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Abstract

The consistent description of resonant transition amplitudes
within the framework of perturbative field theories necessitates
the definition and resummation of off-shell Green’s functions,
which must respect several crucial physical requirements. In par-
ticular, the generalization of the usual Breit-Wigner formalism in
a non-Abelian context constitutes a highly non-trivial problem,
related to the fact that the conventionally defined Green’s func-
tions are unphysical. We briefly review the main field-theoretical
difficulties arising when attempting to use such Green’s functions
outside the confines of a fixed order perturbative calculation, and
explain how this task has been successfully accomplished in the
framework of the pinch technique.
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“50 Years of Electroweak Precision Physics”,
New York University, October 27-28, 2000 .

1

http://arXiv.org/abs/hep-ph/0102149v1


1 The Breit-Wigner resummation

The physics of unstable particles and the computation of resonant transition
amplitudes has attracted significant attention in recent years, because it is
both phenomenologically relevant and theoretically challenging. Throughout
the nineties A.Sirlin and collaborators [1] have addressed various important
issues related to the proper definition of masses and widths of unstable parti-
cles. During the same period A.Pilaftsis and I have developed the formalism
which allows for the proper generalization of the Breit-Wigner resummation
in a non-Abelian context [2, 3]. In what follows I will outline the concep-
tual and practical difficulties appearing when dealing with non-Abelian res-
onances, and will briefly explain how the field-theoretical method known as
the pinch technique (PT) [4, 5] allows for a consistent description of resonant
transition amplitudes.

The mathematical expressions for computing transition amplitudes are
ill-defined in the vicinity of resonances, because the tree-level propagator
of the particle mediating the interaction, i.e. ∆ = (s − M2)−1, becomes
singular as the center-of-mass energy

√
s ∼ M . The standard way for reg-

ulating this physical kinematic singularity is to use a Breit-Wigner type of
propagator, which essentially amounts to the replacement (s − M2)−1 →
(s − M2 + iMΓ)−1, where Γ is the width of the unstable (resonating) par-
ticle. The field-theoretic mechanism which enables this replacement is the
Dyson resummation of the (one-loop) self-energy Π(s) of the unstable par-
ticle, which leads to the substitution (s − M2)−1 → [s − M2 + Π(s)]−1; the
running width of the particle is then defined as MΓ(s) = ℑmΠ(s), whereas
the usual (on-shell) width is simply its value at s = M2.

It is well-known that, to any finite order, the conventional perturbative
expansion gives rise to expressions for physical amplitudes which are en-
dowed with crucial properties. For example, the amplitudes are independent
of the gauge-fixing parameter (GFP) chosen to quantize the theory, they are
gauge-invariant (in the sense of current conservation), they are unitary (in
the sense of probability conservation), and well behaved at high energies.
The above properties are however not always encoded into the individual
Green’s functions which are the building blocks of the aforementioned per-
turbative expansion; indeed, the simple fact that Green’s functions depend
in general explicitly on the GFP, indicates that they are void of any phys-
ical meaning. Evidently, when going from unphysical Green’s functions to
physical amplitudes subtle field-theoretical mechanisms are at work, which
implement highly non-trivial cancellations among the various Green’s func-
tions appearing at a given order.

The happy state of affairs described above is guaranteed within the frame-
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work of the conventional perturbative expansion, provided that one works at
a given fixed order. It is relatively easy to realize however that the Breit-
Wigner procedure is in fact equivalent to a reorganization of the perturbative
series; indeed, resumming the self-energy Π amounts to removing a partic-
ular piece from each order of the perturbative expansion, since from all the
Feynman graphs contributing to a given order n we only pick the part that
contains n self-energy bubbles Π, and then take n → ∞. However, given
that a non-trivial cancellation involving the unphysical Green’s function is
generally taking place at any given order of the conventional perturbative
expansion, the act of removing one of them from each order may or may not
distort those cancellations. To put it differently, if Π contains unphysical
contributions (which would eventually cancel against other pieces within a
given order) resumming it naively would mean that these unphysical con-
tributions have also undergone infinite summation (they now appear in the
denominator of the propagator ∆). In order to remove them one has to add
the remaining perturbative pieces to an infinite order, clearly an impossi-
ble task, since the latter (boxes and vertices) do not constitute a resumable
set. Thus, if the resumed Π happened to contain such unphysical terms, one
would finally arrive at predictions for the physical amplitude close to the
resonance which would be plagued with unphysical artifacts. It turns out
that, while in scalar field theories and Abelian gauge theories Π does not
contain such unphysical contributions, this seizes to be true in the case of
non-Abelian gauge theories.

The most obvious signal revealing that the conventionally defined non-
Abelian self-energies are not good candidates for resummation comes from
the simple calculational fact that the bosonic radiative corrections to the self-
energies of vector (γ, W , Z) or scalar (Higgs) bosons induce a non-trivial
dependence on the GFP used to define the tree-level bosonic propagators
appearing in the quantum loops. This is to be contrasted to the radiative
corrections due to fermion loops, which, even in the context of non-Abelian
gauge theories behave as in quantum electrodynamics (QED), i.e., they are
GFP-independent. In addition, formal field-theoretic considerations as well
as direct calculations show that, contrary to the QED case, the non-Abelian
Green’s functions do not satisfy their naive, tree-level Ward identities , after
bosonic one-loop corrections are included. A careful analysis shows that this
fundamental difference between Abelian and non-Abelian theories has far-
reaching consequences; the naive generalization of the Breit-Wigner method
to the latter case gives rise to Born-improved amplitudes, which do not faith-
fully capture the underlying dynamics. Most notably, due to violation of
the optical theorem, unphysical thresholds and artificial resonances appear,
which distort the line-shapes of the resonating particles. In addition, the
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high energy properties of such amplitudes are altered, and are in direct con-
tradiction to the equivalence theorem (ET) [6].

In order to address these issues, a new approach to resonant transition
amplitudes has been developed over the past few years [2, 3], which is based
on the the pinch technique (PT) [4, 5]; the latter is a diagrammatic method
whose main thrust is to exploit the symmetries built into physical amplitudes
in order to construct off-shell sub-amplitudes which are kinematically akin
to conventional Green’s functions, but, unlike the latter, are also endowed
with several crucial properties:

(a) They are independent of the GFP, within any gauge-fixing scheme cho-
sen to quantize the theory.

(b) They satisfy naive (ghost-free) tree-level Ward identities instead of the
usual Slavnov-Taylor identities.

(c) They display physical thresholds only [2].

(d) They satisfy individually the optical and equivalence theorems [2, 3].

(e) The effective two-point functions constructed are universal (process-
independent) , Dyson-resumable [2], and do not shift the position
of the gauge-independent complex pole [2]. In addition, one may
use them to construct “effective charges”, i.e process-independent and
renormalization-group-invariant objects [3].

(f) The PT effective Green’s functions coincide with the conventional Green’s
functions defined in the framework of the background field method [7],
when the latter are computed in the Feynman gauge [8].

The crucial novelty introduced by the PT is that the resummation of
graphs must take place only after the amplitude of interest has been cast via
the PT algorithm into manifestly physical sub-amplitudes, with distinct kine-
matic properties, order by order in perturbation theory. Put in the language
employed earlier, the PT ensures that all unphysical contributions contained
inside Π have been identified and properly discarded, before Π undergoes
resummation. It is important to emphasize that the only ingredient needed
for constructing the PT effective Green’s functions is the full exploitation of
elementary Ward-identities , which are a direct consequence of the BRS [9]
symmetry of the theory, and the proper use of the unitarity and analyticity
of the S-matrix. In what follows I will describe some of the salient features
of this method.
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2 The Pinch Technique.

Within the PT framework, the transition amplitude T (s, t, mi) of a 2 → 2
process, can be decomposed as

T (s, t, mi) = T̂1(s) + T̂2(s, mi) + T̂3(s, t, mi), (2.1)

in terms of three individually gauge-invariant quantities: a propagator-like
part (T̂1), a vertex-like piece (T̂2), and a part containing box graphs (T̂3).
The important observation is that vertex and box graphs contain in general
pieces, which are kinematically akin to self-energy graphs of the transition
amplitude (Fig.1) The PT is a systematic way of extracting such pieces and
appending them to the conventional self-energy graphs. In the same way, ef-
fective gauge invariant vertices may be constructed, if after subtracting from
the conventional vertices the propagator-like pinch parts we add the vertex-
like pieces coming from boxes. The remaining purely box-like contributions
are then also gauge invariant. The way to identify the pieces which are to be
reassigned, all one has to do is to resort to the fundamental PT cancellation,
which is in turn a direct consequence of the elementary Ward identities of
the theory.

There are two basic ingredients in the PT construction. The first is
the identification of all longitudinal momenta involved, i.e. the momenta
which can trigger the elementary Ward identities. There are two sources of
such momenta: The tree-level expressions for the gauge boson propagators
appearing inside Feynman diagrams and the tri-linear gauge boson vertices.
For example, in the case of QCD, the tree-level gluon propagator reads

i∆µν(q) =
−i

q2

(
gµν − (1 − ξ)

qµqν

q2

)
, (2.2)

and the longitudinal momenta are simply those multiplying (1 − ξ). The
identification of the longitudinal momenta stemming from the three-gluon
vertex is slightly more subtle. To see how they emerge, one must split the
Bose-symmetric three-gluon vertex in the following Bose-asymmetric way:

Γλµν(q,−k1,−k2) = (k1 − k2)λgµν + (q + k2)µgλν − (q + k1)νgλν

= [(k1 − k2)λgµν + 2qµgλν − 2qνgλµ] + (k2νgλµ − k1µgλν)

= ΓF
λµν(q,−k1,−k2) + ΓP

λµν(q,−k1,−k2) . (2.3)

The ΓP
λµν(q,−k1,−k2) contains the aforementioned longitudinal momenta.

The vertex ΓF
λµν(q,−k1,−k2) is Bose-symmetric only with respect to the

µ and ν legs. The first term in ΓF
λµν(q,−k1,−k2) is a convective vertex

5



describing the coupling of a gluon to a scalar field, whereas the other two
terms originate from gluon spin or magnetic moment. Evidently the above
decomposition assigns a special rôle to the q-leg, and allows ΓF

λµν(q,−k1,−k2)
to satisfy the elementary Ward identity

qµΓF
µαβ(q,−k1,−k2) = (k2

1 − k2
2)gαβ . (2.4)

The second PT ingredient is the following: One has to use all longitudi-
nal momenta identified above in order to trigger a fundamental, BRS-driven
cancellation involving graphs of different kinematic dependence. In particu-
lar, let us consider the amplitude qq̄ → gg, to be denoted by T = 〈qq̄|T |gg〉.
Diagrammatically, the amplitude T consists of two distinct parts: t and u-
channel graphs that contain an internal quark propagator, Tt

ab
µν , as shown in

Figs. 4(d), and an s-channel amplitude, Ts
ab
µν , which is given in Fig. 4(a). The

subscript “s” and “t” refers to the corresponding Mandelstam variables, i.e.
s = q2 = (p1 + p2)

2 = (k1 +k2)
2, and t = (p1 −k1)

2 = (p2 −k2)
2. Specifically,

T ab
µν = Ts

ab
µν + Tt

ab
µν , (2.5)

with

Ts
ab
µν = −g2v̄(p2)

λc

2
γρ u(p1)f

abc

(
1

q2

)
Γρµν(q,−k1,−k2) ,

Tt
ab
µν = −g2v̄(p2)

( λb

2
γν S( 6p1− 6k1)

λa

2
γµ +

λa

2
γµ S( 6p1− 6k2) γν λb

2

)
u(p1)

(2.6)

where

S(p) =
i

6p − m
(2.7)

is the quark propagator, and λ are the Gell-Mann matrices. It is elementary
to verify that the action of the longitudinal momenta kµ

1 or kν
2 leads to a

non-trivial cancellation between the Ts and Tt amplitudes, as shown in Fig.4,
which is a direct consequence of the BRS symmetry. Its one-loop implemen-
tation necessitates only the use of the following basic Ward identities

kµ
1Γρµν(q,−k1,−k2) = (q2gρν − qρqν) − (k2

2gρν − k2ρk2ν) ,

kµ
1γµ = −i

(
S−1(k1 + p) − S−1(p)

)
, (2.8)

triggered by the action of kµ
1 (or kν

2) on Ts
ab
µν and Tt

ab
µν , respectively.
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After carrying out the above s-cannel – t-channel cancellation, one is left
with a set of “pure” propagator-like contributions which define the effective
PT vacuum polarization of the gluon, denoted by Π̂µν(q), given by [4] (Fig.2)

Π̂µν(q) =
g2

16π2

11cA

3
(q2gµνq

2 − qµqν)
[

ln
(
− q2

µ2

)
+ CUV

]
. (2.9)

Here, CUV = 1/ǫ− γE + ln 4π + C, where C is a GFP-independent constant
and µ is the subtraction point. Notice that, as happens in QED, Π̂µν(q)
captures the one-loop leading logarithmic corrections, i.e. the coefficient
11cA

3
multiplying the logarithm coincides with the coefficient of the one-loop

β function of quark-less QCD.
Similarly one may define the GFP-independent one-loop quark-gluon ver-

tex Γ̂(1)
α (Q, Q′) (Fig.3). In addition to being GFP-independent, by virtue of

Eq. (2.4) Γ̂(1)
α (Q, Q′) satisfies the following QED-like Ward-identity

qαΓ̂(1)
α (Q, Q′) = Σ̂(1)(Q) − Σ̂(1)(Q′), (2.10)

where Σ̂(1) is the PT one-loop quark self-energy, which coincides with the
conventional one computed in the Feynman gauge.

The construction presented above goes through without major conceptual
modifications (but with minor operational adjustments) in the context of
non-Abelian gauge theories, such as the electroweak part of the Standard
Model, where the gauge fields have been endowed with masses through the
usual Higgs mechanism.

3 Conclusions

We have seen that the Breit-Wigner resummation formalism can be self-
consistently extended to the case of non-Abelian gauge theories, provided
that one resorts to the pinch technique rearrangement of the physical am-
plitude. To accomplish this one needs invoke only the full exploitation of
the elementary Ward-identities of the theory, in conjunction with unitarity,
analyticity, and renormalization group invariance.

From the phenomenological point of view the above framework enables
the construction of Born-improved amplitudes in which all relevant physical
information has been correctly encoded. This in turn will be useful for the
detailed study of the physical properties of particles, most importantly the
correct extraction of their masses, widths, and line shapes.

The formalism described in this paper has been recently extended at
the two-loop level [10], leading to the exact replication of all the desirable
properties listed above (items [(a)]–[(f)]).
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FIGURE CAPTIONS

Fig.1: The basic pinch technique rearrangement of the one-loop vertex (a)
into a purely vertex-like piece (b) and a propagator-like piece (c).

Fig.2: The effective pinch technique gluon self-energy.

Fig.3: The effective pinch technique one-loop gluon-quark vertex.

Fig.4: The fundamental BRS-driven s-channel – t-channel cancellation.
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