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Abstract

The generalization of the pinch technique to all orders in perturbation theory is presented. The

effective Green’s functions constructed with this procedure are singled out in a unique way through

the full exploitation of the underlying Becchi-Rouet-Stora-Tyutin symmetry. A simple all-order

correspondence between the pinch technique and the background field method in the Feynman

gauge is established.
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It is well-known that, to any finite order, the conventional perturbative expansion gives

rise to expressions for physical amplitudes which are endowed with crucial properties. S-

matrix elements, for example, are independent of the gauge-fixing scheme and parameters

chosen to quantize the theory, they are gauge-invariant (current conservation), they are

unitary (conservation of probability), and well behaved at high energies. However, the above

properties are in general not reflected by the individual off-shell Green’s functions, which are

the building blocks of the aforementioned perturbative expansion. The latter depend on the

gauge-fixing parameters in a complicated way , grow much faster than physical amplitudes

at high energies, and display unphysical thresholds. Evidently, when combining unphysical

Green’s functions to form a physical amplitude, subtle field-theoretical mechanisms are at

work, which enforce non-trivial cancellations among them at any given order.

There are considerable conceptual and phenomenological advantages in reformulating the

perturbative expansion in terms of off-shell Green’s functions which display manifestly the

same properties as the physical amplitudes. To begin with, the sharp difference between

observables and Green’s functions suggests a great deal of redundancy in the conventional

diagrammatic formulation of gauge theories, in the sense that extensive underlying cancella-

tions beg to be made manifest and be explicitly exploited as early within a calculation as pos-

sible. Implementing these cancellations at an early stage not only renders the book-keeping

aspects more tractable [1], but allows for theoretically safe reorganizations or resummations

of the perturbative series. For example, identifying and Dyson-resuming the correct sub-set

of propagator-like corrections gives rise to physically meaningful Born-improved amplitudes

[2]. In addition, the generalization into a non-Abelian context of the characteristic prop-

erties of the QED effective charge, has a wide range of phenomenological applications [3].

Finally, n-point functions free of unphysical artifacts could serve, at least in principle, as

the new building blocks of manifestly gauge-invariant Schwinger-Dyson equations [4].

It would clearly be preferable to enforce the relevant cancellations already at the level

of the functional path-integral defining the theory, and obtain directly from it the desired

Green’s functions; this is however beyond our powers at the moment. On the other hand,

there exists a diagrammatic method, called the pinch technique (PT) [4, 5], which system-

atically exploits the symmetries built into physical observables, such as S-matrix elements,

in order to construct off-shell sub-amplitudes that are kinematically akin to conventional

Green’s functions, but, unlike the latter, are also endowed with desirable properties. The
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basic observation, which essentially defines the PT, is that there exists a fundamental can-

cellation between sets of diagrams with different kinematic properties, such as self-energies,

vertices, and boxes. This cancellation is driven by the underlying Becchi-Rouet-Stora-Tyutin

symmetry [6], and is triggered when longitudinal momenta circulating inside vertex and box

diagrams generate (by “pinching” out internal fermion lines) propagator-like terms. The

latter are reassigned to conventional self-energy graphs in order to give rise to the aforemen-

tioned gauge-invariant effective Green’s functions. In its original one- [4, 5] and two-loop

[7] application, the PT boils down to the study of the kinematic rearrangements produced

into individual Feynman diagrams when elementary tree-level Ward identities (WIs) are

triggered.

One of the most pressing questions in this context is whether one can extend the PT

algorithm to all orders in perturbation theory, thus achieving the systematic construction

of effective n-point functions displaying the aforementioned characteristic features. To ac-

complish this it is clear that one needs to abandon algebraic operations inside individual

Feynman graphs, and resort to a more formal procedure. In this Letter we will show that the

PT algorithm can be successfully generalized to all orders in perturbation theory, through

the collective treatment of entire sets of diagrams. This is accomplished through the ju-

dicious use of the Slavnov-Taylor identity (STI) [8] satisfied by a special Green’s function,

which serves as a common kernel to all higher order self-energy and vertex diagrams.

We will consider for concreteness the S-matrix element for the quark–anti-quark elastic

scattering process q(r1)q̄(r2) → q(p1)q̄(p2) in QCD. We set q = r2 − r1 = p2 − p1, with

s = q2 the square of the momentum transfer. The longitudinal momenta responsible for the

aforementioned kinematical rearrangements stem either from the bare gluon propagators or

from the pinching part ΓP
αµν(q, k1, k2) appearing in the characteristic decomposition of the

elementary tree-level three-gluon vertex Γ
eab,[0]
αµν = gf eabΓ

[0]
αµν into [4]

Γ[0]
αµν(q, k1, k2) = ΓF

αµν(q, k1, k2) + ΓP
αµν(q, k1, k2),

ΓF
αµν(q, k1, k2) = (k1 − k2)αgµν + 2qνgαµ − 2qµgαν ,

ΓP
αµν(q, k1, k2) = k2νgαµ − k1µgαν . (1)

The above decomposition is to be carried out to “external” three-gluon vertices only, i.e., the

vertices where the physical momentum transfer q is entering [7]. In what follows we work in

the renormalizable Feynman gauge (RFG); this choice eliminates the longitudinal momenta
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FIG. 1: The subset of the graphs of the quark–anti-quark elastic scattering process which will

receive the action of the longitudinal momenta stemming from ΓP. Here ∆ represents the full gluon

propagator.

from the bare propagators, and allows us to focus our attention on the all-order study of the

longitudinal momenta originating from ΓP
αµν . We will denote by A the subset of the graphs

which will receive the action of the longitudinal momenta stemming from ΓP
αµν(q, k1, k2) (see

Fig.1). We have that

A = ig2ū(r1)
λe

2
γαv(r2)f

eabΓP, αµν(q, k1, k2)T
ab

µν (k1, k2, p1, p2), (2)

where λe are the Gell-Mann matrices, and T ab
µν is the sub-amplitude ga

µ(k1)g
b
ν(k2) →

q(p1)q̄(p2), with the gluons off-shell and the fermions on-shell; for the latter

v̄(p2)S
−1(p2)|p/2=m = S−1(p1)u(p1)|p/1=m = 0, where S(p) is the (full) quark propagator.

In terms of Green’s functions we have

T ab
µν = v̄(p2)

[
Cab

ρσ(k1, k2, p1, p2)∆
ρ
µ(k1)∆

σ
ν (k2)

]
u(p1). (3)

Clearly, there is an equal contribution from the ΓP situated on the right hand-side of T .

Let us focus on the STI satisfied by the amplitude T ab
µν ; it reads

kµ
1 Cab

µν + k2νG
ab
1 − igf bcdQacd

1ν − gXab
1ν + gX̄ab

1ν = 0, (4)

where the Green’s function appearing in it are defined in Fig.2. The terms X1ν and X̄1ν die

on-shell, since they are missing one fermion propagator. Thus, we arrive at the on-shell STI

for T ab
µν

kµ
1T

ab
µν = Sab

1ν , (5)

with

Sab
1ν= v̄(p2)

[
igf bcdQacd

1ν (k1, k2, p1, p2)D(k1)

− k2νG
ab
1 (k1, k2, p1, p2)D(k1)D(k2)

]
u(p1), (6)
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FIG. 2: Diagrammatic representation of the Green’s function appearing in the STI of Eq.B̊asSTI.

Here D and S represent the full ghost and fermion propagators respectively.

where we have defined Qacd
1ν (k1, k2, p1, p2) = Qacd

1ν (k1, k2, p1, p2)D(k1)S(p1)S(p2).

In perturbation theory both T ab
µν and Sab

1ν are given by Feynman diagrams, which can be

separated into distinct classes, depending on their kinematic dependence and their geomet-

rical properties. Graphs which do not contain information about the kinematical details of

the incoming test-quarks are self-energy graphs, whereas those which display a dependence

on the test quarks are vertex graphs. The former depend only on the variable s, whereas

the latter on both s and the mass m of the test quarks; equivalently, we will refer to them

as s-channel or t-channel graphs, respectively. In addition to the s-t decomposition, Feyn-

man diagrams can be separated into one-particle irreducible (1PI) and one-particle reducible

(1PR) ones. The crucial point is that the action of the momenta kµ
1 or kν

2 on T ab
µν does not

respect, in general, the original s-t and 1PI-1PR separation furnished by the Feynman di-

agrams (see third paper of [2]). In other words, even though Eq.(5) holds for the entire

amplitude, it is not true for the individual sub-amplitudes, i.e.,

kµ
1

[
T ab

µν

]
x,Y

6=
[
Sab

1ν

]
x,Y

, x = s, t; Y = I, R, (7)

where I (respectively R) indicates the one-particle irreducible (respectively reducible) parts

of the amplitude involved. Evidently, whereas the characterization of graphs as propagator-

and vertex-like is unambiguous in the absence of longitudinal momenta (e.g., in a scalar

theory), their presence tends to mix propagator- and vertex-like graphs. Similarly, 1PR

graphs are effectively converted into 1PI ones (the opposite cannot happen). The reason for

the inequality of Eq.(7) are precisely the propagator-like terms, such as those encountered in

the one- and two-loop calculations; they have the characteristic feature that, when depicted
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by means of Feynman diagrams contain unphysical vertices, i.e., vertices which do not exist

in the original Lagrangian (Fig.3). All such diagrams cancel diagrammatically against each

other. Thus, after the aforementioned rearrangements have taken place, for the t-channel

irreducible part of the amplitude we will have the equality

[
kµ

1T
ab

µν

]
PT

t,I
≡

[
Sab

1ν

]
t,I

. (8)

Eq.(8) merits particular attention, because it is of central importance for the generaliza-

tion of the PT to all orders. The superscript “PT” on the left hand-side denotes that the

corresponding amplitude must be rearranged following the well-defined PT algorithm, as it

has been explained in the literature [7]. In particular, one tracks down the rearrangments

induced when the action of (virtual) longitudinal momenta (k) on the bare vertices of dia-

grams trigger elementary WIs. Eventually a WI of the form kµγ
µ = S−1(k/ + p/) − S−1(p/)

will give rise to propagator-like parts, by removing (pinching out) the internal bare fermion

propagator S(k/ + p/). Depending on the topology of the diagram under consideration this

last WI may be activated immediately, or as the final outcome of a sequential triggering of

intermediate WIs. We emphasize that, in order to preserve the special unitarity and ana-

lyticity properties of the PT Green’s functions, “internal” three-gluon vertices should not

pinch, nor should one carry out sub-integrations [7].

The non-trivial step for generalizing the PT to all orders is then the following: Instead of

going through the arduous task of manipulating the left hand-side of Eq.(8), following the

aforementioned rules, in order to determine the pinching parts and explicitly enforce their

cancellation, use directly the right-hand side, which already contains the answer! Indeed,

the right-hand side involves only conventional (ghost) Green’s functions, expressed in terms

of normal Feynman rules, with no reference to unphysical vertices. That this must be so

follows from the same PT rules mentioned above: due to the absence of external three-gluon

vertices the right-hand side cannot be pinched further, i.e. its separation into propagator-

and vertex-like graphs is unambiguous, since there is no possibility (without violating the

PT rules) to obtain further mixing. Thus, the right-hand side of Eq.(8) serves as a practical

definition of the PT to all orders.

After these observations, we proceed to the PT construction to all orders. Once the

effective Green’s functions have been derived, they will be compared to the corresponding

Green’s functions obtained in the Feynman gauge of the background field method (BFG for
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FIG. 3: Diagrammatic representation of the tree-level inequality of Eq.̊INEQ.

short) in order to establish whether the known correspondence persists to all orders; as we

will see, this is indeed the case (for an extended list of related references see [9]).

To begin with, it is immediate to recognize that in the RFG box diagrams of arbitrary

order n, to be denoted by B[n], coincide with the PT boxes B̂[n], since all three-gluon vertices

are “internal”, i.e., they do not provide longitudinal momenta. Thus, they coincide with

the BFG boxes, B̃[n], i.e., B̂[n] = B[n] = B̃[n] for every n.

We then continue with the construction of the 1PI PT gluon-quark–anti-quark vertex Γ̂e
α.

We start from the corresponding vertex in the RFG, to be denoted by Γe
α, and focus only on

the class of vertex diagrams containing an external bare three-gluon vertex; we will denote

this subset by Γe
A3,α [Fig.4(a)]. All other types of graphs contributing to Γe

α are inert as far as

the PT procedure is concerned, because they do not furnish pinching momenta [7]. The next

step is to carry out the vertex decomposition of Eq.(1) to the external three-gluon vertex

Γ
eab,[0]
αµν appearing in Γe

A3,α. This will result in the obvious separation Γe
A3,α = ΓF, e

A3,α + ΓP, e
A3,α.

The part ΓF, e
A3,α is also inert, and will be left untouched. Thus, the only quantity to be further

manipulated is ΓP, e
A3,α; it reads

ΓP, e
A3,α = gf eba

∫
[(k − q)µgν

α + kνgµ
α]

[
T ab

µν

]
t,I

, (9)

where
∫

≡ µ2ε
∫

ddk/(2π)d, d = D − 2ε, D is the space-time dimension, and µ is the ’t

Hooft mass. Following the discussion presented above, the pinching action amounts to the

replacement kν [T ab
µν ]t,I → [kνT ab

µν ]t,I =
[
Sab

2µ(−k + q, k)
]
t,I

and similarly for the term coming

from the momentum (k − q)µ, i.e., [(k − q)µT ab
µν ]t,I = −

[
Sab

1ν(−k + q, k)
]
t,I

, or, equivalently,

ΓP, e
A3,α(q) → gf eba

∫ (
[Sab

2α]t,I − [Sab
1α]t,I

)
. (10)

At this point the construction of the effective PT vertex Γ̂e
α has been completed. The next
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FIG. 4: The Green’s functions identified in the construction of the all order PT vertex Γ̂e
α. The

Green’s functions (b) and (c) receive a contribution from similar terms with the ghost arrows

reversed (not shown).

important point is to study the connection between Γ̂e
α and the vertex Γ̃e

α in the BFG. To

begin with, all “inert” terms contained in the original Γe
α carry over to the same sub-groups

of graphs obtained in the BFG; most notably, the ΓF, e
A3,α is precisely the Γ̃e

ÃA2,α
part of Γ̃e

α,

where Ã is the background gluon. The only exception are the ghost-diagrams contributing

to Γe
α [Fig.4(b)]; the latter do not coincide with the corresponding ghost contributions in

the BFG.

The important step is to recognize that the BFG ghost sector is provided precisely by

combining the RFG ghosts with the right-hand side of Eq.(8). Specifically, one arrives at

both the symmetric vertex Γ̃e
Ãc̄c

, characteristic of the BFG, as well as at the four-particle

ghost vertex Γ̃e
ÃAc̄c

, which is totally absent in the conventional formalism [Fig.4(c)]. Indeed

we find (omitting the spinors)
∫ [

Sab
1α

]
t,I

=

∫
D(−k + q)

{
−kα

[
Gab

1 (−k + q, k)
]
t,I

D(k)

+ igf bcd
[
Qacd

1α (−k + q, k)
]
t,I

}
. (11)

A similar equation, in which we have to trade the Gab
1 and Qacd

1α Green’s functions for their

Bose symmetric ones Gab
2 and Qacd

2α , holds for the S2α term. It is then easy to show that

Γ̃e
Ãc̄c,α

(q) ≡ Γe
Ac̄c,α(q) + gf eba

∫ {
kα

[
Gab

1 (−k + q, k)
]
t,I

+ (k − q)α

[
Gab

2 (−k + q, k)
]
t,I

}
D(−k + q)D(k),

Γ̃e
ÃAc̄c,α

(q) ≡ ig2f eba

∫ {
facd

[
Qcdb

2α (−k + q, k)
]
t,I

D(k)

8



− f bcd
[
Qacd

1α (−k + q, k)
]
t,I

D(−k + q)
}

. (12)

This concludes the proof that Γ̂e
α ≡ Γ̃e

α. We emphasize that the sole ingredient in the above

construction has been the STI of Eq.̊onshSTI; in particular, at no point have we employed

a priori the background formalism. Instead, its special ghost sector has arisen dynamically,

once the PT rearrangement has taken place.

The final step is to construct the (all orders) PT gluon self-energy Π̂ab
µν . Notice that

at this point one would expect that it too coincides with the BFG gluon self-energy Π̃ab
µν ,

since both the boxes as well as the vertex do coincide with the corresponding quantities

in BFG, and the S-matrix is unique (renormalization may be carried out order-by-order

without any complications, see second paper in [7]). We will carry out a proof based on the

strong induction principle, which states that a given predicate P (n) on N is true ∀ n ∈ N,

if P (k) is true whenever P (j) is true ∀ j ∈ N with j < k. We will use a schematic notation,

suppressing Lorentz, color, and momentum indices. At one- and two-loop, we know that the

result is true [4, 7]. Assuming then that the PT construction has been successfully carried

out up to the order n − 1, we will show that the PT gluon self-energy is equal to the BFG

gluon self-energy at order n, hence proving that this equality holds true at any given n.

From the inductive hypothesis, we know that Π̂[ℓ] ≡ Π̃[ℓ], Γ̂[ℓ] ≡ Γ̃[ℓ], and B̂[ℓ] ≡ B̃[ℓ] ≡ B[ℓ],

with ℓ = 1, . . . , n− 1. Now, the S-matrix element of order n, to be denoted as S [n], assumes

the form S [n] = {Γ∆Γ}[n] + B[n]. Moreover, since it is unique, regardless if it is written

in the RFG, in the BFG, as well as before and after the PT rearrangement, we have that

S [n] ≡ Ŝ [n] ≡ S̃ [n]. Using then the fact that B̂[ℓ] ≡ B̃[ℓ] holds true even when ℓ = n, we

find that {Γ∆Γ}[n] ≡ {Γ̂∆̂Γ̂}[n] ≡ {Γ̃∆̃Γ̃}[n]. These amplitudes can then be split into 1PR

and 1PI parts; in particular, the 1PR part after the PT rearrangement coincides with the

1PR part written in the BFG, since {Γ∆Γ}[n]
R

= Γ[n1]∆[n2]Γ[n3] with n1, n2, n3 < n, and

n1 + n2 + n3 = n. This implies in turn the equivalence of the 1PI parts, i.e.,
(
Γ̂[n] − Γ̃[n]

)
∆[0]Γ[0] + Γ[0]∆[0]

(
Γ̂[n] − Γ̃[n]

)
+ Γ[0]∆[0]

(
Π̂[n] − Π̃[n]

)
∆[0]Γ[0] ≡ 0. (13)

At this point, by means of the explicit construction presented for the vertex, we have that

Γ̂[n] ≡ Γ̃[n], so that one immediately gets Π̂[n] ≡ Π̃[n]. Hence, by strong induction, the above

relation is true for any given perturbative order n, i.e., we have Π̂ab
µν ≡ Π̃ab

µν , q.e.d.

In conclusion, we have shown that the use of the STI o̊nshSTI satisfied by the special

Green’s function s̊gf, allows for the generalization of the PT procedure to all orders. It would
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be interesting to further explore the physical meaning of the n-point functions obtained [10],

and establish possible connections with related formalisms [11].
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