ,

X
(1)
1α (Q, Q′) =

∫
[dk]J1(q, k)γαS0(Q

′) ,

X
(1)
2α (Q, Q′) =

∫
[dk]J1(q, k)S0(Q

′)γα . (2.12)

The terms in the second line on the RHS of Eq.(2.11) vanish for on-shell external fermions. The (dimension-less)

self-energy-like contribution 1
2 V

(1)
Pασ(q), together with another such contribution arising from the mirror vertex (not

shown), after trivial manipulations gives rise to the dimensionful quantity

Π
(1)
Pαβ(q) = V

(1)
Pασ(q)tσβ(q) . (2.13)

4



Π
(1)
Pαβ(q) will be added to the conventional one-loop two-point function Π

(1)
αβ(q), to give rise to the the PT one-loop

gluon self-energy Π̂
(1)
αβ(q):

Π̂
(1)
αβ(q) = Π

(1)
αβ(q) + Π

(1)
Pαβ(q) . (2.14)

In particular, suppressing color indices throughout, we have that Π
(1)
αβ(q) is given by the graphs of Fig 2a and Fig 2b,

namely

Π
(1)
αβ(q) =

1

2

∫
[dk]J1(q, k)Lαβ(q, k) , (2.15)

where

Lαβ(q, k) ≡ Γ(0)σρ
α (q, k,−k − q)Γ

(0)
βσρ(q, k,−k − q) − 2kα(k + q)β , (2.16)

and thus the PT one-loop gluon self-energy Π̂
(1)
αβ(q) (Fig.2) assumes the closed form [3]

Π̂
(1)
αβ(q) =

1

2

∫
[dk]J1(q, k)L̂αβ(q, k) , (2.17)

with

L̂αβ(q, k) ≡ Γ
(0)σρ
Fα (q, k,−k − q)Γ

(0)
Fβσρ(q, k,−k − q) − 2(2k + q)α(2k + q)β . (2.18)

Notice that in general both Π
(1)
αβ(q) and Π

(1)
Pαβ(q) on the RHS of Eq.(2.14) depend explicitly on the GFP in such a

way as to give an GFP-independent sum.
In addition, gauge-invariance is encoded in the WI

qαΠ
(1)
αβ(q) = qαΠ̂

(1)
αβ(q) = 0 . (2.19)

The following important points have been discussed in detail in the literature (i) Π̂αβ(q) is independent of the
gauge-fixing parameter in any gauge-fixing scheme. (ii) As happens in QED for the photon self-energy [32], the

gluon self-energy Π̂
(1)
αβ(q) captures the leading logarithms of the theory at that order [1,2] ; therefore the coefficient

in front of the single logarithm coming from Π̂
(1)
αβ(q), coincides with the first coefficient of the QCD β function [33].

(iii) Π̂
(1)
αβ(q) can be Dyson resumed, following the diagrammatic algorithm presented in [12]. (iv) The combination

αeff (q, µ) ∼ g2(µ)∆̂(q/µ), where ∆̂(q/µ) = [1 − Π̂(1)(q/µ)]−1 is a renormalization-group-invariant quantity, and
constitutes the non-abelian analogue of the QED concept of an effective charge [1,2,17]. Additional properties for
the gluon two-point function have been presented in the literature for the case of non-abelian gauge theories with
Higgs mechanism [4,6,12–15], and the (non-renormalizable) Kunimasa-Goto-Slavnov-Cornwall [34] massive Yang-Mills
model [35].

The PT quark-gluon vertex Γ̂
(1)
α (Q, Q′) is the sum of the non-abelian and abelian one-loop graphs, shown in

Fig.3a and Fig.3b, which we will denote by Γ̂
(1),nab
α (Q, Q′) and Γ̂

(1),ab
α (Q, Q′), respectively. In addition to being

GFP-independent, by virtue of Eq. (2.4) Γ̂
(1)
α (Q, Q′) satisfies the following QED-like WI

qαΓ̂(1)
α (Q, Q′) = Σ̂(1)(Q) − Σ̂(1)(Q′), (2.20)

where Σ̂(1) is the PT one-loop quark self-energy, which coincides with the conventional one computed in the RFG.
[30].

Finally, the PT one-loop n-point functions coincide with those computed in the BFMFG (“tilded” quantities) [11]
, i.e.

Π̂
(1)
αβ(q) = Π̃

(1)
αβ(q, ξQ = 1) (2.21)

Γ̂(1)
α (Q, Q′) = Γ̃(1)

α (Q, Q′, ξQ = 1) (2.22)

Σ̂(1)(Q) = Σ̃(1)(Q, ξQ = 1) = Σ(1)(Q, ξ = 1) (2.23)

In addition, exactly analogous properties have been established for the one-loop gluon three-point function [3] and
four-point function ( [36] and second paper in [11]).
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III. THE FULL TWO-LOOP CONSTRUCTION

Here we present the full two-loop construction. The basic observation is the following: if one carries out the
decomposition for the bare three-gluon vertex described in Eq. (2.2) to all external vertices (to be defined in sub-
section IIIB) appearing in the Feynman diagrams contributing to the two-loop S-matrix element for the process
qq̄ → qq̄, then two-loop sub-amplitudes will emerge, with precisely the same properties as the one-loop PT effective
Green’s functions.

Throughout this section we have used the following formulas, valid in dimensional regularization:

∫
[dk]

k2
= 0 ,

∫
[dk]

kαkβ

k4
=

(
1

4 − 2ǫ

)∫
[dk]

k2
= 0 ,

∫
[dk](2k + q)αJ1(q, k) = 0 ,

∫
[dk]

lnN (k2)

k2
= 0 N = 0, 1, 2, ... (3.1)

The last relation guarantees the absence of tadpole and seagull contributions order by order in perturbation theory.
In the two-loop calculation presented in this paper only the case N = 1 is relevant. Notice however that nowhere
have we used the slightly subtler dimensional regularization result

∫
[dk]

k4
= 0 , (3.2)

which is often employed in the literature. We also use the group theoretical identities

[τa, τb] = ifabcτc ,

faexf bex = CAδab ,

faxmf bmnf cnx =
1

2
CAfabc , (3.3)

where τa are the gauge group generators in the fundamental representation; in the case of QCD τa = λa/2, where λa

are the Gell-Mann matrices.
The identity

Γ(0)
αµνΓ(0)βµν = Γ

(0)
FαµνΓ

(0)βµν
F + Γ

(0)
PαµνΓ

(0)βµν
F + Γ

(0)
FαµνΓ

(0)βµν
P + Γ

(0)
PαµνΓ

(0)βµν
P

= Γ
(0)
FαµνΓ

(0)βµν

F + Γ
(0)
PαµνΓ(0)βµν + Γ(0)

αµνΓ
(0)βµν

P − Γ
(0)
PαµνΓ

(0)βµν

P (3.4)

may also be found useful at intermediate steps.
The two-loop integration symbol

(µ2ǫ)2
∫ ∫

ddk

(2π)d

ddℓ

(2π)d
(3.5)

will be suppressed throughout. We define the following quantities

iI1 = g4C2
A[ℓ2(ℓ − q)2k2(k + ℓ)2(k + ℓ − q)2]−1 ,

iI2 = g4C2
A[ℓ2(ℓ − q)2k2(k + q)2]−1 ,

iI3 = g4C2
A[ℓ2(ℓ − q)2k2(k + ℓ)2]−1 ,

iI4 = g4C2
A[ℓ2ℓ2(ℓ − q)2k2(k + ℓ)2]−1 ,

iI5 = g4C2
A[ℓ2k2(k + q)2]−1 , (3.6)

which will be used extensively in what follows.

6



A. The one-particle reducible graphs

As has been explained in detail in [12] the resummability of the one-loop PT self-energy requires the conversion

of one-particle reducible (1PR) strings of conventional self-energies Π(1) into strings containing PT self-energies Π̂(1).
The process of converting conventional strings into PT strings gives rise to left-overs, which are effectively one-particle
irreducible (1PI), and must be alloted to the genuine 1PI two-loop structures. Various self-consistency arguments
supporting the validity of this method have been presented in the literature [37]; as we will see at the end of the third
sub-section, the extension of the PT to two loops provides the ultimate test for the self-consistency of this procedure.
It is straightforward to establish that the set of 1PI graphs (Fig.4a - Fig.4d) may be converted into the equivalent set
of 1PI PT graphs (Fig.4e - Fig.4h), up to some missing pieces:

(4a) = (4e) − R
(2)
P αβ(q) (3.7)

(4b) + (4c) + (4d) = (4f) + (4g) + (4h) − F
(2)
P α(Q, Q′) (3.8)

with

iR
(2)
P αβ(q) = Π(1)

αρ (q)V
(1)ρ
Pβ (q) +

3

4
Π

(1)
P αρ(q)V

(1)ρ
P β (q) , (3.9)

F
(2)
P α(Q, Q′) = Π

(1)β
Pα (q)d(q)Γ̂

(1)
β (Q, Q′) + Y

(2)
Pα (Q, Q′) , (3.10)

with

Y
(2)
Pα (Q, Q′) ≡ X

(1)
1α (Q, Q′)Σ(1)(Q) + X

(1)
2α (Q, Q′)Σ(1)(Q′) . (3.11)

The above terms originate from carrying out the vertex decomposition of Eq. (2.2) at all conventional 1PI diagrams.

For example, the term Y
(2)
Pα (Q, Q′) (Fig 5b) originates after imposing Eq. (2.2) on the diagram of Fig.5a ; in addition,

one obtains the PT counterpart of Fig.5a, namely Fig.5aF , and the graph of Fig.5c, which is part of Fig.4f. The terms

R
(2)
P αβ(q) has been derived in detail in [12]. Notice that

R
(2)
P αβ(q) = I2

[
Lαβ(q, k) + 3tαβ(q)

]
. (3.12)

B. The two-loop vertex

In this sub-section we will demonstrate the construction of the two-loop PT quark-gluon vertex Γ̂
(2)
α (Q, Q′), which

turns out to have the exact same properties as its one-loop counterpart Γ̂
(1)
α (Q, Q′). At the same time we will determine

the two-loop propagator-like contributions V
(2)
Pασγσ, which will be subsequently converted into Π

(2)
Pασ, i.e. the two-loop

version of Π
(1)
Pασ of Eq.(2.13). In addition, out of this procedure the terms Y

(2)
Pα (Q, Q′) of Eq.(3.11) will emerge.

The construction proceeds as follows: The Feynman graphs contributing to Γ
(2)
α (Q, Q′) can be classified into two

sets. (a) those containing an “external” three-gluon vertex i.e. a three-gluon vertex where the momentum q is
incoming, as shown Fig.6 and Fig.7, (b) those which do not have an “external” three-gluon vertex. This latter set
contains either graphs with no three gluon vertices (abelian-like), or graphs with three-gluon vertices whose all three
legs are irrigated by virtual momenta, i.e. q never enters alone into any of the legs; such would be for example the
abelian graph of Fig.3b, if one was to insert a one-loop self-energy correction to the internal gluon line [38]). Of
course, all three-gluon vertices appearing in the computation of the one-loop S-matrix are external, and so are those
appearing in the 1PR part of the two-loop S-matrix (see previous section). Then one carries out the decomposition
of Eq. (2.2) to the external three-gluon vertex of all graphs belonging to set (a), leaving all their other vertices
unchanged, and identifies the propagator-like pieces generated at the end of this procedure.

The calculation is straightforward, but lengthy; it is more economical to identify the sub-structure of the one-loop

three-gluon vertex Γ
(1)
αµν(q, p1, p2) (Fig K) nested inside the two-loop graph, Fig(Na1), and use the results presented

in section VI, Eq. (6.35). To that end we must set p1 → −ℓ and p2 → ℓ − q, and J3(q,−p1, k) → J3(q, ℓ, k), and

rewrite the Γ
(1)
P αµν of Eq.(6.35) as follows
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Γ
(1)
P αµν(q,−ℓ, ℓ − q) =

[
J3 [Γ(0)

νρα(ℓ − q, k,−k − ℓ + q) + kνgαρ]ℓ
ρ −

i

2
V

(1)
Pαν(q)

]
ℓµ

+

[
J3 [Γ(0)

µαρ(−ℓ, k + ℓ,−k) + kµgαρ](ℓ − q)ρ −
i

2
V

(1)
Pαµ(q)

]
(ℓ − q)ν

−

[
J3 [Γ(0)

νµα(ℓ − q, k,−k − ℓ + q) + kνgαµ] +
1

2
d(q)qαV

(1)
Pµν(q)

]
ℓ2

−

[
J3 [Γ(0)

µαν(−ℓ, k + ℓ,−k) + kµgαν ] −
1

2
d(q)qαV

(1)
Pµν(q)

]
(ℓ − q)2

(3.13)

Thus we have (we omit the external spinors, and use Q′ = Q + q)

(6a1) = (6aF
1 ) +

1

2
Π

(1)β
Pα (q)d(q)Γ

(1),nab

β (Q, Q′)

+
1

2

[
2I2gασ − I1[Γ

(0)
ρσα(−k,−ℓ, k + ℓ) + kσgαρ](ℓ − q)ρ

]
γσ

+D1 + D2 + D3 + D4 (3.14)

(6b1) = (6bF
1 ) +

1

4
I3gασγσ − D1 + D5 + D6 (3.15)

(6b1)
′ = (6bF

1 )′ +
1

4
I3gασγσ − D2 + D7 + D8 (3.16)

(6c1) = (6cF
1 ) +

1

2
I4Lασ(ℓ, k)γσ (3.17)

(7ri) = (7rF
i ) +

1

2
Π

(1)β
Pα (q)d(q)Γ

(1),ab

β (Q, Q′) +
1

2
Y

(2)
Pα (Q, Q′)

−(D3 + D4 + D5 + D6 + D7 + D8) (3.18)

where

D1 = −I3[Γ
(0)
αµν(ℓ, k,−ℓ − k) + kνgαµ]{γνS(Q + ℓ + k)γµ} ,

D2 = I3[Γ
(0)
ανµ(ℓ,−ℓ − k, k) + kµgαν ]{γνS(Q′ − ℓ − k)γµ} ,

D3 = −
1

2
I5qα{γµS(Q + ℓ)γµ} ,

D4 =
1

2
I5qα{γµS(Q′ + ℓ)γµ} ,

D5 = −I5{γαS(Q − k)γµS(Q − k − ℓ)γµ} ,

D6 = I5{γαS(Q − k)γµS(Q + ℓ)γµ} ,

D7 = −I5{γµS(Q − k − ℓ)γµS(Q − k)γα} ,

D8 = I5{γµS(Q + ℓ)γµS(Q − k)γα} , (3.19)

Before we proceed the following comments are warranted:
(i) In the above formulas appropriate shiftings and relabellings of the integration momenta have been carried out,

in order for the answer to be expressed in terms of the five basic denominators Ii defined in Eq.(3.6).
(ii) The topologies of D1, D2, D3, D4, D5, and D6 are shown in Fig.6a4, Fig.6a5, Fig.6a6, Fig.6a7, Fig.6b4, and

Fig.6b5, respectively. (6b1)
′ corresponds to the figure obtained from Fig.6b1 by drawing the internal three-gluon

vertex on the other leg of the external three-gluon vertex, i.e. the leg which hooks onto the external spinor carrying
momentum Q′ (not shown); D7 (shown in Fig.7h) and D8 (not shown) are the analogues of D5 and D6 for the (6b1)

′

topology. Furthermore, the second and third term on the RHS of Eq.(3.14) are depicted in Fig.6a2 and Fig.6a3

respectively, the second term on the RHS of Eq.(3.15) is shown in Fig.6b2, the second term on the RHS of Eq.(3.17)
is shown in Fig.6c2, and the second term on the RHS of Eq.(3.18) in Fig.7ca.

(iii) The graph in Fig.7r2 is accompanied by the graph with the abelian vertex correction on the other side (not
shown). The graph containing the bare four-gluon vertex is not shown either.
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(iv) Notice that the propagator-like part in Fig.7a is connected to the rest of the graph by a factor gαβ; since this
term will become part of the 1PR graph of Fig. 4c it must be supplemented a longitudinal component qαqβ . This
contribution is proportional to the terms shown in Fig.7a6 and Fig.7a7 (remember that the latter are proportional to
qα), but notice that the color factors are different; the terms shown in Fig.6a6 and Fig.6a7 are proportional to C2

A,
whereas the term missing in Fig.(Sa) will have both C2

A and CACf , where Cf is the Casimir for the τα representation
of the (external) quarks. It is easy to show that these terms vanish when the external fermions are on shell, which is
our case. In order to prove that one does not have to assume that qα hits a conserved current on the other side of the
graph; instead one notices that the terms in question are proportional to [Σ(1)(6Q, m) − Σ(1)(6Q′, m)], which vanishes
when 6Q = 6Q′ = m.

(v) Notice the appearance of propagator-like terms (Fig.6a3, Fig.6b2, and Fig.6c2)
Adding Eq.(3.14) – Eq.(3.18), by parts, and using Eq.(3.11), we find

Γ(2)
α (Q, Q′) =

1

2
F

(2)
P α(Q, Q′) +

1

2
V

(2)
Pασγσ + Γ̂(2)

α (Q, Q′) (3.20)

with

V
(2)
Pασ(q) = I4Lασ(ℓ, k) + (2I2 + I3)gασ − I1

[
kσgαρ + Γ(0)

ρσα(−k,−ℓ, k + ℓ)

]
(ℓ − q)ρ (3.21)

The interpretation of the three terms appearing on the RHS of Eq.(3.20) is as follows:

(i) The term 1
2F

(2)
P α(Q, Q′) is half of the vertex-like part necessary to cancel the corresponding term appearing in

Eq.(3.8), during the conversion of conventional 1PR graphs into their PT counterparts. The other half will come from
the mirror vertex (not shown).

(ii) 1
2V

(2)
Pασγσ is the total propagator-like term originating from the two-loop quark-gluon vertex; together with the

equal contribution from the mirror set of two-loop vertex graphs (not shown) will give rise to the self-energy term

Π
(2)
Pαβ(q) = V

(2)
Pασ(q)tσβ(q), (3.22)

which will be part of the effective two-loop PT gluon self-energy, to be constructed in the next sub-section

(iii) Γ̂
(2)
α (Q, Q′) is the PT two-loop quark-gluon vertex; it coincides with the corresponding two-loop quark-gluon

vertex computed in the BFMFG, i.e.

Γ̂(2)
α (Q, Q′) = Γ̃(2)

α (Q, Q′, ξQ = 1) (3.23)

as happens in the one-loop case , Eq.(2.22). Either by virtue of the above equality and the formal properties of the
BFM, or by means of an explicit diagrammatic calculation where one acts with qα on individual diagrams, one can

establish that Γ̂
(2)
α (Q, Q′) satisfies the following QED-like WI

qαΓ̂(2)
α (Q, Q′) = Σ̂(2)(Q) − Σ̂(2)(Q′) , (3.24)

which is the exact two-loop analogue of Eq.(2.20). Σ̂(2)(Q) is the two-loop PT fermion self-energy which satisfies

Σ̂(2)(Q) = Σ̃(2)(Q, ξQ = 1) = Σ(2)(Q, ξ = 1) (3.25)

Again, this is the precise generalization of the one-loop result of Eq.(2.23). At this point this result comes as no
surprise, since all three gluon vertices appearing in the Feynman graphs contributing to Σ(2)(Q, ξ) are internal;
therefore, at ξ = 1 there will be no pinching [39].

We emphasize that the above result is non-trivial; indeed, even if one accepts that the appearance of the first and
third term in Eq.(3.20), for example, could be forced, there is no a-priory reason why the remainder should turn out
to be purely self-energy-like. Notice also that in deriving the above results no integrations (or sub-integrations) over
virtual momenta have been carried out.

C. The two-loop self-energy

The construction of Π̂
(2)
αβ(q) proceeds as follows: To the conventional two-loop gluon self-energy Π

(2)
αβ(q) we add two

additional terms; (i) the propagator-like term Π
(2)
Pαβ(q) derived in the previous sub-section, Eq.(3.22), and (ii) the
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propagator-like part −R
(2)
P αβ(q) given in Eq.(3.9), stemming from the conversion of the conventional string into a PT

string; this term must be removed from the 1PR reducible set and be alloted to Π̂
(2)
αβ(q), as described in [12]. Thus,

Π̂
(2)
αβ(q) reads

Π̂
(2)
αβ(q) = Π

(2)
αβ(q) + Π

(2)
Pαβ(q) − R

(2)
P αβ(q) . (3.26)

Up to minor notational modifications, this last equation is in fact identical to Eq.(3.5) in the second paper of [12],

except that now we know the exact closed expression for the term Π
(2)
Pαβ(q).

It is a lengthy but relatively straightforward exercise to establish that in fact

Π̂
(2)
αβ(q) = Π̃

(2)
αβ(q, ξQ = 1) (3.27)

To see that in detail, we simply start out with the diagrams contributing to Π
(2)
αβ(q) and convert them into the

corresponding diagrams contributing to Π̃
(2)
αβ(q, ξQ = 1); in doing so we only need to carry out algebraic manipulations

in the numerators of individual Feynman diagrams, and the judicious use of the identity of Eq.(3.4). The individual
diagrams yield:

(8a) = (9a) + (9m) + (9n) + (9o) + (9p) + (9q) + (9r) + (9s)

+I1

[
ℓβℓρkσΓ(0)

ασρ(q, k + ℓ − q,−k − ℓ) + (ℓ · q − ℓ2)(k + ℓ − q)α(
3

2
ℓ − q)β

]

+I1[kσgαρ + Γ(0)
ρσα(−k,−ℓ, k + ℓ)](l − q)ρtσβ(q) − (2I2 + I3)tαβ(q)

+I2

[
3

8
tαβ(q) +

9

16
qαqβ

]
−

9

2
I3

[
ℓα(ℓ − q)β + (ℓ · q − ℓ2)gαβ

]

+I2[Lαβ(q, k) + 2kα(k + q)β ] − I3[Lαβ(ℓ, k) + 2kα(k + ℓ)β ]

−I3

[
3ℓαℓβ −

21

8
qαℓβ + qαqβ

]

(8b) + (8c) = (9b) + (9c) +
9

2
I3

[
ℓα(ℓ − q)β + (ℓ · q − ℓ2)gαβ

]

(8d) = (9d) +
21

8
I2tαβ(q)

(8e) + (8f) = (9e) + (9f) − I1ℓβℓρkσΓ(0)
ασρ(q, k + ℓ − q,−k − ℓ)

−I2

[
2kα(k + q)β +

1

2
qαqβ

]
+ I3

[
2kα(k + ℓ)β +

1

4
qαℓβ

]

(8g) + (8h) = (9g) + (9h) + I3Lαβ(ℓ, k) − I4Lασ(ℓ, k)tβσ(q)

(8i) = (9i) − I1 (ℓ · q − ℓ2)(k + ℓ − q)α(
3

2
ℓ − q)β −

1

16
I2qαqβ +

1

8
I3qαℓβ

(8j) + (8k) = (9j) + (9k) + I3[3ℓαℓβ − 3ℓαqβ + qαqβ ]

(8ℓ) = (9ℓ) (3.28)

Adding the above equations by parts we find

Π
(2)
αβ(q) = Π̃

(2)
αβ(q, ξQ = 1) + I2

[
Lαβ(q, k) + 3tαβ(q)

]
− I4Lασ(ℓ, k)tβσ(q)

+I1

[
kσgαρ + Γ(0)

ρσα(−k,−ℓ, k + ℓ)

]
(l − q)ρtβσ(q) − (2I2 + I3)tαβ(q)

(3.29)

Using Eq.(3.21) and Eq.(3.12), Eq.(3.29) becomes
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Π
(2)
αβ(q) = Π̃

(2)
αβ(q, ξQ = 1) − Π

(2)
P αβ(q) + R

(2)
P αβ(q). (3.30)

From Eq.(3.30) and Eq.(3.26) we arrive immediately to Eq.(3.27). Again, no integrations over virtual momenta need
be carried out, except for identifying vanishing contributions by means of the formulas listed in Eq.(3.1).

Since we have used dimensional regularization throughout and no integrations have been performed the results
of this section do not depend on the value d of the space-time; in particular they are valid for d = 3, which is of
additional field-theoretical interest [40]. Clearly, when d → 4 the renormalization program needs be carried out; this
will be the subject of the next section.

IV. RENORMALIZATION

In this section we will carry out the renormalization for the two-loop PT Green’s functions constructed in the
previous section. There is of course no doubt that if one supplies the correct counterterms within the conventional
formulation, the total S-matrix will continue being renormalized, even after the PT rearrangement of the (unrenormal-
ized) two-loop Feynman graphs. The point of this section is to show a stronger version of renormalizability, i.e. that
the new Green’s function constructed through the PT rearrangement are individually renormalizable. The general
methodology is as follows: We start out with the counterterms which are necessary to renormalize individually the
conventional Green’s functions contributing to the two-loop S-matrix. Then we will show that by simply rearranging
them, following the PT rules, we will arrive at renormalized two-loop PT Green’s functions.

We will use the following notation: Z1 is the vertex renormalization constant for the conventional quark-gluon vertex
Γα, Z2 is the wave-function renormalization for the (external) quarks, ZA the gluon wave-function renormalization

corresponding to the conventional gluon self-energy Π, ẐA the gluon wave-function renormalization corresponding to
the PT gluon self-energy Π̂, Z3 is the vertex renormalization constant for the conventional one-loop three-gluon vertex

Γ
(1)
αµν , and Z3F the vertex renormalization constant for the Γ

(1)
F αµν , Z̄2 is the ghost wave-function renormalization, and

Z̄1 the ghost-gluon vertex renormalization constant. Equivalently, one can carry out the renormalization program
using appropriately defined counter-terms. The corresponding counterterms, which, when added to the above n-loop

quantities render them UV finite, are, respectively K
(n)
1 , K

(n)
2 , K

(n)
A , K̂

(n)
A , K

(n)
3 , K

(n)
3F K̄

(n)
2 , and K̄

(n)
1 . In addition,

mass counterterms δm must be supplied if the quarks are considered to be massive. In a moment we will also introduce

the counterterm K
(n)
P , which renders V

(n)
P ultra-violet finite. Notice that because of the QED-like WI it satisfies Γ̂µ

becomes ultraviolet finite when the counterterm K2 is added to it. The Zs and the Ks are related as follows :

Zi = 1 +
∑

j=1

K
(j)
i i = 1, 2, 3

ZA = 1 +
∑

j=1

K
(j)
A

ẐA = 1 +
∑

j=1

K̂
(j)
A

Z̄i = 1 +
∑

j=1

K̄
(j)
i i = 1, 2

Zg = 1 +
∑

j=1

K(j)
g

δm =
∑

j=1

δm(j) (4.1)

We first begin with the 1PR part of the S-matrix. It is more convenient to work with dimension-less quantities; to

that end we define the dimension-less gluon self-energy Π(1) simply through Π
(1)
αβ = Π(1)tαβ . In order to renormalize

the extra pieces which must be alloted to the conventional 1PR graphs in order to convert them into their PT form,
i.e. the iRP + FP terms in Eq. (3.9) – Eq. (3.11), we must have (we use the supescript “R” to denote renormalizaed
quantities)

iR
(2)R
P + F

(2)R
P = Π(1)RV

(1)R
P +

3

4
V

(1)R
P V

(1)R
P + V

(1)R
P Γ̂(1)R + Y

(1)R
P

=
3

4
(K

(1)
P + V

(1)
P )2 + (Π(1) − K

(1)
A )(V

(1)
P + K

(1)
P )
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+(V
(1)
P + K

(1)
P )(Γ̂(1) + K

(1)
2 ) + (X

(1)
1 + X

(1)
2 )δm(1)

= iR
(2)
P + F

(2)
P + U

(2)
1 + U

(2)
2 (4.2)

with

U
(2)
1 = V

(1)
P

[
K

(1)
2 − K

(1)
A

]
+ K

(1)
P

[
Π(1) + Γ(1) + V

(1)
P

]
+ (X

(1)
1 + X

(1)
2 )δm(1)

U
(2)
2 = K

(1)
P

[
3

4
K

(1)
P + K

(1)
2 − K

(1)
A

]
. (4.3)

Thus, the terms U
(2)
1 and U

(2)
2 need be supplied. Notice that the terms contained in U

(2)
2 are momentum independent

(quadratic in the counterterms), whereas those contained in U
(2)
1 or momentum-dependent (linear in the counterterms).

The latter will cancel against parts of the one-loop counterterms appearing inside the two-loop expressions for the
conventional self-energy (Fig.10) and vertex (Fig.12), cancelling their sub-divergences. As for the former, they will
become part of the final renormalization counterterm of the two-loop PT self-energy, i.e. the counterterm necessary
for cancelling the remaining divergence, after the sub-divergences have been taken care of. Another way of saying
this is that, since the extra terms RP and FP will be alloted to the PT gluon-self-energy and vertex, so should the
counter-terms necessary to renormalize them.

We next show how the terms in U
(2)
2 are to be accounted for, and, at the same time, derive some useful relations

among the various counterterms. The QED-like WI of equations Eq. (2.20) and Eq. (3.24) relating Γ̂
(1)
α and Σ̂(1), and

Γ̂
(2)
α and Σ̂(2), respectively, imposes the following QED-like relation between the renormalization constants Ẑ1 and

Ẑ2, up to order g4:

Ẑ1 = Ẑ2 . (4.4)

In addition, from the WI of Eq. (6.36), we have to order g2 (at least)

Z3F = ZA . (4.5)

Notice also that Eq. (6.36) dictates that the ultraviolet-divergent part of Γ
(1)
F αµν is proportional to Γ

(0)
F αµν rather than

Γ
(0)
F αµν ; had it been the other way around there would be no longitudinal ultraviolet-divergent pieces on the RHS

of Eq. (6.36). As we will see, this “mismatch” will generate the pieces which in the BFM language give rise to the
gauge-fixing renormalization of the vertices (Fig.10a and Fig.10b)

Furthermore, the renormalization constants before and after the PT rearrangements are related to the gauge
coupling renormalization as follows:

Z2
g = Z2

1Z−2
2 Z−1

A

= Ẑ2
1 Ẑ−2

2 Ẑ−1
A

= Ẑ−1
A , (4.6)

where Eq. (4.4) has been used. After substituting the expressions given in Eq. (4.1) into Eq. (4.6) and equating
powers of the coupling constant g we arrive at the following relations for the corresponding counterterms

K̂
(1)
A = K

(1)
A − 2(K

(1)
1 − K

(1)
2 ) , (4.7)

K̂
(2)
A = K

(2)
A − 2(K

(2)
1 − K

(2)
2 ) + K

(1)
1 [3K

(1)
1 − 4K

(1)
2 − 2K

(1)
A ] + K

(1)
2 [2K

(1)
A + K

(1)
2 ] . (4.8)

Substituting the relations

K
(j)
1 =

1

2
K

(j)
P + K

(j)
2 , j = 1, 2 (4.9)

into the above equations we obtain

K̂
(1)
A = K

(1)
A − K

(1)
P , (4.10)

K̂
(2)
A = K

(2)
A − K

(2)
P + U

(2)
2 , (4.11)

K̂
(1)
A = −2K(1)

g . (4.12)
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Notice that if Z1 = Z2, or equivalently, K
(j)
P = 0, then ZA = ẐA, which is simply the QED case.

It is now clear what the rôle of the U
(2)
2 terms is; they must be added to the conventional two-loop self-energy

counterterm K
(2)
A and the part of the vertex counterterm corresponding to V

(2)
P ; these two counterterms are already

present, whereas the term U
(2)
2 must be borrowed from some other part of the S-matrix, in order for the initial

equation Eq. (4.6) to be enforced.

We next turn to the U
(2)
1 terms. We will show that they will cancel precisely against terms originating from the

rearrangement of the graphs shown in Fig.10 and Fig.12, in order to convert them into the graphs shown in Fig.11
and Fig.13. The former set contains the counterterms necessary for cancelling the one-loop sub-divergences inside the
conventional two-loop gluon self-energy and quark-gluon vertex, the latter the counterterms needed for the two-loop
PT gluon self-energy and quark-gluon vertex.

We begin with two-loop gluon self-energy shown in Fig.10. From the Slavnov-Taylor identity [28] we have that
[41,42]

Z3

ZA

=
Z̄1

Z̄2
, (4.13)

from which we obtain [43]

K
(1)
3 − K

(1)
A = K̄

(1)
1 − K̄

(1)
2 =

1

2
K

(1)
P . (4.14)

This relation is important for what follows.
Then we have for the graphs of Fig.10:

(10a) + (10b) = K
(1)
3

∫
[dk]J1(q, k)Γ(0)

αµνΓ
(0)
βµν

(10c) = (10c1) + (10c2)

(10d) + (10e) = K̄
(1)
1

∫
[dk]J1(q, k)kα(k + q)β

(10f) + (10g) = −K̄
(1)
2

∫
[dk]J1(q, k)kα(k + q)β (4.15)

with

(10c1) = −K
(1)
A

∫
[dk]J1(q, k)Γ(0)

αµνΓ
(0)
βµν

(10c2) = K
(1)
A

∫
[dk]J2(q, k)kµkσΓ(0)

αµνΓ
(0)
βσν ; (4.16)

J2 has been defined in Eq. (2.9). Thus, using Eq. (4.14) and Eq. (2.15) we obtain

[(10a) + (10b) + (10c1)] + [(10d) + (10f)] + [(10e) + (10g)] = K
(1)
P Π

(1)
αβ(q) (4.17)

Next, we write (10c2) as follows

(10c2) = (11a) + (11b) + (11c) − 2tασ(q)

∫
[dk]J2(q, k)kβkσ (4.18)

where

(11a) + (11b) = K
(1)
A

∫
[dk]J1(q, k)Γ

(0)
PαµνΓ

(0)µν

Fβ

(11c) = K
(1)
A

∫
[dk]J2(q, k)kµkσΓ

(0)
FαµνΓ

(0)σν

Fβ (4.19)

We next convert the renormalization constants for the conventional two-loop quark-gluon vertex Γ
(2)
α (Fig.12) into

those necessary for the PT 2-loop quark-gluon vertex Γ̂
(2)
α finite (Fig.13). We have:
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(12a) = K
(1)
3 Γ(1) = (K

(1)
3F +

1

2
K

(1)
P )Γ(1) = (13a) +

1

2
K

(1)
P Γ(1)

(12c) + (12d) = K
(1)
1 V

(1)
P + (13c) + (13d)

(12e) = −
1

2
K

(1)
2 V

(1)
P +

1

2
(X

(1)
1 + X

(1)
2 )δm(1) + (13e)

(12b) = −K
(1)
A

∫
[dk]J2(q, k)Γ(0)

ασνtσµ(k)ρµν(Q + k)

= −K
(1)
A

∫
[dk]J2(q, k)(Γ

(0)
Fασν + Γ

(0)
Pασν)tσµ(k)ρµν(Q + k)

= (13b) − K
(1)
A

∫
[dk]J2(q, k)tαµ(k)γµ

= (13b) −
1

2
K

(1)
A V

(1)
P + K

(1)
A tασ(q)

∫
[dk]J2(q, k)kβkσγβ

(4.20)

Notice that the last term on the RHS of Eq. (4.20), together with an equal term from the mirror vertex graphs (not

shown) will cancel against the last term in Eq.(4.18). Using that K
(1)
1 − 1

2K
(1)
2 = 1

2 (K
(1)
P + K

(1)
2 ) we finally arrive at

K(Fig.10) + 2K(Fig.12) = K(Fig.11) + 2K(Fig.13) + U
(1)
1 (4.21)

where the factors of 2 multiplying K(Fig.12) and K(Fig.13) account for the mirror vertex contributions. Evidently, the

PT rearrangement gives rise to a term U
(1)
1 , as announced.

The counterterms resulting from the above rearrangement are exactly those required to cancel all sub-divergences

inside Γ̂
(2)
α (Q, Q′); the latter coincide of course with the sub-divergences inside Γ̃

(2)
α (Q, Q′, ξQ = 1). To demonstrate

that the counterterms shown in Fig.13 are in fact identical to those obtained when carrying out the BFM renormal-
ization program as explained in [9], i.e. renormalizing only the background gluons, the external quarks, the coupling
constant g, and the GFP (ξQ), one may proceed as follows: (i) start with graph (13b), and separate the tσµ(k) into
the part proportional to gσµ and the part proportional to kσkµ; the second part is simply the gauge-fixing renor-
malization to the self-energy, as explained in [9]. (ii) Half of the piece proportional to gσµ must be added to (13a);

the latter is proportional to Γ(0). Using that K
(1)
3F = K

(1)
A (from Eq. (4.5)), the total contribution is proportional

to K
(1)
A (Γ(0) − Γ

(0)
F ) = K

(1)
A Γ

(0)
P , which is the contribution from the gauge-fixing renormalization of the elementary

BFM three-gluon vertex. (iii) The remaining half proportional to gσµ from step (i) must be split equally between
(13c) + 1

2 (13e) and (13d) + 1
2 (13e). Each of these two combinations will then give a contribution proportional to

K
(1)
1 − 1

2K
(1)
2 − 1

2K
(1)
A = − 1

2K̂
(1)
A + 1

2K
(1)
2 = K

(1)
g + 1

2K
(1)
2 , where Eq. (4.9), Eq. (4.10), and Eq. (4.12) have been

used in the last steps. The wave-function renormalization for the external fermions will then cancel 1
2K

(1)
2 , and K

(1)
g

will be re-absorbed into the gauge-coupling renormalization.
Notice that the correspondence between the PT and the BFMFG Green’s functions established in the previous

section persists after renormalization; the resulting expressions are the BFMFG renormalized quantities, as derived
in [9]. An immediate consequence of this [9] is that the coefficient multiplying the logarithm of the PT two-loop
self-energy is equal the the two-loop coefficient of the QCD β function [41,42], i.e. (34/3)C2

A. It is also interesting to
see how the PT rearrangement leads into the interpretation of counterterms generated from the QCD Lagrangian in
the renormalized Feynman-gauge [42], as GFP renormalizations of the BFM Lagrangian [9] .

V. THE ABSORPTIVE CONSTRUCTION: GENERAL FORMALISM

In the next two sections we will show in detail how one may construct the two-loop PT effective Green’s functions
using unitarity and analyticity arguments. This derivation generalizes the method first presented in [13] and [14]
for the one-loop case, and constitutes a non-trivial self-consistency check for the entire approach. In this section we
will set up the formalism, and discuss in detail the one-loop case, which will serve as the general paradigm for the
two-loop generalization, to be presented in the following section. Apart from some minor modifications, in the next
two sections we will adopt the notation used in [13].

The optical theorem for the case of forward scattering assumes the form
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ℑm〈a|T |a〉 =
1

2

∑

i

(2π)4δ(4)(pa − pi)〈i|T |a〉
∗
〈i|T |a〉 , (5.1)

where the sum
∑

i should be understood to be over the entire phase space of all allowed on-shell intermediate states
i. After expanding the T matrix in powers of g, i.e. T =

∑
n=2 T [n], we have that

ℑm〈a|T [n]|a〉 =
1

2

∑

i

(2π)4δ(4)(pa − pi)
∑

k

〈i|T [k]|a〉
∗
〈i|T [n−k]|a〉 . (5.2)

In particular, if in the initial states we have a q-q̄ pair, i.e. |a〉 = |qq̄〉 we have for the first non-trivial orders, n = 4
and n = 6

ℑm〈qq̄|T [4]|qq̄〉 =
1

2

(
1

2!

)∫
(dPS)2g〈2g|T [2]|qq̄〉

∗
〈2g|T [2]|qq̄〉 , (5.3)

and

ℑm〈qq̄|T [6]|qq̄〉 =
1

2

(
1

3!

)∫
(dPS)3g〈3g|T [2]|qq̄〉

∗
〈3g|T [2]|qq̄〉

+
1

2

(
1

2!

)∫
(dPS)2g2ℜe

(
〈2g|T [4]|qq̄〉

∗
〈2g|T [2]|qq̄〉

)
, (5.4)

respectively [44]. (dPS)2g and (dPS)3g stand for the two- and three-body phase space for mass-less gluons, respec-
tively. Next we introduce the short-hand notation

A[n] ≡ ℑm〈qq̄|T [n]|qq̄〉 ,

T [k]
m ≡ 〈mg|T [k]|qq̄〉 m, k = 2, 3, ... (5.5)

Then, Eq. (5.3) and Eq. (5.4) become respectively

A[4] =
1

2

(
1

2!

)∫
(dPS)2gT

[2]
2

∗
T

[2]
2 , (5.6)

A[6] =
1

2

(
1

3!

)∫
(dPS)3gT

[3]
3

∗
T

[3]
3 +

1

2

(
1

2!

)∫
(dPS)2g2ℜe

(
T

[4]
2

∗
T

[2]
2

)

= A
[6]
3 + A

[6]
2 . (5.7)

The quantities defined above have the explicit form

A[4] =
1

2

(
1

2!

)
[T

[2]
2s + T

[2]
2t ]ab

µνPµµ′

(p1)P
νν′

(p2)[T
[2]
2s + T

[2]
2t ]ab∗

µ′ν′ , (5.8)

A
[6]
3 =

1

2

(
1

3!

)
[T

[3]
3s + T

[3]
3t ]abc

µνρP
µµ′

(p1)P
νν′

(p2)P
ρρ′

(p3)[T
[3]
3s + T

[3]
3t ]abc∗

µ′ν′ρ′ , (5.9)

A
[6]
2 =

(
1

2!

)
ℜe

(
[T

[4]
2s + T

[4]
2t ]ab

µνPµµ′

(p1)P
νν′

(p2)[T
[4]
2s + T

[4]
2t ]ab∗

µ′ν′

)
, (5.10)

where we have suppressed the phase space integrations. Pµν is the polarization tensor for mass-less gluons,

Pµν(p, n, η) = −gµν +
nµpν + nνpµ

np
− η

pµpν

(np)
2 , (5.11)

with nµ is an arbitrary four-vector, and η a gauge parameter.
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We will now study the process q(k1)q̄(k2) → g(p1)g(p2) at tree-level, using the equations derived above. This study
will further elucidate the rôle of the Eq. (2.2) in enforcing perturbative unitarity at the level of individual Green’s
functions, and will set up the stage for the two-loop generalization.

The BRS symmetry [45] of the original Lagrangian leads to the following identities [46]:

pµ
1T

ab
2µν = (S

{12}
2 )abp2ν ,

pν
2T

ab
2µν = (S

{21}
2 )abp1µ ,

pν
2pµ

1T
ab
2µν = 0 . (5.12)

If we split the amplitude into an s-channel and t-channel contribution (s = q2 = (k1 + k2)
2 = (p1 + p2)

2, and
t = (k1 − p1)

2 = (k2 − p2)
2), the first of the identities in Eq. (5.12) becomes

pµ
1

(
T2s + T2t

)ab

µν

=

(
S
{12}
2s + S

{12}
2t

)ab

p2ν . (5.13)

The remaining two identities are exactly analogous and will be suppressed throughout.
The PT rearrangement of the amplitude amounts to a special choice for T2s and T2t, which will be denoted by T F

2s

and T F
2t , respectively. After defining these “Feynman” amplitudes, Eq. (5.13) reads

pµ
1

(
T F

2s + T F
2t

)ab

µν

=

(
S

F{12}
2s + S

F{12}
2t

)ab

p2ν , (5.14)

and to order k,

pµ
1

(
T

[k]F
2s + T

[k]F
2t

)ab

µν

=

(
S

[k]F{12}
2s + S

[k]F{12}
2t

)ab

p2ν . (5.15)

We will next study the case k = 2 (tree-level, Fig.14).
For “on-shell” gluons, i.e. p2 = 0, Pµν(p, n, η) of Eq. (5.11) satisfies the transversality condition pµPµν = 0.

Thus one may immediately eliminate the Γ
(0)
Pαµν(q, p1, p2) part of Γ

(0)
αµν(q, p1, p2), which vanishes when contracted

with the term Pµµ′(p1)Pνν′ (p2), and effectively replace Γ
(0)
αµν(q, p1, p2) by Γ

(0)
Fαµν(q, p1, p2), as in Fig.14a. One then

proceeds by recognizing that the longitudinal parts of the Pµµ′ (p1) and Pνν′(p2) trigger a fundamental cancellation
[13,14] involving the s- and t- channel graphs (Fig.14a and Fig.14d), which is a consequence of the underlying BRS

symmetry. In particular, the action of pµ
1 or pν

2 on Γ
(0)
Fαµν gives

pµ
1Γ

(0)
Fαµν(q, p1, p2) = (p2 − p1)αp2ν + (p2

1 − p2
2)gαν + tαν(q)

pν
2Γ

(0)
Fαµν(q, p1, p2) = (p2 − p1)αp1µ + (p2

1 − p2
2)gαµ − tαµ(q) (5.16)

The first term on the RHS of either equation cancels against an analogous contribution from the t-channel graph,
whereas the second terms vanish for on-shell gluons. Finally, the terms proportional to p2ν and p1µ (Fig.14b) are
such that all dependence on the unphysical four-vector nµ and the parameter η vanishes, as it should. In addition,
a residual (s-dependent) contribution emerges from these latter terms, which must be added to the parts stemming
from the gµµ′gνν′ part of the calculation. In particular [13], we have that

(T F
2s )ab

µν = g{γm
α }fmabd(q)Γ

(0)α
Fµν(q, p1, p2) ,

T
[2]F
2t = T

[2]
2t ,

S
[2]F{12}
2t = S

[2]{12}
2t = 0 ,

pµ
1 (T

[2]F
2s )ab

µν = (S
[2]F{12}
2s )abp2ν + (Λ

[2]F
2 )ab

ν ,

pµ
1 (T

[2]F
2t )ab

µν = −(Λ
[2]F
2 )ab

ν , (5.17)

with
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(Λ
[2]F
2 )ab

ν = g{γe
α}f

eabd(q)tαν (q)
(

S
[2]F{12}
2s

)ab

= g{γe
α}f

eabd(q)(p2 − p1)
α , (5.18)

and {γa
α} = igv̄(k2)τ

aγαu(k1).
From the above results follows

pµ
1

(
T

[2]F
2s + T

[2]
2s

)ab

µν

=

(
S

[2]F{12}
2s

)ab

p2ν , (5.19)

and thus

A[4] =
1

2

(
1

2!

)[(
T

[2]F
2s + T

[2]
2t

)(
T

[2]F
2s + T

[2]
2t

)∗

− 2

(
S

[2]F{12}
2s

)(
S

[2]F{12}
2s

)∗
]

= A
[4]
S + A

[4]
V + A

[4]
B , (5.20)

with

A
[4]
S =

1

2

(
1

2!

)[
T

[2]F
2s T

[2]F
2s

∗
− 2

(
S

[2]F{12}
2s

)(
S

[2]F{12}
2s

)∗
]

,

A
[4]
V =

1

2

(
1

2!

)[
T

[2]F
2s T

[2]
2t

∗
+ T

[2]
2t T

[2]F
2s

∗

]
,

A
[4]
B =

1

2

(
1

2!

)
T

[2]
2t T

[2]
2t

∗
. (5.21)

In the last step we have defined self-energy (S), vertex (V) and box (B) -like amplitudes, according to their dependence

on the Mandelstam variables s and t as in the case of a scalar filed theory, or QED; A
[4]
S depends only on s, A

[4]
V on s

and t, and A
[4]
B only on t.

The next step is to identify these sub-amplitudes as the imaginary parts of the effective one-loop self-energy, vertex,
and box, under construction. For example, for the effective self-energy Π̂αβ(q) we will proceed as follows: first write

A
[4]
S in the form

A
[4]
S = {γα}d(q)A

[4]
Sαβ(q)d(q){γβ} ; (5.22)

then identify

ℑmΠ̂
(1)
αβ(q) = A

[4]
Sαβ(q) . (5.23)

From the last equation follows

ℑmΠ̂αβ(q) =
1

2
g2CA

[
Γ

(0)
Fαµν(q, p1, p2)Γ

(0)µν

Fβ (q, p1, p2) − 2(p2 − p1)α(p2 − p1)β

]
. (5.24)

This last equation leads to a well-defined definition of Π̂(1), without having to resort to an intermediate one-loop
diagrammatic interpretation: after the two-body phase space integrations has been carried out using standard results
[13], the real parts may be reconstructed by means of a once-subtracted dispersion relation. Thus, in the absence of a

full (dispersive) one-loop construction, the Π̂(1) so generated does not necessarily have to correspond to the imaginary
parts of a precisely identifiable set of one-loop Feynman diagrams. Of course, given that the full one-loop construction
has been carried out, we know that this is actually the case. Thus, when the one-loop (or n-loop) construction for Π̂
exists, Eq.(5.22) reduces into a non-trivial self-consistency check. In particular, one must verify that

A
[4]
Sαβ(q) = C2

{
Π̂

(1)
αβ(q)

}
= C2

{
Π̃

(1)
αβ(q, ξQ = 1)

}
, (5.25)
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where Cn{...} is the operator which carries out the n-particle Cutkosky cuts (for n = 2 we have two-gluon and
two-ghost cuts) to the quantity appearing inside the curly bracket (Fig.15). This is indeed the case [13], as can be
directly verified from Eq.(2.17). In fact, the residual contributions originating from the terms proportional to pµ

1 and
pν
2 mentioned above correspond precisely to the Cutkosky cuts of the one-loop ghost diagrams (Fig.15b).
To fully appreciate the subtlety of the above construction the following comments are now in order:
(i) Of course, the BRS-driven cancellation for the process qq̄ → gg takes place regardless of the PT rearrangement

of the amplitude in general, and the PT decomposition of Γ
(0)
αµν in particular. Indeed, if we had not eliminated

Γ
(0)
Pαµν(q, p1, p2) but had kept instead the full vertex Γ

(0)
αµν(q, p1, p2) (as is usually done), the WI analogous to Eq.

(5.16) would be simply

pµ
1Γ(0)

αµν(q, p1, p2) = tαν(q) − tαν(p2) ,

pν
2Γ(0)

αµν(q, p1, p2) = tαµ(p1) − tαµ(q) . (5.26)

The parts which participate in the BRS cancellation, namely the parts proportional to tαν(q) and tαµ(q) are thus
unaffected. What changes after the PT rearrangement is the resulting absorptive part of the effective n-point func-
tions under construction. So, if one was to define the absorptive part of an effective self-energy keeping the full

Γ
(0)
αµν(q, p1, p2), but still exploiting the BRS cancellation in order to elliminate the longitudial terms, one would arrive

at the imaginary part of the conventional self-energy in the RFG, ℑmΠαβ(q); the latter, for one thing, does not
capture the running of the QCD coupling.

(ii) One could define the absorptive part of an effective self-energy before carrying out the BRS cancellation. In
that case one would be led to the absorptive parts of the gluon self-energy in the light-cone gauges; in particular,
the final answer would depend explicitly on the unphysical quantities n and η. A dispersion relation would give
rise to a pathological quantity, since the gluon self-energy computed within the axial gauges is not multiplicatively
renormalizable, due to its dependence on nα [47]. Furthermore, spurious infrared divergences appear in the Feynman
parameter integrations, which are artifacts and cancel out only when full physical quantities are computed [48].

Thus, one has to first carry out the PT rearrangement at the level of the S-matrix element, then enforce the BRS
cancellation at the level of the cross-section, and, only after these two steps, one should define self-energy/vertex/box
absorptive parts, as one would for a scalar field theory.

Having set up the formalism and discussed the general methodology, we next proceed with the two-loop absorptive
construction.

VI. THE TWO-LOOP ABSORPTIVE CONSTRUCTION

In this section we will show how to extend the methodology established in the previous section to the two-loop
case. This construction involves two parts: the first part is the study of the one-loop amplitude for the process
q(k1)q̄(k2) → g(p1)g(p2); the second is the study of the tree-level process q(k1)q̄(k2) → g(p1)g(p2)g(p3). As we will
see in detail the PT rearrangement (at the level of the S-matrix), will give rise (at the level of the cross-section) to
the correct Cutkosky cuts.

A. The one-loop version of Γ
(0)
F and Γ

(0)
P

In this sub-section we will first study the conventional one-loop three-gluon vertex, and will see how one can

arrive at the one-loop generalization of the tree-level vertices Γ
(0)
Fαµν and Γ

(0)
Pαµν , defined in Eq.(2.3), to be denoted

by Γ
(1)
Fαµν and Γ

(1)
Pαµν , respectively. Then we will see in detail why casting the one-loop S-matrix for the process

q(k1)q̄(k2) → g(p1)g(p2) into its PT form is crucial for enforcing the optical theorem at the level of individual two-
loop PT Green’s functions.

We start with the one-loop S-matrix element for q(k1)q̄(k2) → g(p1)g(p2).
Then Eq. (5.15) yields (k = 4)

pµ
1

(
T

[4]F
2s + T

[4]F
2t

)ab

µν

=

(
S

[4]F{12}
2s + S

[4]F{12}
2t

)ab

p2ν , (6.27)
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where T
[4]F
2s and T

[4]F
2t are the “Feynman” versions of T

[4]
2s and T2t; their exact form will be specified shortly. The last

two equations in (5.17) become

pµ
1 (T

[4]F
2s )ab

µν = (S
[4]F{12}
2s )abp2ν + (Λ

[4]F
2 )ab

ν ,

pµ
1 (T

[4]F
2t )ab

µν = (S
[4]F{12}
2t )abp2ν − (Λ

[4]F
2 )ab

ν . (6.28)

Using Eq.(5.19), we have that

A
[6]
2 =

(
1

2!

)
ℜe

[(
T

[4]F
2s + T

[4]F
2t

)(
T

[2]F
2s + T

[2]
2t

)∗

− 2

(
S

[4]F{12}
2s + S

[4]F{12}
2t

)(
S

[2]F{21}
2s

)∗
]

= A
[6]
2S + A

[6]
2V + A

[6]
2B , (6.29)

with

A
[6]
2S =

(
1

2!

)
ℜe

[
T

[4]F
2s T

[2]F
2s

∗
− 2

(
S

[4]F{12}
2s

)(
S

[2]F{21}
2s

)∗
]

,

A
[6]
2V =

(
1

2!

)
ℜe

[
T

[4]F
2s T

[2]
2t

∗
+ T

[2]F
2s T

[4]F
2t

∗
− 2

(
S

[2]F{12}
2s

)(
S

[4]F{21}
2t

)∗
]

,

A
[6]
2B =

(
1

2!

)
ℜe

[
T

[4]F
2t T

[2]
2t

∗

]
. (6.30)

From these last quantities one could define, for example, the quantity A
[6]
2Sαβ(q) exactly as in Eq. (5.22), i.e.

A
[6]
2S = {γα} d(q)A

[6]
2Sαβ(q) d(q){γβ} (6.31)

The A
[6]
2Sαβ(q) must then be such that

A
[6]
2Sαβ(q) = C2

{
Π̂

(2)
αβ(q)

}
= C2

{
Π̃

(2)
αβ(q, ξQ = 1)

}
(6.32)

The question is what is the correct form of T
[4]
2s and T F

2t , and the corresponding S
[2]F{12}
2s and S

[2]F{12}
2s ; the latter

quantities are automatically determined once the former have been specified. In particular, if such a rearrangement
exist, does it correspond to a structure already known from the one-loop PT analysis ? The natural candidate for
this is clearly the PT rearranged one-loop matrix element for q(k1)q̄(k2) → g(p1)g(p2), shown in Fig.16 (individual
Feynman graphs are shown in Fig.17, Fig.18, and Fig.19); if that were the case, one would begin to discern an iterative
pattern. As we will see in detail, this is indeed what happens.

Throughout this section we will suppress the one-loop integration symbol
∫
[dk], and will use (see Eq. (2.9) )

J3 ≡ J3(q,−p1, k) =
i

2
g2CA[k2(k − p1)

2(k + p2)
2]−1 . (6.33)

We focus on the part of the process involving the conventional one-loop three-gluon vertex Γ
(1)
αµν(q, p1, p2), which is

diagrammatically shown in Fig.17 . Let us now carry out the decomposition of Eq. (2.2) to the elementary three-gluon

vertex Γ
(0)
ασρ(q, k + p2,−k+ p1) appearing in the diagrams of Fig.17a and Fig.17d; the parts stemming from the Γ

(0)
Pασρ

will propagate towards the remaining elementary three-and four gluon vertices, and will trigger further WI of the

type shown in Eq. (5.26). Reorganizing the terms thusly generated, one can show that the Γ
(1)
αµν(q, p1, p2) of Fig.17

can be written in the form

Γ(1)
αµν(q, p1, p2) =

[
1

2
Π

(1)
Pαβ(q)

]
d(q)Γ

(0)β
F µν(q, p1, p2) + Γ

(1)
F αµν(q, p1, p2) + Γ

(1)
P αµν(q, p1, p2) , (6.34)

with
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Γ
(1)
P αµν(q, p1, p2) = −tρµ(p1)J3 [Γ(0)

νρα(p2, k,−k − p2) + kνgαρ]

−tρν(p2)J3 [Γ(0)
µαρ(p1, k − p1,−k) + kµgαρ]

−
i

2
V

(1)
PαβΓ

(0)β
Pµν(q, p1, p2) +

1

2
d(q)(p2

2 − p2
1) qαV

(1)
Pµν(q) .

(6.35)

The first term is precisely half of the pinch contribution needed for converting Π
(1)
αν (q) into Π̂

(1)
αν (q), as shown in

Fig.16a; the other half will come from the one-loop quark-gluon vertex shown in Fig.19d, following the usual one-loop
PT procedure presented in section II. This part of the construction has been first carried out in [49], where the

process-independence of the Π̂
(1)
αν (q) was explicitly demonstrated.

The second term, Γ
(1)
P αµν(q, p1, p2), is Bose-symmetric with respect to p1 ↔ p2. As one can easily verify from Eq.

(6.35), Γ
(1)
P αµν(q, p1, p2) is zero on shell, i.e. when contracting with the polarization tensors and using p2

1 = p2
1 = 0.

Thus Γ
(1)
P αµν(q, p1, p2) can be dropped when studying the one-loop process qq̄ → gg, exactly as Γ

(0)
P αµν(q, p1, p2) was

dropped in the tree-level case. As we we have seen in section IIIB, in the off-shell case, i.e. when Γ
(1)
αµν(q, p1, p2) is

inserted into a two-loop quark-gluon vertex, the parts proportional to pµ
1 and pν

2 pinch the internal quark propagator
and give propagator-like contributions, whereas the parts proportional to p2

1 and p2
2 cancel exactly against analogous

contributions from the rest of the graphs contributing to the two-loop quark-gluon vertex. Finally, Γ
(1)
F αµν(q, p1, p2),

is exactly the one-loop version of Γ
(0)
F αµν(q, p1, p2): It is the one-loop three-point function involving one background

(q) and two quantum (p1,p2) gluons as incoming fields, computed using the BFMFG Feynman rules. (Fig.18). Notice
that the special ghost structure characteristic of the BFM (Fig.18e – Fig.18h) emerges automatically, after following
the procedure outlined above.

It is straightforward to show that Γ
(1)
F αµν(q, p1, p2) satisfies the following WI

qαΓ
(1)
F αµν(q, p1, p2) = Π(1)

µν (p1) − Π(1)
µν (p2), (6.36)

which is the exact one-loop analogue of the tree-level Ward identity of Eq (2.4); indeed the RHS is the difference of
two conventional one-loop self-energies computed in the RFG.

In addition, we have for the action of p1µ on Γ
(1)
F αµν(q, p1, p2) when p2

1 = p2
2 = 0, is given by

pµ
1Γ

(1)
F αµν = iΠ̂(1)

αν (q) − iΠ(1)
αν (p2) + λ(1)

νσ tσα(q) + s(1)
α p2ν (6.37)

where Π̂
(1)
αν (q) is given in Eq (2.14), and

λ(1)
νσ = J3

[
(k − p1)

ρΓ(0)
νρσ(p2, k,−k − p2) − (k + p2)νkσ

]
− i

[
2B(q) + B(p1)

]
gνσ (6.38)

s(1)
α = J3

[
pσ
2kρΓ

(0)
Fασρ(q, k + p2,−k + p1) − p2 · (k − p1)(2k + p2 − p1)α

]

+

(
1

8

)[
B(p1) + B(p2)

]
qα (6.39)

with

B(p) ≡

∫
[dk]J1(p, k) . (6.40)

Eq. (6.37) is the one-loop analogue of Eq. (5.16). It is important to emphasize that Γ
(1)
F αµν(q, p1, p2) is not equal

to the one-loop PT three-gluon vertex Γ̂
(1)
αµν(q, p1, p2) constructed in [3]. Notice also that, unlike the tree-level case,

now there will be a t-channel ghost (we will not report its closed expression here) and that the t-channel has been
modified also in order to achieve the PT one-loop rearrangement.

Thus we have,

T
[4]F
2s = (16a) + (16b) + (16d) + (16e) (6.41)
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with (we suppress a common factor g{γe
α}f

eabd(q) )

(16b) = Γ
(1)
Fαµν(q, p1, p2) ,

(16a) = Π̂(1)
ασ(q)d(q)Γ

(0)σ
F µν(q, p1, p2) ,

(16d) = Γ
(0)
Fαµσ(q, p1, p2)d(p2)Π

(1)σ
ν (p2) ,

(16e) = Γ
(0)
Fασν(q, p1, p2)d(p1)Π

(1)σ
µ (p1) (6.42)

and so, together with the first equation in (5.17)

T
[4]F
2s T

[2]F∗
2s =

(
(16b) + (16d) + (16e)

)
· T

[2]F∗
2s + (16a) · T

[2]F∗
2s

=

(
(20a) + (20b) + (20d) + (20f) + (20j) + (20g) + (20h)

)
+ C2gluons

{
(4e)

}
(6.43)

i.e. we recover the two-gluon Cutkosky cuts of Π̃
(2)
αβ(q, ξQ = 1) (Fig.20), together with the corresponding two-gluon

cuts of the 1PR graph in Fig.4e, as we should. To account for the remaining two-ghost Cutkosky cuts in Fig.20 and
Fig.4e we need, in addition to Eq. (6.37), the following results

p1 · (16a) = −iΠ̂(1)
αν (q) + Π̂(1)

ασ(q)d(q)(p2 − p1)
σp2ν ,

p1 · (16d) = tασ(q)Π(1)σ
ν (p2) + iΠ(1)

αν (p2) ,

p1 · (16e) = 0 . (6.44)

Then we have

p1 ·

(
(16a) + (16b) + (16d) + (16e)

)
= tσα(q)

(
λ(1)

νσ + Π(1)
σν (p2)

)

+

(
s(1)

α + Π̂(1)
ασ(q)d(q)(p2 − p1)

σ

)
p2ν (6.45)

From the above results one may immediately deduce the closed form of (Λ
[4]F
2 )ab

ν and

(
S

[4]F{12}
2s

)ab

appearing in Eq.

(6.28):

(
S

[4]F{12}
2s

)ab

= g{γe
α}f

eabd(q)

(
s(1)

α + Π̂(1)
ασ(q)d(q)(p2 − p1)

σ

)

(Λ
[4]F
2 )ab

ν = −ig{γe
α}f

eab

(
λ(1)α

ν + Π(1)α
ν (p2)

)
(6.46)

Then we have

2S
[4]F{12}
2s S

[4]F{21}
2s = 2s(1)

α (p2 − p1)β + 2Π̂(1)
ασ(q)(p2 − p1)σ(p2 − p1)β

=

(
(20i) + (20e) + (20m) + (20n) + (20q) + (20r)

)
+ C2ghosts

{
(4e)

}
(6.47)

which concludes the proof of Eq (6.32).

B. Tree-level q(k1)q̄(k2) → g(p1)g(p2)g(p3), and the Γ
(0)
F αµνρ(q, p1, p2, p3)

Next we consider the tree-level amplitude for the process q(k1)q̄(k2) → g(p1)g(p2)g(p3), shown in Fig.21 . This
amplitude must be appropriately rearranged, and it will eventually furnish the imaginary parts corresponding to the
three-particle Cutcosky cuts of Π̂(2)(q).
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We start by presenting some general properties of this amplitude. It is straightforward to verify that T abc
µνρ satisfies

the following identities:

pµ
1T

abc
3µνρ = (S

{12}
3 )abc

ρ p2ν + (S
{13}
3 )abc

ν p3ρ ,

pν
2T

abc
3µνρ = (S

{21}
3 )abc

ρ p1µ + (S
{23}
3 )abc

µ p3ρ ,

pρ
3T

abc
3µνρ = (S

{31}
3 )abc

ν p1µ + (S
{32}
3 )abc

µ p2ν . (6.48)

Bose symmetry imposes the following relations among the S
{ij}
3 amplitudes [35]:

(S
{ij}
3 )aiajaℓ

σ (pi, pj , pℓ) = (S
{ji}
3 )ajaiaℓ

σ (pj , pi, pℓ)

(S
{ij}
3 )aiajaℓ

σ (pi, pj , pℓ) = (S
{iℓ}
3 )aiaℓaj

σ (pi, pℓ, pj) , (6.49)

and

pσ
i (S{jℓ})abc

σ = pσ
j (S{iℓ})abc

σ , ℓ 6= i 6= j. (6.50)

These sets of identities guarantee that all dependence on the unphysical four-vector nα and the gauge parameter η

appearing in the polarization tensors will disappear from the final expression for A
[6]
3 .

The amplitude rearrangement is as follows (Fig.21):

(T
[3]F
3s )abc

µνρ = g2{γe,α}d(q)Γ
(0)eabc
Fαµνρ (q, p1, p2, p3)

(T
[3]F
3t )abc

µνρ = (T
[3]
3t )abc

µνρ (6.51)

where

Γ
(0)eabc
Fαµνρ(q, p1, p2, p3) = fecxfabxd(p1 + p2)Γ

(0)
Fαρσ(q, p3, p1 + p2)Γ

(0)σ
µν (p1, p2,−p1 − p2)

+febxfacxd(k1 + k3)Γ
(0)
Fαν(q, p2, p1 + p3)Γ

(0)σ
µρσ (p1, p3,−p1 − p3)

+feaxf bcxd(k2 + k3)Γ
(0)
Fαµσ(q, p1, p2 + p3)Γ

(0)σ
νρ (p2, p3,−p2 − p3)

+Γ(0)eabc
αµνρ (6.52)

It is easy to verify now that Γ
(0)eabc
Fαµνρ(q, p1, p2, p3) is the analogue of Γ

(0)abc
Fαµν (q, p1, p2) appearing in the first equation of

(5.17) for the case of three on-shell gluons. In particular, we have that

qαΓ
(0)eabc
Fαµνρ(q, p1, p2, p3) = −fecxfabxp2

3 d(p1 + p2)Γ
(0)
µνρ(p1, p2,−p1 − p2)

−febxfacxp2
2 d(k1 + k3)Γ

(0)
µρν(p1, p3,−p1 − p3)

−feaxf bcxp2
1 d(k2 + k3)Γ

(0)
νρµ(p2, p3,−p2 − p3) , (6.53)

where we have used the well-known WI relating the bare three-and four-gluon vertices [36]. Eq. (6.53) is the analogue
of Eq. (2.4). Clearly, when p2

1 = p2
2 = p2

3 = 0,

qαΓ
(0)eabc
Fαµνρ (q, p1, p2, p3) = 0 , (6.54)

exactly as happens in Eq. (2.4).
In addition,

pµ
1 (T

[3]F
3s )abc

µνρ = (S
[3]F{12}
3s )abc

ρ p2ν + (S
[3]F{13}
3s )abc

ν p3ρ + (Λ
[3]F
3 )abc

νρ ,

pµ
1 (T

[3]
3t )abc

µνρ = (S
[3]{12}
3t )abc

ρ p2ν + (S
[3]{13}
3t )abc

ν p3ρ − (Λ
[3]F
3 )abc

νρ (6.55)

where

(S
[3]F{12}
3s )abc

ρ = {γm,α}d(q)

[
(Z1)

mabc
αρ + (Z2)

mabc
αρ + (Z3)

mabc
αρ

]
(6.56)
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with

(Z1)
mabc
αρ = g2fmcxfabxd(p1 + p2)p

σ
2Γ

(0)
Fαρσ(q, p3, p1 + p2)

(Z2)
mabc
αρ = g2fmbxfacx

[
d(p1 + p3)(2p2 + q)α(p1 + p3)ρ − gαρ

]

(Z3)
mabc
αρ = g2fmaxf bcxd(p2 + p3)(2p1 + q)αp2ρ (6.57)

and

(S
[3]{12}
3t )abc

ρ = −g3v̄(k2)

[
τcγρ S(k2 + p3) τeγσ + τeγσ S(k1 + p3) γρτ

c

]
u(k1)f

eabd(p1 + p2)p
σ
2 . (6.58)

Armed with the above relations, it is then straightforward to show that

A[6] =
1

2

(
1

3!

)[(
T

[3]F
3s + T

[3]
3t

)(
T

[3]F
3s + T

[3]
3t

)∗

− 6

(
S

[3]F{12}
3s + S

[3]{12}
3t

)(
S

[3]F{21}
3s + S

[3]{21}
3t

)∗
]

= A
[6]
S + A

[6]
V + A

[6]
B , (6.59)

with

A
[6]
S =

1

2

(
1

3!

)[
T

[3]F
3s T

[3]F
3s

∗
− 6

(
S

[3]F{12}
3s

)(
S

[3]F{21}
3s

)∗
]

,

A
[6]
V =

1

2

(
1

3!

)[{
T

[3]F
3s T

[3]
3t

∗
− 6

(
S

[3]F{12}
3s

)(
S

[3]{21}
3t

)∗}
+

{
T

[3]
3t T

[3]F
3s

∗
− 6

(
S

[3]{12}
3t

)(
S

[3]F{21}
3s

)∗}]
,

A
[6]
B =

1

2

(
1

3!

)[
T

[3]
3t T

[3]∗
3t − 6

(
S

[3]F{12}
3t

)(
S

[3]{21}
3t

)∗
]

, (6.60)

We are now in position to prove that, indeed,

A
[6]
Sαβ(q) = C3

{
Π̂

(2)
αβ(q)

}
= C3

{
Π̃

(2)
αβ(q, ξQ = 1)

}
, (6.61)

where A
[6]
Sαβ(q) is defined from A

[6]
S exactly as in Eq. (5.22) and Eq. (6.31).

To begin with,

(
1

12

)
T

[3]F
3s T

[3]F
3s

∗
= (22a)c1

+ (22a)c2
+ (22b) + (22c) + (22g) + (22ℓ) . (6.62)

For the cuts involving ghosts we need the closed form of S
[3]F{21}
3s , which can be obtained from S

[3]F{12}
3s of Eq. (6.57)

by virtue of the relations given in Eq. (6.49). In particular,

(Z ′
1)

nabc
βρ = g2fncrf bard(p1 + p2) pλ

1Γ
(0)
Fβρλ(q, p3, p1 + p2)

(Z ′
2)

nabc
βρ = g2fnarf bcr

[
d(p2 + p3) (2p1 + q)β(p2 + p3)ρ − gβρ

]

(Z ′
3)

nabc
βρ = g2fnbrfacrd(p1 + p3) (2p2 + q)βp1ρ . (6.63)

Then it is straightforward to show that

1

2
Z1Z

′
1 = (22h) ,

1

2
Z1Z

′
2 = (22e)c2

+ (22k) ,
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1

2
Z1Z

′
3 = (22e)c1

,

1

2
Z2Z

′
1 = (22f)c1

+ (22j) ,

1

2
Z2Z

′
2 = (22i)c1

+ (22s) + (22n) + (22o) ,

1

2
Z2Z

′
3 = (22q) + (22m) ,

1

2
Z3Z

′
1 = (22f)c2

,

1

2
Z3Z

′
2 = (22r) + (22p) ,

1

2
Z3Z

′
3 = (22i)c2

. (6.64)

Thus, we have accounted for all three-particle Cutkosky cuts appearing in Fig.22 .

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented the generalization of the PT to two-loops for the case of mass-less Yang-Mills
theories. Two different, but complementary derivations have been presented. In the first derivation we have followed
the diagrammatic approach employed in the one-loop case [1–3], and have shown how the PT properties are replicated
in the next order. In the second we have pursued the dispersive PT construction established in [13,14] and have shown
that the resulting structures are consistent with those derived with the first method. We emphasize that throughout
this entire analysis we have maintained a diagrammatic interpretation of the various contributions. In particular, no
sub-integrations had to be carried out. This additional feature renders the method all the more powerful, because
unitarity is manifest, and can be easily verified by means of the Cutkosky cuts. The combination of the two methods
constrains significantly the PT construction presented here, and restricts severely any possible deviations from it.
The reader should be able to recognize, for example, that any rearrangement of the (internal) vertices of two-loop
box-diagrams (for example, of the so-called “H-diagram” discussed in the second paper of [12]) cannot be reconciled
with the arguments of the simultaneous two- and three-particle Cutkosky cuts presented in section VI. Whereas no
strict proof has been given here that the PT construction developed in this paper is mathematically unique, we
consider that as a very plausible possibility. Notice also that the appearance of characteristic one-loop structures
inside the two-loop PT Green’s functions suggests the onset of an iterative pattern, which may provide clues leading
to the generalization of the PT algorithm to all orders in perturbation theory.

The generalization of the two-loop PT construction to the case of Yang-Mills theories with spontaneous symmetry
breaking (Higgs mechanism) in general, and the electroweak sector of the Standard Model in particular, should proceed
precisely according to the methodology presented in this paper. Except for the additional book-keeping complications
stemming from the presence of gauge-boson masses (modifications of WI, appearance of seagull and tadpole terms,
diagrams with would-be Goldstone bosons), no additional conceptual obstacles are expected.

The results of this paper clearly prove that the correspondence between PT and BFMFG [11] persists at two-
loops. Notice that this proof is based on an a-posteriori comparison with a result established through the systematic
diagrammatic rearrangement of the physical S-matrix computed in the renormalizable gauges, rather than on an a-
priori formal derivation at the level of the BFM generating functional. It would be clearly important to reach a deeper
understanding of what singles out the value ξQ = 1. One possibility would be to look for special properties of the
BFM action at ξQ = 1 [50]. In such a case one could choose to avoid the complications arising from renormalization,
since the correspondence is valid also for the super-renormalizable 3-d QCD.

Just as happened in the one-loop case, the two-loop PT self-energy defined here lends itself as an essential ingredient
for the extension of the notion of the QCD effective charge [2,51,17] to two-loops (for a thorough discussion of the
one-loop case see [17]), since it has precisely the same properties as the corresponding QED quantity, i.e. the vacuum
polarization of the photon. First of all, the two-loop PT self-energy captures the leading logarithms of the theory, i.e.
the prefactor of the logarithm is the second coefficient of the QCD β function. Second, by virtue of the the QED like
WI given in Eq. (4.6) the combination αeff (q, µ) ∼ g2(µ)∆̂(q/µ), where ∆̂(q/µ) = [1 − Π̂(1)(q/µ) − Π̂(2)(q/µ)]−1 is
a renormalization group invariant quantity. Third, it has by construction the correct unitarity structure [14]. While
the αeff defined above appears as the obvious candidate, a detailed study needs be carried out in order to determine
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whether or not there are any field-theoretical obstructions [52] which would prevent the realization of the two-loop
construction corresponding to the QCD effective charge.

In this context notice also that the construction presented here determines uniquely the constant term of the two-
loop effective charge (within a given renormalization scheme) [53]. To determine its actual value one should go beyond
the two-loop calculation presented in [9], and compute the Feynman diagrams of Fig.9 keeping also constant terms
[54]. Knowledge of this constant term is important when the QCD effective charge is used in the field of renormalon
calculus; in particular, it would be free of the ambiguities infesting the estimates of the renormalon contributions to
physical observables [17,55].

In addition, it is well-known [56] that if one was to compute the two-loop gluon self-energy in the context of the
BFM keeping ξQ arbitrary, the resulting ξQ-dependent term would be a constant, i.e. it would not affect the coefficient
of the logarithm. While in such a case the residual gauge-dependence could be thought of as a renormalization-scheme
ambiguity, i.e. it could be re-absorbed in the wave-function renormalization of the (background) gluon, this is not
possible when the gauge fields are massive. In that case unitarity is even more constraining; as is known from the
studies on the one-loop electro-weak effective charges [13–15], the gauge-dependence affects non-trivially the analytic
structure of the answer, giving rise to unphysical thresholds.

The calculations presented in section VI constitute the first dispersive derivation of the two-loop QCD β function.
In this analysis we have made use of the one-to-one correspondence between the physical S-matrix elements and the
Cutkosky cuts of the two-loop PT self-energy. This construction involves a very particular combination of one-loop
(section VIA) and tree-level graphs (section VIB); in addition to furnishing the correct β function coefficient, a subtle
cancellation of infrared divergences also takes place: while both sets of graphs are infrared divergent, they combine
to give a infrared finite answer. This can be directly inferred from the simple observation that the Cutkosky cutting
procedure we have employed amounts finally to the determination of the imaginary part of a single logarithm, namely
that of the two-loop self-energy; the latter is infrared finite [57,58]. While the Cutkosky formalism furnishes an
intuitive diagrammatic understanding and a valuable calculational short-cut, it would be interesting to reproduce
the results of section IV without resorting to it. In particular one could study the precise cancellation mechanism
of the infrared divergences using a proper infrared regularization scheme, and explicit expressions for the two- and
three-gluon phase-space, which we have not needed here. In addition, it would be interesting to attempt a similar
two-loop derivation using the formalism developed in [59], and study possible connections.

It has been often advocated that the non-perturbative QCD effects can be reliably captured at an inclusive level by
means of an infrared finite quantity, which would constitute the extension of the perturbative QCD running coupling
to low energy scales [60] Early results by Cornwall based on the study of gauge invariant Schwinger-Dyson equations
[2] involving this quantity suggest that such a description can in fact be derived from first principles. According to
this analysis, the self-interaction of gluons give rise to a dynamical gluon mass, while preserving at the same time the
local gauge symmetry of the theory. The presence of the gluon mass saturates the running of the QCD coupling; so,
instead of increasing indefinitely in the infrared as perturbation theory predicts, it “freezes” at a finite value [3,61].
It would be interesting to revisit this issue in the light of the results derived in the present paper. For example,
one could study the structure of the gauge-invariant Schwinger-Dyson equation for the PT gluon self-energy, and in
particular the way the PT three-gluon vertex Γ̂(1) enters in the PT gluon self-energy, using the two loop results as
a guidance. In doing so one could hope to systematically improve on the analysis of [2], where the gauge-technique

ansatz for the vertex was used. In this context one may find it advantageous to rewrite the vertex Γ
(1)
F appearing

inside the two-loop PT gluon self-energy in terms of Γ̂(1) ; one should then interpret the emerging residual terms as
parts of the two-loop self-energy, even though they appear to be pinch-like [62], i.e. once the PT self-energy has been
fixed it may be recast into a different form, but no pieces should be re-assigned to vertices or boxes.

Finally it would be interesting to pursue a connection with other field- or string-theoretical methods [63–67], either
in order to acquire a more formal understanding of the PT, or in order to combine various attempts into a coherent
framework.
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Figure Captions
Fig.1: Carrying out the fundamental vertex decomposition inside the non-abelian Feynman graph contributing to

Γ
(2)
α (a), gives rise to a genuine vertex (b) and a self-enery-like contribution (c).

Fig.2: The diagrammatic representation of PT one-loop self-energy Π̂
(1)
αβ , as the sum of the conventional self-energy

Π
(1)
αβ , graphs (a) and (b), and the pinch contributions coming from the vertices (c).

Fig.3: The PT one-loop vertex Γ̂
(1)
α .

Fig.4: The one-particle reducible graphs before [(a), (b), (c), (d)] and after [(e), (f), (g), (h)] the PT rearrangement.

G(1) and Ĝ(1) denote respectively the conventional and PT one-loop vertices with one-loop self-energy corrections to
the external fermions included.

Fig.5: The PT rearrangement of typical one-particle reducible graph (a), giving rise to its PT counterpart (aP ),

and to contributions to the first term of F
(2)
P (c) and to Y

(2)
P (b).

Fig.6: The result of enforcing the PT decomposition on the external vertices of some of the two-loop Feynman

diagrams contributing the conventional two-loop quark-gluon vertex Γ
(2)
α .

Fig.7: The result of enforcing the PT decomposition on the external vertices of some of the remaining two-loop
vertex graphs.

Fig.8: The Feynman diagrams contributing to the conventional two-loop gluon self-energy Π
(2)
αβ , in the Rξ gauges.

Fig.9: The Feynman diagrams contributing to the BFM two-loop gluon self-energy Π̃
(2)
αβ .

Fig.10: The one-loop counterterms contributing to the conventional two-loop gluon self-energy Π
(2)
αβ .

Fig.11: The one-loop counterterms necessary for the two-loop gluon self-energy Π̂
(2)
αβ ; they are identical to those

needed for the BFM two-loop gluon self-energy Π̃
(2)
αβ .

Fig.12: The one-loop counterterms necessary to cancell the sub-divergences inside the conventional two-loop quark-

gluon vertex Γ
(2)
α . In the case of massive fermions the wave-function counterterm K

(1)
2 should be accompanied by the

appropriate mass counterterm (not shown).

Fig.13: The one-loop counterterms necessary to cancell the sub-divergences inside the PT two-loop quark-gluon

vertex Γ̂
(2)
α ; they are identical to those neede for the BFM two-loop quark-gluon vertex Γ̃

(2)
α .

Fig.14: The fundamental BRS-enforced cancellation of s-channel (a) and t-channel [(d1) and (d2)] contributions,
instrumental for the absorptive PT construction. Graph (b) gives rise to the correct ghost-structure.

Fig.15: The Cutkosky cuts of the PT (and BFMFG) one-loop gluon self-energy.

Fig.16: The one-loop amplitude for the process q(k1)q̄(k2) → g(p1)g(p2), after the PT rearrangement.

Fig.17: The Feynman diagrans contributing to the conventional one-loop three-gluon vertex Γ
(1)
αµν .

Fig.18: The diagrammatic representation of the one-loop three-gluon vertex Γ
(1)
Fαµν .
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Fig.19: Some of the one-loop t-channel graphs contributing to q(k1)q̄(k2) → g(p1)g(p2).

Fig.20: The two-particle Cutkosky cuts of the PT (and BFMFG) two-loop gluon self-energy. We have used the
same labelling of individual diagrams as in Fig. 9. The two upper (lower) rows show graphs where two gluon (ghost)
lines have been cut.

Fig.21: The tree-level graphs contributing to the process q(k1)q̄(k2) → g(p1)g(p2)g(p3), after the PT rearrange-
ment.

Fig.22: The three-particle Cutkosky cuts of the PT (and BFMFG) two-loop gluon self-energy. We have used the
same labelling of individual diagrams as in Fig. 9. The first five graphs have three-gluon cuts, the next two have
two-gluon-one-ghost cuts, while the remaining ones have one-gluon-two-ghost cuts.
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