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Abstract. We critically revisit the issue of power-law running in models with extra dimensions. The general
conclusion is that, in the absence of any additional physical principle, the power-corrections tend to depend
strongly on the details of the underlying theory.

PACS. 12.10.Kt Unification of couplings – 11.25.Mj Compactification and four-dimensional models

1 Introduction

The power-law running of couplings has been considered
as one of the most characteristic predictions of models
with extra dimensions [1], allowing the exciting possibil-
ity of an early unification [2]. Even though there is no
doubt that power-law corrections will appear in such the-
ories, their precise physical interpretation merits further
scrutiny [3,4].

The basic argument in favor of power-law running is
MS inspired. In a general renormalization scheme satisfy-
ing decoupling the β function assumes the form

β =
∑

n

β0f

(
µ

Mn

)

(1)

with µ the renormalization scale, β0 the contribution of a
single mode, and f(µ/M) → 0 µ ≪ M and f(µ/M) →
1 µ ≫ M . In particular, in the case of the MS the func-
tion f(µ/M) is chosen to be the step-function, f(µ/M) ≡
θ(µ/M −1), in order to enforce decoupling. Theories with
δ extra compact dimensions contain an infinite tower of
Kaluza-Klein (KK) modes with masses

M2
n =

(
n2

1 + n2
2 + · · · + n2

δ

)
M2

c , (2)

where Mc = 1/Rc is the compactification scale. Then, the
naive way of generalizing the MS in the presence of an
infinite number of such modes is simply

β =
∑

n<µ/Mc

β0 ≈ β0

∫

n<µ/Mc

dΩδn
δ−1dn

= β0
1

Γ (1 + δ/2)

(

π
µ2

M2
c

)δ/2

,

giving rise to a β which just counts the number of active
modes, i.e. lighter than µ. But this generalization is am-
biguous, because the MS scheme does not satisfy decou-
pling. Instead, decoupling must be imposed by hand every

time a threshold is crossed [5]. Therefore, in the presence
of an infinite number of thresholds the result becomes ex-
tremely dependent on the prescription used.

Of course, particles decouple naturally and smoothly
in the Vacuum Polarization Function (VPF), because of
unitarity (optical theorem). In [2] the VPF of the photon
was calculated in the presence of the tower of fermionic
KK modes. However, the VPF was computed at Q2 = 0, a
fact which obscures the relation with the optical theorem.
In addition, a cutoff Λ (in proper time) was used. The cut-
off was eventually identified with the sliding scale and the
result used to compute the β function. It is easy to con-
vince oneself however, that the above procedure is equiv-
alent to using the function f(Λ/M) ≡ exp

(
−M2

n/Λ
2
)

to
decouple the KK modes. So, the resulting β-function reads

β =
∑

n

β0e
−

M
2
n

Λ2 ≈ β0

(

π
Λ2

M2
c

)δ/2

,

and µ was chosen by hand to satisfy µδ = Γ (1 + δ/2)Λδ

in order to reproduce the MS inspired result.
Thus, even though the VPF is used, the introduction of a
hard cutoff is not any better conceptually than the direct
use of a sharp step function for decoupling the modes: one
gets a smooth β function because one puts in by hand a
smooth function to decouple the KK modes. Because of
the very sharp step-like decoupling, these two ways of de-
coupling KK modes lead to a finite result for any number
of extra dimensions.

The physical decoupling function f(µ/M) that is re-
ally obtained from the VPF can be approximated [6] by
the simple expression f(µ/M) = µ2/(µ2 + 5M2). Substi-
tuting it in Eq.(1), we see that the sum over all KK modes
converges only for one extra dimension, but is badly diver-
gent for several extra dimensions. The extra infinities one
finds when summing all the KK modes are just the man-
ifestation of the non-renormalizability of the underlying
uncompactified theory; the latter is non-renormalizable
simply because the gauge coupling has dimension 1/M δ/2.
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Therefore, higher dimension operators are needed as coun-
terterms, and one is naturally led to the effective field
theories (EFT) .

2 Extra dimensions and EFT

The general rules of continuum EFT (to be distinguished
from the “Wilsonian” type [7]), may be summarized as fol-
lows [5]: (i) Virtual momenta in loops run up to infinity;
(ii) heavy particles are removed from the spectrum at low
energies; (iii) effects of heavy particles are absorbed in the
coefficients of higher-dimensional operators; (iv) regular-
ization and renormalization are necessary; (v) the use of
dimensional regularization and the MS scheme is advan-
tageous, because in that case there is no mixing between
operators of different dimensionality.

We next proceed to use the continuum EFT at the level
of the extra-dimensional (uncompactified) theory. Clearly,
the virtual momenta associated with the extra dimensions
run up to infinity, as in point (i) above. However, at the
level of the 4-d (compactified) theory they are KK masses
and one is supposed to keep only particles lighter than the
relevant scale. Thus, truncating the KK tower by introduc-
ing a large (but otherwise arbitrary) cutoff Ns amounts
to cutting-off the momenta of the uncompactified theory.
Identifying Ns with a physical cutoff gives illusion of pre-
dictivity, but is plagued with ambiguities [8]. Even when
using cutoffs one has to add counterterms from higher or-
der operators, absorb the cutoff and express the result in
terms of a series of unknown coefficients. Therefore, in or-
der to define a genuine non-cutoff continuum EFT frame-
work, we must keep all KK modes, or, equivalently, study
how they decouple all of them at once.

3 Computing the VPF in a toy model

We will follow the strategy outlined above in the context
of a simple toy model [4]. Consider a theory with one
fermion and one photon in 4 + δ dimensions, with the
extra dimensions compactified on a torus of equal radii
Rc ≡ 1/Mc. The Lagrangian reads

Lδ = −1

4
FMNFMN + iψ̄γMDMψ + Lct (3)

where M = 0, · · · , 3, · · · , 3 + δ, µ = 0, · · · 3, DM = ∂M −
ieDAM , and eD is the coupling in D = 4 + δ dimen-
sions. It has dimension [eD] = 1/M δ/2. After compact-
ification, the four-dimensional dimensionless gauge cou-
pling, e4, and eD are related by the compactification scale:

e4 = eD

(
Mc

2π

)δ/2
. The part of the spectrum relevant to

our purposes is: (i) one massless photon; (ii) 2[δ/2] mass-
less Dirac fermions; (iii) a tower of massive Dirac fermions
with masses given by Eq.(2). In addition, the counterterm
Lagrangian is given by Lct = κ1

Ms
DMFMKDNFNK + · · ·,

where the ellipses denote operators of higher dimension-
ality.

We next compute the VPF at the level of the compact-
ified theory; at one-loop it is given by

Πµν(q) = ie24
∑

n

∫
d4k

(2π)4
Tr

{

γµ 1

k/−Mn
γν 1

k/+ q/−Mn

}

.

From gauge invariance,Πµν(q) =
(
q2gµν − qµqν

)
Π(q). In

order to exploit dimensional regularization techniques, we
add and subtract the contribution of VPF in the uncom-
pactified space: Π(q) = [Π(q) −Πuc(q)] + Πuc(q) . This
allows us to trade off the divergent sum for a divergent in-
tegral, which may be computed using the standard results
of dimensional regularization. Indeed, one may verify that
[Π(q) −Πuc(q)] is in fact UV and IR finite (and can be
evaluated numerically), whereas the expression

ΠMN
uc (q) = ie2D

∫
d4+δk

(2π)4+δ
Tr

{

γM 1

k/
γN 1

k/+ q/

}

(4)

contains all divergent contributions. In particular, setting
ΠMN

uc (q) =
(
q2gMN − qMqN

)
Πuc(q), we have that

Πuc(Q) =
e24
2π2

πδ/2 Γ 2(2 + δ
2 )

Γ (4 + δ)
Γ

(

− δ
2

) (
Q2

M2
c

)δ/2

. (5)

The extra divergences that cannot be canceled by the
wave-function renormalization are to be absorbed in the
operator DMFMKDNFNK . In the limit Q2 ≪ M2

c , we
finally obtain [4]

Π(δ)(Q) =
e24
2π2

(

a
(δ)
0 − 1

6
log

(
Q2

M2
c

)

︸ ︷︷ ︸

ordinary running

+a
(δ)
1

Q2

M2
c

+ · · ·
)

with

δ 1 2 3

a
(δ)
0 −0.335 −0.159 −0.094

a
(δ)
1 −0.110 0.183 0.298

Notice that the coefficients a
(δ)
1 can be affected by non-

calculable contributions from higher dimension operators.
Using the above VPF we define a sort of “effective

charge”
1

αeff(Q)
≡ 1

α4

(

1 +Π(δ)(Q)
)

. (6)

To determine the relation between e4 and the QED cou-
pling, we identify our effective charge at some low energy
scale (for instance Q2 = m2

Z ≪ M2
c ) with the QED cou-

pling

1

αeff(mZ)
≈ 1

α4
+

2

π
a
(δ)
0 − 2

3π
log

(
mZ

Mc

)

. (7)

The relation between the QED coupling αeff(mZ) and α4

contains only logarithmic running. This is the only match-
ing we can reliably compute without knowing the physics
beyond Ms. Notice also that, in this EFT framework, the
gauge coupling does not run above the compactification
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Fig. 1. The effective coupling as a function of Q, for δ = 1
(solid), δ = 2 (long-dashed), and δ = 3 (short-dashed)

scale. That is what happens in χPT [9], when using di-
mensional regularization : fπ does not run, it just renor-
malizes higher dimensional operators.

For all energies we can write for the effective coupling:

1

αeff(Q)
≈ 1

αeff(mZ)
+

1

α4

(

Π(δ)(Q) −Π(δ)(mZ)
)

.

As seen in Fig.1, at low energies it displays the stan-
dard logarithmic running, whereas at Q2/M2

c ≈ 1 the
behavior deviates dramatically from the logarithmic run-
ning. However, for Q > Mc this effective charge cannot be
interpreted anymore as the running charge since it could
contain physics from higher dimension operators.

We finally comment on possible pitfalls related to the
cavalier interpretation of hard cutoffs in terms of physi-
cal masses, especially if the theory that gives meaning to
those masses is not known [8]. Cutoffs can give an indi-
cation of the presence of power corrections, but the coef-
ficients of these corrections cannot be computed without
knowing the details of the full theory. Results obtained
through the use of hard cutoffs hint to the appearance of

contributions which go as (Ms/Mc)
δ
, where Ms is some

scale related to the onset of new physics; however, the
coefficients multiplying these corrections are not reliably
determined.

To illustrate this point with an example, let us calcu-
late the expression of Eq.(4) using a cutoff Λ:

Π(1)
uc (Q) =

e24
2π2

(

−3π2Q

64Mc
+

√
πQ2

15Mc
+

√
πΛ

3Mc

)

Π(2)
uc (Q) =

e24
2π2

(
πΛ2

6M2
c

+
πQ2

30M2
c

[

log(Q2/Λ2) + γ − 77

30

])

Π(3)
uc (Q) =

e24
2π2

(
5π3Q3

768M3
c

− π3/2Q2Λ

15M3
c

+
π3/2Λ3

9M3
c

)

. (8)

We note that the terms independent of the cutoff are
the same as those obtained by using dimensional regu-
larization, Eq.(5), whereas the additional pieces depend
strongly on the cutoff. Let us next assume that the “new
physics” is due to the presence of an additional fermion in
our 4 + δ dimensional theory, whose mass satisfies Mf ≫

Mc, and let us compute its effects on the coupling constant
for Mc ≪ Q2 ≪Mf : We have

Π
(δ)
f (Q) =

e24
2π2

(
π

Mc

)δ/2

Γ (−δ/2)

×
∫

dxx(1 − x)
(
M2

f + x(1 − x)Q2
)δ/2

(9)

Expanding for Q2 ≪Mf and integrating on x we obtain

Π
(δ)
f (Q) ≈ e24

2π2

(√
π
Mf

Mc

)δ

Γ

(

− δ
2

)(

1

6
+

δ

60

Q2

M2
f

)

.

(10)
Evidently, when integrating out the heavy fermion one
receives power corrections to the gauge coupling ( also
higher dimension operators ), even if the dimensional reg-
ularization is employed. However, the coefficients are com-
pletely different from those obtained in Eq.(8) using a hard
cutoff.

4 Conclusions

We have argued that continuum EFT, with dimensional
regularization and the MS scheme, provides a self-consistent
framework for computing in models with extra dimen-
sions. The running of the coupling that can be computed
reliably within this framework is only logarithmic. Addi-
tional power corrections are expected, but cannot be com-
puted without knowing the details of the complete theory
in which the D dimensional theory is embedded (for ex-
ample, extra-dimensional GUT). Thus, the requirement
of coupling unification opens a window to physics much
beyond the compactification scale.
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