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Abstract

In this paper we take the first step towards a non-diagrammatic formulation of the Pinch Tech-

nique. In particular we proceed into a systematic identification of the parts of the one-loop and

two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical

ghost Green’s functions; the latter appear in the standard Slavnov-Taylor Identity satisfied by the

tree-level and one-loop three-gluon vertex. This identification allows for the consistent generaliza-

tion of the intrinsic Pinch Technique to two loops, through the collective treatment of entire sets

of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the

stage for the generalization of the method to all orders. We show that the task of comparing the ef-

fective Green’s functions obtained by the Pinch Technique with those computed in the Background

Field Method Feynman gauge is significantly facilitated when employing the powerful quantization

framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful

non-linear identities, which express the Background Field Method Green’s functions in terms of

the conventional (quantum) ones and auxiliary Green’s functions involving the background source

and the gluonic anti-field; these latter Green’s functions are subsequently related by means of a

Schwinger-Dyson type of equation to the ghost Green’s functions appearing in the aforementioned

Slavnov-Taylor Identity.
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I. INTRODUCTION

The Pinch Technique (PT) [1, 2, 3] is a diagrammatic method which exploits the under-

lying symmetries encoded in a physical amplitude such as an S-matrix element, in order to

construct effective Green’s functions with special properties. The aforementioned symme-

tries, even though they are always present, they are usually concealed by the gauge-fixing

procedure. The PT makes them manifest by means of a fixed algorithm, which does not

depend on the gauge-fixing scheme one uses in order to quantize the theory, i.e., regard-

less of the set of Feynman rules used when writing down the S-matrix element. The PT

exploits the elementary Ward Identities (WIs) triggered by the longitudinal momenta ap-

pearing inside Feynman diagrams in order to enforce massive cancellations. The realization

of these cancellations mixes non-trivially contributions stemming from diagrams of differ-

ent kinematic nature (propagators, vertices, boxes). Thus, a given physical amplitude is

reorganized into sub-amplitudes, which have the same kinematic properties as conventional

n-point functions and, in addition, are endowed with desirable physical properties. Most

importantly, at one- and two-loop order they are independent of the gauge-fixing parameter,

satisfy naive (ghost-free) tree-level WIs instead of the usual Slavnov-Taylor identities (STIs)

[4, 5], and contain only physical thresholds [6, 7].

It is clear by now that an intimate connection exists between the PT and the Background

Field Method (BFM) [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The BFM is a special gauge-

fixing procedure, implemented at the level of the generating functional. In particular, it

preserves the symmetry of the action under ordinary gauge transformations with respect to

the background (classical) gauge field Âµ, while the quantum gauge fields Aµ appearing in

the loops transform homogeneously under the gauge group, i.e., as ordinary matter fields

which happened to be assigned to the adjoint representation [19]. As a result of the back-

ground gauge symmetry, the BFM n-point functions 〈0|T
[
Âµ1(x1)Âµ2(x2) . . . Âµn(xn)

]
|0〉

satisfy naive QED-like WIs, but (unlike QED) depend explicitly on the quantum gauge-fixing

parameter ξQ used to define the tree-level propagators of the quantum gluons. It turns out

that at one-loop order, both in QCD and in the Electroweak sector of the Standard Model,

the gauge-fixing parameter-independent effective n-point functions constructed by means of

the PT (starting from any gauge-fixing scheme) coincide with the corresponding background

n-point functions when the latter are computed at the special value ξQ = 1 (BFM Feynman
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gauge) [20, 21, 22] . As was shown in detail in [23, 24], this correspondence persists at two

loops in the case of QCD.

One of the most pressing questions in this context is whether one can extend the PT

algorithm to all orders in perturbation theory, thus achieving the systematic construction of

effective n-point functions displaying the aforementioned characteristic features. To accom-

plish this it is clear that one needs to go beyond the diagrammatic manipulations employed

until now, and resort to a more formal procedure. Indeed, one disadvantage of the PT

method is the fact that the constructions rely heavily on algebraic operations inside indi-

vidual Feynman graphs. Even though these operations proceed according to well-defined

guiding principles which have been spelled out in various occasions in the existing literature,

any attempt to apply them to higher orders would constitute an operationally hopeless task.

But even if the resulting re-shuffling of terms among the Feynman graphs would eventually

lead to a well-defined answer, additional effort would be required in order to compare this

unique answer to the BFM n-point functions, and to verify whether the correspondence

mentioned above persists to all orders.

To ameliorate this situation, in this paper we take a first step towards a non-diagrammatic

formulation of the PT procedure. In particular we proceed into a systematic identification of

the parts of the one-loop and two-loop Feynman diagrams that are shuffled around during

the pinching process in terms of well-defined field-theoretical objects, namely the ghost

Green’s functions which appear in the STIs satisfied by the tree-level and one-loop three-

gluon vertex [25]. This constitutes an important step because it enables one to go beyond

the current diagrammatic implementation of the pinching procedure by means of tree-level

WIs appearing in individual graphs, allowing instead the collective treatment of entire sets of

diagrams, and sets up the stage for the generalization of the method to all orders [26]. Thus,

at least at one- and two-loops, the final PT answer for a given effective Green’s function

is obtained from the original Green’s function by adding (or subtracting) a well-defined set

of contributions identified when the relevant STIs have been triggered inside the Green’s

function under consideration.

The conventional derivation of the STIs using the Becchi-Rouet-Stora-Tyutin (BRST)

transformations [27, 28, 29] and the definition of the building blocks in terms of unphysical

ghost-Green’s functions is in itself a text-book exercise [30]. But in addition, we will carry

out the derivation of the very same STIs using the Batalin-Vilkovisky (BV) formalism [31,
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32]. In particular, the STIs written in the context of the BV are realized by means of

auxiliary unphysical Green’s functions, which involve ghosts and anti-fields; the latter are

characteristic of the BV formalism, and do not appear in the conventional formulation of the

gauge theory. Of course, since the STI in both formulation involves the same original Green’s

function, namely it is the STI of the three-gluon vertex, the building blocks appearing in

the two formulations– conventional and BV– must be related. It turns out that this indeed

the case, as we will see in detail in Section II. The reason for going through this exercise

is because thusly one may take advantage of an important ingredient furnished by the BV

formulation, which facilitates significantly the comparison of the PT results with those of the

BFM. Specifically using the formulation of the BFM within the BV formalism, one can derive

non-trivial identities relating the BFM n-point functions to the corresponding conventional

n-point functions in the covariant renormalizable gauges, to all orders in perturbation theory.

These identities, which we will call Background-Quantum identities (BQIs) in what follows,

have been derived for the first time in the context of the Standard Model in [33, 34]. The

quantities appearing in these BQIs are Green’s functions involving anti-fields and background

sources, introduced in the BFM formulation. It turns out that the auxiliary Green’s functions

appearing in the STIs and those appearing in the BQIs, are related by simple expressions,

a fact which allows for a direct comparison of the PT and BFM Green’s functions. Notice

that the BV formalism furnishes exact Feynman rules for the perturbative construction of

all aforementioned unphysical, auxiliary Green’s function, appearing in the STIs and the

BQIs.

It is conceptually very important to emphasize the logical succession of the steps involved

in this entire construction: One begins with a massless Yang-Mills theory, such as QCD,

formulated in the conventional way, i.e., with a linear covariant gauge-fixing term of the

form 1
2ξ

(
∂µAaµ

)2
, together with the corresponding ghost-sector, introduced by the standard

Faddeev-Popov construction; at this stage this theory knows nothing about neither the BFM

nor the anti-fields appearing in the BV formulation. Exploiting only the STIs, derived by

virtue of the BRST symmetry and formulated in the language of the conventional theory,

i.e., expressed solely in terms of objects definable within this theory, one can reach after a

well-defined set of steps the PT answer. The most expeditious way for comparing this answer

to the corresponding BFM Green’s function is the following: one derives the aforementioned

STIs using the BV formalism, i.e. one translates the STIs from the normal language to the
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BV language; the reason is that thusly one can exploit the identities – derivable in the BV

language – relating the BFM Green’s functions to the normal ones.

The paper is organized as follows: In Section II we present a brief introduction to the BV

formalism, providing the minimum amount of information needed for establishing notation

and arriving at the relevant generating functional. In Section III we derive the necessary

ingredients following standard manipulations: In particular we derive the STIs within the

BV, as well as the BQIs for various cases. In addition, we derive a Schwinger-Dyson type of

identity relating the building blocks appearing in the STIs to those appearing in the BQIs;

to the best of our knowledge this relation appears for the first time in the literature. In Sec-

tion IV we review the PT construction, and put to work the formalism derived above. Even

though the PT part is standard, this section provides a distilled review of the PT method,

and serves as a simple testing-ground for establishing the desired connections between the

two formalisms. In Section V we present the two-loop construction, where the connections

established are further scrutinized, within a far more complex context. In Section VI we

present an entirely new result, even from the point of view of conventional PT, namely the

two-loop generalization of the intrinsic PT construction. In particular, we will show how

the judicious organization of entire sets of two-loop diagrams, together with the use of the

STI for the one-loop three-gluon vertex, leads to the PT answer for the two-loop effective

gluon self-energy. Finally, in Section VII we present our conclusions.

II. THE BATALIN-VILKOVISKY FORMALISM

In this section we will briefly review the most salient features of the BV formalism [31, 32],

concentrating to its application to the case of massless Yang-Mills theories.

The (gauge fixed) Yang-Mills Lagrangian density will be given by

LYM = LI + LGF + LFPG, (2.1)

with LI the usual gauge invariant SU(N) Yang-Mills Lagrangian,

LI = −
1

4
F a
µνF

aµν + ψ̄ (iD/−m)ψ, (2.2)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (2.3)
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g is the gauge coupling, and Dµ is the covariant derivative defined as

Dµ = ∂µ − igT aAaµ. (2.4)

The covariant gauge fixing and Faddeev-Popov term LGF +LFPG will be chosen to have the

form

LGF + LFPG = −
1

2
ξ (Ba)2 +Ba∂µAaµ − c̄a∂µ

(
∂µc

a − gfabcAbµc
c
)
. (2.5)

The Ba are auxiliary, non-dynamical fields, since they have a quadratic term without deriva-

tives (and as such they are not propagating). They represent the so-called Nakanishi-Lautrup

Lagrange multiplier for the gauge condition, and they are usually eliminated through the

corresponding Gaussian integration in the path integral, giving rise to the usual gauge fixing

term

LGF =
1

2ξ

(
∂µAaµ

)2
. (2.6)

The starting point of the BV formalism is the introduction of an external field – called

anti-field – Φ∗,n for each field Φn appearing in the Lagrangian. In particular, here Φn

represent generically any of the fields Aaµ, c
a, c̄a, ψ, ψ̄ and Ba appearing in Eq.(2.1). The

anti-fields Φ∗,n will carry the same Bose/Fermi statistic of the corresponding field Φn and a

ghost number such that

gh {Φ∗,n} = −gh {Φn} − 1. (2.7)

Thus, since the ghost number is equal to 1 for the ghost fields ca, to −1 for the anti-ghost

fields c̄a, and zero for the other fields, one has the assignment

gh {A∗,a
µ , c∗,a, c̄∗,a, ψ∗, ψ̄∗} = {−1,−2, 0,−1,−1}. (2.8)

The original gauge invariant Lagrangian is then supplemented with a term coupling to the

anti-fields Φ∗,n with the BRST variation of Φn, giving the modified Lagrangian

LBV = LI + LBRST

= LI +
∑

n

Φ∗,nsΦn, (2.9)

with s the BRST operator, and

sAaµ = ∂µc
a − gfabcAbµc

c, sca = −
1

2
gfabccbcc,

sψ = igcaT aψ, sψ̄ = −igψ̄T aca,

sc̄a = Ba, sBa = 0. (2.10)
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The action IΓ(0)[Φ,Φ∗] built up from the new Lagrangian LBV, will then satisfy the master

equation ∫
d4x

[
δIΓ(0)

δΦ∗,n

δIΓ(0)

δΦn

]
= 0, (2.11)

which is just a consequence of the BRST invariance of the action and of the nilpotency of

the BRST operator.

Since the anti-fields are external fields, we must constrain them to suitable values before

we can use the action IΓ(0) in the calculation of S-matrix elements. To this purpose one

introduces an arbitrary fermionic functional Ψ[Φ] (with gh {Ψ[Φ]} = −1) such that

Φ∗,n =
δΨ[Φ]

δΦn
. (2.12)

Then the action becomes

IΓ(0)[Φ, δΨ/δΦ] = IΓ(0)[Φ] + (sΦn)
δΨ[Φ]

δΦn

= IΓ(0)[Φ] + sΨ[Φ], (2.13)

i.e., it is equivalent to the gauge fixed action of the Yang-Mills theory under scrutiny, since

we can choose the fermionic functional Ψ to satisfy

sΨ[Φ] =

∫
d4x (LGF + LFPG) . (2.14)

The fermionic functional Ψ is often referred to as the gauge fixing fermion.

Moreover, the auxiliary fields Ba and the anti-ghost anti-fields c̄∗,a have linear BRST

transformations, so that they form a so called trivial pair [35]: they enter, together with

their anti-fields, bilinearly in the action

IΓ(0)[Φ,Φ∗] = IΓ
(0)
min[A

a
µ, c

a, A∗,a
µ , c∗,a] −Bac̄∗,a. (2.15)

The last term has no effect on the master equation, which will be in fact satisfied by the

minimal action IΓ
(0)
min alone. In what follows we will restrict our considerations to the minimal

action (which depends on the minimal variablesAaµ, c
a, A∗,a

µ , c∗,a), dropping the corresponding

subscript.

It is well known that the BRST symmetry is crucial for providing the unitarity of the

S-matrix and the gauge independence of physical observables; thus it must be implemented
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in the theory to all orders, not only at the classical level. This is provided by establishing

the quantum corrected version of Eq.(2.11), in the form of the STI functional

S(IΓ)[Φ,Φ∗] =

∫
d4x

[
δIΓ

δΦ∗,n

δIΓ

δΦn

]

=

∫
d4x

[
δIΓ

δA∗,a
µ

δIΓ

δAaµ
+

δIΓ

δc∗,a
δIΓ

δca
+
δIΓ

δψ∗

δIΓ

δψ̄
+
δIΓ

δψ

δIΓ

δψ̄∗

]

= 0, (2.16)

where IΓ[Φ,Φ∗] is now the effective action. Eq.(2.16) gives rise to the complete set of non

linear STIs at all orders in the perturbative theory, via the repeated application of functional

differentiation. Notice that gh {S(IΓ)} = +1 and that Green’s functions with non-zero

ghost charge vanish, since it is a conserved quantity. This implies that for getting non-

zero identities it is necessary to differentiate the expression (2.16) with respect to one ghost

field (ghost charge +1) or with respect to two ghost fields and one anti-field (ghost charge

+2 − 1 = +1 again). For example, for deriving the STI satisfied by the three-gluon vertex,

one has to differentiate Eq.(2.16) with respect to two gluon fields and one ghost field (see

Section IIIA below).

A technical remark is in order here. Recall that we have chosen to work with the minimal

generating functional IΓ, from which the trivial pair (Ba, c̄∗,a) has been removed [35, 36].

In the case of a linear gauge fixing as the one at hands, this is equivalent to working with

the “reduced” functional IΓ, defined by subtracting from the complete genereting functional

IΓC the local term
∫
d4x LGF corresponding to the gauge-fixing part of the Lagrangian. One

should then keep in mind that the Green’s functions generated by the minimal effective

action IΓ or the complete one IΓC are not equal [33]. At tree-level, one has for example that

IΓ
(0)

Aa
µA

b
ν
(q) = IΓ

C (0)

Aa
µA

b
ν
(q) +

1

ξ
qµqν

= −iδabq2Pµν(q), (2.17)

where Pµν = gµν − qµqν/q
2 is the dimensionless transverse projector; at higher orders the

difference depends only on the renormalization of the gluon field and of the gauge parameter

(and, as such, is immaterial for our purposes).

Another important ingredient of the construction we carry out in what follows is to

write down the STI functional in the BFM. For doing this we introduce a classical vector

field Ωa
µ which carries the same quantum numbers as the gluon but ghost charge +1. We
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then implement the equations of motion of the background fields at the quantum level by

extending the BRST symmetry to them through the equations

sÂaµ = Ωa
µ, sΩa

µ = 0. (2.18)

Finally, in order to control the dependence of the Green’s functions on the background fields,

we modify the STI functional of Eq.(2.16) as [34, 37]

S ′(IΓ′)[Φ,Φ∗] = S(IΓ′)[Φ,Φ∗] + Ωa
µ

(
δIΓ

δÂaµ
−

δIΓ

δAaµ

)
, (2.19)

where IΓ′ denotes the effective action that depends on the background sources Ωa
µ, and

S(IΓ′)[Φ,Φ∗] is the STI functional of Eq.(2.16). Differentiation of the STI functional

Eq.(2.19) with respect to the background source and background or quantum fields, will

then relate 1PI functions involving background fields with the ones involving quantum fields

(see Section IIIB below).

The final ingredient we need to know for the actual computation of STIs are the cou-

pling of the anti-fields and background sources to the other fields of the theory. These are

controlled by the Lagrangians

LBRST = A∗,a
µ

[
∂µc

a − gfabc
(
Abµ + Âbµ

)
cc
]
−

1

2
gfabcc∗,acbcc + ig

(
ψ̄∗caT aψ

)
+ h.c.,

LΩ = Ωa
µ

[
∂µc̄

a − gfabc
(
Abµ + Âbµ

)
c̄c
]
, (2.20)

from which the necessary Feynman rules can be derived. Notice that the Feynman rules

for the vertices involving the background sources Ωa are the same as the ones involving the

anti-fields A∗,a provided that we trade the ghost fields for anti-ghost fields.

III. THE BASIC INGREDIENTS

After having reviewed the BV formalism as it applies to the case of mass-less Yang-Mills

theories, we next proceed to derive the basic ingredients needed for the PT construction.

In particular we will focus on two aspects: (i) the derivation of the STI for the off-shell

three-gluon vertex IΓAαAµAβ
(q1, q2, q3); as we will see this STI is of central importance for

the intrinsic PT method, to be presented in Section VI. Of course the aforementioned

STI is known since a long-time in the context of the standard formulation of non-Abelian

gauge theories following the Faddeev-Popov Ansatz [25, 30]; here however we want to relate
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in a manifest way the pieces appearing in it (ghost Green’s functions) with well-defined

quantities emerging in the BV formalism, i.e. auxiliary (unphysical) Green’s functions

involving ghost fields and gauge bosons anti-fields. (ii) the derivation of the BQIs relating

the background and quantum two- three- and four-point functions. These identities furnish

non-linear relations between the two kinds of Green’s functions and facilitate significantly

the eventual comparison between the effective PT Green’s functions and the BFM Green’s

functions, computed at ξQ = 1. The crucial point is that the conventional Green’s functions

are related to the BFM ones by means of the same type of building blocks as those that

appear in the STI of the three-gluon vertex, derived in (i), namely auxiliary, unphysical

Green’s functions. Even though the set of such auxiliary Green’s functions appearing in (i)

is different from that appearing in (ii), since the former involves ghost fields and gauge boson

anti-fields, whereas the latter gauge boson background sources and anti-fields, it turns out

that the two sets are related by a rather simple Schwinger-Dyson-type of relation, which we

present here for the first time, in Eq.(3.23). This relation constitutes a non-trivial ingredient,

bound to play a central role in the generalization of the intrinsic PT to all orders [26], and

constitutes a central result of this section.

A. Slavnov-Taylor Identity for the three-gluon vertex

The standard text-book derivation of the three-gluon vertex STI starts from the trivial

identity [30]

〈0|T
[
Amµ (x)c̄b(y)[∂νAcν(z)]

]
|0〉 = 0, (3.1)

which is re-expressed in terms of the BRST-transformed fields, making also use of the equal-

time commutation relation of the fields. The quantity which appears naturally when fol-

lowing this procedure and Fourier-transforming the identity into momentum space, is (from

now on we assume that all momenta appearing in a given Green’s function are entering, i.e.,

q1 + q2 + q3 = 0 in the case at hands)

Labcαβ (q1, q2, q3) ≡

∫
d4x d4y e−iq1xe−iq3yfaem〈0|T

[
Aeα(x)c

m(x)c̄c(y)Abβ(0)
]
|0〉, (3.2)

which is written in the form

Labcαβ (q1, q2, q3) ≡
[
Hb′c′a
αβ′ (q2, q3, q1)+Σad

α (q1)D
de(q1)G

b′c′e
β′ (q2, q3, q1)

]
Dcc′(q3)∆

b′b β′

β (q2), (3.3)
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where we define the (full) ghost and gluon propagators (in the Feynman gauge) as follows

D(p) =
i

p2 − iL(p)
,

∆µν(q) = −i

[
∆(q2)Pµν(q) +

qµqν
q4

]
, ∆(q2) =

1

q2 + iΠ(q2)
,

∆(0)
µν (q) = gµνd(q), d(q) = −iq−2. (3.4)

The scalar quantities L(p) and Π(q2) represent respectively the ghost and gluon self-energies.

The functions Σad
α (q1) and Gb′c′e

β′ (q2, q3, q1) are defined by means of the quantities

Nab
µ (p) ≡

∫
d4x e−ipx famn〈0|T

[
Amµ (x)cn(x)c̄b(0)

]
|0〉,

Mabc
µ (q1, q2, q3) ≡

∫
d4x d4y e−iq3xe−iq2y〈0|T

[
cc(x)c̄b(y)Aaµ(0)

]
|0〉, (3.5)

as follows:

gNab
µ (p) ≡ −Σac

µ (p)Dcb(p),

Mabc
µ (q1, q2, q3) ≡ gGµ′

a′b′c′(q1, q2, q3)∆
a′a
µ′µ(q1)D

b′b(q2)D
c′c(q3). (3.6)

Notice that (after eliminating the dependence on one momentum, using the constraint due

to momentum conservation) the Green’s functions H and Σ have the following diagrammatic

definition

H
(n)
αβ (q1, q2) = K

(n3)
νβ

D(n1)

∆
(n2)
µν

q1α

n = n1 + n2 + n3 + 1

n1, n2 ≥ 0 ⇔ n3 ≥ 1

K
(0)
νβ =

q2β

ν β

Σ
(n)
α (q1) = G

(n3)
ν

D(n1)

∆
(n2)
µν

q1α n = n1 + n2 + n3 + 1

(3.7)

which at tree-level implies [30]

H
(0)
αβ (q1, q2) = q1α

q2β

= −iggαβ
(3.8)

Clearly, by definition in Eq.(3.3), Hαβ(q1, q2) corresponds the one-particle irreducible part

of Lαβ(q1, q2), i.e., graphically
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Lαβ(q1, q2) = K
(n3)
νρ

D(n1)

∆
(n2)
µν

D(n4)

∆
(n5)
ρσ

q1α

q2β

+ G
(ñ3)
ν G

(ñ5)
ρ

D(ñ1)

∆
(ñ2)
µν

D(ñ4)

D(ñ6)

∆
(ñ7)
ρσ

q1α

q2β

(3.9)

Notice the constraint on the values of n1, n2, and n3, appearing in the definition of

H
(n)
αβ (q1, q2). Clearly, since H

(n)
αβ (q1, q2) corresponds to an amputated vertex, n1 and n2 may

differ from zero, only iff n3 ≥ 1.

After standard manipulations one arrives at the well-known STI [25]

qν3 IΓAαAµAν(q1, q2, q3) =
[
i∆(−1) ρ

α (q1) + qρ1q1α
] [
q2
3D(q3)

]
Hρµ(q1, q2)

−
[
i∆(−1) ρ

µ (q2) + qρ2q2µ
] [
q2
3D(q3)

]
Hρα(q2, q1), (3.10)

which, at tree-level, assumes the simple form

qν3 IΓ
(0)
AαAµAν

(q1, q2, q3) = g
[
gαµq

2
2 − q2αq2µ

]
− g

[
gαµq

2
1 − q1αq1µ

]
. (3.11)

In the BV formalism, the corresponding STI satisfied by the three-gluon vertex

IΓAa
αA

b
µA

c
ν
(q1, q2) may be obtained by considering the following functional differentiation of

the STI functional of Eq.(2.16):

δ3S (IΓ)

δcc(q3)δAbµ(q2)δA
a
α(q1)

∣∣∣∣
Φ=0

= 0 q1 + q2 + q3 = 0, (3.12)

which in turn gives the STI

IΓ
ccA

∗,d
ν

(−q3)IΓAd,νAb
µA

a
α
(q2, q1) + IΓ

ccA
∗,d
ν Aa

α
(q2, q1)IΓAd,νAb

µ
(q2)

+ IΓ
ccA

∗,d
ν Ab

µ
(q1, q2)IΓAd,νAa

α
(q1) = 0. (3.13)

We can then establish the following identifications [recall Eq.(2.17)]

IΓAa
µA

b
ν
(q) = δab

[
iqµqν − ∆(−1)

µν (q)
]

=⇒





IΓ

(0)
AµAν

(q) = −iq2Pµν(q),

IΓ
(n)
AµAν

(q) = Π
(n)
µν (q2).

(3.14)

Moreover we can factor out the Lorentz and group structure of the two-point function

IΓ
caA

∗,b
µ

(p) appearing in Eq.(3.13) to get

IΓ
caA

∗,b
µ

(p) = −iδabpµIΓcA∗(p) =⇒ IΓcA∗(p) = i
pµ

p2
IΓcA∗

µ
(p). (3.15)
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It is then easy to show that the scalar quantity IΓcA(p) is related to the ghost propagator

by the following equation

IΓcA∗(p) = −
[
p2D(p)

](−1)
. (3.16)

Using the Feynman rules derived from LBRST (see Fig.1) to factor out the color structure

function, we find

qν3 IΓAαAνAµ(q1, q2)IΓcA∗(q3) = iIΓcA∗

ρAα(q2, q1)IΓAρAµ(q2) − iIΓcA∗

ρAµ(q1, q2)IΓAρAα(q1), (3.17)

which implies the STI of Eq.(3.10), after the following identification

IΓcA∗

αAβ
(q1, q2) ≡ Hαβ(q1, q2). (3.18)

This last relation will be helpful in making contact between the quantities appearing in

the conventional STI formulated in the standard covariant gauges (which, as such, have no

a-priori knowledge of the BV formalism) and quantities appearing in the BQI derived within

the BV scheme.

B. Background–Quantum Identities

The BQIs were first presented in [33, 34] in the context of the Standard Model;

they may be derived by appropriate functional differentiation of the BFM STI functional

of Eq.(2.19) [38] .

1. Gluon two-point function

Consider the following functional differentiation of the STI functional Eq.(2.16)

δ2S (IΓ)

δΩa
α(p1)δÂbβ(q)

∣∣∣∣∣
Φ=0

= 0 q + p1 = 0,

δ2S (IΓ)

δΩa
α(p1)δAbβ(q)

∣∣∣∣∣
Φ=0

= 0 q + p1 = 0, (3.19)

which will give the BQIs

IΓÂa
αÂ

b
β
(q) =

[
gαρδ

ad + IΓΩa
αA

∗,d
ρ

(−p1)
]
IΓAd,ρÂb

β
(q), (3.20)

IΓÂa
αA

b
β
(q) =

[
gαρδ

ad + IΓΩa
αA

∗,d
ρ

(−p1)
]
IΓAd,ρAb

β
(q). (3.21)
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A∗,a
α

Ab
β

cc

= −igfabcgαβ
Ωa

α

Ab
β

c̄c

= −igfabcgαβ

FIG. 1: Feynman rules from which the two- and three-point functions IΓ
(n)
ΩαA∗

β
(q1) and

IΓ
(n)
cA∗

αAβ
(q1, q2) can be built up.

We can now combine Eqs.(3.20) and (3.21) in such a way that the two-point function

mixing background and quantum fields drops out [34]. Factoring out the gauge group

invariant tensor δab and the Lorentz transverse projector Pαβ(q), we then arrive to the

equation

IΓÂÂ(q) = [1 + IΓΩA∗(q)]2 IΓAA(q). (3.22)

The quantity IΓΩA∗(q) may be constructed order-by order using the Feynman rules derived

from LBRST, listed in Fig.1.

The crucial point, which allows the exploitation of the BQIs derived above, is the obser-

vation that IΓΩA∗(q) may be written in terms of the amplitudes D, ∆, and most importantly

H , which appear in the STI for the three-gluon vertex, and are defined in the context of the

conventional formalism, i.e., have no a-priori knowledge of anti-fields, or of the Feynman

rules stemming from LBRST.

In particular we have that the following Schwinger-Dyson equation holds (perturbatively)

iIΓ
(n)
ΩαA∗

µ
(q) = CA

∫
d4k

(2π)4
IΓ

(0)
cΩαAµ

(q,−k − q)D(n1)(k)∆(n2)µν(k + q)IΓ
(n3)
cA∗

β
Aν

(−q, k + q),

(3.23)

or diagrammatically

IΓ
(n3)

cA∗

β
Aν

D(n1)

∆
(n2)
µν

Ωα A∗

β
iIΓ

(n)
ΩαA

∗

β
(q) = n = n1 + n2 + n3 + 1

(3.24)

Clearly, from the basic Feynman rules of LBRST, we have that IΓ
(0)
cA∗

αAβ
(q1, q2) =

IΓ
(0)
cΩαAβ

(q1, q2). Then using Eq.(3.18) we find

iIΓ
(n)
ΩαA

∗

β
(q) = CA

∫
d4k

(2π)4
H(0)
αµ (q,−k − q)D(n1)(k)∆(n2)µν(k + q)H

(n3)
βν (−q, k + q), (3.25)
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or, diagrammatically,

α H
(n3)
βν

D(n1)

∆
(n2)
µν

iIΓ
(n)
ΩαA

∗

β
(q) = n = n1 + n2 + n3 + 1

(3.26)

Evidently this last equation expresses IΓ
(n)
ΩαA

∗

β
(q), a quantity definable in the BV frame-

work, entirely in terms of quantities definable in the conventional formalism. Using the

diagrammatic definition of Hαµ(q1, q2) shown in Eq.(3.7), we may express diagrammatically

this last Schwinger-Dyson equation in terms of the four-particle kernel Kνρ as follows,

K
(ñ3)
νρ

D(n1)

∆
(n2)
µν

D(ñ1)

∆
(ñ2)
ρσ

Ωα A∗

β
iIΓ

(n)
ΩαA

∗

β
(q) =

(3.27)

2. Gluon–quark–anti-quark three-point function

For the annihilation channel (one can study equally well the elastic channel) we consider

the functional differentiation

δ3S (IΓ)

δΩa
α(q)δψ̄(Q′)δψ(Q)

∣∣∣∣
Φ=0

= 0 Q′ +Q+ q = 0, (3.28)

which provides us the BQI

IΓ
Âa

αψ̄ψ
(Q′, Q) =

[
gαρδ

ad + IΓΩa
αA

∗,d
ρ

(−q)
]
IΓAd,ρψ̄ψ(Q′, Q) + IΓψ̄ψ(−Q

′)IΓΩa
αψ̄

∗ψ(Q′, Q)

− IΓΩa
αψ

∗ψ̄(Q,Q
′)IΓψ̄ψ(Q). (3.29)

Since we will always deal with on-shell external fermions, we can sandwich the above

equation between on-shell Dirac spinors; in this way, using the Dirac equations of motion

IΓψ̄ψ(Q)u(Q) = 0 and v̄(Q′)IΓψ̄ψ(−Q′) = 0 when Q/ = Q/ ′ = m, we can get rid of the second

and third term appearing in Eq.(3.29), to write the on-shell BQI

IΓ
Âa

αψ̄ψ
(Q′, Q) =

[
gαρδ

ad + IΓΩa
αA

∗,d
ρ

(q)
]
IΓAd,ρψ̄ψ(Q′, Q). (3.30)

The reader should appreciate the fact that the BQIs alone, interesting as they may be

in their own right, would be of limited usefulness for our purposes, if it were not for the
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complementary identification of the corresponding pieces appearing in the STI, as captured

in Eq.(3.23). Notice in particular that the BQIs by themselves only amount to the statement

that Γ(n1)∆(n2)Γ(n3) = Γ̂(n1)∆̂(n2)Γ̂(n3), which is automatically true, since the box-diagrams

are identical in both schemes, and so is the entire S-matrix.

3. Gluon three-point function

Here we derive the BQI relating the gluon three-point function IΓÂa
αA

b
β
Ac

γ
(p1, p2), i.e.,

with one background and two quantum gluons to the normal gluon three-point function

IΓAa
αA

b
β
Ac

γ
(p1, p2) i.e., with three quantum gluons.

We start by considering the following functional differentiation

δ3S (IΓ)

δΩa
α(q)δA

b
β(p1)δAcγ(p2)

∣∣∣∣∣
Φ=0

= 0 q + p1 + p2 = 0, (3.31)

which will provide us the BQI

IΓÂa
αA

b
β
Ac

γ
(p1, p2) =

[
gαρδ

ad + IΓΩa
αA

∗,d
ρ

(q)
]
IΓAd,ρAb

β
Ac

γ
(p1, p2)

+ IΓΩa
αA

∗,d
ρ Ac

γ
(p1, p2)IΓAd,ρAb

β
(p1) + IΓΩa

αA
∗,d
ρ Ab

β
(p2, p1)IΓAd,ρAc

γ
(p2).

(3.32)

Next, we consider the case in which the external gluons Abβ(p1) and Acγ(p2) are “on-shell”

physical states, i.e., with p2
1 = p2

2 = 0 and pβ1ǫβ(p1) = pγ2ǫγ(p2) = 0. Then, since the gluon

propagator is transverse, we find the on-shell BQI

IΓÂa
αA

b
β
Ac

γ
(p1, p2) =

[
gαρδ

ad + IΓΩa
αA

∗,d
ρ

(q)
]
IΓAd,ρAb

β
Ac

γ
(p1, p2). (3.33)

Notice that in the above BQI the (unphysical) Green’s function that provides the organi-

zation of the Feynman diagrams for converting the three-point function IΓÂa
αA

b
β
Ac

γ
(p1, p2) into

the corresponding quantum one IΓAa
αA

b
β
Ac

γ
(p1, p2), is the same that appears in the two-point

BQI of Eqs.(3.22) and (3.30).

4. Gluon four-point function

Finally, we derive the BQI relating the gluon four-point function IΓ
Âa

αA
b
βA

c
γA

d
δ
(p1, p2, p3),

i.e., with one background and three quantum gluons to the normal gluon four-point function

IΓAa
αA

b
β
Ac

γA
d
δ
(p1, p2, p3), i.e., with four quantum gluons.
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For doing this we consider the functional differentiation

δ4S (IΓ)

δΩa
α(q)δA

b
β(p1)δAcγ(p2)δA

d
δ(p3)

∣∣∣∣∣
Φ=0

= 0 q + p1 + p2 + p3 = 0, (3.34)

which will give us the BQI

IΓÂa
αA

b
β
Ac

γA
d
δ
(p1, p2, p3) =

[
gαρδ

ae + IΓΩa
αA

∗,e
ρ

(q)
]
IΓAe,ρAb

β
Ac

γA
d
δ
(p1, p2, p3)

+ IΓΩa
αA

∗,e
ρ Ab

β
(q, p1)IΓAe,ρAc

γA
d
δ
(q + p1, p2)

+ IΓΩa
αA

∗,e
ρ Ac

γ
(q, p2)IΓAe,ρAd

δA
b
β
(q + p2, p3)

+ IΓΩa
αA

∗,e
ρ Ad

δ
(q, p3)IΓAd,ρAb

β
Ac

γ
(q + p3, p1)

+ IΓΩa
αA

b
β
Ac

γA
∗,e
ρ

(q, p1, p2)IΓAe,ρAd
δ
(p3)

+ IΓΩa
αA

d
δ
Ab

β
A

∗,e
ρ

(q, p3, p1)IΓAe,ρAc
γ
(p2)

+ IΓΩa
αA

c
γA

d
δA

∗,e
ρ

(q, p2, p3)IΓAe,ρAb
β
(p1). (3.35)

If, as before, the external gluons Abβ(p1), A
c
γ(p2) and Adδ(p3) are considered as on-shell phys-

ical states, we can get rid of the last three terms, obtaining the on-shell BQI

IΓÂa
αA

b
β
Ac

γA
d
δ
(p1, p2, p3) =

[
gαρδ

ae + IΓΩa
αA

∗,e
ρ

(q)
]
IΓAe,ρAb

β
Ac

γA
d
δ
(p1, p2, p3)

+ IΓΩa
αA

∗,e
ρ Ab

β
(q, p1)IΓAe,ρAc

γA
d
δ
(q + p1, p2)

+ IΓΩa
αA

∗,e
ρ Ac

γ
(q, p2)IΓAe,ρAd

δA
b
β
(q + p2, p3)

+ IΓΩa
αA

∗,e
ρ Ad

δ
(q, p3)IΓAe,ρAb

β
Ac

γ
(q + p3, p1). (3.36)

Again we find the same unphysical Green’s function emerging, plus three terms that

where not present (due to the on-shell condition) in Eq.(3.33).

IV. A FRESH LOOK AT THE S-MATRIX PT

In the next two sections we will review the S-matrix PT in an attempt to accomplish two

main objectives. First, we will furnish a discussion of the method, which incorporates into

a coherent framework the various conceptual and technical development which have taken

place in the last years. Second, we use it as an opportunity to familiarize ourselves with

the BV formalism, and in particular the BQIs, in a well-understood context. Thus, after

outlining the general PT framework, we will re-express the one-loop S-matrix PT results in

terms of the BV building blocks. The more technical case of the two-loop PT, together with

the corresponding BV ingredients, will be revisited in the next section.
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A. General framework

A general S-matrix element of a 2 → 2 process can be written following the standard

Feynman rules as

T (s, t,mi) = T1(s, ξ) + T2(s,mi, ξ) + T3(s, t,mi, ξ), (4.1)

Evidently the Feynman diagrams impose a decomposition of T (s, t,mi) into three distinct

sub-amplitudes T1, T2, and T3, with a very characteristic kinematic structure, i.e., a very

particular dependence on the the Mandelstam kinematic variables and the masses. Thus, T1

is the conventional self-energy contribution, which only depends on the momentum transfer

s, T2 corresponds to vertex diagrams which in general depend also on the masses of the

external particles, whereas T3 is a box-contribution, having in addition a non-trivial depen-

dence on the Mandelstam variable t. However, all these sub-amplitudes, in addition to their

dependence of the physical kinematic variables, also display a non-trivial dependence on the

unphysical gauge fixing parameter parameter ξ. Of course we know that the BRST symme-

try guarantees that the total T (s, t,mi) is independent of ξ, i.e., dT/dξ = 0; thus, in general,

a set of delicate gauge-cancellations will take place. The PT framework provides a very par-

ticular realization of this cancellations. Specifically, the transition amplitude T (s, t,mi) of

a 2 → 2 process, can be decomposed as [1, 2, 3]

T (s, t,mi) = T̂1(s) + T̂2(s,mi) + T̂3(s, t,mi), (4.2)

in terms of three individually gauge-invariant quantities: a propagator-like part (T̂1), a

vertex-like piece (T̂2), and a part containing box graphs (T̂3). The important observation is

that vertex and box graphs contain in general pieces, which are kinematically akin to self-

energy graphs of the transition amplitude. The PT is a systematic way of extracting such

pieces and appending them to the conventional self-energy graphs. In the same way, effec-

tive gauge invariant vertices may be constructed, if after subtracting from the conventional

vertices the propagator-like pinch parts we add the vertex-like pieces, if any, coming from

boxes. The remaining purely box-like contributions are then also gauge invariant. In what

follows we will consider for concreteness the S-matrix element for the quark (q)-antiquark

(q̄) elastic scattering process q(P )q̄(P ′) → q(Q)q̄(Q′) in QCD; we set q = P ′ − P = Q′ −Q,

with s = q2 is the square of the momentum transfer. One could equally well study the

annihilation channel, in which case s would be the center-of-mass energy.
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In order to identify the pieces which are to be reassigned, all one has to do is to resort

to the fundamental WIs of the theory. In particular the longitudinal momenta kµ appearing

inside Feynman diagrams eventually reach the elementary gluon-quark vertex involving one

“on-shell” quark carrying momentum Q and one off-shell quark, carrying momentum k+Q,

and trigger the WI

kµ[ū(Q/) γ
µ S(k/+Q/)] = ū(Q/) k/ S(k/+Q/)

= ū(Q/) [(k/+Q/+m) − (Q/+m)]S(k/+Q/)

= ū(Q/)[S−1(k/+Q/) − S−1(Q/)]S(k/+Q/) (4.3)

The first term in the square bracket will remove (pinch out) the internal quark propagator,

giving rise to a self-energy-like contributions, while the second term will die on-shell, by

virtue of the Dirac equation of motion; the on-shell condition used at this point is charac-

teristic of the S-matrix PT [1, 2, 3].

An important step in the PT procedure is clearly the identification of all longitudinal

momenta involved, i.e., the momenta which can trigger the elementary WI of Eq.(4.11).

There are two sources of such momenta: (i) The tree-level expressions for the gauge boson

propagators appearing inside Feynman diagrams and (ii) the tri-linear gauge boson vertices.

Regarding the former contributions, the tree-level gluon propagator reads

∆µν(q) =
−i

q2

[
gµν − (1 − ξ)

qµqν
q2

]
, (4.4)

and the longitudinal momenta are simply those multiplying (1−ξ). It is a straightforward but

tedious exercise to convince one-self that inside an S-matrix element all terms proportional

to (1 − ξ)n, with n ≥ 1, cancel against each-other in a very special way. In particular,

all relevant cancellations proceed without need of carrying out integrations over the virtual

loop momenta, thus maintaining the kinematic identity of the various Green’s functions

intact, a point of crucial importance within the PT philosophy. As has been shown by

explicit calculations (see for example [39]), this is indeed the case at one- and two-loops.

The key observation is that all contributions originating from the longitudinal parts of

gauge boson propagators, by virtue of the WIs they trigger, give rise to unphysical effective

vertices, i.e., vertices which do not exist in the original Lagrangian. All such vertices cancel

diagrammatically inside ostensibly gauge-invariant quantities, such as current correlation

functions or S-matrix elements. It is important to emphasize that exactly the same result is
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obtained even in the context of the non-covariant axial gauges (see for example [40, 41, 42]),

where the Feynman gauge cannot be reached a priori by simply fixing appropriately the

value of the gauge-fixing parameter. Thus, even if one uses a bare gluon propagator of the

general axial gauge form, after the aforementioned cancellations have taken place one arrives

effectively to the answer written in the covariant Feynman gauge. Thus, one can begin the

analysis without loss of generality by choosing the Feynman gauge when writing down the

Feynman diagrams contributing to the S-matrix.

The identification and role of the longitudinal momenta stemming from the three-

gluon vertex is slightly more subtle. The fundamental tree-level three-gluon vertex

IΓ
(0)

Aa
αA

b
µA

c
ν
(q, p1, p2) is given by the following manifestly Bose-symmetric expression (all mo-

menta are incoming, i.e., q + p1 + p2 = 0)

IΓ
(0)

Aa
αA

b
µA

c
ν
(q, p1, p2) = gfabcΓ(0)

αµν(q, p1, p2),

Γ(0)
αµν(q, p1, p2) = (q − p1)νgαµ + (p1 − p2)αgµν + (p2 − q)µgαν . (4.5)

The Lorentz structure Γ
(0)
αµν(q, p1, p2) may be split into two parts [43, 44]

Γ(0)
αµν(q, p1, p2) = ΓF

αµν(q, p1, p2) + ΓP
αµν(q, p1, p2), (4.6)

with

ΓF
αµν(q, p1, p2) = (p1 − p2)αgµν + 2qνgαµ − 2qµgαν ,

ΓP
αµν(q, p1, p2) = p2νgαµ − p1µgαν . (4.7)

The vertex ΓF
αµν(q, p1, p2) is Bose-symmetric only with respect to the µ and ν legs, and coin-

cides with the BFM Feynman gauge bare vertex involving one background gluon (carrying

four-momentum q) and two quantum gluons (carrying four-momenta p1 and p2). Evidently

the above decomposition assigns a special rôle to the q-leg, and allows ΓF
αµν(q, p1, p2) to

satisfy the WI

qαΓF
αµν(q, p1, p2) = (p2

2 − p2
1)gµν , (4.8)

where the right-hand side (RHS) is the difference of two-inverse propagators in the renormal-

izable Feynman gauge. The term ΓP
αµν(q, p1, p2) contains the pinching momenta; they will

eventually trigger the elementary WI, which will eliminate the internal quark propagator,

resulting in an effectively propagator-like contribution. Notice that in the light of the BV
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IΓAαψ̄ψ
(Q′, Q) = + + +

(a) (b) (c) (d)

∆

∆

1PI

D

D

1PI

D

D

1PI

1PI

∆

∆

∆

S

S

1PI

S

S

1PI

FIG. 2: The decomposition of the three-point function IΓAαψ̄ψ
(Q′, Q) in terms of diagrams having

an external elementary three-gluon vertex ΓA
2

Aαψ̄ψ
(Q′, Q) (a), those where the external gluon couples

directly to ghost fields Γc̄c
Aαψ̄ψ

(Q′, Q) (b), and the the rest, which falls into neither of the previous

categories ΓA
3

Aαψ̄ψ
(Q′, Q) and Γq̄q

Aαψ̄ψ
(Q′, Q) [(c) and (d) respectively]. S represents the full fermionic

propagator.

formalism, the PT splitting given in Eq.(4.7) may be cast in the alternative, perhaps more

suggestive form

IΓ
(0)

Aa
αA

b
µA

c
ν
(q, p1, p2) = IΓ

(0)

Âa
αA

b
µA

c
ν

(q, p1, p2) + i
[
p2νIΓ

(0)
cA∗

αAµ
− p1µIΓ

(0)
cA∗

αAν

]
. (4.9)

According to the PT [23, 24] the next steps consists of the following: (a) Classify all

diagrams which contribute to the three-point function IΓAαψ̄ψ(Q′, Q) into the following cat-

egories: (i) those containing an external three-gluon vertex, i.e., a three-gluon vertex where

the momentum q is incoming, (ii) those which do not have such an external three-gluon

vertex. This latter set contains graphs where the incoming gluon couples to the rest of the

diagram with any type of interaction vertex other than a three-gluon vertex. Thus we write

(see also Fig.2)

IΓAαψ̄ψ(Q′, Q) = ΓA
2

Aαψ̄ψ
(Q′, Q) + Γc̄cAαψ̄ψ

(Q′, Q) + ΓA
3

Aαψ̄ψ
(Q′, Q) + Γq̄q

Aαψ̄ψ
(Q′, Q). (4.10)

(b) Carry out inside the class (i) diagrams the vertex decomposition given in Eq.(4.6).

(c) Track down the terms originating from ΓP
αµν(q, p1, p2): these terms, depending on the

topological details of the diagram under consideration will either (i) trigger directly the WI

of Eq.(4.3) or (ii) they will trigger a chain of intermediate tree-level WIs, such as Eq.(6.1)

whose end result will be that eventually an appropriate longitudinal momentum will be

generated, which will trigger the WI of Eq.(4.3). (d) The propagator-like terms thusly

generated are to be alloted to the conventional self-energy graphs, and will form part of the
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−→ Γ
(0)
F

+
Aα

q

ν

µ

k+q

k

k+Q′

Q

Q′

Aα

q

Q

Q′

Aα

q

Q

Q′

(a) (b) (c)

FIG. 3: Carrying out the fundamental vertex decomposition inside the three-point function

Γ
A2 (1)

Aαψψ̄
(Q′, Q) (a) contributing to IΓ

(1)

Aαψψ̄
(Q′, Q), gives rise to the genuine vertex Γ̂

A2 (1)

Aαψ̄ψ
(Q′, Q) (b)

and a self-energy-like contribution 1
2V

P (1)
αρ (q)γρ (c).

effective PT gluon self-energy at that order; to complete its construction one needs to supply

in addition the left-over pieces generated when converting a string of 1PI self-energies into a

corresponding PT string. Finally, the remaining purely vertex-like parts define the effective

PT gluon-quark-antiquark three-point function ÎΓAαψ̄ψ(Q′, Q) .

Before entering into some of the details of the explicit one- and two-loop constructions we

would like to comment on an additional subtle point. One of the main obstacle related to the

generalization of the PT beyond one-loop has been the issue of whether or not a splitting

analogous to that of Eq.(4.6) should take place for the internal three-gluon vertices, i.e.,

vertices with all three legs irrigated by virtual momenta, so that q never enters alone into

any of the legs. This issue has been resolved by resorting to the special unitarity properties

satisfied by the PT Green’s functions. The final answer is that no splitting should take place

for any of these internal three-gluon vertices. As we will see in the next section, a new and

more direct argument corroborates this answer.

B. The one-loop construction

Notice that at the one-loop level only the first and last term of Eq.(4.10) will be present.

We then implement (see Fig.3a) the vertex decomposition of Eq.(4.6), with p1µ = kµ, p2ν =

−(k + q)ν , inside the Γ
A2 (1)

Aαψ̄ψ
(Q′, Q) part of Eq.(4.10). The ΓP

αµν(q, p1, p2) term triggers then

the elementary WIs

k/ = (k/+Q/ ′ −m) − (Q/ ′ −m),

k/+ q/ = (k/+Q/ ′ −m) − (Q/−m), (4.11)
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thus, two self-energy like pieces are generated (Fig.3c), which are to be alloted to the con-

ventional self-energy. In particular,

Γ
A2 (1)

Aαψ̄ψ
(Q′, Q) = Γ̂

A2 (1)

Aαψ̄ψ
(Q′, Q) +

1

2
V P (1)
αρ (q)γρ −X

(1)
1α(Q′, Q)Σ(0)(Q′)

− Σ(0)(Q)X
(1)
2α(Q′, Q), (4.12)

where

Γ̂
A2 (1)

Aαψ̄ψ
(Q′, Q) =

∫

L1

J(q, k)ΓF
αµν(q, k,−k − q)γµS(0)(Q′ + k)γν ,

V P(1)
αρ (q) = 2gαρ

∫

L1

J(q, k), (4.13)

and

∫

L1

≡ µ2ε

∫
ddk

(2π)d
,

J(q, k) ≡ g2CA[k2(k + q)2]−1. (4.14)

CA denotes the Casimir eigenvalue of the adjoint representation, i.e., CA = N for SU(N).

Notice that the last two terms appearing in the RHS of Eq.(4.12) vanish for on-shell external

fermions, and will be discarded in the analysis that follows.

The (dimension-less) self-energy-like contribution 1
2
V

P (1)
αρ (q), together with another such

contribution arising from the mirror vertex (not shown), after trivial manipulations gives

rise to the dimensionful quantity

Π
P (1)
αβ (q) = q2V P (1)

αρ (q)P ρ
β (q) = ΠP (1)(q)Pαβ(q),

ΠP (1)(q) = 2q2

∫

L1

J(q, k). (4.15)

Π
P (1)
αβ (q) will be added to the conventional one-loop gluon two-point function IΓ

(1)
AαAβ

(q), to

give rise to the the PT one-loop gluon two-point function ÎΓ
(1)

AαAβ
(q) (see Fig.4):

ÎΓ
(1)

AαAβ
(q) = IΓ

(1)
AαAβ

(q) + Π
P (1)
αβ (q). (4.16)

Correspondingly, the PT one-loop three-point function ÎΓ
(1)

Aαψ̄ψ
(Q′, Q) will be defined as

ÎΓ
(1)

Aαψ̄ψ
(Q′, Q) = Γ̂

A2 (1)

Aαψ̄ψ
(Q′, Q) + Γ

q̄q (1)

Aαψ̄ψ

= IΓ
(1)

Aαψ̄ψ
(Q′, Q) −

1

2
V P (1)
αρ (q)γρ. (4.17)
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ÎΓ
(1)

AαAβ
(q)= 1

2
+ + 2 Pαβ(q)

α β α β

(a) (b) (c)

FIG. 4: The diagrammatic representation of the PT two-point function ÎΓ
(1)

AαAβ
(q) as the sum of

the conventional two-point function IΓ
(1)
AαAβ

(q) given by (a) and (b), and the pinch contributions

coming from the vertices (c).

We can then compare these results with the ones we can get from the BQIs of Eqs.(3.22)

and (3.30) found in the previous sections. At one loop these BQIs read

IΓ
(1)

ÂαÂβ

(q) = IΓ
(1)
AαAβ

(q) + 2IΓ
(1)
ΩαA∗

ρ
(q)IΓ

(0)
AρAβ

(q),

IΓ
(1)

Âαψ̄ψ
(Q′, Q) = IΓ

(1)

Aαψ̄ψ
(Q′, Q) + IΓ

(1)
ΩαA∗

ρ
(q)IΓ

(0)

Aρψ̄ψ
(Q′, Q), (4.18)

where in the last equation we factor out a gT a factor.

From the perturbative expansion of Eq.(3.23), observing that iIΓ
(n)

Ωa
µA

∗,b
ν

(q) = Π
(n)

Ωa
µA

∗,b
ν

(q),

one has

iIΓ
(1)

Ωa
αA

∗,b
ρ

(q) =
Ωa

α A
∗,b
ρ

= iδabIΓ
(1)
ΩαA∗

ρ
(q)

Therefore, using the Feynman rules of Fig.1, we find

IΓ
(1)
ΩαA∗

ρ
(q) = igαρ

∫

L1

J(q, k)

=
i

2
V P(1)
αρ (q). (4.19)

Thus one has the results

2IΓ
(1)
ΩαA∗

ρ
(q)IΓ

(0)
AρAβ

(q) = Π
P (1)
αβ (q),

IΓ
(1)
ΩαA∗

ρ
(q)IΓ

(0)

Aρψ̄ψ
(Q′, Q) = −

1

2
V P (1)
αρ (q)γρ,

which will in turn automatically enforce the identifications

ÎΓ
(1)

AαAβ
(q) ≡ IΓ

(1)

ÂαÂβ

(q),

ÎΓ
(1)

Aαψ̄ψ
(Q′, Q) ≡ IΓ

(1)

Âαψ̄ψ
(Q′, Q). (4.20)
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−→ Γ
(0)
F

+
Aα

q

ν

µ

k+q

k

k−p2

p1

p2

Aα

q

p1

p2

Aα

q

p1

p2(a) (b) (c)

FIG. 5: The result of carrying out the PT decomposition on the three-point function

IΓ
A2 (1)
AαAβAγ

(p1, p2) for the case of two external on-shell gluons. Notice that in graph (c), despite

appearances, the vertex connecting the loop to the external gluons is a tree- and not a four-gluon

vertex.

C. Universality (process-independence) of the PT algorithm

One important question has been whether the construction of off-shell Green’s functions,

such as an effective gluon self-energy, depends on the kind of external particles chosen. This

question was settled in [45] by means of detailed calculations. In particular it has been

shown that at one-loop the gluon self-energy constructed by resorting to the PT algorithm

is universal, in the sense that it does not depend on the specific process where it is embedded.

In this subsection we will show how one can arrive at this result with the aid of the BQIs

appearing in Eqs.(3.33) and (3.36).

We will construct ÎΓ
(1)

AαAβ
(q) by considering the process gc1ρ1(p1)g

c2
ρ2

(p2) → gc3ρ3(p3)g
c4
ρ4

(p4),

where the gciρi
(pi) represent on-shell gluons, i.e., with p2

i = 0 and pρi

i ǫρi
(pi) = 0.

The PT algorithm in this case amounts to carrying out the characteristic three-gluon

vertex decomposition of Eq.(4.6) to the graphs contributing to IΓ
(1)

Aa
αA

c1
ρ1
A

c2
ρ2

(q, p1, p2), which

have an external three-gluon vertex; there are two such graphs, out of which only that of

Fig.5a gives rise to a propagator-like contribution. In particular, the longitudinal momenta

kµ and (k + q)ν appearing in ΓP
αµν(q, k,−k − q) will be contracted with the corresponding

three-gluon vertex where one of the two on-shell gluons is entering (gc1ρ1(p1) and gc2ρ2(p2), re-

spectively) triggering the tree-level WI of Eq.(3.11), which is the exact analogue of Eq.(4.11)

in the case when the external particles are gluons instead of quarks. It is straightforward to

verify that again the internal gluon propagator of momentum k− p2 will be canceled by the

corresponding piece stemming from the WI of Eq.(3.11), giving rise to the propagator-like

diagram of Fig.5c. This piece is simply given by (after the standard insertion of d(q)d−1(q)
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and use of the on-shell conditions)

Γ
(0)
βρ3ρ4

(q, p3, p4) d(q)
[1
2

Π
P (1)
βα (q)

]
d(q)Γ(0)

αρ1ρ2
(q, p1, p2). (4.21)

After multiplication by a factor of 2 to take into account the mirror graphs (not shown) the

above contribution is added to the usual propagator contributions, also sandwiched between

Γ
(0)
βρ3ρ4

(q, p3, p4) and Γ
(0)
αρ1ρ2(q, p1, p2) to give rise to the ÎΓ

(1)

AαAβ
(q) of Eq.(4.16). A straightfor-

ward algebraic manipulation of the remaining terms stemming from the WI shows that they

either vanish on-shell, or they combine with the rest of the diagrams (not shown) to give

rise precisely to the one-loop vertex IΓ
(1)

Âa
αA

c1
ρ1
A

c2
ρ2

(q, p1, p2). Of course, in the light of Eq.(3.33)

this is exactly what one should obtain, since the subtraction from IΓ
(1)

Aa
αA

c1
ρ1
A

c2
ρ2

(q, p1, p2) of the

term given in Eq.(4.21), is nothing but IΓ
(1)

Âa
αA

c1
ρ1
A

c2
ρ2

(q, p1, p2).

We next turn to the slightly more involved case of constructing ÎΓ
(1)

AαAβ
(q) by embedding

it in the process gc1ρ1(p1)g
c2
ρ2

(p2)g
c3
ρ3

(p3) → gc4ρ3(p4)g
c5
ρ5

(p5)g
c6
ρ6

(p6), where, as before, the gciρi
(pi)

represent on-shell gluons, with p2
i = 0 and pρi

i ǫρi
(pi) = 0.

As before, one should carry out the characteristic three-gluon vertex decomposition of

Eq.(4.6) to the graphs which have an external three-gluon vertex; there are various such

graphs, but the essence of the relevant rearrangements can be captured by looking at the

graphs shown in Fig.6. The graph of Fig.6a contributes to the 1PI one-loop four-gluon

vertex IΓ
(1)

Aa
αA

c1
ρ1
A

c2
ρ2
A

c3
ρ3

(q, p1, p2, p3), whereas the graph of Fig.6e is 1PR and contributes to the

one-loop three-gluon vertex nested inside the process we consider. Notice in particular that

unlike the one-loop three-gluon vertex considered in the previous process (Fig.5a), the one

appearing in Fig.6e has not one but two off-shell legs (those carrying momenta q and p1+p2).

The action of the longitudinal (pinching) momenta stemming from the PT decomposition

of the external tree-level three-gluon vertex appearing in the graph of Fig.6a gives rise to

the propagator-like contribution of Fig.6c, given by the same expression as in Eq.(4.21),

with the only difference that the contribution d(q)
[

1
2
Π

P (1)
βα (q)

]
d(q) is sandwiched between

two tree-level four-gluon vertices instead of two tree-level three-gluon vertices. In addition

to this propagator-like contribution the pinching momenta give also rise to contributions of

the type shown in Fig.6d, by virtue of the elementary WI

qµ1 IΓ
(0)

Aa
µA

b
νA

c
αA

d
β

(q1, q2, q3, q4) = −fabe IΓ
(0)

Ac
αA

d
β
Ae

ν
(q3, q4, q1 + q2) − face IΓ

(0)

Ad
β
Ab

νA
e
α
(q4, q2, q1 + q3)

− fade IΓ
(0)

Ab
νA

c
αA

e
β

(q2, q3, q1 + q4) (4.22)
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−→ Γ
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q
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FIG. 6: The result of carrying out the PT decomposition on the 1PI four-point function

IΓ
A2 (1)
AαAβAγAδ

(p1, p2, p3) (a) and the 1PR four-point function (b) for the case of three external on-shell

gluons (permutations are not shown). Again, despite appearances, the vertex connecting the loop

to the external gluons in diagrams (d) and (g), is a tree-gluon and not a four-gluon vertex.

When the PT decomposition is implemented in the graph of Fig.6e, it gives rise to various

contributions, the most characteristic of which are depicted in Fig.6. Most notably, the parts

of the WI which in the three-gluon vertex of the previous process that we considered were

vanishing on-shell, because they were proportional to p2
i , now they simply cancel the off-shell

propagator d(p1 + p2), thus giving rise to the effectively 1PI graph shown in Fig.6g. This

latter contribution will cancel exactly against the one shown in Fig.6d. It is important to

notice at this point how all the above cancellations are encoded in the identities of Eqs.(3.32)

and (3.36). In particular, the three last terms appearing on the RHS of Eq.(3.36) are nothing

but the terms collectively depicted in Fig.6d, together with all the relevant permutations (not

shown). Similarly, the two last terms on the RHS of Eq.(3.32) are precisely the terms shown

in Fig.6d, which would have vanished if the external legs had been on-shell [as happens in

Eq.(3.33)]. Notice that all these terms are proportional to the same basic quantity, namely

the three-point function IΓ
(1)
ΩA∗A(q1, q2).
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−→ + . . . −→ + . . .
Aα

q

Q

Q′

Aα

q

Q
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Aα

q

Q
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Aα

q

Q

Q′

(a) (b)

−→ + . . . −→ + . . .
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Q
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Q
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q

Q

Q′
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q

Q
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FIG. 7: Enforcing the PT decomposition on the three-point function IΓ
A2 (2)

Aψ̄ψ
(Q′, Q), gives rise

to the topologies I1 (a), I3 (b), I4 (c) and I2 (d) of Eq.(5.2). The ellipses represents terms that

whether they cancel or they modify the ghost structure.

V. TWO-LOOP CASE REVISITED

At the two-loop level [23, 24] we start again by carrying out the decomposition Eq.(4.10)

of the two-loop three-point function IΓ
(2)

Aαψ̄ψ
(Q′, Q) ; now all four categories of diagrams

appearing on the RHS of Eq.(4.10) are non-vanishing. Next (see Fig.7), we implement

the vertex decomposition Eq.(4.6) inside the Γ
A2 (2)

Aαψ̄ψ
(Q′, Q) part, which will again trigger

elementary WIs, leading us to the result

Γ
A2 (2)

Aαψ̄ψ
(Q′, Q) = Γ̂

A2 (2)

Aαψ̄ψ
(Q′, Q) +

1

2
V P (2)
αρ (q)γρ +

1

2
FP(2)
α (Q,Q′), (5.1)

with

V P (2)
αρ (q) = I4Lαρ(ℓ, k) + (2I2 + I3)gαρ

− I1
[
kρgασ + Γ(0)

σρα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ,

FP(2)
α (Q′, Q) = d(q)ΠP(1)β

α (q)ÎΓ
(1)

Aβψ̄ψ
(Q′, Q) + Y P (2)

α (Q′, Q),

Y
(2)
Pα (Q′, Q) = X

(1)
1α(Q′, Q)Σ(1)(Q′) + Σ(1)(Q)X

(1)
2α(Q′, Q). (5.2)

The integrals Ii appearing in Eq.(5.2) are defined as

iI1 = g4C2
A

∫

L2

[ℓ2(ℓ− q)2k2(k + ℓ)2(k + ℓ− q)2]−1,

iI2 = g4C2
A

∫

L2

[ℓ2(ℓ− q)2k2(k + q)2]−1,
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iI3 = g4C2
A

∫

L2

[ℓ2(ℓ− q)2k2(k + ℓ)2]−1,

iI4 = g4C2
A

∫

L2

[ℓ2ℓ2(ℓ− q)2k2(k + ℓ)2]−1, (5.3)

where we have defined the (two-loop) integral measure

∫

L2

≡
(
µ2ε
)2
∫

ddk

(2π)d

∫
ddℓ

(2π)d
. (5.4)

As before the term Y
P(2)
α (Q′, Q) will vanish for on-shell external fermions so that it will

be omitted all together. The term 1
2
V

P (2)
αρ (q)γρ represents the total propagator-like term

originating from the two-loop three-point function IΓ
(2)

Aαψ̄ψ
(Q′, Q): together with the equal

contribution coming from the mirror set of two-loop vertex diagrams, will give rise to the

self-energy term

Π
P (2)
αβ (q) = q2V P (2)

αρ (q)P ρ
β (q), (5.5)

which will be part of the two-loop PT gluon two-point function.

However beyond one-loop, this is not the end of the story, since one has to take into

account the conversion of 1PR strings of conventional two-point functions IΓAA(q), into

strings containing PT two-point functions ÎΓAA(q) [6, 7]. Actually the term 1
2
F

P (2)
α (Q′, Q)

appearing in Eq.(5.2) is half of the vertex-like necessary to cancel the corresponding term

appearing during the aforementioned conversion (the other half will come from the mirror

set of diagrams).

The PT two-loop two-point function is then given by

ÎΓ
(2)

AαAβ
(q) = IΓ

(2)
AαAβ

(q) + Π
P (2)
αβ (q) − R

P(2)
αβ (q). (5.6)

where R
P (2)
αβ (q), which also stems from the conversion of the conventional 1PR string into a

1PR PT one, is given by

iR
P (2)
αβ (q) = IΓ

(1)
AαAρ

(q)V
P (1) ρ
β (q) +

3

4
V P (1)
αρ (q)V

P (1) ρ
β (q). (5.7)

Correspondingly, the two-loop PT three-point function ÎΓ
(2)

Aαψ̄ψ
(Q′, Q) will be defined as

ÎΓ
(2)

Aαψ̄ψ
(Q′, Q) = Γ̂

A2 (2)

Aαψ̄ψ
(Q′, Q) + Γ

c̄c (2)

Aαψ̄ψ
(Q′, Q) + Γ

A3 (2)

Aαψ̄ψ
(Q′, Q) + Γ

q̄q (2)

Aαψ̄ψ
(Q′, Q)

= IΓ
(2)

Aαψ̄ψ
(Q′, Q) +

1

2
V P(2)
αρ (q)γρ +

1

2
d(q)ΠP (1) ρ

α (q)ÎΓ
(1)

Aρψ̄ψ
(Q′, Q). (5.8)
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We can now compare these results with the one coming from the BQIs, so that we will

be able to verify directly that

ÎΓ
(2)

AαAβ
(q) ≡ IΓ

(2)

ÂαÂβ

(q), (5.9)

ÎΓ
(2)

Aαψ̄ψ
(Q′, Q) ≡ IΓ

(2)

Âαψ̄ψ
(Q′, Q). (5.10)

At the two-loop level the BQIs of Eqs.(3.22) and (3.30) read

IΓ
(2)

ÂαÂβ

(q) = IΓ
(2)
AαAβ

(q) + 2IΓ
(2)
ΩβA

∗

ρ
(q)IΓ

(0)
AρAα

(q) + 2IΓ
(1)
ΩβA

∗

ρ
(q)IΓ

(1)
AρAα

(q)

+ IΓ
(1)
ΩαA∗

ρ
(q)IΓ

(0)
AρAσ(q)IΓ

(1)
ΩβA

∗

σ
(q), (5.11)

IΓ
(2)

Âαψ̄ψ
(Q′, Q) = IΓ

(2)

Aαψ̄ψ
(Q′, Q) + IΓ

(2)
ΩαA∗

ρ
(q)IΓ

(0)

Aρψ̄ψ
(Q′, Q)

+ IΓ
(1)
ΩαA∗

ρ
(q)IΓ

(1)

Aρψ̄ψ
(Q′, Q). (5.12)

Consider then Eq.(5.11). We will now prove that

Π
P(2)
αβ (q) −R

P (2)
αβ (q) = 2IΓ

(2)
ΩβA

∗

ρ
(q)IΓ

(0)
AρAα

(q) + 2IΓ
(1)
ΩβA

∗

ρ
(q)IΓ

(1)
AρAα

(q) +
[
IΓ

(1)
ΩA∗(q)

]2
IΓ

(0)
AαAβ

(q).

(5.13)

To this end we notice that the left-hand side above can be written as

Π
P (2)
αβ (q) −R

P (2)
αβ (q) = q2P ρ

β (q)
{
I4Lαρ(ℓ, k) + I3gαρ

− I1
[
kρgασ + Γ(0)

σρα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}

+ iV
P (1) ρ
β (q)IΓ

(1)
AρAα

(q) − q2I2Pαβ(q). (5.14)

Then Eq.(4.19) implies

2IΓ
(1)
ΩβA

∗

ρ
(q)IΓ

(1)
AρAα

(q) = iV
P (1) ρ
β (q)IΓ

(1)
AρAα

(q),

IΓ
(1)
ΩαA∗

ρ
(q)IΓ

(0)
AρAσ(q)IΓ

(1)
ΩβA

∗

σ
(q) = −q2I2Pαβ(q). (5.15)

Finally, from the perturbative expansion (3.23) one has that

iIΓ
(2)
ΩαA∗

ρ
(q) = + + +

(a) (b) (c) (d)

Ωα Ωα Ωα ΩαA∗

ρ A∗

ρ A∗

ρ A∗

ρ

where the blobs represent one-loop correction to the corresponding propagator. Using the

Feynman rules of Fig.1, it is then straightforward to establish the following identities

(a) =
1

2
I1Γ

(0)
σρα(−k,−ℓ, k + ℓ)(ℓ− q)σ, (b) =

1

2
I1(ℓ− q)αkρ,

(c) = −
1

2
I4Lαρ(ℓ, k), (d) = −

1

2
I3gαρ, (5.16)
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so that

2IΓ
(2)
ΩβA

∗

ρ
(q)IΓ

(0)
AρAα

(q) = q2P ρ
β (q)

{
I4Lαρ(ℓ, k) + I3gαρ

− I1
[
kρgασ + Γ(0)

σρα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}
. (5.17)

Thus Eq.(5.9) is proved.

Finally consider the two-loop PT three-point function Eq.(5.8), which using Eq.(4.17),

reads

ÎΓ
(2)

Aαψ̄ψ
(Q′, Q) = IΓ

(2)

Aαψ̄ψ
(Q′, Q) +

i

2
V P(1) ρ
α (q)IΓ

(1)

Aρψ̄ψ
−

1

2

{
I4Lαρ(ℓ, k) + I3gαρ

− I1
[
kρgασ + Γ(0)

σρα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}
γρ. (5.18)

Then using Eqs.(4.19) and (5.16) we get

IΓ
(1)
ΩαA∗

ρ
(q)IΓ

(1)

Aρψ̄ψ
(Q′, Q) =

i

2
V P (1) ρ
α (q)IΓ

(1)

Aρψ̄ψ
,

IΓ
(2)
ΩαA∗

ρ
(q)IΓ

(0)

Aρψ̄ψ
(Q′, Q) =

1

2

{
I4Lαρ(ℓ, k) + I3gαρ

− I1
[
kρgασ + Γ(0)

σρα(−k,−ℓ, k + ℓ)
]
(ℓ− q)σ

}
γρ, (5.19)

so that Eq.(5.10) is also proved.

VI. A NEW RESULT: THE TWO-LOOP INTRINSIC PINCH TECHNIQUE

In the intrinsic PT construction one avoids the embedding of the PT objects into S-

matrix elements; of course, all results of the intrinsic PT are identical to those obtained

in the S-matrix PT context. The basic idea, is that the pinch graphs, which are essential

in canceling the gauge dependences of ordinary diagrams, are always missing one or more

propagators corresponding to the external legs of the improper Green’s function in question.

It then follows that the gauge-dependent parts of such ordinary diagrams must also be miss-

ing one or more external propagators. Thus the intrinsic PT construction goal is to isolate

systematically the parts of 1PI diagrams that are proportional to the inverse propagators

of the external legs and simply discard them. The important point is that these inverse

propagators arise from the STI satisfied by the three-gluon vertex appearing inside appro-

priate sets of diagrams, when it is contracted by longitudinal momenta. The STI triggered
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is nothing but Eq.(3.10), i.e.,

pµ1 IΓAαAµAν(q, p1, p2) =
[
i∆(−1) ρ

ν (p2) + pρ2p2ν

] [
p2

1D(p1)
]
Hρα(p2, q)

−
[
i∆(−1) ρ

α (q) + qρqα
] [
p2

1D(p1)
]
Hρν(q, p2),

pν2IΓAαAµAν(q, p1, p2) =
[
i∆(−1) ρ

α (q) + qρqα
] [
p2

2D(p2)
]
Hρµ(q, p1)

−
[
i∆(−1) ρ

µ (p1) + pρ1p1µ

] [
p2

2D(p2)
]
Hρα(p1, q), (6.1)

where the momenta pµ1 and pν2 are now related to virtual integration momenta appearing in

the quantum loop. This construction has been carried out at one-loop in [2] where only the

tree-level version of Eq.(3.10), namely Eq.(3.11), has been invoked. Here we present for the

first time the two-loop generalization of this construction, employing the one-loop version of

Eq.(3.10). In addition to proving that the one-loop construction can in fact be generalized

to two-loops, a non-trivial result in its own right, we present a different but equivalent point

of view to that of [1], motivated by the BV formalism in general, and the BQIs presented in

Section II in particular. The novel ingredient we present here is the following: The essential

feature of the intrinsic PT construction is to arrive at the desired object, for example the

effective gluon self-energy by discarding pieces from the conventional self-energy. The terms

discarded originate from the RHS of Eq.(3.10), and, according to the discussion presented

in Section II, they are all precisely known in terms of physical and unphysical Green’s

functions, appearing in the theory. Then, by virtue of identifications such as those given in

Eqs.(3.14), (3.15), and (3.18), one can directly compare the result obtained by the intrinsic

PT procedure to the corresponding BFM quantity (at ξQ = 1), employing the BQI of

Eq.(3.22). We emphasize that at no point do we use the BQIs or the BV formalism in

general in arriving at the intrinsic PT result; the BQIs are only a-posteriori invoked, at the

end of the PT procedure, because they greatly facilitate the comparison with the BFM result.

Last but not least, the two-loop construction presented here, provides additional evidence

supporting the point of view adopted in [23, 24], namely that no internal vertex must be

rearranged, and no pieces must be therefore discarded as a result of this rearrangement. The

reason is simply that one needs to maintain the full one-loop three-gluon vertex, on which

the momenta will act in order for Eq.(6.1) to be triggered; instead, if one were to remove

pieces by modifying internal vertices [46], one would invariably distort the aforementioned

STI.

We start by reviewing the one-loop intrinsic PT construction, beginning again, without
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loss of generality, in the renormalizable Feynman gauge. Consider the one-loop gluon two-

point function

IΓ
(1)
AαAβ

(q) =
1

2

∫

L1

J(q, k)Lαβ(q, k), (6.2)

where, after symmetrizing the ghost loop,

Lαβ(q, k) = Γ(0)
αµν(q, k,−k − q)Γ

(0)µν
β (q, k,−k − q) − kα (k + q)β − kβ (k + q)α . (6.3)

In the absence of longitudinal momenta coming from internal gluon propagators (since we

work in the Feynman gauge), the only momenta that can trigger an STI come from the three-

gluon vertices. We then carry out the PT decomposition of Eq.(4.6) on both the three-gluon

vertices appearing at the two ends of the diagram, i.e., we write

Γ(0)
αµνΓ

(0)µν
β = [ΓF

αµν + ΓP
αµν ][Γ

Fµν
β + ΓPµν

β ]

= ΓF
αµνΓ

Fµν
β + ΓP

αµνΓ
(0)µν
β + Γ(0)

αµνΓ
Pµν
β − ΓP

αµνΓ
Pµν
β . (6.4)

Of the four terms of the equation above, the first and last are left untouched; for the second

and third terms, using the three-gluon vertex STI of Eq.(6.1), we find

ΓP
αµνΓ

(0)µν
β + Γ(0)

αµνΓ
Pµν
β = −4iq2Pαρ(q)H

(0)
ρβ (q,−k − q) + 2ik2Pαρ(k)H

(0)
ρβ (k, q)

+ 2i(k + q)2Pαρ(k + q)H
(0)
ρβ (−k − q, q)

= −4q2Pαβ(q) + 2k2Pαβ(k) + 2(k + q)2Pαβ(k + q). (6.5)

where (after factoring out the coupling constant g) we have used that H
(0)
αβ = −igαβ . The

first term on the RHS, to be denoted by Π
IP (1)
αβ (q), where the superscript “IP” stands for

“intrinsic pinch”, is to be discarded from the gluon self-energy. Thus, the 1PI one-loop

intrinsic PT gluon self-energy, to be denoted as before by ÎΓ
(1)

AαAβ
(q), is defined as

ÎΓ
(1)

AαAβ
(q) = IΓ

(1)
AαAβ

(q) − Π
IP (1)
αβ (q) (6.6)

Notice that Π
IP (1)
αβ (q) has precisely the form

Π
IP (1)
αβ (q) =

1

2

[
−4q2Pαβ(q)

] ∫

L1

J(q, k) = −Π
P (1)
αβ (q), (6.7)

so that dropping this term in Eq.(6.5) has the same effect of canceling it with the S-matrix

PT. At this point in the original construction of [2] the first and last terms on the RHS of
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Eq.(6.4) were combined with the second and third term on the RHS of Eq.(6.5), in order to

show that, after elementary algebraic manipulations, ÎΓ
(1)

AαAβ
(q) assumes the form

ÎΓ
(1)

AαAβ
(q) =

1

2

∫

L1

J1(q, k)L̂αβ(q, k) , (6.8)

with

L̂αβ(q, k) ≡ Γ
(0)σρ
Fα (q, k,−k − q)Γ

(0)
Fβσρ(q, k,−k − q) − 2(2k + q)α(2k + q)β . (6.9)

As was realized a few years later [20], this last expression of ÎΓ
(1)

AαAβ
(q) coincides with

IΓ
(1)

ÂαÂβ

(q). Notice however that, in view of the BQI of Eq.(3.22), this last identification

is more immediate, in the sense that no further manipulation of the answer is needed: the

difference between ÎΓ
(1)

AαAβ
(q) and IΓ

(1)
AαAβ

(q) is the same as the difference between IΓ
(1)

ÂαÂβ

(q)

and IΓ
(1)
AαAβ

(q), as given by the BQI. Thus, once ÎΓ
(1)

AαAβ
(q) has been constructed the BQI

serves as a short-cut for relating it to IΓ
(1)

ÂαÂβ

(q). Even though at one-loop the amount of

algebra thusly saved is insignificant, at two-loops and beyond the use of the BQI constitutes

a definite technical advantage.

Let us conclude the one-loop analysis by introducing a short-hand notation for the in-

trinsic PT construction, that will be useful in its two-loop generalization that will follow.

We begin by writing the diagram of Fig.4a, suppressing all Lorentz and color indices, as

(ΓΓ) = (ΓFΓF) + (ΓPΓ) + (ΓΓP) − (ΓPΓP). (6.10)

Then using the tree-level STI of Eq.(6.1), we write

(ΓPΓ) = −iV d−1 + 2L,

(ΓΓP) = −id−1V + 2L, (6.11)

so that

(ΓΓ) = −2id−1V + (ΓFΓF) + 4L− (ΓPΓP). (6.12)

The quantities A and L, can be read off directly from Eq.(6.5), and are equal to

Vαβ(q) = −2Pαβ(q)

∫

L1

J(q, k),

Lαβ(q) =
1

2

∫

L1

J(q, k)
[
k2Pαβ(k) + (k + q)2Pαβ(k + q)

]
. (6.13)
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FIG. 8: The Feynman diagrams, together with their statistical weights and the associated kernels,

contributing to the conventional two-loop gluon two-point function IΓ
(2)
AαAβ

(q) in the Rξ gauges.

Moreover one has the well known one-loop PT result

(GG) + 2L−
1

2
(ΓPΓP) = (ĜĜ), (6.14)

where (GG) represents the ghost diagram of Fig.4b, and (ĜĜ) is the corresponding diagram

with background ghost circulating in the loop. This will finally furnish the result

IΓ
(1)
AA =

1

2
(ΓΓ) + (GG)

= −id−1V +
1

2
(ΓFΓF) + (ĜĜ)

= −ΠP (1) + IΓ
(1)

ÂÂ
. (6.15)

We will now generalize the intrinsic PT construction presented above, to two-loops. The

1PI Feynman diagrams contributing to the conventional two-loop gluon self-energy in the Rξ

gauges are represented in Fig.8. They can be separated into three distinct sets: (i) the set

of diagrams that have two external (tree-level) three-gluon vertices, and thus can be written

schematically (suppressing Lorentz indices) as Γ(0)[K]Γ(0), where K is some kernel; to this

set belong diagrams (a), (d), (g) and (h). (ii) the set of diagrams with only one external

(tree-level) three-gluon vertex, and thus can be written as Γ(0)[K] or [K]Γ(0); this set is

composed by the diagrams (b), (c), (e) and (f). (iii) All remaining diagrams, containing no

external three-gluon vertices.
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At this point we make the following observation: if one were to carry out the decomposi-

tion Eq.(6.4) to the pair of external vertices appearing in the diagrams of the set (i), and the

decomposition of Eq.(4.6) to the external vertex appearing in the diagrams of the set (ii),

after a judicious rearrangement of terms, the longitudinal terms pµ1 and pν2 stemming from

ΓP
αµν(q, p1, p2) and/or ΓPµν

β (q, p1, p2) would be triggering the one-loop version of Eq.(6.1),

just as in the one-loop case one has been triggering the tree-level version of Eq.(6.1). The

only exception are of course diagrams (g) and (h), where the STI triggered is still the tree-

level version of Eq.(6.1). Therefore, the straightforward generalization of the intrinsic PT

to two-loops would amount to isolating from the two-loop diagrams the terms of the STI of

Eq.(6.1) that are proportional to [∆
(−1) ρ
α (q)](n), with n = 0, 1; we will denote such contri-

butions by Π
IP (2)
αβ (q). Thus the 1PI diagrams contributing to the two-loop gluon self-energy

can be cast in the form

IΓ
(2)
AαAβ

(q) = G
(2)
AαAβ

(q) + Π
IP (2)
αβ (q). (6.16)

Notice however that the 1PR set of one-loop self-energy diagrams, i.e., the strings shown

in Fig.9, must also be rearranged following the intrinsic PT procedure, and be converted

into the equivalent string involving PT one-loop self-energies (which are known objects from

the one-loop results). As we will see in detail in what follows, this treatment of the 1PR

strings will give rise, in addition to the PT strings, to (a) a set of contributions which

are proportional to the inverse propagator of the external legs d−1(q), and (b) a set of

contributions which is effectively 1PI, and therefore also belongs to the definition of the 1PI

two-loop PT gluon self-energy; we will denote these two sets of contributions collectively

by S
IP (2)
αβ (q). Thus the sum of the 1PI and 1PR contributions to the conventional two-loop

gluon self-energy can be cast in the form

IΓ
(2)
AαAβ

(q) + IΓ
(1)
AαAρ

(q)d(q)IΓ
(1)
AρAβ

(q) = G
(2)
AαAβ

(q) + ÎΓ
(1)

AαAρ
(q)d(q)ÎΓ

(1)

AρAβ
(q)

+ Π
IP (2)
αβ (q) + S

IP (2)
αβ (q). (6.17)

By definition of the intrinsic PT procedure, we will now discard from the above expression

all the terms which are proportional to the inverse propagator of the external legs d−1(q),

thus defining the quantity

R
IP (2)
αβ (q) = Π

′ IP (2)
αβ (q) + S

′ IP (2)
αβ (q), (6.18)
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FIG. 9: The two-loop 1PR strings (together with their statistical weights) in the Rξ gauges.

where the primed functions are defined starting from the unprimed ones appearing in

Eq.(6.17) by discarding the aforementioned terms.

Thus, making use of Eqs.(6.16), (6.17) and (6.18), the 1PI two-loop intrinsic PT gluon

self-energy, to be denoted as before by ÎΓ
(2)

AαAβ
(q), is defined as

ÎΓ
(2)

AαAβ
(q) = G

(2)
AαAβ

(q) +R
IP (2)
αβ (q)

= IΓ
(2)
AαAβ

(q) − Π
IP (2)
αβ (q) +R

IP (2)
αβ (q). (6.19)

Of course the quantities ÎΓ
(2)

AαAβ
(q) and IΓ

(2)
AαAβ

(q) appearing on the RHS of Eqs.(5.6)

and (6.19) are identical; however, the result of Eq.(6.7) does not generalize beyond one-

loop. Thus, at two-loops −Π
IP (2)
αβ (q) 6= Π

P (2)
αβ (q) and R

IP (2)
αβ (q) 6= R

P (2)
αβ (q); however

− Π
IP (2)
αβ (q) +R

IP (2)
αβ (q) ≡ Π

P (2)
αβ (q) − R

P (2)
αβ (q). (6.20)

We next proceed to give the details of the construction of the quantities Π
IP (2)
αβ (q)

and R
IP (2)
αβ (q) discussed above, starting from the first one.

As a first step, we carry out the usual PT decomposition of the three-gluon vertex to the

graphs of set (i) and (ii). Taking into account the statistical factors, for diagrams (a) and

(d) we then obtain

1

2
Γ(0) [Ka + 1

2
Kd] Γ

(0) =
1

2
ΓF [Ka + 1

2
Kd] Γ

F +
1

2
ΓP [Ka + 1

2
Kd] Γ

(0)

+
1

2
Γ(0) [Ka + 1

2
Kd] Γ

P −
1

2
ΓP [Ka + 1

2
Kd] Γ

P. (6.21)

As in the one-loop case, of the four terms appearing above the first and last term remain

untouched, and constitute part of the answer. To the second and third terms we add the

ΓP part of diagrams (c), (e) and (b), (f) respectively to get

[(ii) + (c) + (e)]P =
1

2
ΓP
[
KaΓ

(0) + 1
2
KdΓ

(0) + Kc + 2Ke

]
,

[(iii) + (b) + (f)]P =
[
Γ(0)Ka + Γ(0) 1

2
Kd + Kb + 2Kf

] 1

2
ΓP. (6.22)
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It is then straightforward to see that the two contribution are actually equal, and moreover

that

KaΓ
(0) + 1

2
KdΓ

(0) + Kc + 2Ke =

+ 1
2

+ 1
2

+ 1
2 + +

≡ IΓ
(1)
AAA.

Thus, inserting back the Lorentz structure, we get the equation

[(ii) + (c) + (e) + (iii) + (b) + (f)]P =

∫

L1

J(k, q)ΓP
αµν(q, k,−k − q)IΓ

(1)
AβA

µAν(q, k,−k − q).

(6.23)

For the remaining two first class diagrams (g) and (h), we carry out the same decompo-

sition as for diagrams (a) and (d), concentrating again only on the terms

[(g) + (h)]P = ΓP [ 1
2
Kg + Kh] Γ

(0) + Γ(0) [ 1
2
Kg + Kh] Γ

P. (6.24)

Next, one notices that the two contributions are actually equal, and moreover that

[ 1
2
Kg + Kh] Γ

(0) =
(6.25)

where the blob represent the one-loop correction to the gluon propagator. Inserting back

the Lorentz structure, we then get the equation

[(g) + (h)]P = 2

∫

L1

J(k, q)ΓP
αµν(q, k,−k − q)IΓ

(1)
AµAρ

(k)d(k)Γ
(0) ρν
β (q, k,−k − q). (6.26)

Eqs.(6.23) and (6.26) will then be our starting point: from them, by using the three-

gluon vertex STI of Eq.(6.1), we will isolate the 1PI parts that are proportional to the

inverse propagator of the external leg, and simply discard them.

Let us start from Eq.(6.23). From Eq.(4.7) and the one-loop version of Eq.(6.1) we find

ΓP
αµν(q, k,−k − q)IΓ

(1)
AβA

µAν(q, k,−k − q) = 2H(0)
ρα (q,−k − q)IΓ

(1)
AρAβ

(q)

− 2q2H(0)
ρα (q,−k − q)P ρ

β (q)
[
k2D(1)(k)

]

− 2iq2H(1)
ρα (q,−k − q)P ρ

β (q) + . . . , (6.27)
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where the ellipses stands for terms that will be part of the two-loop function G
(2)
AαAβ

(q). The

perturbative expansion of the function H , will give

H
(1)
ρβ (q,−k − q) = +

β β
ρ ρ

so that, using the Feynman rules given in Fig.1, we find

∫

L1

J(q, k)
[
2H(0)

ρα (q,−k − q)IΓ
(1)
AρAβ

(q)
]

= −iIΓ
(1)
AαAρ

(q)V
P(1) ρ
β (q), (6.28)

∫

L1

J(q, k)
{
−2q2H(0)

ρα (q,−k − q)P ρ
β (q)

[
k2D(1)(k)

]}
= −q2Pαβ(q)I3, (6.29)

∫

L1

J(q, k)
[
−2iq2H(1)

ρα (q,−k − q)P ρ
β (q)

]
= q2I1{[kρgασ

+ Γ(0)
σρα(−k,−ℓ, k + ℓ)](ℓ− q)σ}P ρ

β (q). (6.30)

Next consider the lower order corrections of Eq.(6.26). From Eq.(4.7) and the fact that

the gluon two-point function is transverse at all orders, we find

ΓP
αµν(q, k,−k − q)IΓ

(1)
AµAρ

(k)Γ
(0) ρν
β (q, k,−k − q)

= −(k + q)νIΓ
(1)
AαAρ

(k)Γ
(0) ρν
β (q, k,−k − q), (6.31)

so that using the tree-level version of the STI of Eq.(6.1) and isolating the term which will

be discarded, we have

2J(q, k)IΓ
(1)
AαAρ

(k)d(k)
[
−iq2P σ

β (q)H(0)
σρ (q, k)

]
= −q2P ρ

β (q)I4Lαρ(ℓ, k). (6.32)

Collecting the terms on the RHS of Eqs.(6.28)–(6.32) we finally obtain

Π
IP (2)
αβ (q) = −iIΓ

(1)
AαAρ

(q)V
P (1) ρ
β (q) − q2Pαβ(q)I3 − q2P ρ

β (q)I4Lαρ(ℓ, k)

+ q2P ρ
α(q)I1[kρgασ + Γ

(0)
σρβ(−k,−ℓ, k + ℓ)](ℓ− q)σ] (6.33)

Next we turn to the contributions coming from the the conversion of the conventional

two-loop 1PR strings to PT 1PR strings, and determine the quantity S
IP (2)
αβ (q). Using the

notation introduced in the one-loop case we find for the diagram of Fig.9a the result

(5a) = (ΓΓ)di(ΓΓ)

= (ΓFΓF)di(Γ
FΓF) − (ΓFΓF)di(Γ

PΓP) − (ΓPΓP)di(Γ
FΓF) + (ΓPΓP)di(Γ

PΓP)
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+ 4(ΓFΓF)diL+ 4Ldi(Γ
FΓF) − 4(ΓPΓP)diL− 4Ldi(Γ

PΓP) + 16LdiL

− i(ΓFΓF)diV d
−1 − id−1V di(Γ

FΓF) + id−1V di(Γ
PΓP) + i(ΓPΓP)diV d

−1

− d−1V diV d
−1 − 4id−1V diL− 4iLdiV d

−1

+ V d−1
i V − iV (ΓΓ) − i(ΓΓ)V. (6.34)

Here we have made an explicit distinction between the internal propagator di and the ex-

ternal ones d: The presence or absence of the former will determine if the corresponding

diagram has to be considered 1PR or 1PI respectively. For the remaining diagrams we then

get

(5b) = (ΓΓ)di(GG)

= (ΓFΓF)di(GG) − (ΓPΓP)di(GG) + 4Ldi(GG) − id−1V di(GG) − iV (GG),

(5c) = (GG)di(ΓΓ)

= (GG)di(Γ
FΓF) − (GG)di(Γ

PΓP) + 4(GG)diL− i(GG)diV d
−1 − i(GG)V. (6.35)

We can then start collecting pieces. Recalling the statistical weight of each diagram of

Fig.9, and using the one-loop result of Eq.(6.14), we find

1

2
(ΓFΓF)di(ĜĜ) =

1

2
(ΓFΓF)di

[
(GG) + 2L−

1

2
(ΓPΓP)

]
,

1

2
(ĜĜ)di(Γ

FΓF) =
1

2

[
(GG) + 2L−

1

2
(ΓPΓP)

]
di(Γ

FΓF),

(ĜĜ)di(ĜĜ) = (GG)di(GG) + (GG)di

[
2L−

1

2
(ΓPΓP)

]
+

[
2L−

1

2
(ΓPΓP)

]
di(GG)

+ 4LdiL− Ldi(Γ
PΓP) − (ΓPΓP)diL+

1

4
(ΓPΓP)di(Γ

PΓP). (6.36)

These terms together with the first term of Eq.(6.34), will give the PT 1PR string. For the

genuine 1PI terms we have instead the following result

1

4
V d−1

i V −
1

4
iV (ΓΓ) −

1

4
i(ΓΓ)V −

1

2
iV (GG) −

1

2
i(GG)V =

1

4
V d−1

i V − iV IΓ
(1)
AA, (6.37)

so that by adding to them the remaining terms proportional to the external inverse propa-

gator d−1(q), we will get the quantity

SIP (2)(q) =
1

4
V d−1

i V − iV IΓ
(1)
AA

− i(ΓFΓF)diV d
−1 − id−1V di(Γ

FΓF) + id−1V di(Γ
PΓP) + i(ΓPΓP)diV d

−1

− d−1V diV d
−1 − 4id−1V diL− 4iLdiV d

−1 − id−1V di(GG) − i(GG)diV d
−1.

(6.38)
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Then if, according to the intrinsic PT algorithm, we discard from Eqs.(6.33) and (6.38)

the terms proportional to the external inverse propagator, we find

Π
′ IP (2)
αβ (q) = −iIΓ

(1)
AαAρ

(q)V
P (1) ρ
β (q),

S
′ IP (2)
αβ (q) = −q2I2Pαβ(q) + iIΓ

(1)
AαAρ

(q)V
P (1) ρ
β (q), (6.39)

so that adding by parts the equations above we obtain

R
IP (2)
αβ (q) = −q2I2Pαβ(q). (6.40)

Thus, finally, the quantity −Π
IP (2)
αβ (q) + R

IP (2)
αβ (q) will provide precisely the expressions ap-

pearing in the two-loop version of the relevant BQI, i.e., Eq.(5.11); or, equivalently, Eq.(6.20)

is proved. Notice that if instead of resorting to the BQI one were to attempt a direct compar-

ison of the answer to the two-loop BFM gluon self-energy, one would have to: (i) collect the

pieces denoted by ellipses in Eq.(6.27); (ii) add them to the first and fourth term of Eq.(6.21);

(iii) add the R
IP (2)
αβ (q) of Eq.(6.40)– at that point we have the PT result of Eq.(6.19). (vi)

To compare the answer to that of the BFM we need to algebraically manipulate the re-

sult; most notably one must recover the very characteristic ghost structure emerging in

the BFM framework, and in particular the appearance of four-particle ghost-vertices. This

straightforward but laborious procedure of algebraically recovering from the PT answer all

the individual Feynman diagrams appearing in the BFM has been followed in the original

two-loop presentation [23, 24], in the context of the S-matrix PT.

VII. CONCLUSIONS

In this paper we have formulated for the first time the PT not in terms of the elementary

WI satisfied by the bare, tree-level vertices of the theory, but instead in terms of the STI

satisfied by the higher order (one-loop and higher) vertices. In particular, the STI satisfied

by the one-loop three-gluon vertex allows one to take a first step towards a non-diagrammatic

implementation of the PT algorithm: instead of manipulating individual Feynman diagrams,

entire sets of such diagrams are treated at once. In particular, the pieces that are reassigned

from the vertices to the self-energies (or vice-versa) can be collectively identified with the

ghost Green’s functions appearing in the STI; these ghost Green’s functions determine the

deviation of the STI from the naive, tree-level WI. In order to avoid possible confusions we
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emphasize that the STI are employed for the subset of diagrams nested inside the higher

order loops, in the conventional formulation; however, the final one- and two-loop effective

PT Green’s functions obtained through this procedure do not satisfy STIs but instead the

characteristic naive, QED-like WIs known from the earlier literature on the subject [1, 2].

For comparing the PT results to those of the BFM, we have employed a set of identities

relating the conventional Green’s functions to the corresponding ones in the BFM; the two

sets are related by means of auxiliary Green’s functions built from background sources and

anti-fields, which are characteristic of the BV formalism we have employed for arriving at

them. It turns out that these auxiliary Green’s functions are connected to the ghost Green’s

functions appearing in the STI by Eq.(3.23). It is interesting that even though they originate

from entirely different formalisms, the two sets of unphysical Green’s functions are related by

such simple expressions. Quite remarkably, the PT exposes these underlying relations, which

appear to be encoded, in a non-manifest and very intricate way, into physical observables,

such as S-matrix elements.

It is worth reviewing briefly some of the main physical application of the PT in the context

of QCD. The unambiguous construction [47, 48, 49] of the universal (process-independent),

gauge-fixing-parameter-independent, scale- and scheme-invariant effective charge is of sig-

nificant interest [1, 2, 3, 50]. This PT construction allows for the explicit identification of

the conformally-(in)variant subsets of QCD graphs [51, 52, 53]. This is of relevance in the

field of renormalon calculus, where one studies the onset of non-perturbative effects from

the behaviour near the QCD mass-scale of appropriately selected infinite sub-sets of the

perturbative series [54].

The systematic study of the interface between perturbative and non-perturbative QCD is

a long-standing problem. It has been advocated that the non-perturbative QCD effects can

be reliably captured at an inclusive level by means of an infrared finite quantity, which would

constitute the extension of the perturbative QCD running coupling to low energy scales [55].

Early results [1] based on the study of gauge-invariant Schwinger-Dyson equations involving

this quantity suggest that such a description can in fact be derived from first principles.

According to this analysis, the self-interaction of gluons give rise to a dynamical gluon mass,

while preserving at the same time the local gauge symmetry of the theory. The presence

of the gluon mass saturates the running of the QCD coupling; so, instead of increasing

indefinitely in the infrared as perturbation theory predicts, it “freezes” at a finite value
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[1, 2, 3]; for an interesting discussion on the phenomenological implications of the various

“freezing” models and mechanisms available in the literature, see [56].

Finally, as has been pointed out by Brodsky in a series of recent papers [57, 58, 59], the

PT effective charge can serve as the natural scheme for defining the coupling in the proposed

“event amplitude generators” based on the the light-cone formulation of QCD.

It is interesting to extend the analysis presented here for the case of QCD to the more

involved context of theories with spontaneous symmetry breaking, in general, and the Ele-

croweak Sector of the Standard Model in particular. A detailed analysis [60] reveals that

the BV formalism is particularly suited for accomplishing the two-loop generalization of the

PT in the Elecroweak Sector, a task which, due to the proliferation of Feynman diagrams

and the non-transversality of the gauge boson self-energies, has been pending.

We believe that the methodology and the formal connections established in this paper

set up the stage for the formulation of the PT to all orders in perturbation theory [26].

It remains to be seen whether the PT will transcend its humble diagrammatic origins and

acquire the stature of a well-defined formal tool.
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