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Abstract 

Citrus fruit is the highest value fruit crop in terms of international trade, with Spain being the first 

worldwide exporter of citrus fruit for fresh consumption. However, the presence of decay caused 

by Penicillium spp. fungi is among the main problems affecting postharvest and marketing 

processes of citrus fruit. A small number of decayed fruit can infect a whole consignment, during 

long-term storage or fruit shipping to export markets, thus involving enormous economic losses 

and the blackening of the reputation of citrus producers. Therefore, effective early detection of 

fungal infections and removal of infected fruit are issues of major concern in commercial 

packinghouses in order to prevent the spread of the infections, thus ensuring an excellent fruit 

quality and absolute absence of infected fruit. In this respect, this doctoral thesis focuses on 

addressing such an important challenge for the citrus industry as the automation of the detection 

of early symptoms of decay, in order to provide alternatives to human inspection under dangerous 

ultraviolet illumination, thus accomplishing this detection task more efficiently and, consequently, 

leading to a possible reduction of the use of fungicides. Specifically, this doctoral thesis advances 

in the field of the automatic detection of decay in citrus fruit using optical systems and machine 

learning methods. In particular, three different optical techniques operating in the visible and near-

infrared spectral regions are investigated, including hyperspectral imaging, light backscattering 

imaging and spectroscopy. The optical systems used in this thesis are not limited to the visible 

part of the electromagnetic spectrum, thus presenting capabilities beyond those of the naked 

human eye and traditional computer vision systems based on colour cameras, this fact being of 

special interest for detecting hardly-visible damage in citrus fruit, such as decay at early stages. 

Furthermore, a vast number of machine learning techniques aimed at data dimensionality 

reduction and classification are explored for dealing with the optical measurements of citrus fruit 

in order to discriminate fruit with symptoms of decay from sound fruit. The three optical 

techniques, coupled with suitable machine learning methods, investigated in this doctoral thesis 

provide good results in the classification of skin of citrus fruit into sound or decaying, with a 

percentage of well-classified samples above 90% for both classes despite their similarity. In the 
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light of the results, this doctoral thesis lays the foundation for the future establishment of the 

explored optical technologies on a commercial fruit sorter aimed at decay detection in citrus fruit. 
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Resumen 

Los cítricos representan el cultivo frutal de mayor valor en términos de comercio internacional, 

siendo España el primer exportador mundial de cítricos para consumo en fresco. Sin embargo, la 

presencia de podredumbres causadas por hongos del género Penicillium se encuentra entre los 

principales problemas que afectan la postcosecha y comercialización de cítricos. Un número 

reducido de frutas infectadas puede contaminar una partida completa de cítricos durante el 

almacenamiento de la fruta por largos períodos de tiempo o en el transporte al extranjero, lo que 

conlleva grandes pérdidas económicas y el desprestigio de los productores de cítricos. Por lo tanto, 

la detección temprana de infecciones por hongos de forma efectiva y la eliminación de la fruta 

infectada son asuntos de especial interés en los almacenes de confección de fruta para impedir la 

propagación de las infecciones fúngicas, asegurando de esta forma una excelente calidad de la 

fruta y la ausencia total de fruta infectada. En este sentido, la presente tesis doctoral se centra en 

abordar un reto tan importante para la industria citrícola como es la automatización del proceso 

de detección de podredumbres incipientes, con el fin de proporcionar alternativas a la inspección 

manual con peligrosa luz ultravioleta que permitan realizar esta detección de forma más eficiente 

y, en consecuencia, reducir potencialmente el uso de fungicidas. En concreto, esta tesis doctoral 

avanza en el campo de la detección automática de podredumbres en cítricos mediante sistemas 

ópticos y técnicas de aprendizaje automático. Específicamente, se investigan tres técnicas ópticas 

diferentes que operan en las regiones del visible e infrarrojo cercano del espectro 

electromagnético, incluyendo la técnica de imagen basada en backscattering, visión hiperespectral 

y espectroscopía. Los sistemas ópticos usados en esta tesis no están limitados a la parte visible del 

espectro, por lo que sus capacidades superan a las del ojo humano y a las de los sistemas de visión 

convencionales basados en cámaras de color, lo cual resulta de especial interés para detectar daños 

en cítricos que son difícilmente visibles a simple vista, como las podredumbres en estadios 

tempranos de infección. Además, se exploran numerosas técnicas de aprendizaje automático de 

reducción de la dimensionalidad de los datos y clasificación, con la finalidad de usar las medidas 

ópticas de los cítricos para discriminar la fruta afectada por podredumbre de la fruta sana. Las tres 

técnicas ópticas, junto con métodos de aprendizaje automático adecuados, proporcionan buenos 



 
Resumen 

XVIII 
 

resultados en la clasificación de la piel de los frutos cítricos en sana o podrida, consiguiendo un 

porcentaje de muestras bien clasificadas superior al 90% para ambas clases, a pesar de la gran 

similitud entre ellas. En vista de los resultados obtenidos, esta tesis doctoral sienta las bases para 

la futura implementación de las técnicas ópticas estudiadas en un sistema comercial de 

clasificación automática de fruta destinado a la detección de podredumbres en cítricos. 
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Chapter 1 

Introduction and objectives 

This introductory chapter basically sets out the context of the thesis, and provides the background 

necessary to understand the remainder of the thesis. In particular, this chapter introduces in a 

general way the problem of the decay detection in citrus fruit, and gives an overview of the 

different optical techniques analysed in this thesis to automate this detection, with particular 

attention being paid on technical principles of these technologies and their applications for fruit 

and vegetable quality assessment. Furthermore, it is included a brief introduction to the use of 

machine learning techniques for quality assessment of agricultural products from the 

corresponding optical measurements. In addition, the objectives and the research framework of 

the doctoral thesis are also presented. At the end of this chapter, the structure of this thesis report 

is described. 

1.1. Introduction 

 Importance of the citrus industry 

Citrus fruit is the highest value fruit crop in terms of international trade. The annual production of 

all types of citrus fruit was estimated at around 115.5 million tons in the period 2010-2011 (FAO, 

2012), thus evidencing the importance of this fruit crop within the world economy. Oranges 

constitute the bulk of citrus fruit production, accounting for around 61% of global production. 
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However, significant quantities of mandarins, lemons, limes and grapefruits are also produced. 

Citrus production is mainly aimed at two differentiated markets, including the processed citrus 

industry and the citrus market for consumption as fresh produce, with the latter accounting for 

around 75% of total production. 

Spain is one of the leading citrus producers in the world, with a production of around 6.6 million 

tons in the period 2010-2011, only being surpassed by China, Brazil, India, the United States of 

America and Mexico. Furthermore, Spain is the first worldwide exporter of citrus fruit for fresh 

consumption, exporting more than half of total citrus production (around 3.6 million tons). In 

particular, the Valencian Community is the first Spanish exporter, accounting for around 76% of 

total national exports of citrus fruit in 2012 (IVACE, 2013). When considering only the most 

important citrus fruit cultivars, the Valencian Community exported 87% of total Spanish 

mandarins and 78% of total oranges. In 2012, the biggest importers of Valencian citrus fruit were 

France, Germany, Netherlands and the United Kingdom, which represented around 61% of total 

exports. The rest of Valencian citrus fruit was exported to other countries, such as Russia, Italy 

and the United States of America, where the Valencian exports are increasing in popularity among 

consumers due to their high quality. However, the intense competition with the rest of 

Mediterranean countries could jeopardise the dominant position of the Valencian Community in 

the citrus market. Therefore, the Valencian citrus industry is constantly making enormous efforts 

to ensure high product quality, especially when the citrus fruits are consumed as fresh fruit.  

 External quality of citrus fruit 

The quality of a piece of fruit or vegetable is defined by several attributes that determine its 

marketability and shelf life. Quality assessment is therefore one of the most important goals of the 

highly competitive food industry. Product quality includes external appearance, such as colour, 

size or the presence of skin diseases or bruises, and internal quality features, such as sugar content, 

acidity or maturity. These properties cover all the factors that exert considerable influence on 

consumers regarding the appearance of the product, its nutritional and organoleptic qualities and 

its suitability for preservation. Nevertheless, the presence of skin defects is one of the most 

influential factors in the quality and price of fresh fruits and vegetables, since consumers strongly 

associate product quality with appearance and base their purchasing decisions on the good 

appearance of the product and the total absence of external defects (Kays, 1999). 

In particular, external defects appearing on citrus fruit can be classified into two categories 

according to their economic consequences: defects that evolve over time after the citrus harvest 

and defects that do not evolve. Defects that do not evolve, such as scars caused by branch frictions 
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or chilling injury, affect only the appearance of the fruit, thus reducing the commercial value of 

the fruit. However, although fruit with cosmetic defects is not exported, it can still be 

commercialised in the internal market as fresh produce or used in the processed citrus industry, 

since these defects do not affect the organoleptic properties.  On the other hand, evolving defects 

are more dangerous and it is absolutely necessary to detect them because they affect to the 

organoleptic quality of the fruit and there is a risk of spreading the infestation to sound fruit.  

Evolving external damage include that caused by different types of fungi. Fungal pathogens can 

enter a fruit through wounds sustained during harvesting and the infestation is gradually spread 

over the whole fruit, depending on the temperature and humidity conditions, until the complete 

degradation of the fruit.   Particularly, decay caused by Penicillium spp. fungi, such as Penicillium 

digitatum and Penicillium italicum, is among the main problems affecting postharvest and 

marketing processes of citrus fruit. Economic losses generated by these fungi are enormous, 

amounting to between 10% and 15% of total product value (Eckert and Eaks, 1989). Furthermore, 

since these fungal pathogens reproduce very rapidly and produce high amounts of spores that are 

readily disseminated by air currents, a small number of decayed fruit can infect a whole 

consignment, thus causing even more economic losses. This problem is aggravated when the fruit 

is stored for a long time or shipped to distant export markets. In addition to the associated 

economic losses, a high number of decayed fruit in the final destination can blacken the reputation 

of Spanish citrus producers.  

Therefore, an issue of major concern in commercial packinghouses is to prevent the appearance 

of fungal infections and their spread in order to ensure an excellent quality and absolute absence 

of infected fruit. In practice, decay caused by fungi is controlled by application of conventional 

synthetic chemical fungicides, such as imazalil or thiabendazole, which delay or prevent the 

appearance of damage due to fungi. However, the widespread use of these fungicides has led to 

the resistance of the fungal pathogens (Eckert, 1990). In addition, fungal pathogens are sometimes 

already in the fruit before any fungicide treatment is applied in postharvest, since they can enter 

the fruit during harvesting (Obagwu and Korsten, 2003). Another drawback of fungicides is that 

export customers limit considerably their use due to the increasing social concerns about 

environmental contamination and human health risks associated with fungicides residues (Palou 

et al., 2008). In this context, effective early detection of fungal infections and removal of infected 

fruit in packinghouses can prevent the spread of the infections, thus leading to a potential reduction 

of the use of fungicides.  
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Figure 1.1. Orange presenting decay lesions caused by P. digitatum fungus. 

Decay at its early stages (before sporulation) is hardly detectable because the appearance of the 

damage is virtually identical to sound skin, thus being barely visible to the human eye (Figure 

1.1). Therefore, the detection of infected fruit is currently performed visually by trained workers 

examining each fruit individually in a dark room as it passes under ultraviolet (UV) illumination 

along a conveyor belt, since decay lesions produce visible fluorescence when being lit by this kind 

of light, and decayed fruits are removed manually (Figure 1.2).  

Nevertheless, this method is potentially harmful for the workers and strictly regulated, since a 

long exposure to UV radiation can lead to several damaging effects to the human skin, such as 

premature aging and cancer (Lopes et al., 2010). As a direct consequence, the operators must work 

in shifts of just a few hours, thus leading to an operational inefficiency of the procedure that affects 

the assessment of the quality. Furthermore, as the decisions made by operators are affected by 

psychological factors such as acquired habits or fatigue caused by monotonous work, there is a 

high risk of human error. In this sense, since the efficiency of quality inspection processes 

determine the marketability of the product, automatic devices are being investigated as possible 

alternatives to manual inspection in order to enhance the detection of decay in packinghouses with 

the subsequent reduction in production costs, thus improving the competitiveness of citrus 

industry. 
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Figure 1.2. Operator examining citrus fruit under UV light to detect possible decay in a 
commercial packinghouse. 

 Optical systems 

A possible solution to automate the detection of decay in citrus fruit could come from the 

development of systems based on optical sensing, such as computer imaging and spectroscopy. 

Nevertheless, this is not a simple task because automated inspection of agricultural produce shows 

certain particularities and problems that are not present in other fields due to their biological 

nature, such as the great variability of the objects inspected, due to differences between species 

and varieties as well as to individual differences between fruits belonging to the same variety. 

While manufactured products often present similar colours, shapes, sizes and other external 

features, fruit and vegetables may show different characteristics from one item to another. One 

single fruit can have a different colour, size and shape from another one, even though both of them 

were picked the same day from the same tree. Fruit and vegetables naturally change their colour 

or texture after being harvested, and these features depend on their maturity and how they are 

stored (ambient humidity and temperature, presence of volatiles, duration of the storage, etc.). 

Furthermore, the colour on a particular area of the skin of a healthy fruit may match the colour of 

a blemish on the surface of another fruit of the same variety. Moreover, it is essential that the 

presence of stem-ends, leaves, dirt or any extraneous material be identified and not confused with 

true skin defects.  
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Despite these difficulties, computer vision systems based on colour imaging have become widely 

used to automate the inspection of fruit and vegetables (Sun, 2007; Cubero et al., 2011). In most 

cases, their use is aimed at the inspection of external features related to quality, such as size, shape, 

colour or the presence of damage (Blasco et al., 2003; Costa et al., 2011). Currently, red-green-

blue (RGB) computer vision systems are used in the citrus industry to detect external defects that 

are visible at first glance (Blasco et al., 2007b; Kim et al., 2009; López-García et al., 2010). Even 

though such systems offer important advantages like real-time operation, low cost or simulation 

of human processes, they also have some limitations, the main one being the fact that these vision 

systems are restricted to the visible part of the electromagnetic spectrum and miss important 

information that is outside these limits. This disadvantage derives from the fact that conventional 

vision systems try to imitate human perception of colour by capturing three images corresponding 

to the red, green and blue bands, and then combining these monochromatic images in order to 

obtain a colour image. In consequence, some defects, such as decay at very early stages, are very 

difficult to detect using standard artificial vision systems because they are hardly visible to the 

human eye and, consequently, by conventional colour cameras.    

Therefore, other technologies have been proposed for automatically detecting decay in citrus fruit, 

such as vision systems that combine standard cameras and UV illumination (Kurita et al., 2009). 

The vision systems based on UV radiation imitate the fluorescence technique used in the citrus 

industry by humans. In these systems, UV sources induce visible fluorescence of essential oils 

present on the skin of citrus fruit produced by cell breakage. Fluorescence then augments the 

contrast of damage caused by fungal infestations, and this can be captured by standard cameras. 

Nevertheless, the utilisation of UV light presents some disadvantages because not all cultivars of 

citrus show the same autofluorescence phenomenon due to differences in the peel composition 

(Momin et al., 2011; Momin et al., 2012) and, in addition, other defects like chilling injury can 

also lead to some degree of fluorescence (Slaughter et al., 2008; Obenland et al., 2009), thus 

reducing the performance of these systems. 

Other solution for detecting non-visible damage in citrus fruit, and without using UV illumination, 

could come from the use of optical technologies that are not limited to the visible part of the 

electromagnetic spectrum, ranging from 380 nm to 780 nm, unlike standard vision systems, but 

also operate in spectral areas where the human eye is not sensitive, such as in the UV (100-380 

nm) and near-infrared (NIR; 780-2500 nm) regions. In this sense, some spectroscopic studies on 

citrus fruit in the visible and NIR regions (Gaffney, 1973) revealed that different external defects 

have different spectral signatures and show significant spectral differences with respect to the 

healthy areas, which can lead to the selection of certain sets of wavelengths at which the contrast 

between healthy and damaged skin is maximum, thus facilitating the detection of particularly 
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dangerous defects. As a consequence of these preliminary studies, technological advances to 

tackle the problem of detection of hardly-visible damage in citrus fruit, such as decay at early 

stages, are suggested to use optical approaches that also include spectral regions outside the visible 

electromagnetic spectrum, such as multispectral and hyperspectral vision systems, light 

backscattering imaging systems and spectroscopy systems, in order to enhance the capabilities of 

standard vision systems. 

1.1.3.1. Multispectral and hyperspectral vision systems 

In order to advance in the automatic detection of decay in citrus fruit, one way to enhance the 

possibilities of standard colour systems that seek to imitate the human eye is the use of 

multispectral computer vision systems. These systems can acquire a set of optimised 

monochromatic images at a few wavelengths that make it possible to estimate or discover features 

that are difficult with the traditional systems. Multispectral systems should not be confused with 

hyperspectral ones. Hyperspectral imaging involves a relatively large number of narrow spectral 

bands over a continuous spectral range, whereas a multispectral imaging deals with only a few 

spectral bands that do not necessarily have to be continuous nor narrow. An RGB camera could 

be considered a particular case of a multispectral system, since it captures three monochromatic, 

broad-band images to obtain a colour image. However, it is common to include also wavelengths 

outside the visible region of the electromagnetic spectrum, such as NIR, for detecting external 

damage in citrus fruit (Aleixos et al., 2002; Blasco et al., 2007a; Blanc et al., 2009; Blasco et al., 

2009). The main advantages of multispectral imaging systems are the relatively low cost of the 

system in comparison with hyperspectral systems and the fact that they can be more specific for 

real applications. In fact, hyperspectral systems are sometimes used just to select the particular set 

of wavelengths that will finally be used in multispectral systems. 

In this sense, the use of hyperspectral sensors makes it possible to conduct a more sophisticated 

analysis of the scene by acquiring a large set of monochromatic, narrow-band images 

corresponding to consecutive wavelengths. Although hyperspectral vision systems were originally 

developed for remote sensing and meteorology (Goetz et al., 1985; Lillesand et al., 2004), the 

gradual reduction in the price of these systems has allowed them to be incorporated in many 

laboratories of other research fields, such as precision agriculture (Erives and Fitzgerald, 2005; 

Muhammed, 2005) or food quality and safety control (Park et al., 2002; Sun, 2010; Elmasry et al., 

2008b). In particular, the use of hyperspectral systems for internal and external quality assessment 

of fruit and vegetables has increased considerably in recent years (Gowen et al., 2007; Lorente et 

al., 2012). Hyperspectral sensors have been used successfully to identify external damage in 
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agricultural products (Liu et al., 2005; Elmasry et al., 2008a; Wang et al., 2011b; Vélez-Rivera et 

al., 2014). In the particular case of citrus fruit, several works have been carried out to detect skin 

defects (Martínez-Usó et al., 2005; Qin et al., 2009a, 2012). However, very limited research work 

has been conducted to detect decay caused by fungi in citrus fruit by means of hyperspectral 

imaging (Gómez-Sanchis et al., 2012, 2013).  

 

Figure 1.3. Illustration of a hyperspectral image cube. The two spatial dimensions are x and y, 
and the spectral dimension is λ. 

As already commented, hyperspectral systems can acquire a large number of monochromatic 

images of the same scene at consecutive wavelengths, thus enabling simultaneous analysis of the 

spatial and spectral information from an object. Therefore, hyperspectral imaging integrates the 

main features of conventional imaging and spectroscopy. The set of monochromatic images that 

are captured constitutes a hyperspectral image. As they are made up of a large collection of 

images, hyperspectral images constitute a more extensive source of information than that provided 

by a single monochromatic image or a conventional RGB image. The number of images depends 

on the spectral resolution of the system used, and the images are combined by forming a cube in 

which two dimensions are spatial (pixels) and the third is the spectrum of each pixel, as shown in 

Figure 1.3. Without adequate processing, such a large amount of data, despite being one of the 

main advantages of hyperspectral systems, can complicate the extraction of useful information, 

since much of the information obtained is redundant or, by nature, irrelevant for the tackled 

problem, thus leading to the worsening of the quality assessment of fruit. In addition, the 

processing of the information can become excessively complex and time-consuming for such 
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high-dimensional data sets and the current acquisition times of the hyperspectral images are still 

slow, which make it difficult to incorporate hyperspectral vision systems into an industry that 

demands real-time inspection. All these problems are commonly alleviated by reducing the 

dimensionality of hyperspectral images by selecting a small set of wavelengths with the most 

relevant information. There are numerous methods for selecting particular wavelengths, and thus 

reducing the hyperspectral images to multispectral ones, which are easier to implement in systems 

suitable for the real-time product inspection. In this respect, further information can be found in 

Grahn and Geladi (2007). 

Hyperspectral vision systems have three essential elements: light sources, usually halogen lamps 

placed in such an arrangement that diffuse illumination is provided and the scene is thus 

illuminated uniformly (Gómez-Sanchis et al., 2008a), an image sensor (also referred to as image 

detector), typically a monochromatic charge-coupled device (CCD) or complementary metal-

oxide semiconductor (CMOS) camera, and a wavelength selection device. Although most of the 

hyperspectral systems work in the spectral range between 400 nm and 1000 nm (Lorente et al., 

2012), these systems can be manufactured with a sensitivity up to about 2500 nm, and it is very 

important that both the wavelength selector and the image sensor are sensitive to the same spectral 

range (Cubero et al., 2011). The most popular wavelength selectors used in hyperspectral imaging 

systems are imaging spectrophotometers (Polder et al., 2004; Al-Mallahi et al., 2008; ElMasry et 

al., 2008a), liquid crystal tunable filters (LCTF; Evans et al., 1998; Gómez-Sanchis et al., 2008b; 

Wang et al., 2012) and, to a lesser extent, acousto-optic tunable filters (AOTF; Bei et al., 2004; 

Jiménez et al., 2008; Vila-Francés et al., 2011). Depending on the technology used, the selection 

of the wavelengths can be performed by separating the incident radiation into individual 

wavelengths (e.g. imaging spectrophotometer) or blocking the radiation in such a way that only 

the desired wavelength reaches the image sensor (e.g. LCTF and AOTF). 

Imaging spectrophotometers separate the reflection of a very thin slice of the scene into its spectral 

components by using a prism or a diffraction grating and project the spectral information onto an 

image sensor. This kind of device generally operates in a line scanning mode, i.e. the object is 

scanned line-by-line as the entire field of view is acquired.  One advantage of the imaging 

spectrophotometer is its high spectral resolution. On the other hand, the major drawback of the 

vision systems based on this technology is the need to move the object with respect to the 

spectrophotometer in order to acquire an entire image. An AOTF is basically an optical band-pass 

filter based on diffraction that can be rapidly tuned to discrete wavelengths by varying the 

frequency of an acoustic wave propagating through an anisotropic crystal medium (Chang, 1976). 

Unlike a classical diffraction grating, the AOTF only diffracts one specific wavelength of light, 

so that it acts more like a band-pass filter with a narrow bandwidth than a diffraction grating. 
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LCTF devices use electronically controlled liquid crystal elements to transmit light with a 

selectable wavelength whilst excluding all others. The LCTF is based on Lyot filters, which 

consist of several optical stages each composed of a liquid crystal layer sandwiched between two 

linear polarisers. Due to the birefringence of liquid crystal, as the incident linearly polarised light 

traverses the liquid crystal layer, it is split into two light rays (the ordinary and the extraordinary 

rays), which have different optical paths though the liquid crystal and emerge with a phase delay 

that is dependent on the wavelength. After transmission through the liquid crystal, only those 

wavelengths that are in phase are transmitted by the polariser to the next filter stage (Hecht, 2001). 

Tunability is provided by the relative alignment of the liquid crystals along an applied electric 

field between the two polarisers. Vision systems based on LCTFs and AOTFs acquire images with 

a high spatial resolution, but limited spectral resolution. On the contrary, systems based on 

imaging spectrophotometers can acquire images with high spectral resolution but low spatial 

resolution. When comparing the systems based on tunable filters, an important advantage of 

LCTF-based systems is that they offer a wider field of vision and better imaging quality than those 

based on AOTFs (Vila-Francés et al., 2010). On the other hand, LCTF hyperspectral technology 

presents, as its major drawback, a tuning time of tens of milliseconds, which is much longer than 

that required for AOTF technology, typically tens of microseconds. Further information on the 

principles of hyperspectral imaging and the recent advances and applications of this technology 

for fruit and vegetable quality assessment can be found in a review by Lorente et al. (2012). 

1.1.3.2. Light backscattering imaging systems 

Light backscattering imaging is another optical technique that has recently emerged as an 

alternative tool for fruit inspection, which combines spectroscopic and imaging approaches in the 

visible and NIR regions of the electromagnetic spectrum. Basic concepts related to light 

interaction with turbid biological materials, such as fruit, are first reviewed for a better 

understanding of this imaging technique. Light is properly the electromagnetic radiation that is 

visible to the human eye, which covers the range between 380 nm and 780 nm. However, radiation 

in some other ranges of the electromagnetic spectrum, especially in the UV and NIR regions, is 

also commonly referred to as light, since physical processes that are relevant for these ranges are 

similar to those for visible light. As shown in Figure 1.4, when a light beam interacts with a turbid 

media, such as a fruit, reflectance, absorption and transmittance happen (Birth, 1976). Particularly, 

light reflectance (scattering) is shown in two different geometries: specular or Fresnel reflectance 

and diffuse reflectance, the latter also referred to as backscattering. It is assumed that a small 

portion of incident light (only about 4-5%) is reflected on the surface of the sample (specular 

reflectance) and the rest penetrates into the tissue. In the tissue, most of the entering light is 
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scattered backwards to the exterior tissue surface after interacting with the internal components 

of the fruit (backscattering), whereas the remaining radiation is absorbed by the tissue or 

transmitted further out of the fruit in different direction (Meinke and Friebel, 2009).  

 

Figure 1.4. Modes of light interaction with fruit. 

The modes of light interaction with biological tissues are specific to each material, and the relative 

contribution of each mode depends on the chemical constitution and structural properties of the 

sample. Therefore, the optical analyses can be used to characterise fruits (Salguero-Chaparro et 

al., 2014), particularly by means of the absorption and scattering properties, which are in turn 

described by the absorption coefficient ( )a  and the reduced scattering coefficient ( )s  (Tuchin, 

2000). Light absorption is mainly related to the chemical components of the fruit, such as sugar, 

water or pigments (Williams and Norris, 2001). The chemical bonds of biological materials absorb 

light energy at particular wavelengths, thus the absorption properties are strongly dependent on 

light wavelength. In this sense, the conventional spectroscopy approach, which covers a wide 

range of wavelengths, is successfully used to measure chemical components of food and 

agricultural products, such as the soluble solids content (SSC) of fruit. By contrast, light scattering 

inside a fruit is affected by the structural properties of the tissue, such as density, particle size and 

cellular structures (Seifert et al., 2014a). In a strongly scattering material, such as fruit, photons 

often undergo multiple scattering before either being absorbed or exiting from the material, which 

largely determines the intensity of the scattered light that is emitted outside the fruit (McGlone et 

al., 1997). Hence, backscattered light, recorded by an imaging system, can be useful as an indirect 

measure of the histology of fruit, such as flesh firmness. Furthermore, if spectral information is 

added to the spatial imaging information, combined analyses of texture and chemical composition 

can be done. Accordingly, many research works have been focused on using light backscattering 
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imaging systems to assess quality of apples (Qing et al., 2007; Lu et al., 2010) and other fresh 

fruit (Lu and Peng, 2006; Romano et al., 2008); however, no research has been reported to detect 

decay in citrus fruit using this technique. The decaying process in citrus fruit is mainly 

characterised by the weakening of the cell walls due to changes in enzymatic activity (Barmore 

and Brown, 1979) and the subsequent early visible symptom such as the accumulation of liquid 

in the tissue (Barmore and Brown, 1981). In consequence, since structural changes in fruit tissue, 

as well as possible associated changes in chemical composition, and therefore changes in the 

optical properties, are expected, the light backscattering imaging technique may have the potential 

for decay detection. 

Systems based on light backscattering imaging have two essential components: a light source and 

an imaging unit. According to the kind of light source and imaging device, light backscattering 

imaging is divided into two main approaches: laser-light backscattering imaging (LLBI) and 

broadband-light backscattering imaging. The latter approach in turn includes multispectral light 

backscattering imaging (MLBI) and hyperspectral light backscattering imaging (HLBI) 

(Mollazade et al., 2012). In the LLBI technique, the light source is a laser diode, which is the best 

monochromatic light source (Lu and Peng, 2007; Qing et al., 2007; Baranyai and Zude, 2009). 

Laser light can deliver more light per unit area for a specific wavelength than a broadband light 

source. Therefore, light penetrates deeper into the fruit and the backscattered photons contain 

more information. Furthermore, the image acquisition is fast. On the other hand, the acquired 

images carry information just in a specific wavelength, thus requiring multiple lasers to acquire 

backscattering images at multiple wavelengths, which can be expensive. In the MLBI and HLBI 

approaches, a broadband light, such as the light generated by a halogen lamp, is usually passed 

through an optic fibre with small diameter and then focused on the sample by a converging lens 

(Lu, 2004; Peng and Lu, 2006b; Qin et al., 2009b). The main advantage of broadband light is that 

this light source can provide all the required wavelengths. On the contrary, the major drawback is 

the low output power per unit area, thus leading to shallow light penetration and the subsequent 

loss of information. With regard to the imaging unit, the detector should have a high efficiency in 

the spectral areas covering the needed wavelengths, usually in the visible and short-wave NIR 

regions. In backscattering imaging systems, both colour and monochromatic cameras, commonly 

CCD-based cameras, are employed. However, colour cameras are much less sensitive and slower 

than monochromatic cameras. Therefore, monochromatic cameras are preferred over the colour 

ones in order to acquire higher-quality images in a faster way. In the LLBI approach, the imaging 

unit only consists of a camera. However, since a broadband-light source is used in the MLBI and 

HLBI techniques, in addition to an image detector, a wavelength selection device is also required 

for image acquisition, such as imaging spectrophotometers or tunable filters (earlier discussed in 

Section 1.1.3.1) in the HLBI and a few filters at specific wavelengths in the MLBI. Since the 
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HLBI technique is based on hyperspectral vision systems, this approach is expensive and time-

consuming and, therefore, it is not suitable for real-time sorting applications. In consequence, the 

target of the HLBI is to find a limited number of wavelengths that provide the maximum 

information about the structural and chemical properties of a particular variety of fruit (Peng and 

Lu, 2006a). Then, to implement the backscattering imaging technique in practice, the selected 

wavelengths can be used in LLBI or MLBI systems in order to assess quality of fruit in a relatively 

cheap, simple and fast way. However, for practical applications, LLBI systems are more suitable 

than MLBI systems, since they obtain more information about the tissue, as commented above.   

 

Figure 1.5. A typical raw backscattering image. 

With regard to the position of the light source in the light backscattering imaging systems, the 

incident angle of the light beam should be chosen in such a way that the specular reflectance 

acquired by the detector is minimum, since the purpose of backscattering imaging is only to 

acquire the backscattered photons. Researchers recommended a small incident angle, 

approximately in the range between 5º and 25º with respect to the vertical axis (Lu, 2004; Qin and 

Lu, 2007). Furthermore, a small incident angle, coupled with a small beam size, allows the 

assumption that the light beam is almost perpendicular to the fruit surface, thus obtaining images 

that are symmetrical with respect to the incident point, as shown in Figure 1.5. Raw backscattering 

image data could be used directly as the input feature vector to predict the fruit quality by a 

calibration model. However, the dimension of the feature vector cannot be taken arbitrary large 

because an increase of the dimension leads to a decrease of performance in the predictions 

(Heijden et al., 2004). Due to the radial symmetry of the backscattering images, they are usually 



 
1. Introduction and objectives 

16 
 

reduced to one-dimensional profiles through radial averaging (Lu, 2004). To this end, each 

backscattering image is first divided into a number of concentric rings of a specified width, and 

the radial intensity of the backscattering profile is then calculated by averaging all pixels within 

each circular ring.  

Afterwards, in order to get even higher performance predictions, a lower-size feature vector can 

be obtained by extracting new features from the one-dimensional profiles. For this purpose, two 

different methods are commonly employed to characterise backscattering profiles. One method is 

to find the parameters of symmetric distribution functions describing the behaviour of 

backscattering profiles. Different distribution functions have been investigated to fit the 

backscattering profiles of fruit, such as the Lorentzian function or the Gaussian function (Peng 

and Lu, 2005).  The other method for characterising the backscattering profiles is a physical 

approach, instead of purely statistical as the previous one. This physical approach consists in 

extracting some optical properties (the absorption, a , and reduced scattering, s , coefficients) 

of fruit from Farrell’s diffusion theory (Farrell et al., 1992), which provides a faithful description 

of the shape of the backscattering profiles (Qin and Lu, 2007; Qin et al., 2009b). Farrell’s diffusion 

theory model is valid only for materials with scattering dominance, such as turbid biological 

materials (including fruit) in the visible and short-wave NIR spectral regions, approximately 

between 500 nm and 1300 nm. Similarly to the parameters of the distribution functions, the optical 

coefficients can be used for assessing quality attributes of fruit. However, the additional advantage 

of the physical model, compared to the statistical approach, is that it allows to measure and 

separate the absorption and scattering properties. Optical technologies such as conventional 

spectroscopy measure the combined effect of absorption and scattering properties in the sample 

without being able to separate scattering from absorption, since the two phenomena are 

intertwined (Meinke and Friebel, 2009). Particularly, the intensity level of the measured spectrum 

is strongly affected by the scattering process, while the shape is more related to the absorption 

process. In this sense, measurement and separation of the optical properties of a biological tissue 

by means of backscattering imaging, coupled with the physical approach for profile 

characterisation, are useful for quantitative analysis of light-tissue interactions, thus facilitating 

the future development of more effective optical sensing techniques for determining and 

quantifying the structural characteristics and chemical composition of food and agricultural 

products. More details about the theoretical and technical principles of light backscattering 

imaging, as well as the recent achievements and applications of this technology for food and 

agricultural produce quality evaluation, are given in a comprehensive review by Mollazade et al. 

(2012).  
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1.1.3.3. Spectroscopy systems 

Conventional spectroscopy also appears to be a promising alternative for decay detection in citrus 

fruit since this technology can rapidly measure the optical properties of the samples, also in 

spectral regions outside the visible electromagnetic spectrum. This optical technique uses 

electromagnetic radiation covering a large number of narrow spectral bands over a continuous 

spectral range, usually in the visible and NIR spectral regions. Both spectroscopy and 

hyperspectral imaging involve a large amount of spectral data, and even share some acquisition 

equipment. Hence, similarly to hyperspectral imaging, in spectroscopy, it is necessary to extract 

essential information contained in the spectra using techniques for reducing the dimensionality of 

the data (Song et al., 2013), since the presence of irrelevant or redundant spectral information 

could lead to lower performance predictions of fruit quality. However, despite the similarities 

between both technologies, they should not be confused. Hyperspectral imaging acquires 

simultaneously spectral and spatial information from an object, while spectroscopy provides only 

spectral information captured at a particular spot on the sample, since the point detector used in 

this technology has size limitation. Conversely, this lack of spatial information makes 

spectroscopy much less time-consuming and more appropriate for real-time applications than 

hyperspectral imaging. Another difference between both techniques is the way in which they use 

the light source. 

In this sense, contrary to the diffuse lighting used in hyperspectral imaging to illuminate the scene 

uniformly, in spectroscopy, light hits directly a product (e.g. fruit), and the reflected or transmitted 

radiation is measured by a light detector. When the radiation penetrates the fruit, its spectral 

characteristics change through wavelength. This change depends on the absorption properties of 

the fruit, strongly associated with the chemical composition, as well as on its light scattering 

properties, which are related to the microstructure, as further discussed in Section 1.1.3.2. In 

particular, the scattering process affects the intensity level of the measured spectrum rather than 

the shape, this being more related to the absorption process of chemical components in the fruit at 

specific wavelengths. Similarly to backscattering imaging, in spectroscopy, the light source is 

aimed towards the fruit. In backscattering imaging, the backscattered light is recorded by an 

imaging system, thus obtaining spatial information of the light signal on the sample. On the 

contrary, spectroscopy measures light without tracking spatial information of the light signals. 

Due to the commented dependences of the spectra with the absorption and scattering properties 

of fruit, measurements acquired using spectroscopy systems are useful for determining the textural 

and chemical properties of fruit, such as flesh firmness or SSC. In fact, spectroscopy is one of the 

most investigated techniques for non-destructive quality assessment of a wide range of food 
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products. Therefore, this technology is arguably the most advanced with regard to equipment and 

applications, and such technological progress has thus led to the development of spectroscopy 

systems with high acquisition speed used in the agro-food industry for real-time sorting of 

products according to their quality. Accordingly, many studies have been reported to assess the 

internal and external quality of different fresh fruit by spectroscopy systems (Schmilovitch et al., 

2000; Liu and Ying, 2005; Han et al., 2006; Nicolaï et al., 2006; Xing et al., 2006). Most of the 

research studies using this technology on citrus fruit have been focused on evaluating the internal 

quality attributes, such as SSC, acid levels or vitamin C content (Lee et al., 2004; Guthrie et al., 

2005; Xia et al., 2007; Sun et al., 2009; Liu et al., 2010b). However, very limited research work 

has been conducted to assess the external quality of citrus fruit, such as the presence of surface 

defects, by means of spectroscopy in the visible and NIR ranges (Gaffney, 1973; Zheng et al., 

2010). With respect to spectroscopy research particularly aimed at decay detection, there has been 

reported a preliminary study conducted by Blasco et al. (2000) for early detection of Penicillium 

digitatum and Alternaria citri fungi in citrus fruit using NIR spectroscopy, pointing to differences 

in reflectance spectra between sound and infected areas in the peel of fruit. However, further 

research is still lacking for decay detection in citrus fruit using this technology. For further 

information, multiple applications of spectroscopy for quality assessment of citrus fruit and other 

fruit and vegetables can be consulted in the reviews by Nicolaï et al. (2007) and Magwaza et al. 

(2012), respectively. 

Depending on the sample properties to be analysed, there are three different measurement setups 

frequently used for fresh fruit quality evaluation, shown in Figure 1.6: transmittance, reflectance 

and interactance (Schaare and Fraser, 2000). In the case of transmittance mode, the incident light 

illuminates perpendicularly to one side of the sample and the transmitted light is detected from 

the opposite side. In practice, this mode is frequently used to assess internal quality attributes, 

such as SSC or acid levels, of fruit, especially fruit with thick skin (e.g. citrus fruit), since it allows 

to obtain information on inner portion of the product (Lee et al., 2004; Han et al., 2006). However, 

very high intensity of incident illumination is needed in order to have at least some light 

transmitted, thus causing possible thermal damage to the fruit at the illuminated spot and the 

subsequent alteration of spectral properties. In reflectance mode, the detector receives both 

radiation specularly reflected from the sample, which contains no information about the internal 

composition of sample, and backscattered radiation that has interacted with the internal particles 

of sample. Therefore, in order to minimise specular reflectance acquired by the detector, light 

source and detector are often mounted under a specific angle, commonly 45º. In the case of 

interactance mode, the detector is shielded from receiving specular reflectance. To this end, the 

light source and detector are placed parallel to each other in such a way that specular reflectance 

cannot directly reach the detector. For example, this can be achieved by means of a bifurcated 
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probe in which fibres leading to the light source and detector are parallel to each other and in 

direct contact with the surface of the fruit sample. The main difference between reflectance and 

interactance modes is that the interactance setup guarantees that only backscattered light is 

detected. Some of the advantages of reflectance and interactance modes are that measurements 

are easier to obtain, lower intensity of illumination is required, and the intensity levels of the 

reflected radiation are much higher than those of transmitted radiation. On the other hand, the 

incident light cannot reach a deep position in the sample because of high absorption or multiple 

scattering and, therefore, the reflectance spectra do not contain a lot of information about the 

internal quality of the flesh, especially in thick-skinned fruit. However, reflectance and 

interactance modes are preferred over transmittance setup when only information of substances 

located on or just under the fruit surface is required. For example, measurements of reflectance 

are used to determine chemical components in fruit with thin skin and to assess the external quality 

of fruit, such as the colour of product surface and the presence of surface defects (Liu and Ying, 

2005; Xing et al., 2006). In this sense, reflectance spectra acquired by spectroscopy systems may 

be also suitable for detecting decay in citrus fruit. 

 

Figure 1.6. Measurement setups of spectra: (a) reflectance, (b) transmittance, and (c) interactance. 
1: light source; 2: fruit sample; 3: light detector; 4: light shield; 5: sample holder. 
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With respect to the technological components in spectroscopy, a spectroscopy system mainly 

consists of a light source (usually a halogen light source), a wavelength selection device and a 

light detector. In addition, other optical components are usually required, such as optical fibres to 

conduct the light from the light source to the sample and from the sample to the detector, beam 

splitters, lenses and collimators. In spectroscopy, the most widespread devices to obtain 

monochromatic light at particular wavelengths are filters, which block the radiation in such a way 

that only the desired wavelength reaches the image detector, and monochromators, which separate 

spatially the incident radiation into individual wavelengths. However, although filters and 

monochromators are the most commonly-used wavelength selectors, there also exists other more 

sophisticated ways to select spectral information, which are used in modern spectroscopy systems. 

For example, laser-based spectroscopy systems have different laser light sources or a tunable laser. 

Other modern systems called Fourier-transform spectrophotometers use a Michelson 

interferometer to obtain spectral information, instead of using a monochromator or filter. In 

respect to filters, one relatively cheap option for performing spectral selection is the use of 

interference filters, such as Fabry-Perot filters; however, this equipment is limited to the use of 

discrete wavelengths. Other filters that can scan through a wide range of wavelengths are the 

tunable filters, such as AOTF and LCTF, earlier discussed in Section 1.1.3.1. Nevertheless, 

tunable filters are expensive and time-consuming. With regard to monochromators, although both 

prisms and diffraction gratings, like those used in imaging spectrophotometers, are frequently-

employed in spectroscopy, the gratings are preferred over the prisms due to their higher spectral 

resolution. Among all the commented filters and monochromators, the main options to produce 

monochromatic light are interference filters, AOTF and gratings, with grating-based systems 

currently dominating the market. Depending on the required spectral ranges, different types of 

detectors that use different technologies and materials can be chosen. Common examples of 

detectors used in spectroscopy are photodiode arrays (PDA) and CCD arrays. For real-time fruit 

grading applications, the currently-preferred spectroscopy systems usually include a fixed grating, 

coupled with a silicon CCD array or PDA detector (400-1000 nm) or an indium-gallium-arsenide 

(InGaAs) PDA detector (800-1700 nm), since a typical acquisition time below 50 ms is thus 

achieved. More guidelines for selecting a spectroscopy system with appropriate components and 

measurement setup for each particular application are given by Herold et al. (2009). 

 Machine learning techniques 

Agricultural products such as fruit and vegetables can be characterised by means of the 

measurements acquired with the different optical techniques commented in previous sections. 
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Particularly, in hyperspectral imaging, each pixel of the hyperspectral image of a particular piece 

of fruit or vegetable is characterised by its reflectance spectrum (i.e. reflectance levels at a large 

number of consecutive spectral bands). On the contrary, in backscattering imaging, instead of 

characterising each pixel individually, the whole backscattering image at each wavelength is 

usually featured by means of several parameters obtained from fitting the one-dimensional 

backscattering profile with a statistical or physical profile modelling approach. Therefore, the 

features characterising completely an agricultural product consist of the profile parameters 

obtained for all the backscattering images acquired at different wavelengths. In the case of 

spectroscopy, each fruit or vegetable is described by the reflectance or transmittance spectrum 

measured at a particular spot on the product. 

After identifying or extracting features from the optical measurements, the problem encountered 

is how to predict the internal and external quality of agricultural products from their associated 

features. With the fast development of artificial intelligence, this process can be performed by 

using machine learning techniques. These mathematical algorithms are capable of learning the 

pattern of the input features from previous experience as humans do, that is, machine learning 

methods can accumulate experience through data and develop new knowledge so that their 

performance on specific tasks improves over time (Izenman, 2008). Machine learning algorithms 

can be divided into supervised and unsupervised methods. In supervised learning, there is a set of 

n  samples, 1...{ , }i i i nt x , where ix  is the input m-dimensional feature vector for the i-th sample 

with a known desired output variable it , and the goal is to find a function of the input features to 

approximate the known outputs, which can be used to generate an output for future unseen inputs. 

On the other hand, in unsupervised learning, there is no information available to define an 

appropriate output variable, and the objective is to discover underlying patterns in the input data 

(e.g. by means of a cluster analysis), instead of finding a mapping from inputs to outputs. Both 

regression and classification models are supervised learning techniques. The main difference 

between both predictive models is the type of the output variable, which is continuous (i.e. a real 

number) in regression models and discrete or categorical in classification models. In quality 

evaluation of agricultural products, regression models are used to estimate a response value related 

to quality of fruit and vegetables (e.g. SSC or acid levels), whereas classifiers are employed to 

predict the class membership of the samples (e.g. the presence or absence of bruises or decaying 

parts in the product surface). 

The above-commented features extracted from optical measurements could be employed directly 

as inputs of a regression or classification model for decision making in order to predict the quality 

of agricultural products. However, for high-dimensional data (i.e. feature vectors with more than 

10 dimensions), some features may be irrelevant or redundant for the tackled problem and, 
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therefore, the reduction of the number of input features is usually performed prior to applying the 

predictive model. This pre-processing step involves several benefits, especially when using 

hyperspectral imaging or spectroscopy, which are characterised by a particularly large amount of 

spectral data. In most predictive algorithms, the complexity (i.e. the number of internal 

parameters) depends on the number of inputs, as well as on the size of the dataset, and, hence, the 

reduction of the input dimensionality usually leads to simpler models, which require less memory 

and computational operations (Alpaydin, 2004). In addition, simpler models tend to be more 

robust to the overfitting problem, especially on datasets with a limited number of samples, thus 

achieving higher performance predictions (Tian, 2010). Overfitting occurs when the predictive 

model memorises the known data rather than learning to generalise from trend and, therefore, 

models that have been overfitted will generally have poor performance when predicting unseen 

data. As an extreme example, the overfitting problem is accentuated when the number of internal 

parameters of the predictive model is the same as or greater than the number of samples (Izenman, 

2008).  

For overcoming these problems, there are numerous supervised and unsupervised machine 

learning techniques that reduce the dimensionality of the feature space without loss of information, 

which can be divided into feature extraction and feature selection methods according to the way 

in which the methods operate on the data for reduction purposes (Song et al., 2013). Feature 

extraction techniques, commonly referred as manifold learning techniques, transform the data in 

a high-dimensional space into a lower-dimensional space that preserves the observed properties 

of the data, generally known as manifold, and their goal is to recover the low-dimensional 

manifold embedded within the high-dimensional space. The main disadvantage of these 

techniques is that all the original features are required for computing the new ones. Particularly, 

principal component analysis (PCA; Jolliffe, 2002) is a popular manifold learning technique that 

has been widely used for data reduction in research focused on fruit and vegetables quality 

inspection by means of optical techniques (He et al., 2005; Liu et al., 2006; Omid et al., 2010). 

On the other hand, instead of creating new features, feature selection approaches try to find a 

subset of the original features that contains the least number of features with the most significant 

information. Feature selection techniques can be essentially categorised into wrapper and filter 

methods (Guyon and Elisseeff, 2003). Wrapper methods use as selection criterion the goodness 

of fit between the input features and the output provided by the predictive model under 

consideration, such as a neural network, thus presenting the advantage of optimising, by their 

nature, the performance of the prediction process. Within these methods, a traditional measure for 

evaluating classifiers is the classification success rate. On the contrary, filter methods use an 

indirect measure of the quality of the selected features that does not require the use of the 

predictive model (e.g. by evaluating the correlation function between each input feature and the 
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dependent variable). Therefore, filter techniques involve a faster convergence and greater 

robustness to changes in the classification or regression model.  

Unlike feature extraction methods, feature selection techniques, by their nature, do not require all 

the original features for obtaining the essential information from data. Therefore, this kind of 

techniques is commonly employed for reducing the high-dimensional hyperspectral images to 

multispectral ones by selecting a small set of wavelengths (Gómez-Sanchis et al., 2012; Vélez-

Rivera et al., 2014). As earlier stated in Section 1.1.3.1, this wavelength selection process is of 

main importance for the food quality industry, since multispectral images are easier to implement 

in vision systems suitable for the real-time product inspection, due to the fact that the acquisition 

time of these images is faster and the subsequent data analysis is simpler and less time-consuming 

than for hyperspectral images. Similarly, the HLBI systems, coupled with feature selection 

methods, are used for finding a limited number of wavelengths (Peng and Lu, 2006a), which can 

be then used in LLBI or MLBI systems for practical quality assessment applications based on 

backscattering imaging, as commented in Section 1.1.3.2. In LLBI or MLBI systems, which 

acquire images only at a few wavelengths, since the number of obtained features (typically profile 

parameters corresponding to the specific wavelengths) is not so high anymore, it is not strictly 

necessary to apply dimensionality reduction techniques (Qing et al., 2008; Romano et al., 2008). 

However, either feature selection or feature extraction methods are recommended to be used to 

obtain an even lower-size feature vector (Peng and Lu, 2007), thus possibly achieving higher 

performance predictions. In the case of spectroscopy, both types of dimensionality reduction 

methods can be employed (Guthrie et al., 2005; He et al., 2005), since the use of all the original 

features for obtaining the most useful information is not a limiting factor for commercial 

spectroscopy systems, which usually acquire the complete spectrum of a sample at high speed. 

From all the aforementioned issues, it is reasonable to think that, when using optical techniques 

for quality assessment of agricultural products, a key step is the selection of appropriate machine 

learning techniques for both data dimensionality reduction and prediction purposes. Therefore, 

new research on agro-food quality assessment applications based on optical systems should be 

oriented towards not only technological equipment improvements, but also the development of 

powerful machine learning techniques capable of gathering useful information about quality from 

the optical measurements in a reliable way. 
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1.2. Objectives of the doctoral thesis 

The overall goal of the present doctoral thesis is to advance in the automatic detection of early 

symptoms of decay caused by Penicillium spp. fungi in citrus fruit using optical systems and 

machine learning techniques, thus providing alternatives to manual inspection for accomplishing 

this detection task more efficiently and, consequently, leading to a potential reduction of the use 

of fungicides. For this purpose, in particular, three different optical techniques are investigated, 

including hyperspectral imaging, light backscattering imaging and spectroscopy. The systems 

based on these optical technologies are not limited to the visible part of the electromagnetic 

spectrum, unlike standard vision systems based on colour cameras. Specifically, in addition to the 

visible spectral region, the optical systems used in this thesis also operate in the NIR area, where 

the human eye is not sensitive. Therefore, these systems may have the potential for detecting 

hardly-visible damage in citrus fruit, such as decay at early stages. 

When using optical techniques for fruit quality assessment, a key step is the selection of 

appropriate machine learning techniques capable of gathering useful information about quality 

from the optical measurements in a reliable way. In particular, the detection of decay in citrus fruit 

can be regarded as a classification problem, in which features obtained from the optical 

measurements of fruit, after possibly being subjected to a dimensionality reduction process, are 

used as input vectors of a classifier in order to discriminate fruit with symptoms of decay from 

sound fruit.  

In order to reach the aforementioned overall goal, this can be subdivided into more specific 

objectives related to each optical technology. This is done due to the fact that each optical 

technique has a different inherent nature and, therefore, the treatment of the obtained data should 

be specific to each technology in order to detect decay in citrus fruit. The specific objectives are 

grouped according to the optical technologies in the following sections. 

 Hyperspectral imaging  

In this doctoral thesis, in order to explore the possibilities of hyperspectral imaging for decay 

detection, it is used a hyperspectral vision system based on LCTFs operating in the visible and 

NIR spectral regions. This kind of hyperspectral systems can acquire images with high spatial 

resolution, and does not require the movement of the fruit sample with respect to the imaging 

system to acquire an entire image, unlike systems based on imaging spectrophotometers. In 
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addition, LCTF-based systems offer a wider field of vision and better imaging quality than those 

based on AOTFs. 

The specific goals related to hyperspectral imaging are twofold: 

 Due to the current need for reducing the high-dimensional hyperspectral images to 

multispectral ones for the subsequent implementation in real-time inspection systems, 

the main goal within this optical technology is to propose a novel feature selection 

methodology suitable for selecting a reduced set of wavelengths that are effective in the 

detection of decay in citrus fruit.  

 Another important goal is to compare the proposed feature selection method with other 

common feature selection techniques in terms of the classification performance in the 

tackled problem of decay detection in citrus fruit using hyperspectral images. 

 Light backscattering imaging 

In particular, a LLBI system with diode lasers emitting at several wavelengths in the visible and 

NIR ranges is used in this thesis, instead of a broadband-light backscattering imaging one, such 

as a MLBI or HLBI system. This system selection is mainly motivated by the fact that LLBI 

systems can obtain more information about the fruit tissue than MLBI and HLBI systems, since 

laser light penetrates deeper into the fruit than broadband light.  

The specific objectives related to light backscattering imaging are enumerated as follows: 

 Within this optical technique, the most important objective is undoubtedly to evaluate, 

for the first time, the potential of LLBI for detecting decay caused by fungi in citrus fruit, 

before the appearance of fruiting structures.  

 Another objective is to combine and rank the different laser wavelengths used to acquire 

the backscattering images in terms of their contribution to the detection of decay, in order 

to figure out the most suitable combination of laser wavelengths to detect fruit with 

decay. 

 In order to get high classification performance, each backscattering image is usually 

characterised by means of several parameters obtained from fitting the one-dimensional 

backscattering profiles with a statistical or physical profile modelling approach. The 

profile parameters obtained with both approaches can be then used for assessing quality 

attributes of fruit. In fact, this thesis also aims at evaluating and comparing the two kinds 
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of profile modelling approaches in terms of their classification performance in the 

addressed problem of decay detection in citrus fruit.  

 The additional advantage of the physical profile modelling approach, compared to the 

statistical one, is that it also allows to measure and separate the absorption and scattering 

properties of biological products, which is useful for quantitative analysis of light-tissue 

interactions. In this sense, other goal of this thesis is the measurement and separation of 

the optical properties of sound and decaying tissues of citrus fruit at different 

wavelengths, in order to extract more knowledge about the underlying optical properties 

associated with the decaying process in citrus fruit.  

 In addition, even though the number of features characterising completely a fruit sample 

with LLBI is not so high (i.e. profile parameters obtained for the backscattering images 

acquired at a few laser wavelengths), dimensionality reduction techniques are 

recommended to be used to obtain an even lower-size feature vector, thus possibly 

leading to higher performance predictions. Therefore, an ultimate goal related to this 

optical technology is to evaluate and compare different feature selection methods, in 

order to find out which technique leads to the best classification performance for decay 

detection in citrus fruit. 

 Spectroscopy  

This doctoral thesis particularly makes use of a spectroscopy system in reflectance mode, 

operating in two different spectral ranges included in the visible and NIR regions. Reflectance 

mode is preferred over transmittance setup when only information of substances located on or just 

under the fruit surface is required. Therefore, this mode may be suitable for detecting decay in 

citrus fruit. Some of the advantages of this mode are that measurements are easier to obtain, lower 

intensity of illumination is required, and the intensity levels of the reflected radiation are much 

higher than those of transmitted radiation. 

The specific objectives within spectroscopy are enumerated as follows: 

 With respect to this popular optical technique, the main goal is to evaluate more 

thoroughly the feasibility of reflectance spectroscopy in the visible and NIR regions as 

a tool for the automatic detection of early decay symptoms caused by fungi in citrus 

fruit, since only a preliminary study has been reported about the use of spectroscopy for 

this purpose (Blasco et al., 2000) and, therefore, further research is still lacking for decay 

detection in citrus fruit using this technology. 
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 Regarding the different spectral regions in which the used spectroscopy system operates, 

this thesis intends to find out which of the two spectral ranges provides the best 

classification performance for decay detection in citrus fruit.  

 In spectroscopy, pre-processing techniques are usually employed to remove possible 

noise from the measured spectra in order to improve the results of quality prediction. In 

this respect, this research work also aims at studying the influence of several pre-

processing techniques commonly used in spectroscopy on the classification performance 

in the tackled problem.  

 Due to the large amount of spectral data involved in spectroscopy, a step of particular 

interest when using this technology is to extract essential information contained in the 

spectra using techniques for reducing the dimensionality of the data, since the presence 

of irrelevant or redundant spectral information could lead to lower performance 

predictions of fruit quality. In this sense, an important goal of this thesis is to investigate 

and compare different feature extraction techniques (i.e. manifold learning techniques), 

which are able to transform the high-dimensional spectral data into meaningful 

representations of reduced dimensionality with the most relevant information, in terms 

of their classification performance for decay detection in citrus fruit. In practice, feature 

extraction methods are commonly employed in spectroscopy research, since the use of 

all the original spectral features for obtaining the most useful information is not a 

limiting factor for the commercial spectroscopy systems, such as that used in this thesis, 

which can acquire the complete spectrum of a sample at high speed.  

 Prior to dimensionality reduction, a key step is to estimate the target dimensionality of 

the corresponding lower-dimensional data representations, since manifold learning 

methods need the dimensionality of data as an external parameter. Therefore, another 

objective of this thesis is to evaluate and compare several dimensionality estimators 

according to their classification performance for the decay detection problem. 

1.3. Research framework of the doctoral thesis 

The present doctoral thesis summarises the research efforts of its author, during the period 2010-

2014, as a member of the Computer Vision Laboratory at the Agro-engineering Centre as part of 

the Valencian Institute for Agricultural Research (IVIA). Due to the great importance of the citrus 

industry in the Valencian Community, a substantial part of research conducted at the IVIA is 
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related to citrus fruit, such as the development of new citrus cultivars, introduction of improved 

techniques for cultivating and harvesting citrus fruit or the incorporation of new technologies to 

assess quality of citrus fruit. 

In particular, the research topics of the thesis are embedded in the context of several research 

projects aimed at the development of new technologies based on computer vision (INIA-FEDER 

RTA2009-00118-C02-01 and MICINN-FEDER DPI2010-19457) and spectroscopy (INIA-

FEDER RTA2012-00062-C04-01) for automatic quality inspection of agricultural products. 

Furthermore, part of the research work dealing with machine learning techniques is in the 

framework of existing close collaboration between the Computer Vision Laboratory at the IVIA 

and the Intelligent Data Analysis Laboratory (IDAL) at the Electronic Engineering Department of 

the University of Valencia. The IDAL is concerned with the application of techniques coming 

from very different areas (e.g. statistics, data mining, machine learning or optimisation) to real-

world data analysis problems. This research group applies those techniques to a wide range of 

applications in medicine, pharmacy, agriculture, marketing, etc. 

In addition, it should also be highlighted that specific research related to backscattering imaging 

carried out in this doctoral thesis is the product of fruitful collaborative research with a German 

research group during two research stays abroad of three months each. Specifically, the foreign 

research team is the Sensor Technology Research Group at the Horticultural Engineering 

Department as part of the Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB). 

The overall mission of this research group is essentially the assessment of properties of fresh fruit 

by means of optical and electro-chemical analyses.  

1.4. Structure of the doctoral thesis 

This doctoral thesis is presented as a collection of research papers that address the goals listed in 

Section 1.2. In particular, the thesis consists of three papers previously published in peer-reviewed 

international journals, one paper accepted for publication and other paper submitted, but yet not 

accepted for publication, with the author of this doctoral thesis as the first author of the five papers. 

The journals in which the papers have been published (or accepted or submitted) have impact 

factors within the first quartile in their subject categories, according to the 2013 Journal Citation 

Reports (JCR) published by Thomson Reuters. The complete references of the research papers 

comprised in this thesis, as well as the impact factor and quartile in the subject category of interest 

for each journal, are listed as follows: 
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 Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., Blasco, J., 2013. Selection of 

optimal wavelength features for decay detection in citrus fruit using the ROC curve and 

neural networks. Food and Bioprocess Technology, 6, 530-541.  

Paper status in the journal: published.  

Journal information (2013): impact factor: 3.126; subject category: Food Science & 

Technology; journal rank in the subject category: 12/123; quartile in the subject 

category: Q1. 

 Lorente, D., Blasco, J., Serrano, A.J., Soria-Olivas, E., Aleixos, N., Gómez-Sanchis, J., 

2013. Comparison of ROC feature selection method for the detection of decay in citrus 

fruit using hyperspectral images. Food and Bioprocess Technology, 6, 3613-3619.  

Paper status in the journal: published. 

Journal information (2013): impact factor: 3.126; subject category: Food Science & 

Technology; journal rank in the subject category: 12/123; quartile in the subject 

category: Q1. 

 Lorente, D., Zude, M., Regen, C., Palou, L., Gómez-Sanchis, J., Blasco, J., 2013. Early 

decay detection in citrus fruit using laser-light backscattering imaging. Postharvest 

Biology and Technology, 86, 424-430.  

Paper status in the journal: published. 

Journal information (2013): impact factor: 2.628; subject category: Food Science & 

Technology; journal rank in the subject category: 20/123; quartile in the subject 

category: Q1. 

 Lorente, D., Zude, M., Idler, C., Gómez-Sanchis, J., Blasco, J. Laser-light 

backscattering imaging for early decay detection in citrus fruit using both a statistical 

and a physical model. Accepted for publication in Journal of Food Engineering. 

Paper status in the journal: accepted for publication.  

Journal information (2013): impact factor: 2.576; subject category: Food Science & 

Technology; journal rank in the subject category: 23/123; quartile in the subject 

category: Q1. 

 Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., Blasco, J. Visible-

NIR reflectance spectroscopy and manifold learning methods applied to the detection 

of fungal infections on citrus fruit. Submitted to Journal of Food Engineering. 



 
1. Introduction and objectives 

30 
 

Paper status in the journal: submitted, but yet not accepted for publication. 

Journal information (2013): impact factor: 2.576; subject category: Food Science & 

Technology; journal rank in the subject category: 23/123; quartile in the subject 

category: Q1. 

Table 1.1. Organisation of chapters. 

Part Chapter 

Part I: Introduction Chapter 1: Introduction and objectives 

  

Part II: Hyperspectral 
imaging 

Chapter 2: Selection of optimal wavelength features for 
decay detection in citrus fruit using the ROC curve and 
neural networks 

 Chapter 3: Comparison of ROC feature selection method for 
the detection of decay in citrus fruit using hyperspectral 
images 

  

Part III: Light 
backscattering imaging 

Chapter 4: Early decay detection in citrus fruit using laser-
light backscattering imaging 

 Chapter 5: Laser-light backscattering imaging for early 
decay detection in citrus fruit using both a statistical and a 
physical model 

  

Part IV: Spectroscopy Chapter 6: Visible-NIR reflectance spectroscopy and 
manifold learning methods applied to the detection of fungal 
infections on citrus fruit  

  

Part V: Conclusions Chapter 7: Conclusions and future work 

The five research papers are presented as five different chapters that compose the body of this 

thesis report. Even though the research papers are intended to be maintained as faithful as possible 

to the published or submitted versions, they are slightly edited for their integration in this thesis 

report. In particular, despite the text of research papers in their original versions may have 

different size, fonts or styles, the formatting in the thesis is uniform among the chapters so that 

the thesis report as a whole has a homogeneous appearance. However, the internal headings, and 

therefore the structure, differ among the chapters. 
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Each of the chapters based on research papers can stand alone as an individual piece of research 

work, and therefore, can be read independently, and in whatever order. However, if possible, they 

should be read in the presented order, which is the chronological order of submission or 

publication in the corresponding journals, since this order is the most logical for acquiring a better 

understanding of the link among the different research papers. Furthermore, there are two 

additional chapters (including this first one and another one at the end) that frame the five internal 

chapters corresponding to research papers, and assist in establishing the thesis as a coherent whole. 

In addition, a list of references and an appendix containing the three published research papers in 

their respective journal formats are provided at the end of the thesis.  

The seven chapters of this thesis report are organised into five different parts, as indicated in Table 

1.1. A brief summary of each part follows:  

 Part I: Introduction. This introductory part, consisting of only one chapter (Chapter 

1), basically sets out the context of the thesis, and provides the background necessary 

to understand the remainder of the thesis. In particular, this part introduces in a general 

way the problem of the decay detection in citrus fruit, and gives an overview of the 

different optical techniques analysed in this thesis to automate this detection, with 

particular attention being paid on technical principles of these technologies and their 

applications for fruit and vegetable quality assessment. Furthermore, it is included a 

brief introduction to the use of machine learning techniques for quality assessment of 

agricultural products from the corresponding optical measurements. In addition, the 

objectives and the research framework of the doctoral thesis are also presented. As an 

additional remark, it should be commented that a large portion of the introductory part 

related to hyperspectral imaging (Section 1.1.3.1) is based on a review paper (Lorente 

et al., 2012), which is the result of the extensive bibliographic search developed during 

the first year of the research stage associated with this doctoral thesis, with the aim of 

acquiring a deeper knowledge about the state of art of this optical technology. 

 Part II: Hyperspectral imaging. This part comprises Chapters 2 and 3, which 

correspond to two research papers related to hyperspectral imaging. In particular, the 

research paper in Chapter 2 proposes a novel feature selection methodology, in order to 

select an optimal set of wavelengths effective in the detection of decay in citrus fruit by 

means of hyperspectral images. In Chapter 3, the research paper compares the feature 

selection method proposed in Chapter 2 with other common feature selection techniques 

in terms of the classification performance in the tackled problem of decay detection. 



 
1. Introduction and objectives 

32 
 

 Part III: Light backscattering imaging. This part consists of Chapters 4 and 5, and 

includes two research papers related to light backscattering imaging. The research work 

presented in this part is the product of research during two stays in Germany, as 

commented in Section 1.3. The research paper in Chapter 4 evaluates the potential of 

LLBI for decay detection in citrus fruit. For this purpose, a statistical model is used to 

characterise backscattering profiles obtained from backscattering images. In this 

research work, the different laser wavelengths are combined and ranked in terms of their 

contribution to the detection of decay.  In order to continue the research line of Chapter 

4, the research paper presented in Chapter 5 reports new progress in the automatic 

detection of decay in citrus fruit by means of LLBI. Particularly, the two kinds of profile 

modelling approaches (statistical and physical) and different feature selection methods 

are compared according to their classification performance in the addressed problem. 

 Part IV: Spectroscopy. This part with only one chapter (Chapter 6) includes a research 

paper dealing with spectroscopy. This research paper evaluates the feasibility of 

reflectance spectroscopy in the visible and NIR spectral regions for the automatic 

detection of decay in citrus fruit. For this purpose, this research investigates and 

compares two different spectral ranges included in the visible and NIR regions in which 

the reflectance measurements are acquired, as well as different spectral pre-processing 

techniques, dimensionality estimators and manifold learning methods for 

dimensionality reduction, in terms of their classification performance for the decay 

detection problem. 

 Part V: Conclusions.  This final part consists of Chapter 7, and presents the overall and 

specific conclusions drawn from this doctoral thesis. In addition, this part identifies 

possible lines for future research in order to continue the research work presented in this 

thesis. Finally, the scientific publications related to the thesis are also listed. 
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Selection of optimal wavelength features 

for decay detection in citrus fruit using the 

ROC curve and neural networks 

D. Lorente1, N. Aleixos2, J. Gómez-Sanchis3, S. Cubero1, J. Blasco1 
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3 Intelligent Data Analysis Laboratory (IDAL), Electronic Engineering Department, Universitat 
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Abstract 

Early automatic detection of fungal infections in postharvest citrus fruits is especially important 

for the citrus industry because only a few infected fruits can spread the infection to a whole batch 
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during operations such as storage or exportation, thus causing great economic losses. Nowadays, 

this detection is carried out manually by trained workers illuminating the fruit with dangerous 

ultraviolet lighting. The use of hyperspectral imaging systems makes it possible to advance in the 

development of systems capable of carrying out this detection process automatically. However, 

these systems present the disadvantage of generating a huge amount of data, which must be 

selected in order to achieve a result that is useful to the sector. This work proposes a methodology 

to select features in multiclass classification problems using the receiver operating characteristic 

curve, in order to detect rottenness in citrus fruits by means of hyperspectral images. The classifier 

used is a multilayer perceptron, trained with a new learning algorithm called extreme learning 

machine. The results are obtained using images of mandarins with the pixels labelled in five 

different classes: two kinds of sound skin, two kinds of decay and scars. This method yields a 

reduced set of features and a classification success rate of around 89%.  

Keywords: Computer vision; Citrus fruits; Decay; Non-destructive inspection; Hyperspectral 

imaging; ROC curve. 

2.1. Introduction 

Decay pathogens can enter fruit through wounds sustained during harvesting. This implies that 

the pathogen is already in the fruit before any treatment is applied in postharvest (Obagwu and 

Korsten, 2003). Early detection of fungal infections in citrus fruits is especially important in 

packinghouses because a very small number of infected fruits can spread the infection to a whole 

batch, thus causing great economic losses and affecting further operations, such as storage and 

transport. The most important postharvest damage in citrus packinghouses is caused by 

Penicillium spp. fungi (Eckert and Eaks, 1989). Nowadays, the detection of rotten fruit on citrus 

packing lines is carried out visually under dangerous ultraviolet (UV) illumination, and decay 

fruits are removed manually. This procedure, however, may be harmful for operators and 

operationally inefficient, since they must work in shifts of just a few hours. This rate of staff 

rotation affects the assessment of the quality. A possible solution arises from the use of automatic 

machine vision systems. 

Computer vision has become widely used to automate the inspection of all different types of food 

commodities like meat (Du and Sun, 2009), fish (Quevedo and Aguilera, 2010; Quevedo et al., 

2010), bakery products (Farrera-Rebollo et al., 2012), grains (Manickavasagan et al., 2010) or 

fruits (Karimi et al., 2012). In most cases, its use is aimed at the inspection of external features 
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related to quality, such as size, shape, colour or the presence of damage (Cubero et al., 2011). The 

use of technology based on colour cameras for the detection of external damage of citrus is 

currently under research. Kim et al. (2009) used colour texture features based on hue-saturation-
intensity (HSI) and colour co-occurrence method to detect peel diseases in grapefruit. López-

García et al. (2010) used multivariate image analysis with the same objective in citrus fruits. 

However, some defects, like decay or freeze damage, are very difficult to detect using standard 

artificial vision systems since they are hardly visible to the human eye and, consequently, by 

standard red-green-blue (RGB) cameras (Blasco et al., 2007a). Therefore, different technologies 

have to be incorporated, such as the use of UV-induced fluorescence (Slaughter et al., 2008; 

Obenland et al., 2009). In an attempt to automate the current manual tasks of detection of decay, 

Blanc et al. (2009, 2010) patented an automatic machine for decay detection using UV 

illumination, and Kurita et al. (2009) developed an inspection system based on simultaneous 

visible and UV illumination using light-emitting diodes. However, it would be desirable to avoid 

the use of UV radiation in these tasks, which could be achieved by finding out particular 

wavelengths in the visible or near-infrared (NIR) part of the electromagnetic spectrum.  

Images acquired in visible and NIR simultaneously were used to detect different types of damage 

in citrus fruits by Aleixos et al. (2002), and more recently by Blasco et al. (2009), who attempted 

to detect common external defects and diseases, including decay, by combining NIR, visible and 

also UV-induced fluorescence. In this sense, the recent introduction of hyperspectral sensors for 

the inspection of food (Sun, 2010) makes it possible to carry out a more precise analysis of the 

problem by acquiring images for specific ranges of wavelengths to detect features non-visible 

features or to select particular sets of some wavelengths related to important physical properties, 

as indicated in the review of Lorente et al. (2012). 

Using spectroscopy, Gaffney (1973) found that different external defects on citrus fruits have 

different spectral signatures, stated later in the review of Magwaza et al. (2012), which can lead 

to the selection of certain sets of wavelengths that facilitate the detection of particularly dangerous 

defects such as canker (Balasundaram et al., 2009). However, in real life, it is not enough just to 

distinguish between fruit affected by serious diseases and sound fruit. It is important to develop 

systems capable of separating also produce affected by scars on the rind, or other external defects 

that only downgrade the quality of the fruit but do not spread among other fruits and do not prevent 

its marketing in domestic markets (Blasco et al., 2009). If they are not taken into account, these 

cosmetic defects may be confused with the dangerous by an automatic system. Qin et al. (2009a) 

used a hyperspectral system with sensitivity in the range 450-930 nm to detect different kinds of 

damage that affect the skin of citrus, with particular attention being paid to the detection of canker 
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from other common defects.  However, one of the main problems of these systems is the huge 

amount of data generated (Gómez-Sanchis et al., 2008b).  

While a standard RGB image is composed of three images corresponding to the red, green and 

blue bands, a hyperspectral image consists of a set of monochromatic, narrow-band images that 

increases the complexity of the analysis and requires more computing time to analyse them with 

an automatic system, which prevent its use in real-time in-line inspection system. For this reason, 

it is very important to select only those bands with the most relevant information, while discarding 

those that do not contribute in any significant way to improve the results. With the aim of detecting 

different defects on the skin of oranges using a hyperspectral system, Li et al. (2011) used principal 

component analysis (PCA) to select two sets of six and three optimal wavelengths, and later 

applied PCA and band ratios to detect the defects in these multispectral images. 

Generally, statistical methods to reduce dimensionality and select features can be divided into 

wrapper and filter methods (Guyon and Elisseeff, 2003). Filter methods use an indirect measure 

of the quality of the selected features (e.g. by evaluating the correlation function between each 

input feature and the dependent variable –class– of the classification problem), obtaining a faster 

convergence of the selection algorithm. On the other hand, the selection criteria used by wrapper 

methods are the goodness-of-fit between the inputs and the output provided by the learning 

machine under consideration, like for example, a neural network. Within these methods, a 

traditional measure for evaluating classifiers is the classification success rate. However, a more 

suitable way of measuring the quality of a classifier is the area under the receiver operating 

characteristic (ROC) curve, which is the measure used in the feature selection method proposed 

in this work. Basic concepts related to classification models are first reviewed for a better 

understanding of the ROC curve as feature selection method. The ROC curve is a graphical plot 

of the true positive rate vs. false positive rate for a binary classifier, as its discrimination threshold 

is varied, this value being defined as that from which a positive class prediction is made (Fawcett, 

2006). The area under a ROC curve (AUC) is used as a global measure of classifier performance 

that is invariant to the classifier discrimination threshold and the class distribution (Bradley, 

1997). Maximum classification accuracy corresponds to an AUC value of 1, while a random guess 

separation involves a minimum AUC value of 0.5.  

With regard to classification methods, because of their flexibility and the possibility of working 

with unstructured and complex data like those obtained from biological products, artificial neural 

networks (ANN) have been applied in almost every aspect of food science, and it is a useful tool 

for performing food safety and quality analyses. For instance, a combination of principal 

components analysis and ANN was used by Bennedsen et al. (2007) to detect surface defects on 

apples. Unay and Gosselin (2006) used a multilayer perceptron (MLP) as a promising technique 
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for segmenting surface defects on apples. Ariana et al. (2006) presented an integrated approach 

using multispectral imaging in reflectance and fluorescence modes to acquire images of three 

varieties using two ANN-based classification schemes (binary and multiclass). In the case of citrus 

fruits, Kondo et al. (2000) used, among other methods, ANN to detect some external and internal 

features in oranges, while Gómez-Sanchis et al. (2012) used minimum redundancy maximum 

relevance as feature selection method, and MLP for pixel classification to detect rottenness in 

mandarins. 

This paper advances in the automatic detection of a dangerous postharvest disease of citrus fruits, 

such as fungal decay, and to distinguish fruit with symptoms of decay from sound fruit and 

affected by minor defects. A feature selection methodology that expands the use of the ROC curve 

to multiclass classification problems is proposed. This methodology has been applied to the 

selection of an optimal set of features that are effective in the detection of common defects and 

decay in citrus fruits using hyperspectral images.  

In particular, we have used computer vision for detection of two dangerous types of decay caused 

by Penicillium digitatum Sacc (green mould) and Penicillium italicum Wehmer (blue mould) 

because these pathogens occur in almost all regions of the world where citrus is grown, and cause 

serious postharvest losses annually (Palou et al., 2001). Furthermore, in order to explore the 

possibilities of the ROC method as a technique for selecting important wavelengths in fruit 

inspection, we used an ANN-based classifier trained with a new learning algorithm called extreme 

learning machine (ELM; Huang et al., 2006).  

2.2. Feature selection methodology 

 Imaging system 

In this work, a hyperspectral vision system based on liquid crystal tunable filters (LCTF) was 

employed. The set of monochrome images acquired by this system makes up a hyperspectral 

image from which spatial as well as spectral information can be obtained about the scene. A 

hyperspectral image can be interpreted as a hypercube, in which two dimensions are spatial 

(pixels) and the third is the spectrum of each pixel. The system consists of a monochrome camera 

(CoolSNAP ES, Photometrics) with a high level of sensitivity between 320 nm and 1020 nm. It 

was set to acquire 551 551  pixel images with a resolution of 3.75 pixels/mm. The camera 

transfers the images to a computer by means of a proprietary frame grabber based on peripheral 
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component interconnect (PCI) technology. The computer employed is based on a Pentium 4 

processor with 1 Gb of random access memory (RAM). A lens capable of providing a uniform 

focus between 400 nm and 1000 nm was chosen for use with the system (Xenoplan 1.4/17MM, 

Schneider).  

Two LCTF were used, one sensitive to the visible between 400 nm and 720 nm (Varispec VIS07, 

CRI, Inc.) and one sensitive to NIR in the 650- to 1100-nm range (Varispec NIR07, CRI, Inc.). 

Each fruit was illuminated individually by indirect light from twelve halogen lamps (20 W) inside 

an aluminium hemispherical diffuser in order to provide good spectral efficiency in the visible 

and NIR. The lamps were powered by a stabilised power supply (12 V/DC 350 W). Because the 

sum of efficiencies of the filter, camera and illumination system is different across the selected 

wavelengths, the acquisition software was programmed to correct the integration time for each 

particular band that is acquired. Hence, these differences in the efficiency of the filter for each 

band are offset by calculating the particular integration time for each image in each wavelength 

using a white reference, so that the spectral response of the system is flat over the whole spectral 

range.  

 

Figure 2.1. Scheme of the image acquisition system showing the arrangement of the visible and 
near-infrared liquid crystal tunable filters. 

The filters were placed just in front of the camera lens. One of the main problems arose when it 

came to changing between visible and infrared filters, since the camera could move when handling 

the filters, which made it difficult to acquire the exactly same scene with both filters. This problem 

was solved by designing and installing a system to hold and guide the filters. The two filters were 
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fitted to the support and move on a sliding mechanism, thus allowing each filter to be set in the 

right place without handling the camera. The arrangement of the image acquisition system inside 

the inspection chamber is shown in Figure 2.1. 

 Fruit used in the experiments 

The experiments were carried out using mandarins cv. ‘Clemenules’ (Citrus clementina Hort. ex 

Tanaka) with two kinds of defects: (1) minor defects represented by external scars affecting only 

the appearance of the fruit, and (2) serious diseases that can spread to other fruits caused by two 

different fungi; P. digitatum and P. italicum. The fruits affected by the first type of defects were 

chosen at random from the packing line of a trading company. On the other hand, damage 

produced by fungi was caused artificially in sound fruits using an inoculation of spores. 

A total of 240 fruits were used: 60 sound fruits, 60 presenting external scars, 60 inoculated with 

spores of P. digitatum and 60 inoculated with spores of P. italicum. The inoculation was 

performed using a suspension of spores with a concentration of 106 spores/ml for both fungi, 

which is sufficient to cause infestation in laboratory conditions (Palou et al., 2001). From the point 

of view of the postharvest, it is probably not important to differentiate between both types of 

decay. However, in this paper, this distinction has been made to test the potential of this method 

to discriminate between defects that are virtually identical in their early stages to the naked human 

eye. The fruits were stored for three days in a controlled environment at 25 ºC and 99% relative 

humidity. After this period, all the inoculated fruits presented a characteristic patch of rottenness 

with a diameter between 10 mm and 35 mm. While rind scars are clearly visible, the colour of 

rotten skin is similar to the colour of the sound skin around it, thus making it difficult for a human 

inspector to detect it. 

The images were acquired by placing the fruit manually in the inspection chamber and then 

presenting the damage to the camera. A total of 240 hyperspectral images were acquired from 460 

nm to 1020 nm, with a spectral resolution of 10 nm. The hyperspectral image was therefore 

composed of 57 monochrome images of each fruit, which gives a total number of 13680 

monochrome images. The analysis of images started by correcting the effects of illumination on 

spherical fruits following the methodology described in Gómez-Sanchis et al. (2008a). Then, in 

order to separate the fruit from the background in the image, the hyperspectral images were pre-

processed using masking. The mask was created by thresholding the fruit image at 650 nm, since 

images at this wavelength provided the best contrast between fruit and background. 
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Figure 2.2 shows the RGB images of four fruits corresponding to a sound fruit, a fruit with scars 

on the rind, a fruit infected by P. digitatum and a fruit infected by P. italicum, respectively from 

top to bottom. The adjoining columns show example images of the same fruits acquired at 530, 

640, 740 and 910 nm, respectively. These images were chosen at different wavelengths just to 

have an overall impression of what could be seen in hyperspectral images but not necessarily used 

in the experiments. In the RGB images, the damage caused by fungi is hardly visible to the naked 

human eye. 

 

Figure 2.2. RGB and monochrome images (530, 640, 740 and 910 nm) of a sound mandarin and 
mandarins with scars, affected by P. digitatum and affected by P. Italicum (from top to bottom). 

 Labelled set 

In supervised classification, there is a set of n  labelled samples, 1...{ , }i i i ny x , where ix  represents 

the m-dimensional feature vector for the i-th pixel with label iy . Here, m  represents the spectral 

bands and spectral indexes, and y  defines the universe of all possible labelled classes in the 

image. In this work, the supervised nature of the problem presented here required the construction 

of a labelled data set, consisting of 74m   features associated with each pixel, specifically 57 

purely spectral variables (reflectance level of the pixel for each acquired band) and 17 spectral 
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indexes calculated by combining several reflectance values, as shown in Table 2.1. The spectral 

indexes were used to know if any of them could improve the decay detection in comparison to the 

use of only purely spectral variables. In order to build this labelled set, 143095n   pixels were 

selected manually and then a human expert assigned them to one of the five classes considered in 

this work: green sound skin (GS), orange sound skin (OS), defective skin by scars (SC), decay 

caused by P. digitatum (PD) and decay caused by P. italicum (PI). Each sample pattern is therefore 

composed of 74 features and a class label. A background class was not included, since the 

background pixels were segmented earlier in the pre-processing step. 

Table 2.1. Spectral indexes used in this work as input features. Rλ is the reflectance value at band 
λ. 

Vegetative index Estimation Parameter values 
used in this work 

Reference 

Normalised difference 
vegetation index 
(NDVI) 

NIR RED

NIR RED

R R
NDVI

R R





 NIR = 800 nm  

RED = 640 nm 

Tucker 
(1979)  

Green normalised 
difference vegetation 
index (green NDVI). 
Version I 

GREEN RED

GREEN RED

R R
Green NDVI I

R R





 GREEN = 550 nm 

RED = 640 nm 

Yang et al. 
(2007) 

Green normalised 
difference vegetation 
index (green NDVI). 
Version II 

NIR GREEN

NIR GREEN

R R
Green NDVI II

R R





 NIR = 800 nm  

GREEN = 550 nm 

Gitelson et 
al. (1996) 

Water band index 
(WBI) 

950

900

nm

nm

R
WBI

R
  

 Xu et al. 
(2007) 

Soil-adjusted 
vegetation index 
(SAVI) 

  1NIR RED

NIR RED

R R L
SAVI

R R L

 


 
 NIR = 800 nm  

RED = 640 nm  

L = 0.5 

Yang et al. 
(2007) 

Photochemical 
reflectance index (PRI) 

531 570

531 570

nm nm

nm nm

R R
PRI

R R





 531nm ≈ 500 nm Huang et al. 

(2007) 

Red-edge vegetation 
stress index (RVSI) 

714 752

7332
nm nm

nm

R R
RVSI

R





 714nm ≈ 710 nm  

752nm ≈ 750 nm 

733nm ≈ 730 nm 

Naidu et al. 
(2009) 

Modified chlorophyll 
absorption in 
reflectance index 
(MCARI) 

    700
700 670 700 550

670

0.2 nm
nn nm nn nm

nm

R
MCARI R R R R

R
      

 

 Naidu et al. 
(2009) 

Visible atmospherically 
resistant index (VARI) 

GREEN RED

GREEN RED BLUE

R R
VARI

R R R




 
 GREEN = 550 nm  

RED = 640 nm 

Naidu et al. 
(2009) 
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BLUE = 480 nm 

Water index (WI) 
900

970

nm

nm

R
WI

R
  

 Naidu et al. 
(2009) 

Transformed 
chlorophyll absorption 
in reflectance index 
(TCARI) 

    700
700 670 700 550

670

3 0.2 nm
nn nm nn nm

nm

R
TCARI R R R R

R
       

 

 Haboudane et 
al. (2002) 

Optimised soil-adjusted 
vegetation index 
(OSAVI) 

  1 0.16

0.16
NIR RED

NIR RED

R R
OSAVI

R R

 


 
 NIR = 800 nm  

RED = 640 nm 

Rondeaux et 
al. (1996) 

Citrus colour index 
(CCI) 

1000a
CCI

L b





 

a, b and L are the 
coordinates of the 
CIELAB colour 
space 

Jiménez-
Cuesta et al. 
(1981) 

Other indexes 
NIR REDR R  NIR = 800 nm  

RED = 640 nm 

Yang et al. 
(2007) 

RED

NIR

R

R
 NIR = 800 nm  

RED = 640 nm 

Yang et al. 
(2007) 

GREEN

RED

R

R
 GREEN = 550 nm 

RED = 640 nm 

Yang et al. 
(2007) 

NIR

RED

R

R
 NIR = 800 nm  

RED = 640 nm 

Yang et al. 
(2007) 

The labelled set was divided into a training set of 35774 samples (25% of the total), a validation 

set of 35774 samples (25% of the total) and a test set of 71547 samples (50% of the total). The 

first two sets were used to build the proposed statistical methods of feature selection and 

classification and the third one to evaluate classifier performance. The choice of a huge number 

of pixels in the test set was made in order to check the generalisation capability of the models.  

 Feature selection 

The feature selection methodology proposed to expand the use of the ROC curve to multiclass 

classification problems consists of two parts: (1) obtaining a ranking of features ordered according 

to the discriminant relevance of the features, and (2) the choice of an optimal number of features 

from the feature ranking. Both this feature selection method and the classification procedure used 

in this work were implemented using Matlab 7.9 (Mathworks, Inc.). 
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Obtaining a feature ranking 

The first step consists in obtaining a feature ranking for each class. The ROC curve is intended 

for binary classification problems. However, in this work, problems with more than two classes 

are considered. Therefore, the one vs. all (OVA) approach is employed to obtain a feature ranking 

for each class, which maximises the separation between that class and the others. The OVA 

structure consists in assuming that the problem has only two classes: a class from which the 

ranking is obtained and another class grouping the remaining classes (Rifkin and Klautau, 2004). 

In order to obtain these partial rankings, several steps were followed for each class, these steps 

being similar to the ones used by Serrano et al. (2010) in binary classification problems; the 

classifier is trained using all the features, taking into account the OVA structure, that is, 

considering a classification problem with only two classes. Then, the area under the ROC curve 

is obtained for the classification model using all features 0( )AUC . The following parameters are 

obtained for each input feature ix : 

 Area under the ROC curve for the classifier without taking into account the effect of 

feature ix  ( )iAUC . For this purpose, when using the classifier, the feature ix  is 

assumed to be constant for every sample, 0ix  . 

 Discriminant relevance of feature ix  ( )iDR , which is defined as the difference between 

the area under the ROC curve of the classifier using all the features 0( )AUC  and the 

area without taking into account the effect of feature ix  ( )iAUC . This parameter 

indicates the importance of a feature for the discrimination process carried out by the 

classifier, considering that the higher the discriminant relevance of a feature is, the more 

discriminatory that feature will be. 

 A z  statistic of feature ix  ( )iz  is calculated from the discriminant relevance of feature 

ix  ( )iDR , as shown in Equation 2.1: 
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  (2.1) 

where 0SE  and iSE  are the standard errors of 0AUC  and iAUC , respectively, and   is the 

correlation between 0AUC  and iAUC . In this work, a feature is considered to be relevant for the 

problem when its corresponding z  value exceeds a 95% significance level, this level being chosen 

empirically.  
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Features in each ranking are ordered according to the contribution each of them makes to the 

discriminant capability of the classification process, and the input features with the highest z  

values are considered the most discriminatory features. 

The second step consists in obtaining a global feature ranking. After obtaining the partial rankings 

corresponding to each class, the next step is to perform a single global ranking that includes all 

the classes. The z  values corresponding to the rankings for each class are combined by means of 

their weighted mean (Equation 2.2), which assigns a weight to each class in proportion to its 

relative importance in the classification problem. Thus, the global relevance of each feature is 

obtained, and then each input feature is ranked according to its global relevance. The ranking thus 

obtained maximises the global separation among all the classes.  
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  (2.2) 

where iz
 
is the global relevance of feature ix , N  is the number of different classes, ikz  is the z  

value of feature ix  from the partial ranking for the k-th class and kw  is the weight for the k-th 

class.  

Choice of an optimal number of features 

In this stage, a minimum number of features leading to a saturation trend in the success rate of 

classification are chosen. The following steps are required to do this. The initial step is to obtain 

the evolution of the success rate of classification as a function of the number of features. For this 

purpose, the classifier is trained using the first feature of the global ranking and its success rate is 

evaluated, this process is then repeated including the next feature of the ranking, and so on, until 

all the features are employed sequentially. Then, the first number of input features n  satisfying 

the two conditions in Equations 2.3 and 2.4 is chosen, where nsuccess  is the success rate of 

classification using n  features, 1nsuccess   the success rate with 1n   input features and so on. 

 1 1%n nsuccess success     (2.3) 

 2 1 1%n nsuccess success     (2.4) 
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 Classifier 

The classifier used to explore the possibilities of the proposed feature selection methodology is a 

MLP with a single hidden layer, which is the simplest kind of ANN. However, the feature 

selection procedure is independent of the chosen classification method. ANN is considered to be 

a commonly used pattern recognition tool in hyperspectral image processing because it is capable 

of handling a large amount of heterogeneous data with considerable flexibility and has non-linear 

properties (Plaza et al., 2009). 

 

 

Figure 2.3. Structures of a multilayer perceptron with a single hidden layer (left) and an example 
of artificial neuron (right). 

The most popular ANN is the MLP, which is a feed-forward ANN model that maps sets of input 

data onto a set of appropriate output, and consists of multiple layers of nodes (neurons) in a 

directed graph that is fully connected from one layer to the next. In particular, the MLP used in 

this work has an input layer, a single hidden layer and an output layer. MLP can use a large variety 

of learning techniques, the most popular being backpropagation, which is a supervised learning 

method based on gradient descent in error that propagates classification errors back through the 

network and uses those errors to update parameters (Shih, 2010). In these classical learning 

methods, the parameters of the ANN are normally tuned iteratively and thus entail several 

disadvantages, such a high degree of slowness and convergence to local minima. In order to avoid 

these problems, the MLP used in this work was trained using ELM, which is a new learning 

algorithm that determines the ANN parameters (not the optimal architecture) analytically in a 

faster way instead of tuning them iteratively. This increase of speed in the learning algorithm is 

very important in order to search the optimal features in our particular feature selection problem 

using ROC curve. Moreover, this learning algorithm for feed-forward neural networks with a 
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single hidden layer, like an MLP, provides good generalisation performance, as well as an 

extremely fast learning speed (Huang et al., 2006).  

Considering a set of n  patterns, 1..{ , }i i i nt x , and M  nodes in the hidden layer, the MLP output 

for the i-th sample is given by Equation 2.5, which is obtained in a straightforward way taking 

into account the structure of an artificial neuron, as well as the MLP structure (Figure 2.3).  

 
1

( )
M

i j i j
j

y g 


   w x   (2.5) 

where jw  is the weight vector connecting the j-th hidden node and the input nodes, j  is the 

weight vector connecting the j-th hidden node and the output nodes and g  is an activation 

function applied to the scalar product of the input vector and the hidden layer weights.  

Equation 2.6 can be written compactly in matrix notation as  y G β , where β  is the weight 

vector of the output layer and G  is given by: 
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ELM proposes a random choice of the weights of the hidden layer, jw , thus making it necessary 

only to determine the weights of the output layer, β , analytically through simple generalised 

inverse operation of the matrix G  according to the Equation 2.7:  

 † β G t   (2.7) 

where 1T T  †G (G G) G  is the Moore-Penrose generalised inverse of matrix G  (Rao and 

Mitra, 1972), TG  being the transpose of matrix G . 

An important issue in practical applications of ELM is how to obtain an optimal number of the 

hidden nodes in the network architecture in order to achieve a good generalisation performance 

when training a neural network. The methodology used to select the optimum number of hidden 

neurons was to estimate the classification success rate for several models, obtained by varying the 

number of neurons in the hidden layer (Huang et al., 2006). In a first step, architectures with a 

variable number of hidden neurons from 25 to 1025 in increments of 100 elements were tested in 

order to obtain the range of the architectures that fit correctly the data maintaining the 

generalisation capabilities of the model. These limits were set because networks that are too small 

cannot model the data properly, while networks that are too large may lead to overfitting (Prechelt, 

1996). Attending the curve of success rate, the optimum range was selected between 75 and 225 
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neurons. In a second step, architectures using 75 from 225 neurons were tested, selecting finally 

a MLP that used 125M   neurons in the hidden layer and the sigmoid function as the activation 

function ( )g . The classification success rate for the model with 125 hidden neurons was 91.4%, 

while the success rate for the model with 1025 neurons was about 95.6%, thus improving by only 

4% while the training time burst.  

 Approaches to the problem of decay detection 

This work considers three different approaches to feature selection in the problem of the detection 

of decay in mandarins, depending on the number of classes involved in the problem and the weight 

or importance of each class. The typical problem involves the five classes described in the labelled 

set, all of them having equal importance or weight.  

The first approach considers five different classes of similar importance in the classification 

problem. Therefore, when obtaining the global relevance of each feature, the weights of all the 

classes were considered to be equal. The aim of this approach is to know the behaviour of the 

method by considering a quality classification of the fruit, which separates sound fruits from those 

that only contain cosmetic defects that degrade the appearance, and from dangerous infections. 

However, it is reasonable to assume that in the real world, the classes belonging to decaying skin 

should be more important for the problem which is the detection of decay.  

Therefore, the approach II rests on the idea that the problem has five classes of different 

importance in the classification. To know the behaviour of the proposed method to enhance the 

detection of the most important cases, empirical weights were assigned to the classes in Equation 

2.2, more importance being given to decay classes ( 15)PD PIw w  , medium importance was 

given to the scar class ( 5)SCw   and less to sound classes ( 1)GS OSw w  . 

Moreover, decay is the disease whose detection is of most importance and which has not been still 

solved by automatic systems. Hence, since the actual aim of a potential inspection system would 

be to detect decay, it is also important to study the potential of the detection of just infected fruit, 

which leads to a binary problem: the separation between infected or not infected fruit (approach 

III). Two classes were defined: 

 Decay. This class includes the two kinds of decay presented in this work: infection 

caused by P. digitatum and by P. italicum.  

 Not decay. This class groups the remaining classes: green sound skin, orange sound skin 

and scars. 
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2.3. Results and discussion 

 Feature selection 

Figure 2.4 shows the z  statistic obtained for the 74 input features for each of the five classes. This 

statistic gives the same information as the variation in AUC . In addition, it makes it possible to 

study whether an input feature is discriminant or not.  

 

Figure 2.4. The z statistic of the 74 input features for each of the five classes: defects by scars on 
the rind, green sound skin, orange sound skin, decay caused by P. digitatum, and decay caused by 
P. italicum. Horizontal solid lines indicate the limit at the 95% significance level. 
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After obtaining the z  values of the input features for each class, the global relevance of each 

feature was computed for approaches I and II, considering five classes of similar importance and 

five classes of different importance, respectively. The resulting optimal number of features 

according to the proposed mathematical criterion, shown in Equations 2.3 and 2.4, is six for the 

first approach and seven for the second. Table 2.2 shows the set of selected features for the first 

approach, as well as the correspondence between these features and the spectral indexes or 

reflectance values associated with them. Similarly, Table 2.3 shows the set of selected features, 

ordered according to their importance in the classification problem, for the second approach and 

the correspondence between the selected input features and the spectral indexes or reflectance 

values.  

Table 2.2. Selected features and their correspondence with the spectral bands or indexes for 
approach I. 

Input feature Spectral index or reflectance value  

24 Reflectance at 690 nm 

10 Reflectance at 550 nm 

58 NDVI 

27 Reflectance at 720 nm 

16 Reflectance at 610 nm 

50 Reflectance at 950 nm 

Table 2.3. Selected features and their correspondence with the spectral bands or indexes for 
approach II. 

Input feature Spectral index or reflectance value  

24 Reflectance at 690 nm 

58 NDVI 

27 Reflectance at 720 nm 

50 Reflectance at 950 nm 

10 Reflectance at 550 nm 

74 CCI 

22 Reflectance at 670 nm 

When comparing Tables 2.2 and 2.3, it can be noticed that most of the input features are coincident 

in both sets, except feature 16 for approach I and features 74 and 22 in the case of approach II. 
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This is due to the fact that these two features are really important for the detection of pixels 

belonging to the classes of decay, the highest weights being achieved when the global value of z  

is obtained, as can be straightforwardly seen from the z  values for the P. italicum class in Figure 

2.4.  

Furthermore, feature 16 is not selected for the second approach, while in the first approach it is. 

This is due to the fact that, although this feature has a high level of importance for the classification 

of pixels belonging to the orange skin class, as shown in Figure 2.4, it is considered of low 

importance when obtaining the global relevance in the second approach. In addition, a general 

conclusion drawn from analysing the results for both approaches is that all the selected features 

are important for at least one of the five classes. 

Finally, the z  values were computed for the third approach, which considers the classification 

problem to be binary. Therefore, the z  statistic values were obtained directly without employing 

the OVA structure which is only necessary in multiclass problems. The resulting optimal number 

of features was chosen according to the mathematical criterion shown in Equations 2.3 and 2.4, 

being a total of four. Table 2.4 shows the selected features for the third approach and the 

correspondence between these features and the spectral indexes or reflectance values.  

Table 2.4. Selected features and their correspondence with the spectral indexes or reflectance 
values for approach III. 

Input feature Spectral index or reflectance value  

23 Reflectance at 680 nm 

60 Green NDVI, version II  

28 Reflectance at 730 nm 

15 Reflectance at 600 nm 

 Classifier performance evaluation 

The MLP classifier, trained with the ELM algorithm, was evaluated using the selected features 

for each approach to the problem on the test set of labelled data. Table 2.5 shows the results for 

the first approach using the set of six input features provided by the proposed feature selection 

methodology. An average success rate of 87.5% is achieved with this approach, this parameter 

being calculated as the sum of the elements on the main diagonal of the obtained confusion matrix 

divided by the number of classes. 
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For the second approach, the evaluation of pixel classification using the set of seven optimal 

features leads to the confusion matrix shown in Table 2.6. This approach yields an average success 

rate of 89.1%. 

When comparing the two confusion matrixes (Tables 2.5 and 2.6), it can be observed that the 

number of well-classified pixels of decay classes (PD and PI) for the second approach is greater 

than that obtained for the first approach. This is due to the fact that these two classes were given 

the highest weight when obtaining the global relevance for the second approach. Moreover, in the 

second approach, the classification of pixels with scars (SC) is improved, although to a lesser 

extent than the classification of the PD and PI classes. It can also be observed that the results for 

the classification of the sound classes (GS and OS) hardly vary between the two approaches, since 

these classes are considered of low importance when obtaining the global relevance in the second 

approach. 

Table 2.5. Confusion matrix of the classification of pixels for approach I. 

Prediction/reality GS (%) OS (%) SC (%) PD (%) PI (%) 

Green skin 96.91 0.13 0.06 0.03 0.00 

Orange skin 2.42 94.69 0.01 2.77 1.22 

Scars  0.11 0.03 97.34 0.17 0.83 

P. digitatum 0.33 3.02 1.49 74.43 23.93 

P. italicum 0.23 2.14 1.10 22.60 74.02 

Average success rate = 87.5% 

Table 2.6. Confusion matrix of the classification of pixels for approach II. 

Prediction/Reality GS (%) OS (%) SC (%) PD (%) PI (%) 

Green skin 96.61 0.09 0.03 0.06 0.00 

Orange skin 2.40 94.56 0.26 2.72 1.79 

Scars  0.08 0.05 98.08 0.00 1.10 

P. digitatum 0.82 2.38 0.17 75.90 16.83 

P. italicum 0.09 2.92 1.47 21.32 80.28 

Average success rate = 89.1% 
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Table 2.5 and 2.6 show, in both cases, that the most difficult task in the pixel-classification 

problem is to discriminate the PD class from the PI class, due to the similarity of the damage 

caused by the two fungi. On the other hand, the low percentage of sound pixels (GS and OS) 

classified as rotten pixels (PD and PI) in both approaches should also be highlighted. In practice, 

this is of great importance since most confusion is done between classes that could be grouped 

into the same category or commercial importance such as decay (PD and PI) and sound (GS and 

OS).  

To conclude the comparison between approaches I and II, from the results obtained, it can be said 

that the second approach generally provides better results than the first one, with an increase in 

the average success rate from 87.5% to 89.1%. This improvement is obtained by taking into 

account classes with different degrees of importance in the classification problem.  

Similarly, Table 2.7 shows the results of the evaluation of classifier performance for approach III 

using the set of four input features selected with the proposed method, where an average success 

rate of 95.5% was achieved. Better results are obtained for this approach, since similar classes are 

grouped into a single class, thus avoiding the confusion that occurs in the classification of these 

similar classes. 

Table 2.7. Confusion matrix of the classification of pixels for approach III. 

Prediction/Reality Decay (%) Not decay (%) 

Decay 96.48 5.13 

Not decay 3.52 94.87 

Average success rate = 95.5% 

2.4. Conclusions 

In this work, a feature selection methodology has been proposed that expands the use of the ROC 

curve to multiclass classification problems, in order to select a reduced set of features that are 

effective in the detection of decay in citrus fruits using hyperspectral images. Once the optimal 

features have been selected, pixels from the images were classified using an MLP trained with a 

fast new learning algorithm (ELM). 
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This selection methodology was applied specifically to the detection of decay in citrus fruits 

caused by two different fungi, P. digitatum and P. italicum, and other common types of damage, 

such as scars. The conclusions drawn after performing several tests can be summarised as follows: 

 A reduced number of features have been obtained for each of the three approaches to the 

problem, this number being six for the first approach, seven for the second approach and 

four for the third one. In addition, all the selected features for the first and second 

approaches are important for at least one of the five classes defined (two kinds of sound 

skin, two kinds of decay and scars). 

 The set of features selected with the second approach provides better classification 

results than those obtained with the first one and increases the average success rate from 

87.5% to 89.1% by taking into account classes with different degrees of importance in 

the classification problem. On the other hand, as expected, better results were obtained 

for the third approach (95.5%), specifically aimed at the detection of decay. 
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Abstract 

Hyperspectral imaging systems allow to detect the initial stages of decay caused by fungi in citrus 

fruit automatically, instead of doing it manually under dangerous ultraviolet illumination, thus 

preventing the fungal infestation of other sound fruit and, consequently, the enormous economical 

losses generated. However, these systems present the disadvantage of generating a huge amount 

of data, which is necessary to select for achieving some result useful for the sector. There are 

numerous feature selection methods to reduce dimensionality of hyperspectral images. This work 

compares a feature selection method using the area under the receiver operating characteristic 

(ROC) curve with other common feature selection techniques, in order to select an optimal set of 

wavelengths effective in the detection of decay in citrus fruit using hyperspectral images. This 

comparative study is done using images of mandarins with the pixels labelled in five different 

classes: two types of healthy skin, two types of decay and scars, ensuring that the ROC technique 

generally provides better results than the other methods.  

Keywords: Computer vision; Citrus fruit; Decay; Non-destructive inspection; Hyperspectral 

imaging; ROC curve; Feature selection. 

3.1. Introduction 

Decay caused by fungi is among the main defects affecting the postharvest and marketing 

processes of citrus fruit. Infected fruit can be neither stored for a long time nor long-term 

transported during exportation since a small number of decay fruit can infect a whole 

consignment. Thus, fungal infections generate great economic losses to the citrus industry if 

damaged fruit are not early detected, being Penicillium spp. as the fungi that lead to the most 

postharvest losses in citrus packinghouses (Eckert and Eaks, 1989). In current packing lines, the 

detection of decayed fruit is made visually by trained operators examining the fruit as it passes 

under ultraviolet (UV) light. Nevertheless, this method is subjective and potentially dangerous for 

human skin. The use of automatic machine vision systems is a possible solution for preventing 

these drawbacks. 

Technology based on colour cameras has spread rapidly for the detection of skin damage of fruit 

and vegetables (Zude, 2009; Cubero et al., 2011), being a common technique for the inspection 

of citrus fruit. For instance, Kondo et al. (2000) studied the possibility of detecting sugar content 

and acid content of oranges ‘Iyokan’ using a machine vision system and neural networks. 
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Slaughter et al. (2008) developed a non-contact method of detecting freeze-damaged oranges 

based on UV fluorescence, and López-García et al. (2010) used multivariate image analysis to 

detect peel diseases in citrus fruit. Nevertheless, decay lesions are difficult to detect using standard 

artificial vision systems since they are hardly visible to the human eye and, therefore, by standard 

colour cameras (Figure 3.1). Blasco et al. (2007a) used visible computer vision to detect different 

types of damages in citrus fruit including decay by green mould. While the success in other defects 

was high, the detection of decay was lower than 60% because the damages caused for this disease 

in the citrus skin are not clearly visible before sporulation. On the other hand, following the 

fluorescence technique used in the industry to detect decay by humans, Kurita et al. (2009) tried 

to detect decay in citrus using two lighting systems (visible and UV) changing between them while 

the fruit is under the view of the camera.  

 

Figure 3.1. Sound orange (left) and the same fruit showing decay caused by P. digitatum (right). 
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Hyperspectral sensors have been used successfully as an alternative to detect non-visible damages 

on fruit (Lorente et al., 2012). In the particular case of citrus fruit, different works have been 

carried out to detect decay lesions (Qin et al., 2009a, 2012; Gómez-Sanchis et al., 2012). A 

hyperspectral image consists of a large number of consecutive monochromatic images of the same 

scene in each wavelength, becoming very important to select only those bands with the most 

relevant information, while discarding those that do not contribute in any significant way to 

improve the results, containing redundant information or exhibiting a high degree of correlation. 

There are numerous feature selection methods to reduce dimensionality that retain most of the 

original information in fewer bands.  

For example, Gómez-Sanchis et al. (2008b) evaluated four feature selection methods with the aim 

of selecting an optimal set of wavelengths in the range 460-1020 nm for detecting decay in citrus 

fruit. Xing et al. (2005) used principal component analysis (PCA) to reduce data from a 

hyperspectral imaging system (400-1000 nm) for detecting bruises on ‘Golden Delicious’ apples. 

PCA was also used by Liu et al. (2005) to obtain spectral features for the detection of chilling 

injury in cucumbers imaged using a hyperspectral system (447-951 nm). More recently, Li et al. 

(2011) have used PCA to select most discriminant wavelengths in the range 400-1000 nm for 

detecting various common skin defects on oranges. Partial least squares (PLS) or artificial neural 

networks (ANN) are another techniques commonly used for feature selection purposes. ElMasry 

et al. (2008a) determined some important wavelengths for detecting bruises in ‘McIntosh’ apples 

using PLS on hyperspectral images in the range 400-1000 nm and ElMasry et al. (2009) used 

ANN to classify apples into injured and normal classes, and to detect changes in firmness due to 

chilling injury by selecting optimal wavelengths. 

 Objective 

The method used by Lorente et al. (2013c) to select most relevant spectral features for detecting 

decay in citrus fruit was based on the area under the receiver operating characteristic (ROC) curve, 

which is a promising method to measure the quality of a binary classifier. A novel approach was 

presented to extend its use to multiclass problems, such as the automatic discrimination of decay 

lesions in citrus fruits, which is a problem still under research and very important from the 

agricultural point of view since the damages caused by fungi are hardly visible to the naked human 

eye and standard vision systems, and can be quickly spread to other sound fruits during storage. 

This work aims to compare our novel approach of the ROC feature selection method with other 

common feature selection techniques for agricultural multiclass classification problems. We use 

the detection of decay in citrus fruits using hyperspectral imaging as a benchmark problem by 
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selecting an optimal set of wavelengths effective in the discrimination between common defects 

and decay lesions in citrus fruit. The comparison of different feature selection techniques is aimed 

at knowing if the ROC method is a promising technique in multiclass classification problems 

relative to other commonly used methods in terms of classification accuracy.   

3.2. Material and methods 

 Image acquisition 

The hyperspectral imaging system used was based on liquid crystal tunable filters (LCTF; e.g. 

Lorente et al., 2013c). The system consists of a monochrome camera (CoolSNAP ES, 

Photometrics, Tucson, USA), a lens providing a uniform focus in the working range (Xenoplan 

1.4/17MM, Jos. Schneider Optische Werke GmbH, Bad Kreuznach, Germany), and two LCTF 

(CRI Varispec VIS07 and NIR07, UK) sensitive to the visible (400-720 nm) and NIR (650-1100 

nm), respectively. The scene was illuminated by halogen lamps placed inside an aluminium 

hemispherical domo.   

For hyperspectral images, a total of 240 ‘Clemenules’ mandarins (Citrus clementina Hort. ex 

Tanaka) collected from a local producer company were used, including 60 without visible 

damages, 60 presenting external scars, 60 inoculated with spores of Penicillium digitatum and 60 

inoculated with spores of Penicillium italicum. The inoculation was performed using a suspension 

of spores with a concentration of 106 spores/ml for both fungi, which is sufficient to cause 

infestation in laboratory conditions (Palou et al., 2001). The images were acquired by presenting 

manually the damage on the fruit to the camera. A total of 240 hyperspectral images were taken 

in the range of 460-1020 nm, with a 10-nm spectral resolution. Each sample pattern in the labelled 

set consisted of 74 spectral features associated with each pixel (reflectance level for each acquired 

band –grey level in each monochromatic image– and several spectral indexes) and a class label 

assigned manually by a human expert. Five different classes were considered in this work: green 

sound skin (GS), orange sound skin (OS), defective skin by scars (SC), decay caused by P. 

digitatum (PD) and decay caused by P. italicum (PI). 
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 Feature selection methods 

The performance of the method based on the area under the ROC curve is compared with other 

common feature selection methods. The methods included in this comparative study are: 

correlation analysis (CA; Rodgers and Nicewander, 1988), mutual information (MI; Bonnlander 

and Weigend, 1994), Fisher’s discriminant analysis (FDA; Venables and Ripley, 2002), t-test (TT; 

Li et al., 2006), Wilks’ lambda (WL; Ouardighi et al., 2007), Bhattacharyya distance (BD; Choi 

and Lee, 2003), minimum redundancy maximum relevance difference criterion (MRMRd; Ponsa 

and López, 2007), minimum redundancy maximum relevance quotient criterion (MRMRq; Peng 

et al., 2005) and Kullback-Leibler divergence (KLD; Kullback, 1987; Abe et al., 2000). These 

feature selection techniques have been chosen because they are commonly applied to the analysis 

of hyperspectral imaging in the fields of pattern recognition and remote sensing, although they 

have not been used before for automatic fruit or vegetable inspection using computer vision. 

Therefore, it will also be studied if they are suitable and accurate methods for this kind of 

problems. 

In order to get a feature selection for each method, two steps were followed: (1) to obtain a ranking 

of features ordered according to the discriminant relevance of the features, and (2) the selection 

of an optimal number of features from the feature ranking. The feature selection methods and the 

classification procedure used in this work were implemented using Matlab 7.9 (The Mathworks, 

Inc., Natick, USA).  

Step I: Obtainment of a feature ranking 

The obtainment of a feature ranking for each class is the initial step to follow. The feature selection 

techniques studied are intended for binary classification problems, but this work deals with 

problems with more than two classes. Therefore, the one vs. all approach (Rifkin and Klautau, 

2004) is employed to obtain a feature ranking for each class, which maximises the separation 

between that class and the others. The second step consists in obtaining a single global feature 

ranking for each method that is achieved from the relevance values corresponding to the partial 

rankings for each class. These relevance values are weighted in proportion to the relative 

importance of the class in the problem, and combined using Equation 3.1.  
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where jr  is the global relevance of feature jx , N  is the number of different classes, jkr  is the 

relevance value of feature jx  from the partial ranking for the k-th class and kw  is the weight for 

the k-th class.  

After obtaining the global relevance of each feature, each input feature is ranked. 

Step II: Selection of an optimal number of features 

Once the global feature ranking has been obtained, a minimum number of features leading to a 

saturation trend in the success rate of classification is chosen for each method. The success rate is 

calculated using the first features in the ranking, then successive features are added in an iterative 

process until the increment of the success rate is lower than a certain threshold (1%). The n  

features that satisfy this condition are then selected.  

3.2.2.1. Area under ROC curve  

The ROC curve is a graphical plot of the true positive rate vs. false positive rate for a binary 

classifier, as its discrimination threshold is varied; this value being defined as that from which a 

positive class prediction is made (Fawcett, 2006). The area under a ROC curve (AUC) is used as 

a global measure of classifier performance that is invariant to the classifier discrimination 

threshold and the class distribution (Bradley, 1997). Maximum classification accuracy 

corresponds to an AUC value of 1, while a random guess separation involves an AUC value of 

0.5. Basically, the ROC feature selection method for binary classification problems consists in 

calculating a z  statistic from the discriminant relevance of each feature jx , defined as the 

difference between the AUC of a classifier using all the features 0( )AUC  and the AUC of a 

classifier without taking into account the effect of feature jx  ( )jAUC  (Serrano et al., 2010).  

 Classifier 

The classifier used in this comparative study is a multilayer perceptron (MLP) with a single hidden 

layer, being a type of ANN (Plaza et al., 2009). MLP can use a wide range of learning techniques 

for determining the network parameters, the most commonly used being backpropagation. In these 

classical learning methods, the parameters of the ANN are usually tuned iteratively, thus entailing 

several disadvantages, such a high computational complexity and convergence to local minima 

(Shih, 2010). To avoid this, the MLP used in this work avoids these problems by being trained 
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using extreme learning machine (ELM; Huang et al., 2006), in the same way as that used in 

Lorente et al. (2013c), which is a new learning algorithm that determines the MLP parameters 

analytically in a faster way instead of tuning them iteratively providing a good generalisation 

performance at an extremely fast learning speed.  

 Approaches to the problem of decay detection 

In this work, three different approaches to the problem of the decay detection in mandarins are 

considered, depending on the number of classes implicated and the importance of each class 

(Lorente et al., 2013c). The approach I involves the five classes described in the labelled set, all 

of them having equal importance or weight. Therefore, the weights of all the classes were 

considered to be equal when obtaining the global relevance.  

It is, however, realistic to assume that the classes belonging to decaying skin should be more 

important for decay detection. Hence, approach II gives more importance to decay classes 

( 15)PD PIw w  , medium to the scar class ( 5)SCw   and less to sound classes ( 1)GS OSw w  . 

Furthermore, since the actual objective of a potential inspection system would be to detect decay, 

it is also important to study the detection of just infected fruit, leading to a binary problem: the 

separation between infected or not infected fruit (approach III). 

 Methodology of comparison 

Two different tests were carried out in order to compare the different selection techniques with 

the ROC feature selection method. The comparison, in both tests, is based on the performance 

evaluation of the classifier using the different sets of features provided by the methods. The first 

test (test I) consists in selecting an optimum number of features for each method and for each 

approach. Therefore, for each method, a different number of features that maximises the 

classification will be obtained. A different way to make the comparison is using a fixed number 

of features for all methods (test II). For this test, we have chosen the number of features obtained 

for the ROC method for each approach.  
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3.3. Results and discussion 

The classification obtained using the ROC method is in general better than those obtained for the 

other methods in all cases, except for MRMRd and MRMRq using the third approach. These 

results could be expected since the MRMR criterion is recognised as one of the most powerful 

techniques for feature selection (Peng et al., 2005; Ponsa and López, 2007). The success of ROC 

approach is similar to that obtained using the rest of the methods tested. The differences are not 

significant and, therefore, we cannot say that our approach is better than the others in terms of 

decay detection accuracy. It is, however, important to highlight that the best results are achieved 

using the ROC method for all tests and all approaches. This result should to be taken into account 

because it is probably due to the fact that this method not only evaluates the features selection, but 

also optimises the performance of the classifier. Therefore, having similar results, ROC method 

can achieve slightly better scores. 

Table 3.1. Results of the classifier performance evaluation using the features selected by the 
different methods for each approach, but being possible a different number of features for each 
case (test I). 

Selection 
method 

Approach I  Approach II  Approach III 

Success 
rate (%) 

Selected 
features 

 Success 
rate (%) 

Selected 
features 

 Success 
rate (%) 

Selected 
features 

CA 85.94 5  82.44 3  95.02 2 

MI 85.53 5  84.87 4  93.08 4 

FDA 86.65 5  82.21 3  95.02 2 

TT 85.67 5  79.43 2  95.00 2 

WL 85.96 5  82.43 3  95.03 2 

BD 83.61 3  81.59 4  94.34 3 

MRMRd 85.69 5  85.58 5  96.06 2 

MRMRq 85.39 4  88.30 7  95.86 3 

KLD 85.55 5  87.48 7  95.43 4 

ROC 87.46 6  89.07 7  95.52 4 

Table 3.1 shows the results of the classifier performance evaluation using the different sets of 

features provided by the feature selection methods, described above, corresponding to the test I. 

The accuracy achieved with the ROC method is higher than that obtained with the other methods, 
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except for MRMR in approach III. However, on one hand, minimal redundancy methods try to 

extract the features with a high degree of relevance, avoiding those features with redundant 

information. On the other hand, ROC is a method that provides those bands that used in a 

classification problem fit a classifier in much robust way in terms of accuracy and significance of 

the model.  

In general, the rest of the methods saturate the criterion of success with fewer bands than those 

selected by the ROC. This, in theory, means that, to reach more approximate results than ROC, 

the number of bands needed by these methods should be higher. Therefore, the test II was used in 

order to check the performance of the ROC method using the same number of bands, being six 

for the first approach, seven for the second approach and four for the third one. As shown in Table 

3.2, the ROC feature method provides higher scores than most of the feature selection methods 

used in this study. As it happens in test I, the only two methods surpassing the ROC are MRMRd 

and MRMRq for the third approach. This fact shows that, in the most pessimistic scenario for 

ROC method (i.e. permitting an increase of the number of features for the rest of the methods), it 

obtains better results than the others, except in the case of MRMR methods in approach III. Even 

though the differences with the other methods are small since all of them are good feature selection 

methods, in the case of the approach II, which is probably the most realistic scenario in the real 

world, the ROC method is clearly the one that obtains better accuracy. 

Table 3.2. Results of the classifier performance evaluation using the features selected by the 
different methods for each approach, but always employing the same number of features for each 
method (test II). 

Selection method Approach I (%)  
(6 features) 

Approach II (%)  
(7 features) 

Approach III (%)  
(4 features) 

CA 86.48 83.39 95.09 

MI 85.88 87.50 93.08 

FDA 86.78 84.12 95.10 

TT 85.72 82.92 95.10 

WL 86.56 83.39 95.11 

BD 85.18 83.59 94.93 

MRMRd 86.72 86.37 97.18 

MRMRq 86.53 88.30 96.42 

KLD 85.77 87.48 95.43 

ROC 87.46 89.07 95.52 
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3.4. Conclusions 

In the first test, the classification average success rate obtained using the ROC method is greater 

than that obtained for the other methods in almost every case, except for MRMRd and MRMRq 

using the third approach. When we use the same number of features for all the methods, the ROC 

feature method provides generally better results than most of the feature selection methods used 

in this comparative study, being the average success rate for ROC almost always greater than that 

obtained for the other methods, only being surpassed by the MRMR methods for the third 

approach. 

Therefore, the ROC feature selection method is a suitable feature selection technique that can be 

applied with success to multiclass classification problems with a huge amount of features, such as 

the segmentation of hyperspectral images to detect decay in citrus fruit, having at least similar 

results than other recognised feature selection methods but with the advantage of to optimise, by 

its nature, the performance of the classifier. 
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Abstract 

Early detection of fungal infections in citrus fruit still remains as one of the major problems in 

postharvest technology. The potential of laser-light backscattering imaging was evaluated for 

detecting decay in citrus fruit after infection with the pathogen Penicillium digitatum, before the 

appearance of fruiting structures (green mould). Backscattering images of oranges cv. ‘Navelate’ 

with and without decay were obtained using diode lasers emitting at five different wavelengths in 

the visible and near infrared range for addressing the absorption of fruit carotenoids, chlorophylls 

and water/carbohydrates. The apparent region of backscattered photons captured by a camera had 

radial symmetry with respect to the incident point of the light, being reduced to a one-dimensional 

profile after radial averaging. The Gaussian-Lorentzian cross product (GL) distribution function 

with five independent parameters described radial profiles accurately with average R2 values 

higher or equal to 0.998, pointing to differences in the parameters at the five wavelengths between 

sound and decaying oranges. The GL parameters at each wavelength were used as input vectors 

for classifying samples into sound and decaying oranges using a supervised classifier based on 

linear discriminant analysis. Ranking and combination of the laser wavelengths in terms of their 

contribution to the detection of decay resulted in the minimum detection average success rate of 

80.4%, which was obtained using laser light at 532 nm that addresses differences in scattering 

properties of the infected tissue and carotenoid contents. However, the best results were achieved 

using the five laser wavelengths, increasing the classifier average success rate up to 96.1%. The 

results highlight the potential of laser-light backscattering imaging for advanced citrus grading.  

Keywords: Fruit inspection; Citrus fruit; Decay; Laser-light backscattering imaging; LDA 

classifier; Gaussian-Lorentzian cross product function. 

4.1. Introduction 

Decay caused by Penicillium spp. is among the main problems affecting the postharvest and 

marketing processes of citrus fruit (Palou et al., 2011). Early detection of fungal infections still 

remains as one of the major issues in packinghouses because a small number of decayed fruit can 

cause the infection of a whole consignment during storage and distribution. Currently, the 

detection of decayed fruit in packing lines is carried out visually by trained workers inspecting 

each fruit individually as it passes under ultraviolet (UV) light along a conveyor belt. However, 

this procedure has a high risk of human error and is potentially harmful for operators (Lopes et 
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al., 2010). Machine vision systems potentially provide a means to detect decayed fruit 

automatically, thus preventing the drawbacks related to human inspection. 

Although the use of technology based on colour cameras has spread rapidly for detecting skin 

damage of fruit and vegetables (c.f. Zude, 2009; Cubero et al., 2011), its application to the external 

inspection of citrus fruit is only currently under research. For example, Kim et al. (2009) detected 
peel diseases in grapefruit using colour texture features based on hue-saturation-intensity 
(HSI) and the colour co-occurrence method. Nevertheless, some defects, such as decay at 

very early stages, are virtually identical to the sound skin, thus being very difficult to detect 
them by the human eye and, consequently, by standard artificial vision systems, which are 
limited to the visible region of the electromagnetic spectrum (Blasco et al., 2009).  

Various machine vision technologies have been incorporated for automatically detecting decay in 

citrus fruit imitating the fluorescence technique used in the industry by humans. Kurita et al. 

(2009) developed an inspection system based on two lighting systems (visible and UV) that should 

be powered alternatively using a stroboscopic mode since the fluorescence effect produced by UV 

light would be undetectable with a simultaneous use of both systems due to the high intensity of 

white light. However, the use of UV light has some limitations because not all decay lesions, and 

not all the citrus cultivars, present the same level of sensitivity to the fluorescence phenomenon, 

and, on the contrary, other defects like chilling injury can present some fluorescence (Slaughter 

et al., 2008), thus reducing the performance of these systems. In this sense, the recent introduction 

of hyperspectral sensors for food inspection is a successful alternative to detect non-visible 

damages on fruit (Lorente et al., 2012). In the particular case of citrus fruit, different research has 

been conducted to detect decay lesions. For instance, Gómez-Sanchis et al. (2012, 2013) and 

Lorente et al. (2013a, 2013c) studied the feasibility of a hyperspectral vision system based on 

liquid crystal tuneable filters (LCTF; 460-1020 nm) for detecting decay in citrus fruit in early 

stages of infection using halogen lighting instead of the traditional inspection using UV lighting.  

Recently, light backscattering imaging (LBI) has been studied as an alternative machine vision 

technique for assessing fruit quality. When a light beam interacts with a fruit, reflectance, 

absorption and transmittance occur (Birth, 1976). Particularly, light reflectance (scattering) 

appears with two different geometries: Fresnel reflectance, which happens when photons are 

reflected on the surface of the sample; and diffuse reflectance (Meinke and Friebel, 2009). In the 

latter case, light enters the sample and interacts with the internal components of the fruit, and then 

it is scattered backward to the exterior tissue surface, thus carrying information related to the 

morphology and structures of the tissue additional to the absorption properties (Lu, 2004). In 

recent years, much work has focused on using LBI systems to assess quality of apples and other 

fresh fruit; however, no research has been reported to detect decay in citrus fruit using this 
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technique. For example, Lu (2004) analysed backscattering images from apples at multiple 

wavelengths in the visible and the near-infrared (NIR) regions for predicting firmness and soluble 

solids content (SSC). In another study, the variation of moisture content of banana slices subjected 

to different drying conditions was evaluated by taking backscattering images at 670 nm (Romano 

et al., 2008). From experiments on bruised apples, Lu et al. (2010) suggested that the scattering 

analysis would provide good results.  

Decay process in citrus fruit implies changes in the enzymatic activity, resulting in an enhanced 

water-soluble pectin fraction and, consequently, weakening of the cell wall (Barmore and Brown, 

1979). The subsequent water soaking of the tissue is an early visible symptom of infection in citrus 

(Barmore and Brown, 1981). Hence, since later changes in the pigment contents, and therefore in 

the optical properties of fruit tissue, can be expected, LBI technique could be a promising tool for 

detecting decay in citrus fruit. The main objective of this research work was to evaluate the 

potential of laser-light backscattering imaging (LLBI) as a tool for the automatic detection of 

green mould caused by P. digitatum on citrus fruit. For this purpose, diode lasers emitting in the 

visible and NIR ranges were used to obtain backscattering images of citrus fruit aiming for the 

classification of fruit into two classes (sound and decaying oranges). The ultimate aim of this work 

was to evaluate and compare laser wavelengths in terms of their contribution to the detection of 

decay. 

4.2. Materials and methods 

 Fruit and fungal inoculation 

The experiments were carried out using sweet oranges (Citrus sinensis L. Osbeck) cv. ‘Navelate’ 

collected during the 2012 harvest season from the field collection of the Citrus Germplasm Bank 

at the IVIA (Spain) (Navarro et al., 2002). A total of 100 fruits were used for the experiments: 50 

oranges were superficially injured on the rind and inoculated with spores of P. digitatum and the 

other 50 were injured in the same way but treated with sterilised water for control purposes. P. 

digitatum isolate NAV-7, from the fungal culture collection of the IVIA CTP, was cultured on 

potato dextrose agar (PDA; Sigma-Aldrich Chemical Co., St. Louis, MA, USA) plates at 25 ºC. 

Conidia from 7 to 14 day old cultures were taken from the agar surface with a sterile glass rod and 

transferred to a sterile aqueous solution of 0.05% Tween® 80 (Panreac, S.A.U., Spain). The 

conidial suspension was filtered through two layers of cheesecloth to separate hyphal fragments 
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and adjusted to a concentration of 106 spores/ml using a haemocytometer. For inoculation, 20 µl 

of the conidial suspension was placed on the equator of each fruit by immersing the tip of a 

stainless steel rod, 1 mm wide and 2 mm in length, in the suspension and inserting it in the fruit 

rind. A concentration of 106 spores/ml of P. digitatum is the most appropriate to effectively infect 

citrus fruit in laboratory conditions (Palou et al., 2001). The fruits were stored for four days in a 

controlled environment at 20 °C and 65% relative humidity. After this period, all the inoculated 

fruit presented lesions due to decay of an average diameter of 30 mm. Figure 4.1 shows the images 

of a sound control orange and an infected orange. 

 

Figure 4.1. RGB images of a sound orange used for control (left) and an orange showing early 
decay symptom caused by P.  digitatum (right). 

 Imaging system 

In this work, a LLBI system was employed. This system mainly consisted of a CCD (charge-

coupled device) based camera (JAI CV-A50 IR) with a zoom lens (F2.5 and focal lengths of 18-

108 mm), five solid-state laser diode modules emitting at different wavelengths (532, 660, 785, 

830 and 1060 nm) used alternately as light sources and a computer for controlling the camera. 

After penetrating into the fruit tissue, the fraction of the light backscattered to the fruit surface 

was recorded by the camera and transferred to the computer. A typical raw backscattering image 

is shown in Figure 4.2.  

The imaging system was set up in a dark room in order to prevent the influence of ambient light. 

It was configured to acquire 720 576  pixel images with a resolution of 0.073 mm/pixel. 

Parameters of laser sources are shown in Table 4.1. The incident angle of the light beam was set 
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to 7º with respect to the vertical axe for all the laser sources and the distance from the laser sources 

to the fruit sample was chosen according to the focus of each laser (Qing et al., 2007). This setting 

allowed for the assumption that the light beam was almost perpendicular to the fruit surfaces, thus 

obtaining images symmetric with respect to the incident point (Mollazade et al., 2012). The 

arrangement of the image acquisition system is pictured in Figure 4.3. The backscattering images 

were acquired by placing the fruit manually in the imaging system presenting the damage to the 

camera. A total of five images were acquired for each of the 100 orange samples at the five laser 

wavelengths, which gave a total number of 500 backscattering images. 

 

Figure 4.2. Example of a raw backscattering image. 

Table 4.1. Parameters of laser sources. 

Wavelength (nm) Output (mW) Beam size (mm) 

532 10 2.5 2.5  

660 2 4.0 4.0  

785 45 1.0 1.0  

830 30 1.0 1.0  

1060 85 1.5 5.25  



 
4. Early decay detection in citrus fruit using laser-light backscattering imaging  

77 
 

 

Figure 4.3. Scheme of the laser-light backscattering system. 1: CCD camera with lens; 2: laser 
source; 3: fruit sample; 4: computer. 

 Function for describing backscattering profiles 

Backscattering images had radial symmetry with respect to the light incident point and their 

intensity decreases with increasing distance from the incident point (Figure 4.2). The images were 

reduced to one-dimensional profiles after radial averaging (Lu, 2004). For this purpose, the centre 

of beam incident point was identified for each backscattering image using the weighted centre of 

gravity method (Weeks, 1996), which considers that the centre is a point in which the maximum 

light intensity occurs. The radial intensity of the backscattering profiles was then calculated by 

obtaining the average value of all pixels within each circular ring with one pixel size (0.073 mm). 

Backscattering profiles thus obtained could be used directly as a feature vector to predict the 

presence of damage on the skin of the fruit by a multivariate calibration model. In order to get 

more robust and fast predictions, data reduction was targeted. One method for this is to find the 

parameters of symmetric distribution functions describing the backscattering profiles.  
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Moreover, it is advisable to perform some pre-processing on the profiles to fit the backscattering 

profiles more accurately, such as removing the data points within and adjacent to the light incident 

area since these points are saturated, or shifting the profiles towards the profile centre by a distance 

equal to the number of removed data points in the saturation area (Peng and Lu, 2005). In this 

work, all the data points with a greyscale level (0-255) higher than 253 were removed.  

Subsequently to pre-tests using various distribution functions (data not shown), the Gaussian-

Lorentzian cross product (GL) function was applied. This distribution function is a Voigt 

approximation that combines a Gaussian and a Lorentzian in a multiplicative form. GL is 

commonly used in spectroscopy; also for describing laser profiles (Penache et al., 2002; Limandri 

et al., 2008; Stace et al., 2012). The GL function is mathematically expressed by Equation 4.1:  
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  (4.1) 

where I  is the light intensity of each circular band after radial averaging; x  is the scattering 

distance expressed as number of data points (pixels); a  is the asymptotic value of light intensity 

when x  approaches infinity; b  is the peak value of estimated light intensity at the centre; c  is 

the centre parameter; d  is the full scattering width that produces the half maximum peak value; 

e  is related to the shape. The shape parameter e  varies from 0 to 1; a value of 0 results in the 

pure Gaussian function, whereas the pure Lorentzian occurs with a value of 1. Figure 4.4 shows a 

backscattering profile described by this GL distribution function with five parameters. 

 

Figure 4.4. Gaussian-Lorentzian cross product distribution model for backscattering profiles. 
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The GL function was used to fit the backscattering profiles at the five laser wavelengths for each 

fruit sample. A program based on non-linear least squares regression analysis (Gelman and Hill, 

2006) was written using Curve Fitting Toolbox of Matlab 7.9 (Mathworks, Inc.) in order to fit the 

backscattering profiles to the GL function and to estimate the five GL parameters for each sample 

at each laser wavelength. The remaining algorithms in this work, such as classification methods, 

were also implemented using Matlab environment. 

 Classifier 

Linear discriminant analysis (LDA), also known as Fisher discriminant analysis (Fisher, 1936), is 

a supervised method of dimensionality reduction and classification used in statistics, pattern 

recognition and machine learning (Sierra, 2002; Wang et al., 2011a). LDA aims to find a linear 

projection of high-dimensional data onto a lower dimensional space ( 1c   dimensions in a 

problem with c  classes) where the class separation is maximised. This is achieved by maximising 

the ratio of the variance between the classes and variance within the classes (Duda et al., 2001). 

LDA has no free parameters to be adjusted and the extracted features are potentially interpretable 

under linearity assumptions. Furthermore, LDA is closely related to principal component analysis 

(PCA). The main difference between both linear projection techniques is that LDA explicitly 

attempts to model the difference between the classes of data, while PCA does not take into account 

any difference in class due to its unsupervised nature. LDA method therefore performs better for 

classification purposes (Martínez and Kak, 2001).  

 Labelled set 

In supervised classification, there is a set of n  labelled samples, 1..{ , }i i i nt x  , where ix  represents 

the m-dimensional feature vector for the i-th sample with label it . In this work, the supervised 

nature of the LDA classifier required the construction of a labelled data set, consisting of 25m 

features associated with each orange sample, specifically the five GL parameters at each of the 

five laser wavelengths obtained from fitting the profiles.  

In order to build this labelled set, the 100n   oranges were assigned to one of the two classes 

considered in this work: sound oranges and oranges presenting decay. Each sample pattern was 

therefore composed by 25 features and a class label. The labelled set was divided into a calibration 

set of 50 samples (50% of the total) and a validation set of 50 samples (50% of the total). The first 

set was used to build the proposed classification method and the second one to evaluate its 
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performance. In the validation set, the same number of samples as in the calibration set was chosen 

in order to check the generalisation capability of the classifier. 

 Development and validation of the classification models 

LDA classification method and parameters obtained with GL at five laser wavelengths were used 

to classify fruit samples. Laser wavelengths were ranked in terms of their contribution to decay 

detection. In order to rank wavelengths, the LDA classifier was first built and evaluated using the 

five GL parameters corresponding to each individual wavelength as feature vector. Laser 

wavelengths were then ranked in ascending order of classification average success rate values. 

The best single wavelength that had the highest success rate was selected. The next step is to 

obtain the best two wavelengths. Each of the remaining wavelengths was individually added to 

the best single wavelength, and the corresponding success rate values were computed for all two-

wavelength combinations. The best two wavelengths were chosen when they had the highest 

success rate among all two-wavelength combinations. This procedure was then repeated for 

obtaining the best three wavelengths and so on, until all wavelengths were ranked.  

The calibration set of labelled data was used to build the classification models and the validation 

set to evaluate classifier performance. Apart from calculating the classification average success 

rates to assess the performance of classification, Cohen’s kappa statistic values were computed to 

evaluate the classification bias (Fleiss, 1981). Classification average success rate provided a 

measure for classification accuracy with a range from 0% to 100%, this parameter being calculated 

as the number of correctly classified samples divided by the total number of samples. Cohen’s 

kappa statistic gave information about if the classifier was biased towards one of the two classes, 

varying from 0 to 1, with a value of 1 representing a completely unbiased classifier. 

4.3. Results and discussion 

 Description of backscattering profiles 

For the five laser wavelengths, the GL function described backscattering profiles with average 

determination coefficients (R2) values higher or equal to 0.998 and average root mean squared 

errors (RMSE) lower or equal to 2.54 (CCD greyscale) (Table 4.2). These values were calculated 
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by averaging the coefficients of determination and the RMSEs corresponding to the 100 orange 

samples at each laser wavelength.  

Table 4.2. Average determination coefficients (R2) and average root mean squared errors (RMSE) 
from fitting backscattering profiles by the GL function for all samples at the five laser 
wavelengths. 

Wavelength (nm) R2 (unitless) RMSE (CCD greyscale) 

532 0.998 2.14 

660 0.999 0.61 

785 0.998 2.48 

830 0.998 2.54 

1060 0.998 2.32 

The average GL parameters and the resulting average fitted curves obtained for the backscattering 

profiles of sound oranges and oranges with decay at the five laser wavelengths are shown in Figure 

4.5. A significance test ( -value 0.05p  , one-tailed unpaired t-test) was applied to the data in order 

to determine if the differences between average parameters of sound oranges and decaying 

oranges were statistically significant. Some GL parameters presented a general trend at all the 

laser wavelengths (parameters b , c  and e ). The sound oranges had lower peak values (parameter 

b ) than the oranges with decay at all wavelengths. By contrast, an opposite trend for centre values 

(parameter c ) was observed, these being consistently higher for the sound oranges. However, the 

differences between both kinds of fruit for these two parameters were not significant enough at 

660 nm. Furthermore, for both backscattering profiles, shape parameter (parameter e ) generally 

had an almost constant value close to 1, even though this was slightly higher for the oranges with 

decay at 660 nm.  

On the other hand, the asymptotic values (parameter a ) and scattering widths (parameter d ) 

showed a different trend between both backscattering profiles according to the laser wavelength. 

The sound oranges presented lower asymptotic values than the decaying oranges at almost every 

wavelength, except at 532 nm (parameter a  was higher for the sound oranges) and at 1060 nm 

(parameter a  did not present significant differences between both kinds of oranges). With regard 

to scattering widths, for the sound oranges, these values were lower than for the decaying oranges 

at 532 nm, 785 nm and 830 nm and, conversely, higher at 660 nm and 1060 nm. From these 

results, it can be said that backscattering profiles, and consequently GL parameters, were 

dependent on the orange state: sound or decaying, since GL parameters differed between both 

states at the five laser wavelengths. 
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(d) 

 
(e) 

Figure 4.5. Average Gaussian-Lorentzian cross product (GL) parameters and average GL 
distribution curves for the backscattering profiles of sound oranges and oranges with decay at: (a) 
532 nm, (b) 660 nm, (c) 785 nm, (d) 830 nm, and (e) 1060 nm. Parameters marked with * presented 
statistically significant differences between sound and decaying oranges. 

 Classifier performance evaluation 

Table 4.3 shows the classification results for the ranked wavelength combinations, obtained from 

the validation set of labelled data. Values of classification average success rate and Cohen’s kappa 

statistic, as well as the corresponding confusion matrixes, are shown for all wavelength 

combinations. According to the scale proposed by Landis and Kock (1977), Cohen’s kappa values 

were interpreted as follows: 0.00-0.20 regarded as slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 

0.61-0.80 as good and 0.81-1.00 as very good. 

When comparing the classification results, it can be noticed that the minimum average success 

rate of 80.39% and the lowest Cohen’s kappa value of 0.610 were obtained for the single 
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wavelength. In contrast, the best classification results were achieved using the five laser 

wavelengths with an average success rate of 96.08% and a value of Cohen’s kappa of 0.921. As 

shown in the confusion matrix for this classification model using all the wavelengths, the 

percentage of well-classified fruit samples exceeded 95% for both classes despite the evident 

similarity between sound oranges and oranges with decay. 

Table 4.3. Classification results for the ranked wavelength combinations. 

Number of 
wavelengths 

Wavelength 
combination 
(nm) 

Average 
success 
rate (%) 

Cohen’s 
kappa 

Confusion matrix 

 

 

    

1 532 80.39 0.610  Sound (%) Decay (%) 
Sound 87.50 25.93 
Decay 12.50 74.07 

 

     

2 532, 660 90.20 0.803  Sound (%) Decay (%) 
Sound 87.50 7.41 
Decay 12.50 92.59 

 

     

3 532, 660, 
1060 

92.16 0.843  Sound (%) Decay (%) 
Sound 91.67 7.41 
Decay 8.33 92.59 

 

     

4 532, 660, 
1060, 830 

94.12 0.882  Sound (%) Decay (%) 
Sound 95.83 7.41 
Decay 4.17 92.59 

 

     

5 532, 660, 
1060, 830, 
785 

96.08 0.921  Sound (%) Decay (%) 
Sound 95.83 3.70 
Decay 4.17 96.30 

 

     

Moreover, the increase in the average success rate of around 10% from the single wavelength 

(80.39%) to the two-wavelength combination (90.20%) should be highlighted. Both wavelengths 

are in the visible wavelength range. Therefore, we assume that the visible wavelength range may 

provide more robust information on the differences in the scattering properties of the tissue, due 

to (i) higher scattering coefficients and resulting increased signal to noise ratio, and (ii) increased 

perturbation in the NIR range due to highly variable water and carbohydrates contents that absorb 

in the NIR. From the corresponding confusion matrixes, it can be also observed that, while the 

number of well-classified sound oranges remained the same (87.50%) for both cases, the 

classification of oranges with decay was greatly improved for the two-wavelength combination, 
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increasing from 74.07% to 92.59%. In practice, this reduction of the number of badly-classified 

oranges with decay is of major importance for a potential inspection system since only a reduced 

number of infected and sporulated fruit can be the source for important spread of fungal infections 

to healthy fruit handled or stored in the packinghouse, thus causing great economic losses.  

On the other hand, for all the other cases, from one wavelength combination to another, the 

increase in the average success rate was only approximately 2% by including one wavelength 

more in the model. 

Effective control of green mould and other citrus postharvest diseases has relied for many years 

on the application of conventional synthetic chemical fungicides such as imazalil or 

thiabendazole. However, there is currently a clear need to find and implement alternative control 

methods because of increasing concerns about environmental contamination and human health 

risks associated with fungicide residues (Palou et al., 2008). Findings from this research are a 

significant step for the adoption by the citrus industry of non-polluting alternative control 

methods, because early decay detection is an effective tool to reduce fungicide usage in the context 

of integrated disease management (IDM) programs. 

4.4. Conclusions 

The feasibility of LLBI was proved for detecting superficial decay in citrus fruit caused by P. 

digitatum. Backscattering images of oranges at five laser wavelengths in the visible and NIR 

ranges were used for non-destructive detection. The GL distribution function with five 

independent parameters described backscattering profiles accurately, with average R2 values 

higher or equal to 0.998. GL parameters were dependent on the orange state (sound or decaying), 

observing differences between both states at all wavelengths. 

In the classification of sound and decaying oranges, all wavelengths contributed to the highest 

average success rate of 96.1%. The increase in the average success rate of around 10% from the 

single wavelength (80.4%) to the two-wavelength combination (90.2%), both in the visible range, 

should be highlighted.  

Therefore, the early detection of decaying fruit by means of backscattering imaging analysis has 

a high potential for its integration in a commercial system. Nevertheless, for future setting up on 

a sorting line, perhaps a line laser should be applied on rotating fruit, instead of point lasers. 
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Abstract 

The early detection of decay caused by fungi in citrus fruit is a primary concern in the postharvest 

phase, the automation of this task still being a challenge. This work reports new progress in the 
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automatic detection of early symptoms of decay in citrus fruit after infection with the pathogen 

Penicillium digitatum using laser-light backscattering imaging. Backscattering images of sound 

and decaying parts of the surface of oranges cv. ‘Valencia late’ were obtained using laser diode 

modules emitting at five wavelengths in the visible and near-infrared regions. The images of 

backscattered light captured by a camera had radial symmetry with respect to the incident point 

of the laser beam, these being reduced to a one-dimensional profile through radial averaging. Two 

models were used to characterise backscattering profiles: a statistical model using the Gaussian-

Lorentzian cross product (GL) distribution function with five parameters and a physical approach 

calculating the absorption, a , and reduced scattering, s , coefficients from Farrell’s diffusion 

theory. Models described radial profiles accurately, with slightly better curve-fitting results 
2(R 0.996)  for the GL model compared to Farrell’s model 2(R 0.982) , both indicating 

significant differences in the parameters between sound and decaying orange skin at the five 

wavelengths. For dimensionality reduction purposes, feature selection methods were employed to 

select the most relevant backscattering profile parameters for the detection of early decay lesions. 

The feature vectors obtained were used to discriminate between sound and decaying skin using a 

supervised classifier based on linear discriminant analysis. The best classification results were 

achieved using a reduced set of GL parameters, yielding a maximum overall classification 

accuracy of 93.4%, with a percentage of well-classified sound and decaying samples of 92.5% 

and 94.3%, respectively. Results also pointed out application limits of Farrell’s diffusion theory 

at 532 nm laser wavelength, for which high absorption of pigments occurred. 

Keywords: Fruit inspection; Citrus fruit; Decay detection; Laser-light backscattering imaging; 

LDA classifier; Gaussian-Lorentzian cross product distribution function; Farrell’s diffusion 

theory model; Feature selection. 

5.1. Introduction 

Postharvest decay in citrus fruit, due to Penicillium spp. fungi, causes severe economic losses 

world-wide in almost all regions where citrus is grown (Eckert and Eaks, 1989). Decayed fruit 

can propagate the fungal infection in the production, during long-term storage or fruit shipping to 

export markets. In practice, these infections are controlled by applying synthetic chemical 

fungicides, such as imazalil or thiabendazole. However, the widespread use of these fungicides 

has led to the resistance of the fungal pathogens (Eckert, 1990). Therefore, early detection of 

infected citrus fruit is regarded as a primary concern in commercial packinghouses. At present, 

the detection of infected fruit is performed visually by trained workers examining each fruit under 
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ultraviolet (UV) illumination inside a dark chamber, since UV light triggers the excitation of 

fungal products, thus causing fluorescence emission in the blue (Momin et al., 2012). 

Nevertheless, this method has a high risk of human error and is harmful for the workers, since 

long exposure to UV radiation can lead to damage to the human skin, such as premature aging or 

cancer (Lopes et al., 2010).  

The automation of these tasks using modern machine vision systems can be considered a valuable 

alternative to human inspection (Cubero et al., 2011). In this sense, vision systems based on colour 

cameras are currently used in the citrus industry to detect external defects that are visible at first 

glance (Blasco et al., 2007b; Kim et al., 2009). However, decay in its early stages (before 

sporulation) is hardly detectable, since the appearance of the damage is very similar to sound skin, 

thus being barely visible to the human eye (Figure 5.1). Other machine vision technologies have 

been proposed, such as the use of automated readings of UV-induced fluorescence. The systems 

based on UV radiation imitate the fluorescence technique used in the industry to detect decay in 

citrus by humans (Kurita et al., 2009). Nevertheless, the utilisation of UV light presents some 

disadvantages because not all cultivars of citrus show the same autofluorescence phenomenon due 

to differences in the peel composition (Momin et al., 2011; Momin et al., 2012) and, in addition, 

other defects like chilling injury can also lead to some degree of fluorescence (Slaughter et al., 

2008). An alternative for detecting non-visible damage on citrus fruits is provided by 

hyperspectral and multispectral vision systems (Blasco et al., 2009; Gómez-Sanchis et al., 2012; 

Lorente et al., 2013c), since these systems are not limited to the visible part of the electromagnetic 

spectrum  (Qin et al., 2013).  

 

Figure 5.1. Orange showing early decay symptoms caused by Penicillium digitatum fungus. 
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Light backscattering imaging (LBI) has recently emerged as an alternative machine vision 

technique for fruit inspection combining spectroscopic and imaging approaches. The spatial 

modes of light interaction with turbid biological materials can provide distinct information related 

to the chemical and structural properties of the sample. It is assumed that, when a light beam 

interacts with a fruit, a small portion of only about 4-5% is reflected on the surface of the sample 

(Fresnel scattering) and the rest penetrates into the tissue (Birth, 1976). In the tissue, the entering 

light is partly scattered backwards to the exterior tissue surface after interacting with the internal 

components of the fruit (diffuse scattering or backscattering), whereas the remaining radiation is 

absorbed by tissue or transmitted further out of the fruit in different direction (Meinke and Friebel, 

2009). The optical analyses can be used to characterise fruits (Salguero-Chaparro et al., 2014), 

particularly by two optical properties: the absorption coefficient ( )a  and the reduced scattering 

coefficient ( )s  (Tuchin, 2000). Light absorption is mainly related to the chemical components 

of the fruit, such as amino acids, inorganic ions, carbohydrates, water or pigments (Williams and 

Norris, 2001). The spectroscopic technology has been successfully used to classify fruits in sorting 

lines, considering e.g. the soluble solids content (SSC). In contrast, light scattering is affected by 

the structural properties of the tissue, such as density, particle size and cellular structures (Seifert 

et al., 2014a). Here, light scattering, recorded by an imaging system, can be useful as an indirect 

measure of the histology of fruit, such as flesh firmness. If spectral and additional spatial imaging 

information is available, combined analyses of texture and chemical composition can be done. 

Accordingly, many studies have reported work on assessing the quality of different fresh fruit by 

LBI systems. For example, Qing et al. (2007) predicted firmness and SSC in apples from 

backscattering images acquired using laser light at five different wavelengths in the visible and 

near-infrared (NIR) regions (680, 780, 880, 940 and 980 nm). In other research, the variation of 

moisture content of banana slices subjected to different drying conditions was evaluated by taking 

backscattering images using a laser diode emitting at 670 nm (Romano et al., 2008). In order to 

detect bruises on apples, Lu et al. (2010) determined the optical properties (the absorption and the 

reduced scattering coefficients) of normal and bruised tissues, as well as their changes with time 

after bruising, using backscattering images acquired in the range of 500-1000 nm with a 

hyperspectral imaging system.  

The process of decay in citrus fruit is characterised by the weakening of the cell walls due to 

changes in enzymatic activity (Barmore and Brown, 1979). Thus, the subsequent accumulation of 

liquid in the apoplast of the epidermis is an early visible symptom of infection in citrus (Barmore 

and Brown, 1981). In consequence, since structural changes in fruit tissue, and therefore changes 

in the optical properties, are expected, the LBI technique may have the potential for decay 

detection. In previous research (Lorente et al., 2013b), backscattering images obtained using laser 

light at several wavelengths in the visible and NIR ranges (532, 660, 785, 830 and 1060 nm) were 
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analysed, for the first time, in order to detect decay caused by fungi in citrus fruit. The Gaussian-

Lorentzian cross product (GL) distribution function with five independent parameters was used to 

describe backscattering profiles from backscattering images in that research. However, there also 

exists a physical, instead of statistical model for characterising the backscattering profiles. This 

physical approach consists in extracting optical properties (the absorption and reduced scattering 

coefficients) of fruits by Farrell’s diffusion theory (Farrell et al., 1992), which provides a faithful 

description of the shape of the backscattering profiles (Qin and Lu, 2007; Qin et al., 2009b). In 

order to continue the research line of the previous work (Lorente et al., 2013b), the present study 

advances in the automatic detection of an economically dangerous postharvest disease of citrus 

fruit, such as fungal decay caused by Penicillium digitatum, by means of laser-light backscattering 

imaging (LLBI). Particularly, this research aimed at evaluating and comparing the two profile 

modelling approaches (statistical and physical) and different feature selection methods in terms 

of their performance in the classification of orange skin into sound or decaying in an early stage, 

this appearing as the next step in the direction towards a potential automation. The additional 

advantage of the physical profile modelling approach, compared to the statistical one, is that it 

also allows to measure and separate the absorption and scattering properties of biological products, 

which is useful for quantitative analysis of light-tissue interactions. In this sense, an ultimate 

objective of this research work was the measurement and separation of the optical properties of 

sound and decaying skin of citrus fruit at different wavelengths, in order to extract more 

knowledge about the underlying optical properties associated with the decaying process in citrus 

fruit. 

5.2. Material and methods 

 Fruit used in the experiments 

Sweet oranges (Citrus sinensis L. Osbeck) cv. ‘Valencia late’, grown in Spain, were purchased 

from a local market in Potsdam (Germany). These oranges came from organic production, thus 

ensuring the absence of chemicals, such as synthetic waxes or fungicides, commonly applied on 

fruit during the postharvest phase in conventional crop production. For the experiments, a total of 

40 fruits were superficially punctured on the rind and inoculated with spores of P. digitatum 

fungus. The P. digitatum strain DSM-2750, from the Collection of Microorganisms and Cell 

Cultures (DSMZ, Germany), was cultured on potato dextrose agar (PDA; Sigma-Aldrich 

Chemical Co., Germany) plates at 24 °C in the dark. Conidia from 10 day old cultures were taken 
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from the agar surface with a sterile glass rod and transferred to a sterile aqueous solution of 0.05% 

Tween® 80. The conidial suspension was filtered through two layers of cheesecloth to separate 

hyphal fragments and then adjusted to a concentration of 61.4 10  spores/ml using a 

haemocytometer, which is sufficient to cause infestation in laboratory conditions (Palou et al., 

2001). For inoculation, the oranges were wounded with a steel needle by making a 1 mm wide by 

2 mm deep injury on the equatorial zone, and then 20 μl of the conidial suspension was placed on 

each wound using a micropipette. The fruits were stored in an environment-controlled chamber at 

22 °C and relative humidity of 55% for a period of time that was long enough for decay lesions 

with a diameter of about 25 mm to appear on all the fruits. This storage period was different for 

each fruit, since the development of the decay varied from one fruit to another, with the first 

patches of decay appearing on some oranges after four days’ storage and the latest after 12 days. 

Backscattering images of a particular orange were acquired as soon as that orange presented decay 

damage with the aforementioned diameter dimension and, then, the fruit was removed from the 

experiments. Two different parts of the surface of each of the 40 oranges were analysed: the one 

presenting decay lesions and the opposite side of the orange, where the skin was thoroughly 

checked to be completely sound. Therefore, a total of 80 samples of orange skin were examined 

with the backscattering imaging system. 

 Imaging system 

The LLBI system (Figure 5.2) developed in the Leibniz-Institute for Agricultural Engineering 

Potsdam-Bornim (ATB) was used in this research. This system mainly consisted of a monochrome 

charge-coupled device (CCD) camera (CV-A50IR, JAI Ltd., Japan) with a zoom lens 

(12VG1040ASIR-SQ, Tamron Co. Ltd., Japan), a computer for controlling the camera and storing 

the images, and five solid-state laser diode modules used alternately emitting at different 

wavelengths: 532 nm (HK-5616-02, Shimadzu, Japan), 660 nm (LPM-660-60C, Newport, USA), 

785 nm (LPM-785-45C, Newport, USA), 830 nm (LPM-830-30C, Newport, USA) and 1060 nm 

(LPM-1060-85E, Newport, USA), ranging from 10 mW to 85 mW to provide high contrast 

images. Lasers wavelengths were chosen by reaching a compromise between the main absorbing 

molecules in oranges and available hardware: 532 nm is related to the absorption of light by the 

carotenoids, 660 nm relates to chlorophyll and its degradation products, 785 nm is commonly used 

as a reference wavelength, while 830 nm and 1060 nm respond to the water absorption, and also 

absorption of other molecules with e.g. C-H or C-OH bonds. After entering into the fruit tissue, 

the portion of the light backscattered to the fruit surface was recorded by the camera and 
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transferred to the computer using a frame-grabber board (VRmAVC-1, VRmagic Holding AG, 

Germany).  

 

Figure 5.2. Picture of the laser-light backscattering system. 1: CCD camera with lens; 2: laser 
sources; 3: fruit sample; 4: computer. 

Image acquisition took place in a dark room in order to avoid the interference of ambient 

illumination. The imaging system was configured to acquire 720 576  pixel images with a 

resolution of 0.133 mm/pixel. The distance from the lens to the fruit was set to 340 mm and the 

laser diode modules were placed in a fixed position in such a way that all the laser beams were 

aimed towards the top of the fruit. Therefore, the incident angle of the light beam was different 

for each laser, varying marginally in the range between 5º and 15º with respect to the vertical axis. 

The small incident angle and small beam size allowed to assume that the light beam was almost 

perpendicular to the fruit surfaces, thus obtaining images that were symmetrical with respect to 

the incident point (Mollazade et al., 2012). The backscattering images were acquired by placing 

each fruit manually in the imaging system so that the part of the fruit under study was facing the 

camera. A total of five images were taken for each of the 80 samples of orange skin at the five 

laser wavelengths, thereby resulting in 400 backscattering images. 



5. Laser-light backscattering imaging for early decay detection in citrus fruit using both a 
statistical and a physical model  

94 
 

 Processing of backscattering images 

Since the backscattering images had radial symmetry with respect to the light incident point, they 

were reduced to one-dimensional profiles through radial averaging. To this end, the centre of the 

beam incident point was first identified for each backscattering image using the weighted centre 

of gravity method (Weeks, 1996), which considers the centre to be the point with the maximum 

light intensity. The radial intensity of the backscattering profiles was then calculated by averaging 

all pixels within each circular ring with one pixel size (0.133 mm).  

Before fitting the backscattering profiles with the GL distribution model and the Farrell’s diffusion 

theory model, some pre-processing was performed on the profiles to fit them more accurately, 

thereby leading to better predictions. The data points within and adjacent to the light incident area 

were first removed without losing essential scattering information since these points were 

saturated (Peng and Lu, 2005). In particular, all the data points with a greyscale level (0-255) 

higher than 253 were eliminated from the profiles. Later, each backscattering profile was 

normalised by its actual maximum value of light intensity that occurred at the closest point to the 

light incident centre ( )normr , thus avoiding the need to measure absolute reflectance intensities 

(Peng and Lu, 2007). In addition, a third pre-processing step was also necessary only before using 

the GL model. The profiles were shifted towards the profile centre by a distance equal to the 

number of removed data points in the saturation area, thus allowing the statistical model to fit the 

backscattering profiles more precisely without the influence of light saturation in the incident area 

(Peng and Lu, 2005).  

5.2.3.1. Gaussian-Lorentzian cross product distribution model 

The GL distribution function is a Voigt approximation combining a Gaussian and a Lorentzian in 

a multiplicative form and is commonly used in spectroscopy (Limandri et al., 2008). The GL 

function with five parameters is expressed mathematically by Equation 5.1:  

 
2 2

( )
1

1 exp
2

GL

b
R r a

r c e r c
e

d d

 
        
      

         

  (5.1) 

where GLR  is the light intensity of each circular ring after radial averaging; r  is the scattering 

distance (mm); a  is the asymptotic value of the light intensity when r  approaches infinity; b  is 

the peak value of the light intensity at the centre; c  is the centre parameter; d  is the full scattering 

width that produces the half maximum peak value; and e  is related to the shape. The shape 
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parameter e  ranges from 0 to 1; the pure Gaussian function occurs with a value of 0, whereas the 

pure Lorentzian has a value of 1. Figure 5.3(a) shows how this GL distribution function fits a 

backscattering profile. 

  
(a) (b) 

Figure 5.3. Models for fitting backscattering profiles: (a) Gaussian-Lorentzian cross product (GL) 
distribution model and (b) Farrell’s diffusion theory model. 

After pre-processing the backscattering profiles, the GL function was employed to fit the profiles 

at the five laser wavelengths for each sample. For this purpose, a program based on the Levenberg-

Marquardt non-linear least squares regression analysis (Gelman and Hill, 2006) was written using 

the Curve Fitting Toolbox of Matlab 7.9 (Mathworks, Inc.). The curve fitting process was 

performed by minimising the sum of the squares of the differences between the experimental data 

and the GL model. Each backscattering profile was thus uniquely characterised by the five GL 

parameters. The performance of curve fitting was evaluated by computing the coefficients of 

determination (R2) and the root mean squared errors (RMSE) corresponding to each of the 80 

samples of orange skin at each laser wavelength, and then averaging these values. Moreover, a 

significance test ( -value 0.05p  , one-tailed Wilcoxon rank-sum test) (Wilcoxon, 1945) was 

applied to the data in order to determine if the differences between the median values of the fitting 

parameters of sound and decaying skin were statistically significant. In addition to the fitting 

models, the remaining algorithms used in this work, such as feature selection methods and 

classification models, were also implemented using the Matlab environment.  
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5.2.3.2. Farrell’s diffusion theory model 

Light propagation in a turbid material can be described by the Boltzmann equation (Tuchin, 2000), 

which is rather complicated to solve analytically. Nevertheless, when scattering is dominant 

( )s a   , this equation can be simplified to an approximate diffusion equation, which has an 

analytical solution under certain assumptions. Farrell et al. (1992) found an analytical solution for 

the approximate diffusion equation to describe diffuse reflectance at the surface of a semi-infinite 

homogeneous turbid material when an infinitely small light beam strikes the surface vertically. In 

Farrell’s diffusion theory model, diffuse reflectance is expressed as a function of distance from 

the light source and the optical properties of the material, such as the absorption ( )a  and reduced 

scattering coefficients ( )s  and the relative refractive index (Equation 5.2):  

 1 2
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where r  is the distance from the light incident centre (mm); a  is the transport albedo,  

/ ( )s a sa       ; eff  is the effective attenuation coefficient, 1/2[3 ( )]eff a a s     ; t  is the 

total interaction coefficient, t a s     ; the variables 1r  and 2r  are given by the equations 
2 2 1/2

1 [(1/ ) ]tr r   and 2 2 1/2
2 [((1/ ) (4 / 3 )) ]t tr A r     , respectively; A  is an internal 

reflection coefficient that can be computed by this empirical equation (Groenhuis et al., 1983): 

(1 ) / (1 )d dA r r   , in which 2 11.440 0.710 0.668 0.0636d rel rel relr n n n       and reln  is the 

relative refractive index of the material-air interface, /rel m airn n n . Figure 5.3(b) shows how 

Farrell’s diffusion theory model fits a backscattering profile. 

In this work, an orange fruit was assumed to be a semi-infinite homogeneous turbid material with 

scattering dominance in order to apply Farrell’s diffusion theory model for describing the diffuse 

reflectance (or backscattering) at the surface of the fruit generated by the light beam of the 

different laser sources. For many biological materials, scattering is dominant in the visible and 

short-wave NIR spectral regions (approximately 500-1300 nm), in which the diode lasers used in 

this research emitted. Moreover, although the refractive index for biological materials varies 

slightly with wavelength (Mourant et al., 1997), a constant value of 1.40mn   was assumed for 

oranges. This value is commonly used for the simulation of light propagation in fruit tissue 

(Baranyai and Zude, 2009). 

After determining A , Farrell’s model was used to fit the pre-processed backscattering profiles 

and to estimate a  and s  for each sample at all laser wavelengths. Because of non-uniformity 

in the scale of experimental backscattering profiles and Farrell’s diffusion theory model, the model 

was also normalised at a specific distance with respect to the light incident centre ( )normr , equal 
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to that chosen for the normalisation of the experimental profiles (Qin and Lu, 2007). The 

normalised Farrell’s model was then fitted to the pre-processed experimental profiles using the 

same curve-fitting algorithm as that employed for the GL model. Thus, each backscattering profile 

was uniquely described by the two optical coefficients. In addition, the performance of the curve 

fitting was evaluated and a significance test was applied to the data, similarly to that done for the 

GL model. 

 Labelled sets 

Supervised machine learning methods require the use of a set of n  labelled samples, 1..{ , }i i i nt x  , 

where ix  is the m-dimensional feature vector for the i-th sample with label it . Due to the 

supervised nature of the statistical techniques used in this research, it was necessary to construct 

two labelled data sets with different feature vectors. The features belonging to the first labelled 

set were obtained from the GL model and the features of the second set from Farrell’s model. The 

first labelled set consisted of 25m   features associated with each sample of orange skin (the five 

GL parameters at each of the five laser wavelengths obtained from fitting the GL model to the 

backscattering profiles). Similarly, the second labelled set was composed of 10m   features (the 

absorption and reduced scattering coefficients for each sample extracted from Farrell’s model at 

the five laser wavelengths). For both labelled data sets, the 80n   samples of orange skin were 

assigned to one of the two classes considered in this work: sound and decaying skin. Each sample 

pattern was therefore composed of 25 features and a class label for the labelled set from the GL 

model, and 10 features and a class label for the labelled set from Farrell’s model. 

 Feature selection methods 

For optimisation purposes, some feature selection methods were used to find a subset of the 

original features that contains the least number of features with the most significant information, 

resulting in an improvement in the classification of orange skin into sound and decaying (Dash 

and Liu, 1997). The feature selection methods used were: correlation analysis (CA; Rodgers and 

Nicewander, 1988), mutual information (MI; Battiti, 1994), Fisher’s discriminant analysis (FDA; 

Cheng et al., 2004), t-test (TT; Li et al., 2006), Wilks’ lambda (WL; Ouardighi et al., 2007), 

Bhattacharyya distance (BD; Choi and Lee, 2003), minimum redundancy maximum relevance 

difference criterion (MRMRd; Ponsa and López, 2007), minimum redundancy maximum 

relevance quotient criterion (MRMRq; Peng et al., 2005) and Kullback-Leibler divergence (KLD; 

Kullback, 1987). These supervised methods are intended for binary classification problems, like 
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the proposed here, and were chosen because they have been successfully tested in previous studies 

related to fruit inspection using computer vision (Gómez-Sanchis et al., 2013; Lorente et al., 

2013a). Furthermore, these feature selection techniques are filter-type methods, which use an 

indirect measure of the quality of the selected features as a selection criterion, instead of 

optimising the success of a particular classifier as in the so-called wrapper methods (Guyon and 

Elisseeff, 2003). Thus, filter methods involve a faster convergence and greater robustness to 

changes in the classification method.  

 Development and validation of the classification models 

Features that best distinguished between sound and decaying samples were chosen by selecting a 

minimum set of features for each selection method, and for both labelled sets, that maximised 

classifier performance. Feature vectors from the GL model and the Farrell’s model labelled sets 

were used to discriminate between both kinds of samples using a classifier based on linear 

discriminant analysis (LDA; Fisher, 1936). For each feature selection method, the performance of 

the classifier was evaluated using the first feature in the feature ranking provided by the 

corresponding selection method, and then successive features were added in an iterative process 

until all the features were employed sequentially.  

A cross-validation procedure was used to evaluate and compare the performance of the 

classification models. In particular, the experiments were performed with 5-fold cross-validation, 

consisting in dividing the data randomly into five subsets of equal size and class proportions 

(Kohavi, 1995), and using four data subsets as the calibration set to build the classification models 

and the remaining one as the validation set to evaluate classifier performance (Hastie et al., 2009). 

This process was repeated five times leaving one different subset each time and the whole 5-fold 

cross-validation process was performed 100 times to reduce variability due to random partitioning 

and obtain reliable performance estimation. Therefore, a total of 500 iterations of calibration and 

validation were performed for each classification model. The validation results were subsequently 

averaged over all iterations, thus obtaining a mean confusion matrix created by computing the 

element-wise mean of the individual confusion matrices for each iteration.  

In order to assess the classification performance, overall accuracy (Fleiss, 1981) and the value of 

Cohen’s kappa statistic (Sim and Wright, 2005) were computed for each classification model from 

its associated mean confusion matrix. Overall accuracy of classification was calculated as the 

number of correctly-classified samples divided by the total number of samples, varying from 0% 

to 100%. Unlike the overall accuracy, Cohen’s kappa statistic took into account whether the 

classifier was biased towards one of the two classes when measuring the classifier performance. 
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Perfect classifier performance corresponds to a kappa value of 1, while a random guess 

classification involves a kappa value of 0. A kappa statistic value much lower than the overall 

accuracy suggests that the overall accuracy is inflated due to the classification bias. 

5.3. Results and discussion 

 Description of backscattering profiles 

Table 5.1 shows the average determination coefficients (R2) and the average root mean squared 

errors (RMSE) obtained from fitting backscattering profiles by the GL model and the Farrell’s 

model at the five laser wavelengths. Values related to light intensity were expressed in arbitrary 

units (a.u.) after normalisation. Both profile models described backscattering profiles with high 

coefficients of determination and low errors. However, the GL approach provided slightly better 

curve-fitting results.  

Table 5.1. Average determination coefficients (R2) and average root mean squared errors (RMSE) 
from fitting backscattering profiles by the GL model and Farrell’s model for all samples at the 
five laser wavelengths. 

Wavelength 
(nm) 

Gauss-Lorentzian cross product 
distribution model 

 Farrell’s diffusion theory model 

R2 (unitless) RMSE (a.u.)  R2 (unitless) RMSE (a.u.) 

532 0.9987 0.0044  0.9864 0.0144 

660 0.9963 0.0118  0.9816 0.0250 

785 0.9977 0.0087  0.9869 0.0205 

830 0.9972 0.0097  0.9855 0.0218 

1060 0.9989 0.0071  0.9893 0.0221 

The median values of the five GL parameters and the absorption and reduced scattering 

coefficients obtained for the backscattering profiles of sound and decaying skin samples at the 

five laser wavelengths are shown in Table 5.2. The table also shows if the differences between 

fitting parameters of sound and decaying orange skin were statistically significant 

( -value 0.05)p  . Considering the statistical GL approach, the parameters a  and e  showed a 

general trend at all wavelengths. The sound skin presented higher asymptotic values (parameter 
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a ) than the decay lesions at all wavelengths. Furthermore, for both kinds of orange skin samples, 

the shape parameter (parameter e ) generally had a nearly constant value close to 1, even though 

this was slightly higher for the decaying samples at 785 nm. Therefore, the shape of all profiles 

was similar to a pure Lorentzian. On the other hand, peak values (parameter b ), centre values 

(parameter c ) and scattering widths (parameter d ) presented a different trend between both kinds 

of samples depending on the laser wavelength. The differences between both kinds of samples 

were significant at only two wavelengths for the peak values and also at two wavelengths for the 

centre values. The sound samples had higher peak values than the decaying samples at 660 nm 

and, conversely, lower ones at 785 nm. Moreover, the centre values for the sound samples were 

higher than for the decaying samples at 785 nm and 830 nm. With regard to scattering widths, the 

values for the sound samples were lower than for the decaying samples at almost every 

wavelength, except at 532 nm, for which parameter d  was higher for the sound samples. 

With regard to the physical approach, the differences in the absorption and reduced scattering 

coefficients between sound and decaying skin at the different wavelengths were justified by 

reasons connected with the decaying process, since the calculated coefficients provided a real 

connection with the optical properties of citrus fruit. With respect to the differences in the a  

values, the absorption coefficient values for the sound samples appeared higher than those 

obtained for the decaying samples at almost every wavelength, except at 532 nm. The absorption 

properties depend on the chemical bonds of the biological materials, which absorb light energy at 

particular wavelengths. In this sense, at 532 nm, the absorption of carotenoids was captured. The 

carotenoids content was not expected to change in early symptoms. At 660 nm, the absorption of 

fruit chlorophyll was measured (Zude, 2003). Therefore, the enhanced a  for sound samples 

pointed to an increase in the chlorophyll content –either chlorophyll a or its degradation product 

pheophytin (Seifert et al., 2014b). An explanation for the difference measured at 780 nm is 

lacking, since almost no absorption of native fruit compounds appears at this passband. Due to the 

water soaking of the decaying tissue and the associated enhanced transpiration rate, the a  values 

for decaying samples were expected to appear lower than those obtained for sound samples at 830 

nm and 1060 nm, since these two wavelengths are mainly related to the water absorption, as 

reported by Walsh and Kawano (2009). This was therefore confirmed in the present study.  

With respect to the differences in the s  values, the reduced scattering coefficient values were 

significantly lower for the decaying samples at 830 nm and 1060 nm, which may be explained by 

the difference in the refractive index or by the decreased amount of scatters in the fruit tissue due 

to the weakening of the cell walls during the decaying process (Barmore and Brown, 1979).  
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Table 5.2. Median values of the GL parameters and the absorption and reduced scattering 
coefficients for the backscattering profiles of sound and decaying skin samples at the five laser 
wavelengths. Parameters marked with * presented statistically significant differences between 
samples of sound and decaying orange skin. 

Wavelength 
(nm) 

Gauss-Lorentzian cross product distribution 
model 

 Farrell’s diffusion theory model 

 Sound Decaying   Sound Decaying 

532 a (a.u.)* 0.0046 0.0039  a (mm-1) 0.0948 0.1048 

 b (a.u.) 1.0284 1.0318  s (mm-1) 0.3820 0.3991 

 c (mm) -0.1393 -0.1365     

 d (mm)* 1.0452 0.9806     

 e (unitless) 1.00000 1.00000     
        

660 a (a.u.)* 0.0173 0.0046  a (mm-1)* 0.0095 0.0051 

 b (a.u.)* 24.3932 8.5176  s (mm-1) 0.1955 0.1945 

 c (mm) -5.3157 -5.4000     

 d (mm)* 1.1592 2.0492     

 e (unitless) 1.00000 1.00000     
        

785 a (a.u.)* 0.0100 0.0053  a (mm-1)* 0.0280 0.0177 

 b (a.u.)* 1.2127 1.4227  s (mm-1) 0.2289 0.2283 

 c (mm)* -1.0289 -1.6437     

 d (mm)* 2.4823 2.7051     

 e (unitless)* 0.99998 1.00000     
        

830 a (a.u.)* 0.0127 0.0068  a (mm-1)* 0.0224 0.0113 

 b (a.u.) 1.4197 1.7274  s (mm-1)* 0.2241 0.2151 

 c (mm)* -1.5893 -2.2958     

 d (mm)* 2.6570 2.9267     

 e (unitless) 1.00000 1.00000     
        

1060 a (a.u.)* 0.0152 0.0116  a (mm-1)* 0.0131 0.0108 

 b (a.u.) 2.6976 2.4552  s (mm-1)* 0.2020 0.1983 

 c (mm) -3.8149 -3.6906     

 d (mm)* 2.9060 3.1250     

 e (unitless) 0.99999 1.00000     

The values of a  and s  obtained for citrus fruit in this study were comparable in order of 

magnitude with those for other fresh fruits and vegetables reported in the literature. For example, 

Qin and Lu (2008) determined a  and s  of apple (three different varieties), peach, pear, 
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kiwifruit, plum, cucumber, zucchini squash and tomato over the spectral range of 500-1000 nm, 

resulting in values with magnitude orders similar to those obtained for oranges in this work. As 

can be straightforwardly seen from Figure 5.4, the values of s  were at least one order higher 

than the a  values for both kinds of samples at all wavelengths, except at 532 nm, thereby 

highlighting the dominant effect of scattering for light propagation in oranges in the visible and 

short-wave NIR spectral regions (approximately 500-1300 nm). Consequently, the prerequisite of 

s a    was given and the diffusion theory approach could be applied. Another aspect that 

should be highlighted is that the maximum values of s  were obtained at 532 nm. This could be 

due to the fact that more interactions usually occur at short wavelengths than at long ones (Meinke 

and Friebel, 2009), thus leading to an increase in the amount of scattering events especially at 532 

nm, which was the shortest wavelength of the five used in this work. Moreover, the maximum 

values of a  also occurred at 532 nm, which is due to the absorption of carotenoids, these 

compounds predominating in the skin of citrus fruits in the mature stage, as described by Ladaniya 

(2008). Therefore, the difference between the absorption and reduced scattering coefficients was 

less evident at 532 nm, and the diffusion theory could not be properly applied. This assumption 

was supported by the high variance in the calculated coefficients (Figure 5.4). 

  
(a) (b) 

Figure 5.4. Boxplots of the absorption and reduced scattering coefficients for the backscattering 
profiles of (a) sound and (b) decaying skin samples at the five laser wavelengths. 

Overall, the GL parameters and the absorption and reduced scattering coefficients differed 

between the two states of orange skin (sound or decaying) at the five laser wavelengths. Therefore, 

it can be said that backscattering profiles, and consequently GL parameters and the optical 

coefficients, were dependent on the laser wavelengths and the state of the skin. In previous 
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research (Lorente et al., 2013b), only the GL statistical model was used; however, the GL 

parameters presented different statistical significances and trends between sound and decaying 

oranges from those reported in the present work. This could be due to certain differences between 

both studies that could influence on the measured data, such as the orange cultivar and the pre-

processing of backscattering profiles. In any case, in both research studies, for each laser 

wavelength, some of the associated GL parameters showed significant differences between both 

fruit states, this being an important indicator of potential success in the further separation of the 

tissue into sound and decaying by an automated system. However, the comparison of the results 

from GL model and physical model performed in this work was more interesting, since more 

causal effects could be extracted compared to exclusively statistical approach. 

 Classifier performance evaluation 

Figure 5.5 shows the evolution of the overall accuracy of the LDA classifier as a function of the 

number of ranked features for each feature selection method using the GL model and Farrell’s 

model labelled sets. It is observed that all feature selection methods showed similar performance. 

However, two similar maximum overall accuracies of 93.38% and 93.39% were obtained for the 

GL model. The maximum value of 93.38% was achieved using the first three features ranked with 

the MRMRd and MRMRq methods (GL feature selection I). Similarly, the maximum value of 

93.39% was obtained using the first seven features provided by the CA, FDA, TT and WL 

methods (GL feature selection II). For the Farrell’s model labelled set, the overall accuracy 

reached a maximum value of 92.42% using the first eight features ranked with the MI, BD and 

KLD feature selection methods. It is noticeable that several selection methods gave exactly the 

same results due to the fact that the selected features coincided for those methods. 

For further discussion, Table 5.3 shows the selected features leading to the best classification 

performance for both labelled sets, as well as the classification results for these feature selections, 

including overall accuracies, Cohen’s kappa values and the associated mean confusion matrices. 

In accordance with the scale proposed by Landis and Kock (1977), Cohen’s kappa values can be 

interpreted as follows: 0.00-0.20 values indicated slight classification performance, 0.20-0.40 fair 

performance, 0.40-0.60 moderate performance, 0.60-0.80 good performance and 0.80-1.00 very 

good performance. 
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(a) 

 
(b) 

Figure 5.5. Evolution of the classifier overall accuracy with the number of ranked features for 
each selection method using the GL model (a) and Farrell’s model (b) labelled sets. 

  



5. Laser-light backscattering imaging for early decay detection in citrus fruit using both a 
statistical and a physical model  

105 
 

Table 5.3. Selected features and the corresponding classification results for the labelled sets from 
the GL model and Farrell’s model. 

 Gauss-Lorentzian cross product distribution model Farrell’s diffusion theory model 

 GL feature selection I GL feature selection II  
    

Selection 
methods 

MRMRd, MRMRq CA, FDA, TT, WL MI, BD, KLD 

    

Selected 
features 

d at 532 nm 
a at 785 nm 

d at 830 nm 

d at 532 nm 
a at 660 nm 

d at 660 nm 
a at 785 nm 
c at 785 nm 
a at 830 nm 
c at 830 nm 

a at 660 nm 

s at 660 nm 

a  at 785 nm 

s at 785 nm 

a  at 830 nm 

s at 830 nm 

a  at 1060 nm 

s at 1060 nm 

    

Overall 
accuracy 
(%) 

93.38 93.39 92.43 

    

Cohen’s 

kappa 
0.868 0.869 0.849 

    

Mean 
confusion 
matrix 

 Sound 
(%) 

Decay 
(%) 

Sound 95.33 8.58 
Decay 4.67 91.42 

 

 Sound 
(%) 

Decay 
(%) 

Sound 92.53 5.75 
Decay 7.47 94.25 

 

 Sound 
(%) 

Decay 
(%) 

Sound 90.60 5.75 
Decay 9.40 94.25 

 

    

When comparing the two sets of selected features for the GL model, it can be noticed that 

parameters b  and e  were not selected in any of the selections. This suggests that parameters a , 

c  and d  were more valuable for discriminating between sound and decaying orange skin than 

parameters b  and e . Furthermore, all the features in these two selections presented statistically 

significant differences between samples of sound and decaying skin, as shown in Table 5.2. For 

Farrell’s model, the resulting set of selected features included the absorption and reduced 

scattering coefficients at four laser wavelengths, the optical coefficients at 532 nm remaining 

outside the feature selection. In addition, the two optical coefficients at 532 nm did not present 

significant differences between the two kinds of samples (Table 5.2), which could be related to 
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their little impact on the detection of decay in oranges, as well as to the inappropriateness to apply 

Farrell’s model when s  did not exceed a .  

Comparison of the classification results using the two feature selections for the GL model shows 

that, even though the overall accuracies and Cohen’s kappa values for both selections were almost 

identical, the corresponding mean confusion matrices were slightly different. It can be observed 

that the number of well-classified sound samples for GL feature selection I (95.33%) was higher 

than that obtained for GL feature selection II (92.53%). In contrast, the classification of decaying 

samples was improved when using GL feature selection II, with the success rate increasing from 

91.42% to 94.25%. In practice, this increase in the number of well-classified decaying samples is 

of major importance for a potential inspection system, since just a few infected fruits can spread 

the infection to a whole batch, thus causing great economic losses. A general conclusion drawn 

from analysing the results is that GL feature selection II generally provided better results than GL 

feature selection I for the decay detection problem, with only four more features being included 

in the classification model. With regard to the classification results using the selected features for 

Farrell’s model, it can be observed from the mean confusion matrix that the classification results 

were quite similar to those obtained using GL feature selection II. Nevertheless, the number of 

well-classified sound samples for GL feature selection II (92.53%) was higher than that obtained 

using the feature selection for Farrell’s model (90.60%). 

In the light of these results, this work lays the foundation for the future implementation of an 

automatic system based on LLBI capable of detecting decay in early stages, which is very 

important from the agricultural point of view. However, further research on backscattering 

imaging in other cultivars of citrus fruits is still required before commercial application. Some 

issues should be taken into account for future setting-up on a commercial fruit sorter. For example, 

line lasers should be applied on rotating fruit in order to explore the whole surface of each fruit. 

In addition, imaging systems must be capable of taking images at several wavelengths 

simultaneously and at a fast speed. 

5.4. Conclusions 

This research article reports new progress in the automation of the detection of early decay 

symptoms caused by P. digitatum fungus in citrus fruit by means of the LLBI technique. 

Backscattering images of oranges at five laser wavelengths in the visible and NIR range were used 

for this detection. Farrell’s diffusion theory model and the GL distribution function described 
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backscattering profiles accurately at the five laser wavelengths using the absorption and reduced 

scattering coefficients and five fitting parameters, respectively. However, the GL model had 

slightly better curve-fitting results, with average R2 values higher than or equal to 0.996, compared 

with values higher than or equal to 0.982 obtained with Farrell’s model. Overall, the GL 

parameters and the optical coefficients differed between sound and decaying orange skin at all 

wavelengths.  

The comparison of the results from GL model and physical model allowed to extract more causal 

effects compared to exclusively statistical approach, pointing to changes in the structural fruit 

properties due to decay. The results showed the feasibility of wavelengths in the visible and NIR 

ranges when applying GL model, while the Farrell’s approach was most successful when 

addressing passbands in the NIR range. Particularly, laser at 532 nm provided difficulties for the 

physical approach. Although curve-fitting results showed high R² values, the high variance found 

for a  and s  at 532 nm and the results of the feature selection pointed to the limitations of 

Farrell’s model in the case of high absorption coefficient due to high carotenoids absorbance in 

oranges.  

The classification results using the eight selected optical coefficients for Farrell’s model were 

quite similar to those obtained using the GL selection with seven features, with a similar 

percentage of well-classified decaying samples of 94.2% and the classification of sound samples 

being better for the GL selection, increasing from 90.6% to 92.5%. In conclusion, the optimal sets 

of features for the GL and Farrell’s models resulted in good classification results, with a 

percentage of well-classified samples above 90% for both classes despite the similarity between 

sound and decaying orange skin. The next step will be the development of a prototype for in-line 

real-world tests. 
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Abstract 

The development of systems for automatically detecting decay in citrus fruit during quality control 

is still a challenge for the citrus industry. The feasibility of reflectance spectroscopy in the visible 
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and near infrared (NIR) regions was evaluated for the automatic detection of the early symptoms 

of decay caused by Penicillium digitatum fungus in citrus fruit. Reflectance spectra of sound and 

decaying surface parts of mandarins cv. ‘Clemenvilla’ were acquired in two different spectral 

regions, from 650 nm to 1050 nm (visible-NIR) and from 1000 nm to 1700 nm (NIR), pointing to 

significant differences in spectra between sound and decaying skin for both spectral ranges. Three 

different manifold learning methods (principal component analysis, factor analysis and Sammon 

mapping) were investigated to transform the high-dimensional spectral data into meaningful 

representations of reduced dimensionality containing the essential information, this step being of 

particular interest in spectroscopy research in order to achieve better performance predictions of 

fruit quality. The low-dimensional data representations were used as input feature vectors to 

discriminate between sound and decaying skin using a supervised classifier based on linear 

discriminant analysis. The best classification results were achieved by employing factor analysis 

on the NIR spectra, yielding a maximum overall classification accuracy of 97.8%, with a 

percentage of well-classified sound and decaying samples of 100% and 94.4%, respectively. 

These results lay the foundation for the future implementation of reflectance spectroscopy 

technology on a commercial fruit sorter for the purpose of detecting decay in citrus fruit. 

Keywords: Manifold learning methods; Dimensionality reduction; LDA classifier; Citrus fruit; 

Decay detection; Visible-NIR reflectance spectroscopy. 

6.1. Introduction 

Citrus production is one of the most important agricultural activities in the world, in economic 

terms. However, the presence of postharvest decay due to Penicillium spp. fungi is among the 

main problems affecting citrus production (Palou et al., 2011). Early detection of fungal infections 

and removal of infected fruit are issues of major concern in commercial packinghouses because a 

small number of infected fruits can rapidly spread the fungal infection over all the production. 

Detection of infected fruit has traditionally been carried out manually using ultraviolet (UV) light, 

which induces visible fluorescence of fungal products (Kondo et al., 2009). This method, however, 

is potentially harmful for the workers, since long exposure to UV illumination can cause damage 

to human skin, such as cancer or premature aging (Lopes et al., 2010). Various technologies are 

being investigated for the automatic detection of decay in citrus fruit as alternatives to human 

inspection, including vision systems based on UV-induced fluorescence (Kurita et al., 2009), 

hyperspectral and multispectral vision systems (Gómez-Sanchis et al., 2012, 2013; Lorente et al., 

2013c) and laser-light backscattering imaging systems (Lorente et al., 2013b).  



6. Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection 
of fungal infections on citrus fruit 

113 
 

In this sense, spectroscopy also appears to be a promising alternative for decay detection in citrus 

fruit since this technology can rapidly measure the optical properties of the samples, which are 

related to their chemical and physical properties (Khanmohammadi et al., 2014). When light 

interacts with a fruit, a small portion is reflected on the surface of the sample (specular or Fresnel 

reflectance) and the rest penetrates into the tissue (Birth, 1976). Most of the entering light interacts 

with the internal components of the fruit, and then it is scattered backwards to the exterior tissue 

surface (diffuse reflectance), thus carrying information related to the morphology and structures 

of the tissue in addition to its chemical composition. The rest of the entering radiation is absorbed 

by tissue or transmitted out from the fruit in different directions (Meinke and Friebel, 2009). 

Therefore, reflectance measurements acquired using visible-NIR spectroscopy systems can be 

useful for measuring the textural and chemical properties of fruit (Sánchez et al., 2012) 

Accordingly, many studies have been reported that assess the quality of different fresh fruit by 

visible-NIR spectroscopy systems in reflectance mode (Fu et al., 2007; Jha et al., 2014; Wang et 

al., 2014; Wang and Xie, 2014). Most of the research studies using this technology on citrus fruit 

have been focused on evaluating the internal quality attributes, such as soluble solids content 

(SSC), pH or vitamin C content (Gómez et al., 2006; Xia et al., 2007; Cayuela, 2008; Antonucci 

et al., 2011; Kohno et al., 2011). However, very limited research work has been conducted to 

assess the external quality of citrus fruit, such as the presence of surface damages or diseases, by 

means of reflectance spectroscopy in the visible and NIR ranges (Gaffney, 1973; Blasco et al., 

2000; Zheng et al., 2010).  

One of the main problems of multispectral systems is the large volume of data. Hence, it is 

necessary to extract essential information about quality attributes contained in the spectra using 

techniques for reducing the dimensionality of the data (Garrido-Novell et al., 2012), since the 

presence of irrelevant spectral variables could lead to lower performance predictions of fruit 

quality. Generally, dimensionality of the spectral feature space can be reduced by using either 

feature selection or feature extraction. Feature selection approaches try to find a subset of the 

original variables that contains the least number of variables with the most significant information. 

On the other hand, feature extraction techniques –commonly referred to as manifold learning 

techniques– transform the data in the high-dimensional space into a lower-dimensional space that 

preserves the observed properties of the data, generally known as a manifold. Particularly, some 

popular manifold learning techniques, such as principal component analysis (PCA), have been 

widely used for data reduction in spectroscopy research focused on fruit quality inspection (Xie 

et al., 2009; Liu et al., 2010a).  

The present research work emerged from the need for a more thorough evaluation of the potential 

of reflectance spectroscopy in the visible and NIR regions as a tool for automatically detecting 
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decay lesions caused by P. digitatum fungus in citrus fruit during quality control. For this purpose, 

two spectrophotometers operating in different spectral ranges within the visible and NIR regions 

were used to acquire reflectance spectra of citrus fruit. Some spectral pre-processing techniques 

were then applied to the spectra in order to remove any irrelevant information. In order to achieve 

better decay detection results, several manifold learning methods were investigated to transform 

the high-dimensional spectral data into meaningful representations of reduced dimensionality, this 

step being of particular interest in spectroscopy research. Prior to dimensionality reduction, 

different methods were employed to estimate the target dimensionality of the corresponding 

lower-dimensional data representations. The ultimate aim of this research work was to evaluate 

and compare the reflectance measurements acquired in the two different spectral ranges, the pre-

processing techniques, the dimensionality estimators and the dimensionality reduction methods in 

terms of their performance in the classification of citrus fruit skin into sound or decaying at an 

early stage. 

6.2. Material and methods 

 Fruit and fungal inoculation 

Mandarins cv. ‘Clemenvilla’ (Citrus reticulata Hort. ex Tanaka) were selected for the experiments 

due to their great economic impact in the Spanish agro-food industry. These fruits were collected 

during the 2012 harvest season from the field collection of the Citrus Germplasm Bank at the 

IVIA (Spain) (Navarro et al., 2002) before any commercial postharvest treatments were applied. 

For the experiments, a total of 117 mandarins were used: 67 fruits were superficially punctured 

on the rind and inoculated with spores of P. digitatum fungus and the other 50 were injured in the 

same way but treated with sterilised water for control purposes. The P. digitatum strain NAV-7, 

from the fungal culture collection of the IVIA CTP, was cultured on potato dextrose agar (PDA; 

Sigma-Aldrich Chemical Co., St. Louis, MA, USA) plates in the dark at 25 °C. Conidia from 7 to 

14-day-old cultures were taken from the agar surface with a sterile glass rod and transferred to a 

sterile aqueous solution of 0.05% Tween® 80 (Panreac, S.A.U., Spain). The conidial suspension 

was filtered through two layers of cheesecloth to separate hyphal fragments and then adjusted to 

a concentration of 106 spores/ml using a haemocytometer, which is commonly used to produce 

infestation in laboratory conditions (Palou et al., 2001). The mandarins were inoculated in the 

equatorial zone with 20 μl of the spore suspension by immersing the tip of a stainless steel rod, 1 

mm wide and 2 mm deep, into the suspension and inserting it in the fruit rind afterwards. After 
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inoculation, the fruits were kept in a controlled environment at 24 °C and relative humidity of 

24% for a period of time that was long enough for decay lesions with diameters equal to or higher 

than 10 mm to appear on all the infected fruits. This period was different for each fruit, since the 

development of the decay varied from one fruit to another, the first patches of decay thus appearing 

on some mandarins after three days’ storage and the latest after six days. All the inoculated 

mandarins presented decay lesions in the early stages of infection (before sporulation) with a 

variable diameter ranging from 10 mm to 40 mm. Images of a sound mandarin and a mandarin 

showing decay lesions are shown in Figure 6.1. 

  
(a) (b) 

Figure 6.1. A sound mandarin (a) and a mandarin presenting decay lesions caused by P. digitatum 
(b). 

The control fruits inoculated with just water were used to evaluate how the physical changes 

produced in the rind by the inoculation procedure influenced the spectral measurements. To this 

end, two different parts of the surface of each of the 50 control mandarins were analysed: one 

close to the inoculation puncture and the other on the opposite side of the mandarin, where there 

was no hole. The spectral measurements of both kinds of sound skin samples were expected to be 

similar in order to confirm that the inoculation process did not affect the measurements. In 

addition, spectra were also acquired for the surface part presenting decay lesions of the 67 infected 

mandarins. Therefore, a total of 167 skin samples were analysed in this work: 100 sound skin 

samples (50 samples of sound skin close to the inoculation hole and 50 samples of sound skin 

further away from the hole) and 67 decaying skin samples.  
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 Spectroscopy system 

In this research, a system based on two spectrophotometers used alternately (Figure 6.2) was 

employed to acquire spectra in reflectance mode. The system consisted mainly of a multichannel 

spectrophotometer platform (AvaSpec-USB2-DT, Avantes, Inc.) on which two 

spectrophotometers were mounted, a stabilised halogen light source (AvaLight-HAL-S, Avantes, 

Inc.), a Y-shaped fibre-optic reflectance probe (FCR-7IR200-2-45-ME, Avantes, Inc.), a holder 

for positioning the sample properly over the probe, and a personal computer equipped with 

commercial software (AvaSoft version 7.2, Avantes, Inc.) for controlling both spectrophotometers 

and acquiring the spectra. 

 

Figure 6.2. Picture of the spectroscopy system. 1: Spectrophotometer platform with two 
spectrophotometers; 2: Light source; 3: Reflectance probe; 4: Sample holder; 5: Computer with 
acquisition software. 

The first spectrophotometer (AvaSpec-ULS2048-USB2, Avantes, Inc.) included a 2048 pixel 

charge-coupled device (CCD) detector, a 50 µm entrance slit and a 600 lines /mm diffraction 

grating covering the visible-NIR range from 600 nm to 1100 nm with a spectral sampling interval 

of 0.255 nm. The second spectrophotometer (AvaSpec-NIR256-1.7, Avantes, Inc.) was equipped 

with a 256 pixel non-cooled indium-gallium-arsenide (InGaAs) detector, a 100 µm entrance slit 

and a 300 lines/mm diffraction grating covering the NIR range of 900 nm to 1750 nm with a 

sampling interval of 3.535 nm. Both spectrophotometers were connected to the computer through 
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a single USB cable. The light source emitted light from a 10 W tungsten halogen lamp that 

provided good spectral efficiency in the visible and NIR regions. In order to stabilise the light 

emitted by the lamp, the light source was turned on 15 minutes before each measurement session. 

The reflection probe, consisting of seven fibres with a diameter of 200 µm, delivered the light to 

the sample through a bundle of six fibres and collected the reflectance from the sample, which 

was carried by a single fibre to the spectrophotometer in use. The probe tip was designed to 

provide reflectance measurements at an angle of 45º so as to minimise specular reflectance.  

The integration time was adjusted for each spectrophotometer using a 99% reflective white 

reference, so that the maximum reflectance value over the wavelength range was around 90% of 

saturation. Thus, the integration times were set to 90 ms and 700 ms for the visible-NIR 

spectrophotometer and the NIR spectrophotometer, respectively. For both spectrophotometers, 

each spectrum was obtained as the average of five scans to reduce the thermal noise of the detector 

(Nicolaï et al., 2007). The average reflectance measurements of each sample ( )S  were then 

converted into relative reflectance values ( )R  with respect to the white reference (the so-called 

raw spectra in this work) using dark reflectance values ( )D  and the reflectance values of the white 

reference ( )W , as shown in Equation 6.1: 

 
S D

R
W D





  (6.1) 

The dark spectrum and the spectrum of the white reference were recorded with each 

spectrophotometer prior to the acquisition of spectra of each batch of samples. The white reference 

spectrum was acquired at the same integration time as the spectrum of the corresponding sample. 

The dark spectrum was obtained by turning off the light source and completely covering the tip 

of the reflectance probe at the same integration time. Due to the high level of noise on the edges 

of the spectra, further analysis was performed only on data in the 650 nm to 1050 nm range for 

the visible-NIR measurements, and in the 1000 nm to 1700 nm range for the NIR spectra. 

Therefore, since each visible-NIR spectrum had a spectral sampling interval of 0.255 nm, each 

raw spectrum was composed of 1570 spectral data points. Similarly, each raw spectrum obtained 

using the NIR spectrophotometer consisted of 198 data points. These raw spectra were acquired 

by placing each fruit manually on the sample holder so that the part of the fruit under study was 

facing the tip of the reflectance probe. In this work, two raw spectra (visible-NIR and NIR) were 

recorded for each of the 167 skin samples, a total of 334 spectra thus being acquired.  
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 Spectral pre-processing 

Different physical characteristics of the fruits, such as the size or the shape of the particles, affect 

light reflectance (scattering). These variations between samples can be observed as additive 

(baseline shift) and multiplicative effects (tilt) in the spectra. These effects create noise problems 

when analysing fruit quality parameters for which such physical information is irrelevant. Several 

pre-processing techniques are aimed at removing physical phenomena in the spectra in order to 

improve the subsequent quality prediction step using a regression or classification model 

(Candolfi et al., 1999).  

Two of the most commonly used scatter-correction techniques in spectroscopy are multiplicative 

scatter correction (MSC; Geladi et al., 1985) and standard normal variate (SNV; Barnes et al., 

1989). MSC aims to reduce the scattering effects by fitting each spectrum of a group of samples 

to a reference spectrum, which usually corresponds to the mean spectrum of the data set. Each 

spectrum is fitted by linear least squares regression. This technique depends on the data set. 

Therefore, if the raw data set is modified, the reference spectrum is certain to change, thus making 

it necessary to perform the pre-processing on the spectra again. On the other hand, SNV corrects 

each spectrum individually by subtracting the mean of the spectrum and dividing by the standard 

deviation of the spectrum. Thus, SNV normalises each individual spectrum to zero mean and unit 

standard deviation. Figure 6.3 shows a set of raw spectra and the corresponding spectra pre-

processed with MSC and SNV as an illustrative example of how these scatter-correction methods 

work. More particularly, the NIR spectra of all mandarin skin samples involved in this research 

are shown. Values related to relative reflectance were expressed in arbitrary units (a.u.). 

In this work, the raw spectra acquired with both spectrophotometers were pre-processed using 

MSC and SNV to reduce spectral variability. In addition, due to the underlying nature of most of 

the techniques used in this work, such as PCA, the raw spectra and the corresponding spectra pre-

processed with MSC and SNV were mean centred by subtracting the mean spectrum of each data 

set from each spectrum. However, the normalisation scaling of data according to the standard 

deviation (standardisation), commonly used in techniques dependent on the relative scale of the 

variables such as PCA, was not required in this work. This was due to the fact that the spectral 

data were measured in the same units and had similar ranges. The pre-processing techniques and 

the remaining algorithms in the present work were implemented using Matlab 8.1 (Mathworks, 

Inc., USA). 
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(a) 

 
(b) 

 
(c) 

Figure 6.3. Representative raw spectra (a) and the corresponding spectra pre-processed with MSC 
(b) and SNV (c). 
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 Dimensionality reduction 

The spectral features (variables) from the pre-processed spectra could be employed directly as 

inputs of classification algorithms in order to discriminate between sound and decaying skin. 

Nevertheless, most of the spectral features from these high-dimensional spectra are irrelevant or 

redundant for the classification task, leading to the overfitting problem and consequently 

decreasing the performance of the classifier (Tian, 2010). To overcome these problems, manifold 

learning methods can be used to reduce the dimensionality of the spectral feature space. These 

techniques transform the data in the high-dimensional space into a lower-dimensional space that 

preserves the observed properties of the data, generally known as a manifold, and their goal is to 

recover the low-dimensional manifold embedded within the high-dimensional space. The 

manifold should have a dimensionality corresponding to the intrinsic dimensionality of the data, 

defined as the minimum number of parameters needed to describe all the information in the data. 

The estimation of the intrinsic dimensionality of data is a key step in the process of dimensionality 

reduction, since manifold learning methods need the intrinsic dimensionality as an external and 

user-defined parameter (Lee and Verleysen, 2007).  

In this work, three popular unsupervised manifold learning methods were investigated for 

dimensionality reduction: principal component analysis (PCA; Jolliffe, 2002), factor analysis (FA; 

Lawley and Maxwell, 1971) and Sammon mapping (Sammon, 1969). The data transformation is 

linear in PCA and FA, while Sammon mapping is a non-linear method, thus being capable of 

handling more complex data with non-linear relationships. On the other hand, unlike PCA and 

FA, the Sammon method is unable to generalise the mapping to new data without performing the 

dimensionality reduction again due to its non-parametric nature. These three methods based on 

simple models were chosen due to their suitability for the available data sets, following the 

guidelines given by Lee and Verleysen (2007). If the data set is small, the use of more complex 

dimensionality reduction methods is questionable, since the limited number of samples could be 

insufficient to identify the large number of parameters involved in these complex methods. 

Furthermore, for data with very high dimensionality, more complex methods can become 

confused due to the curse of dimensionality and, consequently, provide meaningless results. 

Therefore, methods with the simplest models are more suitable for small data sets with high 

dimensionality, such as those used in this work. With regard to intrinsic dimensionality estimation, 

four different approaches were employed in this work: eigenvalue-based estimator (EB; Fukunaga 

and Olsen, 1971), maximum likelihood estimator (ML; Levina and Bickel, 2005), correlation 

dimension estimator (CD; Camastra and Vinciarelli, 2002) and geodesic minimum spanning tree 

estimator (GMST; Costa and Hero, 2004). 
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All the techniques for dimensionality reduction and intrinsic dimensionality estimation were 

implemented using the Matlab Toolbox for Dimensionality Reduction (version 0.8.1; van der 

Maaten, et al., 2009). In the case of the intrinsic dimensionality estimation methods, their 

implementations in the toolbox are parameterless. For the implementations of dimensionality 

reduction, only the intrinsic dimensionality needs to be specified by the user as an external 

parameter. The free parameters related to the iterative nature of FA and Sammon mapping, such 

as the maximum number of iterations and the convergence constant, are already optimally fixed 

by default and embedded in the toolbox implementations, thus not requiring further user-defined 

parameters. 

 Data sets 

Supervised classification requires the use of a set of n  labelled samples, 1..{ , }i i i nt x , where ix  is 

the m-dimensional feature vector for the i-th sample with label it . Due to the supervised nature of 

the problem presented in this research, six labelled data sets with different feature vectors had to 

be constructed. Particularly, the spectral features were obtained from the raw spectra and the 

spectra pre-processed with MSC and SNV associated with each of the two spectrophotometers, 

all the spectra also being mean centred. The three labelled sets based on the visible-NIR spectra 

consisted of 1570m   spectral features associated with each sample of mandarin skin, while the 

three labelled sets corresponding to the NIR spectra were composed of 198m   spectral features. 

For all the labelled data sets, the 167n   samples of mandarin skin were assigned to one of the 

two classes considered in this work: sound and decaying skin. Each sample pattern was therefore 

composed of 1570 features and a class label for the data sets from the visible-NIR spectra, and 

198 features and a class label for the data sets from the NIR spectra. 

 Development and validation of the classification models 

In this work, four different unsupervised techniques were used to estimate the intrinsic 

dimensionality of the six different data sets, associated with the visible-NIR and the NIR spectra 

pre-processed with different scatter-correction methods. Each of the three unsupervised methods 

for dimensionality reduction were then applied on the data sets using the different intrinsic 

dimensionality estimations as target dimensionalities of the corresponding lower-dimensional data 

representations. Subsequently, the low-dimensional data representations were used as input 

feature vectors to classify samples of mandarin skin into sound and decaying using a supervised 

classifier based on linear discriminant analysis (LDA; Fisher, 1936). Tests were aimed at 
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evaluating and comparing the spectral ranges (visible-NIR and NIR), the scatter-correction 

methods (no pre-processing, MSC and SNV), the intrinsic dimensionality estimators (EB, ML, 

CD and GMST) and the dimensionality reduction techniques (PCA, FA and Sammon mapping) 

in terms of their classification performance. In particular, the main interest of this work lies in 

finding out which combination of spectral range, pre-processing technique, estimator of intrinsic 

dimensionality and dimensionality reduction method provided the best classification performance 

for decay detection in citrus fruit.  

A cross-validation procedure was used to evaluate and compare the performance of the 

classification models. In particular, the experiments were performed with five-fold cross-

validation, consisting in dividing the data randomly into five folds (subsets) of equal size, and 

using four folds as the calibration set to build the classification models and the remaining one as 

the validation set to assess classifier performance (Hastie et al., 2009). This process was repeated 

five times leaving one different fold each time. Thus, all samples were used for both calibration 

and validation. Furthermore, the folds were stratified so that they had approximately the same 

class proportions as the original labelled sets (Kohavi, 1995). The whole five-fold cross-validation 

process was repeated 100 times in order to reduce variability due to random partitioning and obtain 

reliable performance estimations. Therefore, a total of 500 iterations of calibration and validation 

were performed for each classification model. The validation results were then averaged over all 

the iterations, thereby obtaining a mean confusion matrix created by computing the element-wise 

mean of the individual confusion matrices for each iteration.  

For the purpose of evaluating the classification performance, overall accuracy (Fleiss, 1981) and 

the value of Cohen’s kappa statistic (Sim and Wright, 2005) were computed for each classification 

model from its associated mean confusion matrix. The overall accuracy of classification was 

calculated as the number of correctly classified samples divided by the total number of samples, 

ranging from 0% to 100%. Unlike the overall accuracy, Cohen’s kappa statistic took into account 

whether the classifier was biased towards one of the two classes when measuring classifier 

performance. Perfect classifier performance resulting in completely unbiased classification 

corresponds to a kappa value of 1, whereas a random guess classification involves a kappa value 

of 0. A kappa value much lower than the overall accuracy means that the overall accuracy is 

inflated due to the classification bias. 
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6.3. Results and discussion 

 Analysis of spectra 

Before going ahead with the dimensionality reduction and classification tasks on the spectra, the 

effect of the inoculation procedure on the spectral measurements was evaluated. For this purpose, 

the raw spectra of the two kinds of sound skin samples (sound skin close to the hole caused by the 

inoculation and sound skin further away from the hole) were tested to see if they were similar. 

Figure 6.4 shows the mean spectra of both kinds of sound skin samples for the visible-NIR and 

the NIR spectral ranges. The mean spectra were calculated by averaging each spectral variable 

obtained from the visible-NIR and the NIR raw spectra corresponding to all the samples for each 

kind of sound skin. A significance test ( -value 0.05p  , two-tailed unpaired t-test) was applied to 

the raw spectra acquired with both spectrophotometers in order to determine whether the mean 

spectra of the two types of sound skin did not present statistically significant differences. 

According to the results of the significance test, the differences between the mean spectra of both 

kinds of sound skin samples were not statistically significant for any of the 1570 spectral variables 

in the visible-NIR range. For the spectra in the NIR range, the mean spectra of the two types of 

sound skin presented statistically significant differences for only 6 out of 198 (3.0%) spectral 

variables, ranging from 1364 nm to 1382 nm, thereby resulting in a great majority of 192 of the 

198 (97.0%) spectral variables without significant differences. Therefore, since the majority of 

the mean values of the spectral variables did not present any significant differences between the 

two kinds of sound skin, the subsequent experiments in this work considered the spectra of sound 

skin close to the inoculation hole and sound skin further away for both spectral ranges as belonging 

to the same kind of skin samples (the so-called sound class). 

The same significance test was applied to the raw spectra acquired in the two spectral ranges in 

order to examine whether the raw spectra of decaying skin samples and samples of sound skin, 

grouping together the two kinds of sound skin, had significantly different means for all the spectral 

variables. The mean spectra of sound and decaying skin samples for the visible-NIR and the NIR 

spectral ranges are shown in Figure 6.5. In accordance with the results concerning statistical 

significance, the mean spectra of sound and decaying skin samples presented statistically 

significant differences for all spectral variables in the visible-NIR and the NIR ranges. Mean 

spectra were significantly lower for the decaying samples, which may be explained by the lower 

amount of scattering in the fruit tissue due to the weakening of the cell walls during the decaying 

process (Barmore and Brown, 1979). From these spectral differences between the two states of 
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mandarin skin (sound and decaying), it can be said that the spectra acquired in both spectral ranges 

were dependent on the state of the skin. Therefore, the spectral measurements could be potentially 

useful for decay detection in subsequent classification tasks.  

  
(a) (b) 

Figure 6.4. Mean spectra of the two kinds of sound skin samples obtained from the visible-NIR 
(a) and NIR (b) raw spectra. 

  
(a) (b) 

Figure 6.5. Mean spectra of sound and decaying skin samples obtained from the visible-NIR (a) 
and NIR (b) raw spectra. 

 Classifier performance evaluation 

Table 6.1 shows the overall accuracies of the LDA classifier for the visible-NIR and the NIR 

spectra after applying the different scatter-correction techniques and the dimensionality reduction 

methods, using the different intrinsic dimensionality estimations as target dimensionalities of the 
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lower-dimensional data representations. It can be observed that the scatter-correction methods had 

an influence on classifier performance. In general, the spectra without scatter-correction led to 

better classification results than the spectra that were pre-processed with MSC and SNV for both 

spectral ranges. This could be due to the fact that the scatter-correction techniques are aimed at 

removing the variations in spectra due to the structural and physical characteristics of the fruit 

tissue, while retaining the absorption properties related to the chemical components in the spectra. 

Therefore, the results obtained suggested that the process of decay in citrus fruit may be more 

characterised by structural changes in fruit tissue, such as the weakening of the cell walls due to 

changes in enzymatic activity (Barmore and Brown, 1979) and the subsequent water soaking of 

the tissue (Barmore and Brown, 1981), rather than changes in chemical composition. In 

consequence, MSC and SNV probably removed important information for decay detection from 

the spectral measurements. 

With regard to the intrinsic dimensionality estimations, results revealed that EB and CD estimated 

lower intrinsic dimensionalities than ML and GMST, thus leading to poorer classifier 

performances. Overall, the classification accuracies using the intrinsic dimensionalities obtained 

by ML and GMST were quite similar. Nevertheless, classification results for ML were clearly 

better than for GMST in a few cases, such as when using the uncorrected spectra and the spectra 

pre-processed with MSC in the visible-NIR range. Furthermore, when using the same number of 

target dimensions, Sammon mapping led to different overall accuracies. This was due to the 

random initialisation of this technique, thus giving rise to different classification results for several 

runs. Similarly, it is noticeable that FA sometimes resulted in slightly different overall accuracies 

for a similar number of dimensions, also due to its random initialisation. In contrast, PCA gave 

exactly the same results when using the same target dimensionalities. 

When comparing classifier performance for the three dimensionality reduction techniques on the 

visible-NIR spectra, it can be noticed that PCA and FA outperformed Sammon mapping for most 

of the cases. These results agree with van der Maaten et al. (2009) in that non-linear dimensionality 

reduction techniques were often incapable of outperforming traditional linear methods on real-

world data despite their ability to handle more complex data with non-linear relationships. For the 

spectra in the visible-NIR range, the maximum overall accuracy of 95.1% was obtained by 

employing PCA on the uncorrected spectra, using the intrinsic dimensionality estimation provided 

by ML. However, this classification result was almost identical to the overall accuracy of 95.1% 

obtained with FA on the same spectra using the same dimensionality estimation. With respect to 

the comparison of the performance for dimensionality reduction methods on the NIR spectra, the 

three methods yielded similar classification results. Nevertheless, the maximum classification 

accuracy of 97.8% was obtained by employing FA on the uncorrected spectra, using the intrinsic 
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dimensionality estimation provided by ML or GMST. This result was closely followed by the 

overall accuracy of 97.7% obtained with PCA using the uncorrected spectra and the same 

dimensionality estimation. 

Table 6.1. Overall classifier accuracies for the visible-NIR and NIR spectra using the different 
scatter-correction methods, intrinsic dimensionality estimators and dimensionality reduction 
techniques. 

 Visible-NIR spectra  NIR spectra 

Intrinsic 
dimension 

PCA 
(%) 

FA 
(%) 

Sammon 
(%) 

 Intrinsic 
dimension 

PCA 
(%) 

FA 
(%) 

Sammon 
(%) 

           

No pre-
processing 

EB 1 89.68 89.70 88.89  1 92.47 92.51 92.87 

ML 3 95.07 95.05 88.68  3 97.69 97.76 96.63 

 CD 1 89.68 89.70 89.66  2 94.90 96.72 95.20 

 GMST 2 89.16 89.07 88.61  3 97.69 97.76 97.59 
           

MSC EB 3 56.90 54.46 59.69  2 88.56 89.01 89.07 

 ML 15 73.12 83.44 69.05  3 93.92 92.61 94.42 

 CD 1 62.01 61.90 52.67  2 88.56 89.01 89.06 

 GMST 11 70.27 80.80 62.84  3 93.92 94.26 93.72 
           

SNV EB 4 75.93 72.47 61.13  2 88.56 88.96 89.05 

 ML 14 78.02 84.84 71.29  3 93.95 94.04 93.44 

 CD 2 59.09 57.26 61.10  2 88.56 88.96 89.05 

 GMST 12 79.41 83.17 71.50  3 93.95 94.04 94.32 

For further discussion, Table 6.2 shows the combinations of pre-processing technique, estimator 

of intrinsic dimensionality and dimensionality reduction method leading to the best classification 

performance for the visible-NIR and the NIR spectra, as well as the classification results using 

these winning combinations of methods, including overall accuracies, Cohen’s kappa values and 

the associated mean confusion matrices. In accordance with the scale proposed by Landis and 

Kock (1977), Cohen’s kappa values were interpreted as follows: 0.00-0.20 values indicated slight 

classification performance, 0.20-0.40 fair performance, 0.40-0.60 moderate performance, 0.60-

0.80 good performance, and 0.80-1.00 very good performance. 

When comparing the two winning combinations of techniques, it is noticeable that the winning 

dimensionality reduction techniques for the visible-NIR and NIR spectra were PCA and FA, 

respectively. Unlike the Sammon method, and due to their parametric nature, these two linear 

techniques have the advantage of being able to generalise the mapping to new data without 

performing the dimensionality reduction again. Comparison of the classification results using the 
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winning combinations of techniques shows that the winning combination for the visible-NIR 

spectra led to higher overall classification accuracy than the winning combination for the NIR 

spectra, increasing from 95.1% to 97.8%. Moreover, it can be observed that the Cohen’s kappa 

value of 0.896 (or equivalently, 89.6%) for the visible-NIR spectra was much lower than the 

corresponding overall accuracy. This means that the overall accuracy was inflated due to the 

classification bias towards one of the two classes. In contrast, the kappa value of 0.953 (or 

equivalently, 95.3%) for the NIR spectra was notably closer to the corresponding overall accuracy, 

thus the NIR spectra entailed more balanced classification results for both classes than the visible-

NIR spectra. In fact, this can be seen straightforwardly from the mean confusion matrices for both 

spectral ranges. It can be noticed that the number of well-classified sound samples for the NIR 

spectra (100.0%) was higher than that obtained for the visible-NIR spectra (98.0%). Furthermore, 

when using the NIR spectra, the classification of decaying samples was improved to a greater 

extent than the classification of sound classes, with the success rate increasing from 90.7% to 

94.4%. In practice, this increase in the number of well-classified decaying samples is of major 

importance for a potential inspection system, since just a small number of infected fruits can 

spread the fungal infection to healthy fruit in the batch, thus entailing great economic losses. 

Therefore, a general conclusion drawn from analysing these classification results is that the 

winning combination of techniques for the NIR spectra provided better results than the winning 

combination corresponding to the visible-NIR spectra for the decay detection problem. 

Table 6.2. Classification results for the visible-NIR and NIR spectra using the winning 
combinations of techniques. 

 Visible-NIR spectra  NIR spectra 

    Winning 
combination of 
techniques 

No pre-processing, ML, PCA  No pre-processing, ML (or 
GMST), FA 

    

Overall accuracy 
(%) 

95.07  97.76 

    

Cohen’s kappa 0.896  0.953 
    

Mean confusion 
matrix 

 Sound 
(%) 

Decay 
(%) 

Sound 98.01 9.31 
Decay 1.99 90.69 

 

  Sound 
(%) 

Decay 
(%) 

Sound 100.00 5.58 
Decay 0.00 94.42 
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In view of these results, the present research lays the foundation for the future development of an 

automatic system based on reflectance spectroscopy in the visible and NIR regions that is capable 

of detecting early symptoms of decay in citrus fruit, which is extremely important from the 

economic point of view. However, further investigation on the use of the spectral measurements, 

coupled with the corresponding winning combinations of multivariate techniques, for decay 

detection in other cultivars of citrus fruit is still needed for commercial application. Moreover, 

some issues should be taken into account in order to be able to establish spectroscopy technology 

on a commercial fruit sorter aimed at the detection of decay. For example, spectrophotometers 

should be applied on rotating fruit in order to explore the whole surface of each fruit. 

6.4. Conclusions 

This work has shown the potential of visible-NIR reflectance spectroscopy for detecting early 

decay symptoms caused by P. digitatum fungus in citrus fruit. Reflectance spectra of mandarin 

skin samples acquired in two different spectral regions, from 650 nm to 1050 nm (visible-NIR) 

and from 1000 nm to 1700 nm (NIR), were used for this detection, significant differences in 

spectra between sound and decaying skin being observed for both spectral ranges.  

The evaluation of performance in the classification of sound and decaying skin was obtained for 

the visible-NIR and NIR spectra using the different scatter-correction techniques, intrinsic 

dimensionality estimators and manifold learning techniques for dimensionality reduction. For the 

spectra in the visible-NIR range, the maximum overall accuracy of 95.1% was obtained by 

employing PCA on the uncorrected spectra, using the intrinsic dimensionality estimation provided 

by ML. In the case of the NIR range spectra, a maximum classification accuracy of 97.8% was 

achieved by employing FA on the uncorrected spectra, using the intrinsic dimensionality 

estimation provided by ML or GMST. From these results, it can be said that, for both spectral 

ranges, the linear manifold learning techniques for dimensionality reduction (PCA and FA) 

outperformed the non-linear technique (Sammon mapping). Moreover, it should be highlighted 

that the spectra without scatter-correction led to better classification results than the spectra pre-

processed with MSC and SNV, since these techniques probably removed important information 

for decay detection from the spectra.  

The winning combination of techniques for the NIR spectra provided better results than the 

winning combination corresponding to the visible-NIR spectra, with an increase in the overall 

classification accuracy from 95.1% to 97.8%. Furthermore, when using the NIR spectra, the 



6. Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection 
of fungal infections on citrus fruit 

129 
 

percentage of well-classified samples was improved for both skin classes, with the success rate 

increasing from 98.0% to 100.0% for sound samples and from 90.7% to 94.4% for decaying 

samples. In conclusion, even though the best classification results were obtained using the winning 

combination of techniques for the NIR spectra, the two optimal combinations of techniques 

obtained for the visible-NIR and NIR spectra resulted in good classification results for the problem 

of decay detection, with a percentage of well-classified samples above 90% for both classes in 

spite of the similarity between sound and decaying skin. Nevertheless, despite these optimistic 

results, further research is still needed to be able to establish spectroscopy technology on a 

commercial fruit sorter aimed at decay detection in citrus fruit. 
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Chapter 7 

Conclusions and future work 

This final chapter presents the overall and specific conclusions drawn from this doctoral thesis. In 

addition, this chapter identifies possible lines for future research in order to continue the research 

work presented in this thesis. At the end of this chapter, a list of the scientific publications related 

to the thesis is also provided. 

7.1. Overall conclusions 

Decay caused by Penicillium spp. fungi is among the main problems affecting postharvest and 

marketing processes of citrus fruit because a small number of decayed fruit can infect a whole 

consignment, during long-term storage or fruit shipping to export markets, thus involving 

enormous economic losses and the blackening of the reputation of citrus producers. Therefore, 

effective early detection of fungal infections and removal of infected fruit are issues of major 

importance in commercial packinghouses in order to prevent the spread of the infections, thus 

ensuring an excellent fruit quality and absolute absence of infected fruit. 

In this sense, the research efforts associated with this doctoral thesis have been oriented towards 

addressing such an important challenge for the citrus industry as the automation of the detection 

of early symptoms of decay, in order to provide alternatives to manual inspection using dangerous 

UV illumination, thus accomplishing this detection task more efficiently and, consequently, 

leading to a possible reduction of the use of fungicides. As a direct consequence of the conducted 

research work, this doctoral thesis has advanced in the field of the automatic detection of decay 
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in citrus fruit using optical systems and machine learning methods, thus fulfilling the overall goal 

of this doctoral research study. In particular, three different optical techniques operating in the 

visible and NIR spectral regions have been investigated, including hyperspectral imaging, light 

backscattering imaging and spectroscopy. Since the optical systems used in this thesis have not 

been limited to the visible part of the electromagnetic spectrum, they have shown capabilities 

beyond those of the naked human eye and traditional computer vision systems based on colour 

cameras, this fact being of special interest for detecting hardly-visible damage in citrus fruit, such 

as decay at early stages. In addition, a vast number of machine learning techniques aimed at data 

dimensionality reduction and classification has been explored for dealing with the optical 

measurements of citrus fruit in order to discriminate fruit with symptoms of decay from sound 

fruit. Due to the different inherent nature of each of the optical techniques used in this thesis, the 

treatment of the obtained data, and therefore the machine learning methods, has been specific to 

each optical technology in order to handle the particularities of each one. 

The three optical technologies, coupled with suitable machine learning methods, investigated in 

this doctoral thesis have provided good results in the classification of skin of citrus fruit into sound 

or decaying in an early stage, with a percentage of well-classified samples above 90% for both 

classes despite their similarity. Therefore, these results represent an improvement on those 

obtained in previous works using traditional computer vision systems based on colour cameras 

and visible lighting for decay detection in citrus fruit, with a limited success rate of only around 

65% in the identification of decaying fruits (Blasco et al., 2007a). Thus, in view of the results, this 

doctoral thesis has laid the foundation for the future implementation of an automatic system based 

on whatever of the studied optical technologies capable of detecting decay in early stages.  

However, for future commercial application, the knowledge of the particularities of each optical 

technology would be useful in order to take advantage of some favourable characteristics specific 

to each technology or address the associated limitations. In this respect, in order to have a better 

understanding of the connections between the different technologies, some characteristics of the 

investigated optical techniques associated with their practical application for fruit inspection have 

been compared and compiled from the experience acquired through the development of this 

doctoral thesis. These characteristics, as well as the main connections between technologies, are 

summarised as follows, paying special attention on the specific systems used in this thesis: a 

hyperspectral vision system based on LCTFs, a spectroscopy system in reflectance mode and a 

LLBI system.   

For example, although both spectroscopy and hyperspectral imaging cover a large number of 

narrow spectral bands over a continuous spectral range, hyperspectral imaging acquires 

simultaneously spectral and spatial information from a fruit, while spectroscopy provides only 
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spectral information captured at a particular spot on the sample, since the point detector used in 

this technology has size limitation. Conversely, this lack of spatial information makes 

spectroscopy much less time-consuming and more appropriate for real-time applications than 

hyperspectral imaging. In fact, hyperspectral systems are so time-consuming that, in practice, they 

are used just as a means for selecting the particular set of wavelengths that will finally be used in 

multispectral systems suitable for the real-time product inspection, as done in this doctoral thesis. 

Another important difference between spectroscopy and hyperspectral imaging is the way in 

which they use the light source. In this sense, contrary to the diffuse lighting used in hyperspectral 

imaging to illuminate the scene uniformly, in reflectance spectroscopy, light hits directly a fruit, 

partly penetrating into the tissue, and a light detector measures the reflected radiation, which 

contains information about the internal components of the fruit.  

Similarly to reflectance spectroscopy, in backscattering imaging, the light source is also aimed 

towards the fruit. However, in backscattering imaging, the backscattered light is recorded by an 

imaging system, thus tracking spatial information of the light signal on the sample, unlike 

spectroscopy. In addition, in the particular case of LLBI systems, as that used in this doctoral 

thesis, laser light penetrates deeper into the fruit than broadband light (e.g. light generated by a 

halogen lamp), as that usually used in a reflectance spectroscopy system, thus obtaining more 

information about the fruit tissue. On the other hand, LLBI systems provide information just in a 

few wavelengths, unlike spectroscopy systems, which cover a large number of consecutive 

wavelengths. In addition, although LLBI systems can be potentially used to assess quality of fruit 

in a relatively cheap, simple and fast way, further advances in equipment are still required before 

commercial application. For example, future LLBI systems must be capable of taking images at 

several wavelengths simultaneously and at a faster speed than that obtained with the current LLBI 

systems, thus making it easier to incorporate this technology into an industry that demands real-

time inspection. Moreover, instead of point lasers, perhaps line lasers should be applied on rotating 

fruit in order to explore the whole surface of each fruit. On the contrary, since spectroscopy is 

arguably the most advanced optical technology with regard to equipment and applications, such 

technological progress has already led to the development of spectroscopy systems with high 

acquisition speed used in the agro-food industry for real-time sorting of products according to 

their quality. However, despite such advances in spectroscopy systems, a few issues should be 

considered for the specific application of this technology for decay detection in citrus fruit. For 

example, spectrophotometers should be applied on rotating fruit in order to examine the whole 

fruit surface. Although rotation of fruit is also suggested for all the systems that inspect external 

defects in citrus fruit, this is of particular importance in spectroscopy systems for overcoming the 

pronounced lack of spatial information and, consequently, ensuring an exceptional fruit quality. 
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7.2. Specific conclusions 

This doctoral report has been presented as a collection of research papers, from Chapter 2 to 6. 

The research work presented in each chapter has been aimed at addressing the specific objectives 

related to each optical technology listed in Section 1.2, thus leading to its own conclusions and 

contributions to knowledge in the research field of this thesis. In the following sections, the 

specific conclusions of this doctoral thesis are grouped according to the different optical 

technologies, with emphasis on linking the knowledge extracted from the different chapters in 

order to establish the thesis as a coherent whole.  

 Hyperspectral imaging 

This section presents the conclusions drawn from Part II of this thesis report (Chapters 2 and 3), 

which has included two research papers related to hyperspectral imaging. Both research papers 

have used the same hyperspectral system based on two LCTFs operating in the visible and NIR 

spectral regions, thus allowing the acquisition of hyperspectral images in the range of 460-1020 

nm, with a spectral resolution of 10 nm. 

Due to the current need for reducing the high-dimensional hyperspectral images to multispectral 

ones for the subsequent implementation in real-time inspection systems, the research paper in 

Chapter 2 has proposed a novel wrapper feature selection methodology for multiclass 

classification problems that uses the area under the ROC curve as measure of classifier 

performance, in order to select a reduced set of wavelengths that are effective in the detection of 

decay in citrus fruit. The specific conclusions drawn from Chapter 2 are the following: 

 The proposed feature selection method has expanded the use of the ROC curve from 

binary classification problems to multiclass classification problems. Therefore, this 

methodology has been applied to select an optimal set of wavelengths that are effective 

not only in the discrimination between fruit affected by serious diseases (decay lesions) 

and sound fruit, but also capable of separating fruit affected by cosmetic defects (scars), 

which only affect the appearance of the fruit but do not spread among other fruits and 

do not prevent its commercialisation in the internal market as fresh product or its use in 

the processed citrus industry. Cosmetic defects have been taken into account to prevent 

them to be confused with the dangerous ones by an automatic system, thus avoiding the 

economic losses associated with the removal of fruit affected only by minor defects. In 

particular, the proposed feature selection methodology has been applied to the problem 
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of classification of pixels from hyperspectral images of mandarins cv. ‘Clemenules’, in 

order to separate the pixels into five different classes: decay caused by two different 

fungi (P. digitatum and P. italicum), two kinds of sound skin (green and orange) and 

scars. 

 Although the ROC feature selection technique is independent of the chosen classification 

method, the classifier used to explore the possibilities of this wrapper selection method 

has been a MLP with a single hidden layer, trained with a new learning algorithm called 

ELM. The use of this learning algorithm has involved a much faster learning speed than 

that obtained using classical learning methods (e.g. backpropagation), since ELM has 

determined the ANN parameters analytically instead of tuning them iteratively. This 

increase in speed has been very important in order to facilitate the search of the optimal 

features using the proposed feature selection method. In addition, once selected the 

optimal features, the same classifier has been also used for classifying the pixels from 

the hyperspectral images. 

 The proposed feature selection method has been applied considering three different 

approaches to the problem of decay detection in mandarins, depending on the number of 

classes implicated and the importance of each class. As a result, a reduced number of 

spectral features (including purely spectral variables and spectral indexes) have been 

obtained for each approach: six for the first approach (i.e. five classes of similar 

importance), seven for the second approach (i.e. five classes of different importance, 

with decay classes having the maximum importance) and four for the third one (i.e. 

binary classification problem: infected and not infected). 

 The set of features selected for the second approach has provided better classification 

results than that obtained for the first one, with an increase in the average success rate 

from 87.5% to 89.1% by taking into account classes with different importance in the 

classification problem. This improvement has been especially due to the increase in the 

number of well-classified pixels of decay classes, this fact being of major importance 

for a potential inspection system. Furthermore, for these two approaches, due to the 

similarity of the damage caused by the two fungi, most confusion has been done between 

both decay classes, which could be grouped into the same category or commercial 

importance. In this sense, as expected, better results have been obtained for the third 

approach (average success rate of 95.5% with classification rates above 94% for both 

classes), which is a simplified approach to the problem, specifically aimed at the 

detection of decay. 
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In Chapter 3, the research paper has compared the feature selection method proposed in Chapter 

2 with other common feature selection techniques (CA, MI, FDA, TT, WL, BD, MRMRd, 

MRMRq and KLD) in terms of the classification performance in the tackled problem of decay 

detection in citrus fruit. All the methods have been applied to the same hyperspectral images of 

mandarins, with the pixels labelled in five classes, using the same approaches to the problem and 

the same classifier for separating the pixels as those employed in Chapter 2 with the ROC feature 

selection method. The specific conclusions extracted from Chapter 3 are enumerated as follows: 

 After carrying out two different tests to perform the comparison (i.e. a test selecting an 

optimal number of features for each method and for each approach that could be different 

for each case and other test using a fixed number of features for all cases), the ROC 

feature selection method has generally provided better results than most of the feature 

selection methods used in the comparative study. In particular, the average success rate 

obtained using the ROC method in both tests have been greater than that obtained for 

the other methods, only being surpassed by the MRMR methods for the third approach.  

 The proposed feature selection technique based on the area under the ROC has shown 

to be a suitable feature selection method for multiclass classification problems with a 

huge amount of features, such as the selection of wavelengths effective in the decay 

detection in citrus fruit, providing at least similar results as those obtained with other 

feature selection methods but with the additional advantage of optimising, by its nature, 

the classifier performance. 

 Backscattering imaging 

The conclusions extracted from the third part of this thesis (Chapters 4 and 5), which has 

comprised two research papers dealing with backscattering imaging, are presented in this section. 

In both research papers, a LLBI system with five diode lasers emitting at different wavelengths in 

the visible and NIR ranges (532, 660, 785, 830 and 1060 nm) has been employed to acquire 

backscattering images. 

In Chapter 4, the research paper has evaluated, for the first time, the potential of LLBI for decay 

detection in citrus fruit. For this purpose, backscattering images of oranges cv. ‘Navelate’ in two 

different states (sound oranges and oranges presenting decay lesions caused by P. digitatum 

fungus) have been acquired in the research work. The specific conclusions drawn from Chapter 4 

are the following: 
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 In order to get higher performance classification results, each backscattering image have 

been characterised by means of five parameters obtained from fitting the one-

dimensional backscattering profile with a statistical modelling approach using the 

Gaussian-Lorentzian cross product (GL) distribution function. As a result, the GL 

function has described the radial profiles accurately with average R2 higher or equal to 

0.998, pointing to differences in the parameters at the five wavelengths between sound 

and decaying oranges. 

 In order to classify oranges into sound and decaying, the GL parameters at each 

wavelength have been used as input vectors of a LDA classifier. In this sense, ranking 

and combination of the laser wavelengths in terms of their contribution to the detection 

of decay have led to a maximum average success rate of 96.1% when using the five laser 

wavelengths, with a percentage of well-classified oranges above 95% for both classes 

despite the similarity between sound oranges and oranges presenting decay lesions. 

Moreover, it has been observed an increase in the average success rate of around 10% 

from the single wavelength (80.4%) to the two-wavelength combination (90.2%), with 

both wavelengths being in the visible range (532 nm and 660 nm), thus assuming that 

this range may provide more information on the differences in scattering properties of 

the tissue. In particular, this increase has been due to the improvement in the 

classification of oranges with decay, this fact being of major importance for a potential 

inspection system aimed at detecting decay in citrus fruit. 

 From all the obtained results, the research paper in Chapter 4 has proved the feasibility 

of LLBI for detecting superficial decay in citrus fruit, thus having a high potential to be 

integrated in a future commercial system after further investigation. 

In order to continue the research line of Chapter 4, the research paper presented in Chapter 5 has 

reported new progress in the automatic detection of decay caused by P. digitatum fungus in citrus 

fruit by means of LLBI. Particularly, the two kinds of profile modelling approaches (statistical 

and physical) and different feature selection methods, also used in the comparison study 

performed in Chapter 3, have been compared according to their classification performance in the 

addressed problem, this appearing as the next step in the direction towards the automation. In this 

research paper, backscattering images of sound and decaying parts of the surface of oranges cv. 

‘Valencia late’ have been analysed. The specific conclusions extracted from Chapter 5 are 

enumerated as follows: 

 In particular, the two models investigated to characterise backscattering profiles have 

been the statistical model using the GL distribution function with five parameters, also 



 
7. Conclusions and future work 

140 
 

employed in Chapter 4, and a physical approach calculating the absorption, a , and 

reduced scattering, s , coefficients from Farrell’s diffusion theory. As a result, the two 

models have described radial profiles accurately, with slightly better curve-fitting results 
2(R 0.996)  for the GL model compared to Farrell’s model 2(R 0.982) . In addition, 

both profile modelling approaches have shown significant differences in the parameters 

between sound and decaying skin at the five wavelengths, thus indicating the suitability 

of these two models for characterising differences in the tissue of citrus fruit due to the 

decaying process.  

 In the case of the statistical model, the GL parameters have presented different statistical 

significances and trends between sound and decaying oranges from those reported in the 

research paper in Chapter 4, which could be explained due to some differences between 

both studies that could influence on the measured data, such as the orange cultivar and 

the pre-processing of backscattering profiles. In any case, in both research studies, for 

each laser wavelength, some of the associated GL parameters have shown significant 

differences between both fruit states, this being an important indicator of potential 

success in the further separation of the tissue into sound and decaying by an automated 

system.  

 In addition to characterising backscattering profiles, the physical profile modelling 

approach has offered the additional advantage, compared to the statistical approach, of 

allowing the measurement and separation of the optical properties of sound and decaying 

tissues of citrus fruit at the different wavelengths, thus facilitating the extraction of more 

knowledge about the underlying optical properties associated with the decaying process. 

In particular, the differences in the absorption and reduced scattering coefficients 

between sound and decaying skin at the different wavelengths have been justified by 

reasons connected with the decaying process, since the calculated coefficients have 

provided a real connection with the optical properties of citrus fruit. In addition, the 

values of s  have been generally at least one order higher than the a  values for both 

states, thereby highlighting the dominant effect of scattering for light propagation in 

oranges in the studied wavelengths and, consequently, the fulfilment of the prerequisite 

for the application of the diffusion theory approach. However, the difference between 

both optical coefficients has been less evident at 532 nm due to the high absorption of 

carotenoids in oranges and the high variance in the calculated coefficients, this fact 

suggesting the inappropriateness to apply Farrell’s model at this wavelength. 

 Despite the fact that statistical significance may provide a general idea whether a 

variable should be included in a classification model, it is sometimes possible to have an 
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insignificant variable that is useful for forecasting or to have a significant variable that 

is better omitted when forecasting. Therefore, methods intended and optimised 

specifically for feature selection purposes have been preferred over significance tests in 

order to select a reduced number of backscattering profile parameters relevant for the 

detection of decay lesions. As a result, seven features have been selected for the GL 

model using the CA, FDA, TT and WL methods, this feature selection suggesting that 

parameters b  and e  have been the least valuable for discriminating between sound and 

decaying orange skin. In the case of Farrell’s model, the resulting set of eight features 

selected with the MI, BD and KLD methods have included the absorption and reduced 

scattering coefficients at four laser wavelengths, with the optical coefficients at 532 nm 

remaining outside the feature selection, this fact also pointing out the limitations of 

Farrell’s model at this wavelength.  

 The selected features have been used to discriminate between sound and decaying skin 

using a LDA classifier, as that used in Chapter 4. The classification results using the 

selected optical coefficients for Farrell’s model (average success rate of 92.4%) have 

been quite similar to those obtained using the GL selection (average success rate of 

93.4%), with both approaches yielding a similar percentage of well-classified decaying 

samples of 94.2% and the classification of sound samples being better for the GL 

selection, increasing from 90.6% to 92.5%. Therefore, the optimal sets of features for 

both profile modelling approaches have resulted in good classification results, with a 

percentage of well-classified samples above 90% for both classes despite the similarity 

between sound and decaying orange skin.  

 In the light of the results, the research paper presented in this chapter has laid the 

foundation for the future implementation of an automatic system based on LLBI capable 

of detecting decay in early stages. However, some issues should be taken into account 

for future setting-up on a commercial fruit sorter. For example, line lasers should be 

applied on rotating fruit in order to explore the whole surface of each fruit. In addition, 

imaging systems must be capable of taking images at several wavelengths 

simultaneously and at a fast speed. 

 Spectroscopy 

This section summarises the conclusions extracted from Part IV (Chapter 6), which has consisted 

of one research paper related to spectroscopy. This research paper has evaluated more thoroughly 

the feasibility of reflectance spectroscopy in the visible and NIR regions for the automatic 
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detection of decay caused by P. digitatum fungus in citrus fruit. For this purpose, this research has 

investigated and compared two different spectral ranges included in the visible and NIR regions 

in which the reflectance measurements have been acquired, as well as different spectral pre-

processing techniques, dimensionality estimators and manifold learning methods for 

dimensionality reduction, in terms of their classification performance for the decay detection 

problem. The specific conclusions drawn from Chapter 6 are the following: 

 In this research, reflectance spectra of sound and decaying surface parts of mandarin cv. 

‘Clemenvilla’ have been acquired in two different spectral regions, from 650 nm to 1050 

nm (visible-NIR) and from 1000 nm to 1700 nm (NIR), pointing to significant 

differences in spectra between sound and decaying skin for both spectral ranges, this fact 

suggesting the potential suitability of the spectral measurements for decay detection in 

subsequent classification tasks. 

 The effect of the inoculation procedure on the spectral measurements has been evaluated. 

To this end, the spectra of the two kinds of sound skin samples (sound skin close to the 

hole caused by the inoculation and sound skin further away from the hole) have been 

tested to check their similarity. As a result, the spectra have not presented significant 

differences between both kinds of sound skin for both spectral ranges, thus confirming 

that the inoculation process have not affected the measurements. In addition, although 

this statement has been made using measurements acquired with a spectroscopy system, 

it can be also extrapolated to the other optical technologies, this finding being of main 

interest for research on detecting decay in citrus fruit using optical techniques. 

 Some spectral pre-processing techniques aimed at scatter-correction have been 

investigated to remove possible noise from the measured spectra. In order to achieve 

better decay detection results, several manifold learning methods have been then used to 

transform the high-dimensional spectral data into meaningful representations of reduced 

dimensionality, this step being of particular interest in spectroscopy research due to the 

large amount of spectral data involved in this technology. Prior to dimensionality 

reduction, different methods for estimating the target dimensionality of the 

corresponding lower-dimensional data representations have been employed. The low-

dimensional data representations have been used as input feature vectors to discriminate 

between sound and decaying skin using a LDA classifier. In this sense, the spectral 

ranges (visible-NIR and NIR), the scatter-correction techniques (no pre-processing, 

MSC and SNV), the dimensionality estimators (EB, ML, CD and GMST) and the 

manifold learning methods for dimensionality reduction (PCA, FA and Sammon) have 

been evaluated and compared in terms of their classification performance 
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 For the spectra in the visible-NIR range, the maximum average success rate of 95.1% 

has been obtained by employing PCA on the uncorrected spectra, using the intrinsic 

dimensionality estimation provided by ML. In the case of the NIR range spectra, a 

maximum average success rate of 97.8% has been achieved by employing FA on the 

uncorrected spectra, using the intrinsic dimensionality estimation provided by ML or 

GMST. These results have indicated that, for both spectral ranges, the linear manifold 

learning techniques for dimensionality reduction (PCA and FA) have outperformed the 

non-linear technique (Sammon). Moreover, the spectra without scatter-correction have 

led to better classification results than the spectra pre-processed with MSC and SNV, 

since these techniques have probably removed important information for decay detection 

from the spectra, this fact suggesting that decaying process in citrus fruit may be more 

characterised by structural changes in fruit tissue, rather than changes in chemical 

composition. In addition, results have revealed that ML and GMST have estimated 

higher intrinsic dimensionalities than EB and ML, thus leading to better classifier 

performances. 

 The winner combination of techniques for the NIR spectra has provided better results 

than the winner combination corresponding to the visible-NIR spectra, with an increase 

in the average success rate from 95.1% to 97.8%. Furthermore, when using the NIR 

spectra, the percentage of well-classified samples has been improved for both skin 

classes, with the success rate increasing from 98.0% to 100.0% for sound samples and 

from 90.7% to 94.4% for decaying samples. However, the two optimal combinations of 

techniques obtained for the visible-NIR and NIR spectra have resulted in good 

classification results for the decay detection problem, with a percentage of well-

classified samples above 90% for both classes. 

 From all the obtained results, the research paper presented in Chapter 6 has shown the 

high potential of reflectance spectroscopy in the visible and NIR regions for detecting 

decay in citrus fruit, thus laying the foundation for the future development of an 

automatic system based on this technology. However, despite the optimistic results, 

further research on spectroscopy technology is still needed before its commercial 

application. Moreover, some issues should be taken into account for future setting-up of 

this technology on a commercial sorter. For example, spectrophotometers should be 

applied on rotating fruit in order to explore the whole surface of each fruit. 
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7.3. Future research work 

This doctoral thesis has presented advances in the field of the automatic detection of decay in 

citrus fruit using optical systems and machine learning methods. However, further investigation 

is still needed for the future establishment of the explored optical technologies, coupled with the 

suggested machine learning techniques, on a real-time fruit sorter. In this sense, several research 

lines regarded as the logical continuation of the research work presented in this doctoral thesis are 

enumerated as follows: 

 The methodology proposed for each of the investigated optical techniques to detect 

decay in citrus fruit has been applied only to a limited number of cultivars of citrus fruit. 

Therefore, a natural way to continue the research line started in this doctoral thesis would 

be to test the efficiency of the use of the different optical measurements, coupled with 

the suggested multivariate techniques, over a wider range of citrus fruit cultivars with 

great economic importance for the agro-food industry. In this sense, a new research work 

on decay detection in citrus fruit has been recently started in the Computer Vision 

Laboratory at the IVIA. In particular, optical measurements of eight different cultivars 

of citrus fruit, including several cultivars of oranges and mandarins, have been acquired 

using the same hyperspectral vision system and the same spectroscopy system as those 

employed in this doctoral thesis. 

 In addition to evolving decay lesions caused by fungi, future research on spectroscopy 

and backscattering imaging should also take into account other common defects 

appearing in citrus fruit (e.g. oleocellosis, scars caused by branch frictions and chilling 

injury), similarly to that done in the feature selection methodology using hyperspectral 

images proposed in this doctoral thesis. The inclusion of more external defects would 

enable the automatic separation of citrus fruit into different commercial categories 

according to the kind of defect appearing on the fruit surface, thus avoiding the economic 

losses associated with the removal of fruit affected only by cosmetic defects, which do 

not affect the organoleptic properties.  

 An aspect to be taken into account in further research on backscattering imaging is the 

influence of the shape of citrus fruit on the measurement of actual reflectance intensities. 

In this doctoral thesis, backscattering images have been treated as if surface of citrus 

fruit was approximately flat, instead of spherical, and, therefore, no corrections have 

been applied on the images in order to take into consideration the effect of the shape. 

However, due to the curvature of the fruit surface, the reflectance captured by the 



 
7. Conclusions and future work 

145 
 

imaging system for a location at the fruit surface away from the light incident point tends 

to underestimate the actual light intensity for that location. Therefore, in order to achieve 

higher classification performance for decay detection in citrus fruit, correction of the 

backscattering images would be needed to reduce the degradation of light intensity from 

the centre to the borders of the images, similarly to that done with the hyperspectral 

images in this doctoral thesis. In this sense, some method based on Lambert’s cosine law 

could be used for correcting the undesirable effect produced by the curvature of citrus 

fruit on backscattering images, such as those described in Peng and Lu (2006b) and Qing 

et al. (2007). 

 The different pieces of research conducted in this doctoral thesis have provided 

methodologies to classify only a particular part of the surface of citrus fruit as being 

either decaying or sound (e.g. spatial region of the fruit surface corresponding to a pixel 

in the case of hyperspectral imaging). However, in order to ensure absolute absence of 

infected fruit, it would be interesting to develop a methodology for classifying each piece 

of fruit as a whole from the different optical measurements obtained after examining the 

whole fruit surface. In theory, since decay lesions evolve over the time, even though 

only a small surface part of a fruit was suspected of presenting decay, the fruit as a whole 

should be considered to be infected and, consequently, removed automatically from the 

commercial line in order to prevent the spread of the fungal infections. However, due to 

the fact that the classification performed by the machine learning methods is not a totally 

accurate process, the possibility of classification errors must be taken into account when 

developing the fruit classifier that will decide whether the fruit should be removed or 

not. In this sense, a possible idea could be the establishment of a reasonable minimum 

limit of the amount of decaying surface, with respect to the total fruit area, required to 

classify a fruit as infected. Therefore, only if the infected area of a fruit exceeded this 

limit, the fruit would be classified as an infected fruit. 

 The present doctoral thesis has proposed particular wavelengths important for the decay 

detection in citrus fruit using different optical techniques. However, the different 

research works in this thesis have suggested slightly different sets of wavelengths for the 

same problem. This is probably due to the fact that the results are usually dependent on 

the cultivar, the optical techniques, the laboratory conditions (e.g. lighting and 

calibration) and the machine learning techniques. In this respect, an important challenge 

to be addressed in future research is to relate the selected wavelengths to internal 

compounds or physical-chemical properties that could thus support and justify the results 

from the point of view of the product. Although the physical approach used to 
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characterise the backscattering profiles in this doctoral thesis has attempted the 

extraction of more knowledge about the underlying absorption and scattering properties 

associated with decaying process in citrus fruit, destructive physical-chemical analyses 

are still required to find out the real changes in chemical composition more thoroughly. 

In this sense, the increasing interdisciplinary nature of research groups offers the 

possibility of combining genetic, biological and physiological knowledge with optical 

research, thus facilitating the advance towards integrated solutions for the fruit and 

vegetable industry. In fact, a research work is being currently conducted in collaboration 

with the Agro-food Technology Department of the Miguel Hernández University of 

Elche (UMH) in order to determine physical-chemical properties of citrus fruit during 

decaying process by means of analytical techniques such as gas chromatography-mass 

spectrometry (GC-MS) and high performance liquid chromatography (HPLC). In the 

framework of this research, some preliminary tests on sound and decaying skin samples 

of several cultivars of citrus fruit have shown some evidence of changes in chemical 

composition occurring during the decaying process. Therefore, in the near future, the 

existing relationships between the associated biological processes and the wavelengths 

selected using the different optical technologies may be found. 

 Although this doctoral thesis has shown the feasibility of different optical techniques for 

detecting decay in citrus fruit by means of several pieces of research, comparison of the 

optical techniques has not been carried out. This has been due to the fact that direct 

comparison of the results from the different experiments is inappropriate because the 

measured values could be influenced by aspects such as the cultivar of citrus fruit or the 

laboratory conditions. In this sense, a further step in the framework of this research line 

would be to conduct a general experiment that use the three optical technologies at the 

same time on the same samples of citrus fruit, trying to homogenise the laboratory 

conditions for all technologies as much as possible, thus making it possible to compare 

the different optical techniques in terms of their classification performance for the decay 

detection problem. This future research should overcome a problem such as the difficulty 

for a research group of managing to gather the three different optical systems at the same 

laboratory. 

 The most important challenge that should be faced in future research is certainly the 

development of a prototype for in-line real-world tests based on each of the studied 

optical technologies, coupled with the suggested machine learning methods, as early 

introduced in Section 7.1. The performance of the resulting prototypes for decay 

detection in citrus fruit should be evaluated in terms of quality fulfilments, speed and 
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robustness to check if these developing automatic systems are comparable to actual 

inspection systems used in the agro-food industry. In particular, a multispectral vision 

system suitable for real-time inspection could be implemented using the particular set of 

wavelengths selected using hyperspectral imaging, as a result of the research conducted 

in this doctoral thesis, coupled with the steady development of multispectral systems. In 

the case of spectroscopy, similarly to multispectral imaging, the technological progress 

has led to the development of spectroscopy systems with high acquisition speed used in 

the agro-food industry for real-time sorting of products according to their quality, which 

could be also employed for the detection of decay. However, a few issues should be 

considered for the specific application of optical systems for decay detection in citrus 

fruit, such as the rotation of fruit in order to inspect the whole fruit surface. In addition, 

in the case of backscattering imaging, since LLBI systems are less developed than 

multispectral vision systems and spectroscopy systems, still much more advances in 

equipment are required for the future implementation of LLBI systems that assess fruit 

quality. For example, future LLBI systems must be capable of taking images at several 

wavelengths simultaneously and at a faster speed, thus making it easier to incorporate 

this technology into an industry demanding real-time inspection. Moreover, instead of 

point lasers, perhaps line lasers should be applied on fruit in order to facilitate the 

inspection of the whole surface. In general, the incorporation of these optical 

technologies in the citrus industry with the aim of detecting decay is quite promising, 

due not only to continuous technological advances in optical systems leading to an 

increase in the acquisition speed, but also to the constant reduction in the price of 

equipment, as well as to the increasing computational capacity that will facilitate the 

real-time analysis of the optical measurements by means of machine learning methods. 

7.4. Scientific publications related to the doctoral thesis 

In the research stage associated with this doctoral thesis during the period 2010-2014, several 

scientific results have been produced, thus leading to publications in the research field of this 

thesis. Among these publications, those directly derived from the research results presented in this 

thesis report, with the author of this doctoral thesis as the first author, should be highlighted. 

In addition to the publications directly arising from the results here presented, the knowledge 

acquired during these years has led to collaborations in other important publications related to the 

field of the automatic quality inspection of agricultural products using the optical techniques 
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analysed in this thesis report, among others, and machine learning methods. These research 

publications have been focused not only on decay detection in citrus fruit, but also on the 

assessment of other quality parameters in other agricultural products. Furthermore, machine 

learning methods different from those used in this thesis report have been also employed in these 

publications. 

The following sections list all the scientific publications related to this doctoral thesis in 

chronological order, including those directly derived from the scientific results presented in this 

thesis report and those co-authored during the research stage associated with the doctoral studies, 

but not directly emerged from the results here presented. 

 Publications in international journals indexed in the JCR 

 Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., 

Blasco, J., 2012. Recent advances and applications of hyperspectral imaging for fruit 

and vegetable quality assessment. Food and Bioprocess Technology, 5, 1121-1142. 

 Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., Blasco, J., 2013. Selection of 

optimal wavelength features for decay detection in citrus fruit using the ROC curve and 

neural networks. Food and Bioprocess Technology, 6, 530-541. 

 Gómez-Sanchis, J., Blasco, J., Soria-Olivas, E., Lorente, D., Escandell-Montero, P., 

Martínez-Martínez, J.M., Martínez-Sober, M., Aleixos, N., 2013. Hyperspectral LCTF-

based system for classification of decay in mandarins caused by Penicillium digitatum 

and Penicillium italicum using the most relevant bands and non-linear classifiers. 

Postharvest Biology and Technology, 82, 76-86.  

 Lorente, D., Blasco, J., Serrano, A.J., Soria-Olivas, E., Aleixos, N., Gómez-Sanchis, J., 

2013. Comparison of ROC feature selection method for the detection of decay in citrus 

fruit using hyperspectral images. Food and Bioprocess Technology, 6, 3613-3619.  

 Lorente, D., Zude, M., Regen, C., Palou, L., Gómez-Sanchis, J., Blasco, J., 2013. Early 

decay detection in citrus fruit using laser-light backscattering imaging. Postharvest 

Biology and Technology, 86, 424-430. 

 Gómez-Sanchis, J., Lorente, D., Soria-Olivas, E., Aleixos, N., Cubero, S., Blasco, J., 

2014. Development of a hyperspectral computer vision system based on two liquid 

crystal tuneable filters for fruit inspection. Application to detect citrus fruits decay. Food 

and Bioprocess Technology, 7, 1047-1056.  
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 Vélez-Rivera, N., Gómez-Sanchis, J., Chanona-Pérez, J., Carrasco, J.J., Millán-Giraldo, 

M., Lorente, D., Cubero, S., Blasco, J., 2014. Early detection of mechanical damage in 

mango using NIR hyperspectral images and machine learning. Biosystems Engineering, 

122, 91-98.  

 Book chapters  

 Blasco, J., Aleixos, N., Cubero, S., Lorente, D., 2012. Fruit, vegetable and nut quality 

evaluation and control using computer vision. In: Sun, D.W. (Ed.), Computer vision 

technology in the food and beverage industries. Woodhead Publishing, Cambridge, UK, 

pp. 379-399.   

 Blasco, J., Aleixos, N., Cubero, S., Albert, F., Lorente, D., Gómez-Sanchis, J., 2012. 

In-line sorting of processed fruit using computer vision. Application to the inspection of 

satsuma segments and pomegranate arils. In: Magdalena-Benedito, R., Martínez-Sober, 

M., Martínez-Martínez, J.M., Escandell-Montero, P., Vila-Francés, J. (Eds.), Intelligent 

data analysis for real-life applications: theory and practice. IGI Global, Hershey, USA, 

pp. 124-145.   

 Gómez-Sanchis, J., Soria-Olivas, E., Lorente-Garrido, D., Martínez-Martínez, J.M., 

Escandell-Montero, P., Guimerá-Tomás, J., Blasco, J., 2012. Decay detection in citrus 

fruits using hyperspectral computer vision. In: Magdalena-Benedito, R., Martínez-

Sober, M., Martínez-Martínez, J.M., Escandell-Montero, P., Vila-Francés, J. (Eds.), 

Intelligent data analysis for real-life applications: theory and practice. IGI Global, 

Hershey, USA, pp. 104-123. 

 Communications in conferences 

 Lorente, D., Gómez-Sanchis, J., Aleixos, N., Cubero, S., García-Navarrete, O.L., 

Serrano, A., Soria, E., Blasco, J., 2011. Uso de la curva ROC para la selección de 

longitudes de onda óptimas en la detección de podredumbres de cítricos. In: VI Congreso 

Ibérico de Agroingeniería, September 2011, Évora, Portugal. Best Communication 

Award. 

 Gómez-Sanchis, J., Lorente, D., Aleixos, N., Martínez-Martínez, J.M., Escandell-

Montero, P., Vila-Francés, J., Blasco, J., 2012. Detección automática de podredumbres 

en cítricos mediante técnicas de aprendizaje automático y visión hiperespectral. In: VIII 
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Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB), 

February 2012, Albacete, Spain, Proceedings, pp. 645-650. 

 Lorente, D., Gómez-Sanchis, J., Aleixos, N., Cubero, S., García-Navarrete, O.L., 

Serrano, A., Soria, E., Blasco, J., 2012. Selection of optimal wavelength features for 

decay detection in citrus fruit using the ROC curve. In: IV International Workshop on 

Computer Image Analysis in Agriculture, July 2012, Valencia, Spain. 

 Blasco, J., Aleixos, N., Cubero, S., Lorente, D., 2012. Computer vision systems for the 

nondestructive quality evaluation of agricultural products: techniques and applications. 

In: The 8th International Workshop on Nondestructive Quality Evaluation of 

Agricultural, Livestock and Fishery Products, November 2012, Taipei, Taiwan, 

Proceedings, pp. 3-34.  

 Lorente, D., Blasco, J., Zude, M., 2013. Automatische erkennung on verderb bei 

citrusfrüchten mit bildgebender, multispektraler rückstreumessung. In: 19 Workshop 

Computer-Bildanalyse in der Landwirtschaft, May 2013, Berlin, Germany. 

 Blasco, J., Aleixos, N., Cubero, S., Lorente, D., 2013. Automatic inspection of the 

quality of the citrus production using computer vision. In: II International Workshop on 

Multivariate Image Analysis, May 2013, Valencia, Spain, Book of abstracts, pp. 13-26. 

 Lorente, D., Zude, M., Gómez-Sanchis, J., Regen, C., Blasco, J., 2013. Detección de 

podredumbres en cítricos mediante análisis de imágenes backscattering. In: VII 

Congreso Ibérico de Agroingeniería y Ciencias Hortícolas, August 2013, Madrid, Spain, 

Book of abstracts, p. 48. 

 Vélez-Rivera, N., Carrasco, J.J., Chanona-Pérez, J., Lorente, D., Gómez-Sanchis, J., 

Millán-Giraldo, M., Farrera, R., Blasco, J., 2013. Detección de daños no perceptibles en 

frutos climatéricos a través del análisis de imágenes hiperespectrales. In: VII Congreso 

Ibérico de Agroingeniería y Ciencias Hortícolas, August 2013, Madrid, Spain, Book of 

abstracts, p. 50. 

 Vélez-Rivera, N., Carrasco, J.J., Chanona-Pérez, J., Cardenas-Pérez, S., Lorente, D., 

Gómez-Sanchis, J., Millán-Giraldo, M., Farrera, R., Blasco, J., 2013. Unnoticeable 

damage detection in climacteric fruit via hyperspectral imaging. In: 8th CIGR 

International Technical Symposium – Section VI “Advanced Food Processing and 

Quality Management”, November 2013, Guangzhou, China. 

 Cubero, S., Alegre, S., Aleixos, N., Lorente, D., Blasco, J., 2013. Autonomous 

computer vision system for outdoors quality inspection and sorting of fruit after 
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harvesting. In: 8th CIGR International Technical Symposium – Section VI “Advanced 

Food Processing and Quality Management”, November 2013, Guangzhou, China. 

 Frutos, M.J., Wojdylo, A., Carbonell-Barrachina, A.A., Hernández-Herrero, J.A., 

Pastor, J.J., Lorente-Garrido, D., Blasco, J., 2014. Characterization of flavonoids and 

antioxidant activity in Citrus peels as a commercial source of bioactive compounds. In: 

International Conference of the Institute of Food Technologists (IFT14), June 2014, New 

Orleans, LA, USA. 

 Lorente, D., Zude, M., Regen, C., Juste, F., Gómez-Sanchis, J., Blasco, J., 2014. 

Detection of decay in citrus fruit using absorption and scattering properties. In: 

International Conference on Agricultural Engineering (AgEng 2014), July 2014, Zurich, 

Switzerland. 

 Cubero, S., Alegre, S., Aleixos, N., Lorente, D., Blasco, J., 2014. Autonomous 

computer vision system for quality grading of fruit on mobile platforms. In: Applications 

of Computer Image Analysis and Spectroscopy in Agriculture, July 2014, Montreal, QC, 

Canada.  

 Lorente, D., Gómez-Sanchis, J., Aleixos, N., Cubero, S., Blasco, J., 2014. Hyperspectral 

system based on two liquid cristal tuneable filters for early detection of citrus fruits 

decay. In: 5th IASIM Conference in Spectral Imaging, December 2014, Rome, Italy, 

Book of abstracts, p. 39. 

 Publications in scientific divulgation journals 

 Lorente, D., Cubero, S., Blasco, J., Zude, M., Regen, C., Palou, L., Gómez-Sanchis, J., 

2013. Detección automática de podredumbres en cítricos mediante análisis de imágenes 

backscattering. Horticultura, 309, 88-92.  

 Blasco, J., Mellado, M., Aleixos, N., Frutos, M.J., Talens, P., Ortiz, C., Cubero, S., 

Pastor, J., Blanes, C., Carbonell, A., Albert, F., Lorente, D., 2014. Técnicas avanzadas 

de inspección y manipulación aplicadas a la determinación automática de la calidad y 

seguridad de la producción agroalimentaria. Levante Agrícola, 422, 156-160.  
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Abstract Early automatic detection of fungal infections in
post-harvest citrus fruits is especially important for the
citrus industry because only a few infected fruits can spread
the infection to a whole batch during operations such as
storage or exportation, thus causing great economic losses.
Nowadays, this detection is carried out manually by trained
workers illuminating the fruit with dangerous ultraviolet
lighting. The use of hyperspectral imaging systems makes it
possible to advance in the development of systems capable
of carrying out this detection process automatically.
However, these systems present the disadvantage of
generating a huge amount of data, which must be selected
in order to achieve a result that is useful to the sector. This
work proposes a methodology to select features in multi-
class classification problems using the receiver operating
characteristic curve, in order to detect rottenness in citrus
fruits by means of hyperspectral images. The classifier used
is a multilayer perceptron, trained with a new learning

algorithm called extreme learning machine. The results are
obtained using images of mandarins with the pixels labelled
in five different classes: two kinds of sound skin, two kinds
of decay and scars. This method yields a reduced set of
features and a classification success rate of around 89%.

Keywords Computer vision . Citrus fruits . Decay .

Non-destructive inspection . Hyperspectral imaging .

ROC curve

Introduction

Decay pathogens can enter fruit through wounds sustained
during harvesting. This implies that the pathogen is already
in the fruit before any treatment is applied in post-harvest
(Obagwu and Korsten 2003). Early detection of fungal
infections in citrus fruits is especially important in packing-
houses because a very small number of infected fruits can
spread the infection to a whole batch, thus causing great
economic losses and affecting further operations, such as
storage and transport. The most important post-harvest
damage in citrus packinghouses is caused by Penicillium
sp. fungi (Eckert and Eaks 1989). Nowadays, the detection
of rotten fruit on citrus packing lines is carried out visually
under dangerous ultraviolet (UV) illumination, and decay
fruits are removed manually. This procedure, however, may
be harmful for operators and operationally inefficient, since
they must work in shifts of just a few hours. This rate of
staff rotation affects the assessment of the quality. A
possible solution arises from the use of automatic machine
vision systems.

Computer vision has become widely used to automate
the inspection of all different types of food commodities
like meat (Du and Sun 2009), fish (Quevedo and Aguilera
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2010; Quevedo et al. 2010), bakery products (Farrera-
Rebollo et al. 2011), grains (Manickavasagan et al. 2010) or
fruits (Karimi et al. 2009). In most cases, its use is aimed at
the inspection of external features related with quality, such
as size, shape, colour or the presence of damage (Cubero et
al. 2011). The use of technology based on colour cameras
for the detection of external damage of citrus is currently
under research. Kim et al. (2009) used colour texture
features based on HSI and colour co-occurrence method to
detect peel diseases in grapefruit. López-García et al.
(2010) used multivariate image analysis with the same
objective in citrus fruits. However, some defects, like decay
or freeze damage, are very difficult to detect using standard
artificial vision systems since they are hardly visible to the
human eye and, consequently, by standard red–green–blue
(RGB) cameras Blasco et al. (2007). Therefore, different
technologies have to be incorporated, such as the use of
UV-induced fluorescence (Slaughter et al. 2008; Obenland
et al. 2009). In an attempt to automate the current manual
tasks of detection of decay, Blanc et al. (2009, 2010)
patented an automatic machine for decay detection using
UV illumination, and Kurita et al. (2009) developed an
inspection system based on simultaneous visible and UV
illumination using light-emitting diodes. However, it would
be desirable to avoid the use of UV radiation in these tasks
which could be achieved by finding out particular wave-
lengths in the visible or near-infrared (NIR) part of the
electromagnetic spectrum.

Images acquired in visible and NIR simultaneously were
used to detect different types of damage in citrus fruits by
Aleixos et al. (2002) and more recently by Blanc et al.
(2009), who attempted to detect common external defects
and diseases, including decay, by combining NIR, visible
and also UV-induced fluorescence. In this sense, the recent
introduction of hyperspectral sensors for the inspection of
food (Sun 2010) makes it possible to carry out a more
precise analysis of the problem by acquiring images for
specific ranges of wavelengths to detect features non-
visible features or to select particular sets of some wave-
lengths related to important physical properties, as indicated
in the review of Lorente et al. (2011).

Using spectroscopy, Gaffney (1973) found that different
external defects on citrus fruits have different spectral
signatures, stated later in the review of Magwaza et al.
(2011), which can lead to the selection of certain sets of
wavelengths that facilitate the detection of particularly
dangerous defects such as canker (Balasundaram et al.
2009). However, in real life, it is not enough just to
distinguish between fruit affected by serious diseases and
sound fruit. It is important to develop systems capable of
separating also produce affected by scars on the rind, or
other external defects that only downgrade the quality of
the fruit but do not spread among other fruits and do not

prevent its marketing in domestic markets Blasco et al.
(2009). If they are not taken into account, these cosmetic
defects may be confused with the dangerous by an
automatic system. Qin et al. (2009) used a hyperspectral
system with sensitivity in the range 450–930 nm to detect
different kinds of damage that affect the skin of citrus, with
particular attention being paid to the detection of canker
from other common defects. However, one of the main
problems of these systems is the huge amount of data
generated (Gómez-Sanchis et al. 2008a).

While a standard RGB image is composed of three
images corresponding to the red, green and blue bands, a
hyperspectral image consists of a set of monochromatic,
narrow-band images that increases the complexity of the
analysis and requires more computing time to analyse them
with an automatic system, which prevent its use in real-time
in-line inspection system. For this reason, it is very
important to select only those bands with the most relevant
information, while discarding those that do not contribute
in any significant way to improve the results. With the aim
of detecting different defects on the skin of oranges using a
hyperspectral system, Li et al. (2011) used principal
component analysis (PCA) to select two sets of six and
three optimal wavelengths and later applied PCA and band
ratios to detect the defects in these multispectral images.

Generally, statistical methods to reduce dimensionality
and select features can be divided into wrapper and filter
methods (Guyon and Elisseeff 2003). Filter methods use an
indirect measure of the quality of the selected features (e.g.
by evaluating the correlation function between each input
feature and the dependent variable—class—of the classifi-
cation problem), obtaining a faster convergence of the
selection algorithm. On the other hand, the selection criteria
used by wrapper methods are the goodness of fit between
the inputs and the output provided by the learning machine
under consideration, like, for example, a neural network.
Within these methods, a traditional measure for evaluating
classifiers is the classification success rate. However, a
more suitable way of measuring the quality of a classifier is
the area under the receiver operating characteristic (ROC)
curve, which is the measure used in the feature selection
method proposed in this work. Basic concepts related to
classification models are first reviewed for a better
understanding of the ROC curve as feature selection
method. The ROC curve is a graphical plot of the true
positive rate vs. false positive rate for a binary classifier, as
its discrimination threshold is varied, this value being
defined as that from which a positive class prediction is
made (Fawcett 2006). The area under the ROC curve
(AUC) is used as a global measure of classifier perfor-
mance that is invariant to the classifier discrimination
threshold and the class distribution (Bradley 1997). Max-
imum classification accuracy corresponds to an AUC value
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of 1, while a random guess separation involves a minimum
AUC value of 0.5.

With regard to classification methods, because of their
flexibility and the possibility of working with unstructured
and complex data like that obtained from biological
products, artificial neural networks (ANN) have been
applied in almost every aspect of food science, and it is a
useful tool for performing food safety and quality analyses.
For instance, a combination of principal components
analysis and ANN was used by Bennedsen et al. (2007)
to detect surface defects on apples. Unay and Gosselin
(2006) used a multilayer perceptron (MLP) as a promising
technique for segmenting surface defects on apples. Ariana
et al. (2006) presented an integrated approach using
multispectral imaging in reflectance and fluorescence
modes to acquire images of three varieties using two
ANN-based classification schemes (binary and multi-class).
In the case of citrus fruits, Kondo et al. (2000) used, among
other methods, ANN to detect some external and internal
features in oranges while Gómez-Sanchis et al. (2012) used
minimum redundancy maximum relevance as feature
selection method and MLP for pixel classification to detect
rottenness in mandarins.

This paper advances in the automatic detection of a
dangerous post-harvest disease of citrus fruits, such as
fungal decay, and to distinguish fruit with symptoms of
decay from sound fruit and affected by minor defects. A
feature selection methodology that expands the use of the
ROC curve to multi-class classification problems is
proposed. This methodology has been applied to the
selection of an optimal set of features that are effective in
the detection of common defects and decay in citrus fruits
using hyperspectral images.

In particular, we have used computer vision for detection
of two dangerous types of decay caused by Penicillium
digitatum Sacc (green mould) and Penicillium italicum
Wehmer (blue mould) because these pathogens occur in
almost all regions of the world where citrus is grown and
cause serious post-harvest losses annually (Palou et al.
2001). Furthermore, in order to explore the possibilities of
the ROC method as a technique for selecting important
wavelengths in fruit inspection, we used an ANN-based
classifier trained with a new learning algorithm called
extreme learning machine (ELM; Huang et al. 2006).

Feature Selection Methodology

Imaging System

In this work, a hyperspectral vision system based on liquid
crystal tunable filters (LCTF) was employed. The set of
monochrome images acquired by this system makes up a

hyperspectral image from which spatial as well as spectral
information can be obtained about the scene. A hyper-
spectral image can be interpreted as a hypercube, in which
two dimensions are spatial (pixels) and the third is the
spectrum of each pixel. The system consists of a mono-
chrome camera (CoolSNAP ES, Photometrics) with a high
level of sensitivity between 320 and 1,020 nm. It was set to
acquire 551×551 pixel images with a resolution of
3.75 pixels/mm. The camera transfers the images to a
computer by means of a proprietary frame grabber based on
PCI technology. The computer employed is based on a
Pentium 4 processor with 1 Gb of random access memory.
A lens capable of providing a uniform focus between 400
and 1,000 nm was chosen for use with the system
(Xenoplan 1.4/17MM, Schneider).

Two LCTF were used, one sensitive to the visible
between 400 and 720 nm (Varispec VIS07, CRI Inc) and
one sensitive to NIR in the 650- to 1,100-nm range
(Varispec NIR07, CRI Inc). Each fruit was illuminated
individually by indirect light from 12 halogen lamps
(20 W) inside an aluminium hemispherical diffuser in order
to provide good spectral efficiency in the visible and NIR.
The lamps were powered by a stabilised power supply
(12 V/DC 350 W). Because the sum of efficiencies of the
filter, camera and illumination system is different across the
selected wavelengths, the acquisition software was
programmed to correct the integration time for each
particular band that is acquired. Hence, these differences
in the efficiency of the filter for each band are offset by
calculating the particular integration time for each image in
each wavelength using a white reference, so that the
spectral response of the system is flat over the whole
spectral range.

The filters were placed just in front of the camera lens.
One of the main problems arose when it came to changing
between visible and infrared filters, since the camera
could move when handling the filters, which made it
difficult to acquire the exactly same scene with both
filters. This problem was solved by designing and
installing a system to hold and guide the filters. The two
filters were fitted to the support and move on a sliding
mechanism, thus allowing each filter to be set in the right
place without handling the camera. The arrangement of
the image acquisition system inside the inspection cham-
ber is shown in Figure 1.

Fruit Used in the Experiments

The experiments were carried out using mandarins cv.
Clemenules (Citrus clementina Hort. ex Tanaka) with two
kinds of defects: (1) minor defects represented by external
scars affecting only the appearance of the fruit and (2)
serious diseases that can spread to other fruits caused by
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two different fungi; P. digitatum and P. italicum. The fruits
affected by the first type of defects were chosen at random
from the packing line of a trading company. On the other
hand, damage produced by fungi was caused artificially in
sound fruits using an inoculation of spores.

A total of 240 fruits were used: 60 sound fruits, 60
presenting external scars, 60 inoculated with spores of P.
digitatum and 60 inoculated with spores of P. italicum. The
inoculation was performed using a suspension of spores
with a concentration of 106 spores/ml for both fungi, which
is sufficient to cause infestation in laboratory conditions
(Palou et al. 2001). From the point of view of the post-
harvest, it is probably not important to differentiate between
both types of decay. However, in this paper, this distinction
has been made to test the potential of this method to
discriminate between defects that are virtually identical in
their early stages to the naked human eye. The fruits were
stored for 3 days in a controlled environment at 25 °C and
99% relative humidity. After this period, all the inoculated
fruits presented a characteristic patch of rottenness with a
diameter between 10 and 35 mm. While rind scars are
clearly visible, the colour of rotten skin is similar to the
colour of the sound skin around it, thus making it difficult
for a human inspector to detect it.

The images were acquired by placing the fruit manually
in the inspection chamber and then presenting the damage
to the camera. A total of 240 hyperspectral images were
acquired from 460 to 1,020 nm, with a spectral resolution
of 10 nm. The hyperspectral image was therefore composed
of 57 monochrome images of each fruit, which gives a total
number of 13,680 monochrome images. The analysis of
images started by correcting the effects of illumination on
spherical fruits following the methodology described in
Gómez-Sanchis et al. (2008b). Then, in order to separate
the fruit from the background in the image, the hyper-
spectral images were pre-processed using masking. The
mask was created by thresholding the fruit image at

650 nm, since images at this wavelength provided the best
contrast between fruit and background.

Figure 2 shows the RGB images of four fruits
corresponding to a sound fruit, a fruit with scars on the
rind, a fruit infected by P. digitatum and a fruit infected by
P. italicum, respectively, from top to bottom. The adjoining
columns show example images of the same fruits acquired
at 530, 640, 740 and 910 nm, respectively. These images
were chosen at different wavelengths just to have an overall
impression of what could be seen in hyperspectral images
but not necessarily used in the experiments. In the RGB
images, the damage caused by fungi is hardly visible to the
naked human eye.

Labelled Set

In supervised classification, there is a set of n labelled
samples, {xi, yi}i=1..n, where xi represents the m-dimensional
feature vector for the ith pixel with label yi. Here, m
represents the spectral bands and spectral indexes, and y
defines the universe of all possible labelled classes in the
image. In this work, the supervised nature of the problem
presented here required the construction of a labelled data
set, consisting of m=74 features associated to each pixel,
specifically 57 purely spectral variables (reflectance level of
the pixel for each acquired band) and 17 spectral indexes
calculated by combining several reflectance values, as shown
in Table 1. The spectral indexes were used to know if any of
them could improve the decay detection in comparison to the
use of only purely spectral variables. In order to build this
labelled set, n=143,095 pixels were selected manually, and
then a human expert assigned them to one of the five classes
considered in this work: green sound skin (GS), orange
sound skin (OS), defective skin by scars (SC), decay caused
by P. digitatum (PD) and decay caused by P. italicum (PI).
Each sample pattern is therefore composed of 74 features
and a class label. A background class was not included, since
the background pixels were segmented earlier in the pre-
processing step.

The labelled set was divided into a training set of 35,774
samples (25% of the total), a validation set of 35,774
samples (25% of the total) and a test set of 71,547 samples
(50% of the total). The first two sets were used to build the
proposed statistical methods of feature selection and
classification and the third one to evaluate classifier
performance. The choice of a huge number of pixels in
the test set was made in order to check the generalisation
capability of the models.

Feature Selection

The feature selection methodology proposed to expand
the use of the ROC curve to multi-class classification

Fig. 1 Scheme of the image acquisition system showing the
arrangement of the visible and near-infrared liquid crystal tunable
filters
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problems consists of two parts: (1) obtaining a ranking
of features ordered according to the discriminant
relevance of the features and (2) the choice of an
optimal number of features from the feature ranking.
Both this feature selection method and the classification
procedure used in this work were implemented using
Matlab 7.9 (Mathworks, Inc.).

Obtaining a Feature Ranking

The first step consists in obtaining a feature ranking for
each class. The ROC curve is intended for binary
classification problems. However, in this work, problems
with more than two classes are considered. Therefore, the
one vs. all (OVA) approach is employed to obtain a feature
ranking for each class, which maximises the separation
between that class and the others. The OVA structure
consists in assuming that the problem has only two classes:
a class from which the ranking is obtained and another class
grouping the remaining classes (Rifkin and Klautau 2004).
In order to obtain these partial rankings, several steps were
followed for each class, these steps being similar to the
ones used by Serrano et al. (2010) in binary classification
problems; the classifier is trained using all the features,
taking into account the OVA structure, that is, considering a
classification problem with only two classes. Then, the area
under the ROC curve is obtained for the classification
model using all features (AUC0). The following parameters
are obtained for each input feature xi:

& Area under the ROC curve for the classifier without
taking into account the effect of feature xi (AUCi). For
this purpose, when using the classifier, the feature xi is
assumed to be constant for every sample, xi=0.

& Discriminant relevance of feature xi (DRi), which is
defined as the difference between the area under the
ROC curve of the classifier using all the features
(AUC0) and the area without taking into account the
effect of feature xi (AUCi). This parameter indicates the
importance of a feature for the discrimination process
carried out by the classifier, considering that the higher
the discriminant relevance of a feature is, the more
discriminatory that feature will be.

& A z statistic of feature xi (zi) is calculated from the
discriminant relevance of feature xi (DRi), as shown in
Eq. 1:

zi ¼
AUC0 " AUCiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
0 þ SE2

i þ 2 $ r $ SE0 $ SEi

q ð1Þ

where SE0 and SEi are the standard errors of AUC0 and
AUCi, respectively, and ρ is the correlation between
AUC0 and AUCi. In this work, a feature is considered
to be relevant for the problem when its corresponding z
value exceeds 95%, this level being chosen empirically.

Features in each ranking are ordered according to the
contribution each of them makes to the discriminant
capability of the classification process, and the input
features with the highest z values are considered the most
discriminatory features.

The second step consists in obtaining a global feature
ranking. After obtaining the partial rankings corresponding
to each class, the next step is to perform a single global
ranking that includes all the classes. The z values
corresponding to the rankings for each class are combined
by means of their weighted mean (Eq. 2), which assigns a
weight to each class in proportion to its relative importance

Fig. 2 RGB and monochrome
images (530, 640, 740 and
910 nm) of a sound mandarin
and mandarins with scars,
affected by P. digitatum and
affected by P. italicum
(from top to bottom)
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in the classification problem. Thus, the global relevance of
each feature is obtained, and then each input feature is ranked
according to its global relevance. The ranking thus obtained
maximises the global separation among all the classes.

zi ¼

PN

k¼1
zik $ wk

PN

k¼1
wk

ð2Þ

where zi is the global relevance of feature xi, N is the number
of different classes, zik is the z value of feature xi from the

partial ranking for the kth class and wk is the weight for the
kth class.

Choice of an Optimal Number of Features

In this stage, a minimum number of features leading to a
saturation trend in the success rate of classification are
chosen. The following steps are required to do this:

The initial step is to obtain the evolution of the success
rate of classification as a function of the number of
features. For this purpose, the classifier is trained using

Table 1 Spectral indexes used in this work as input features

Vegetative index Estimation Parameter values used
in this work

Reference

NDVI NDVI ¼ RNIR"RRED
RNIRþRRED

λNIR=800 nm Tucker (1979)
λRED=640 nm

Green NDVI.
Version I

Green NDVI I ¼ RGREEN"RRED
RGREENþRRED

λGREEN=550 nm Yang et al. (2007)
λRED=640 nm

Green NDVI.
Version II

Green NDVI II ¼ RNIR"RGREEN
RNIRþRGREEN

λNIR=800 nm Gitelson et al. (1996)
λGREEN=550 nm

WBI WBI ¼ R950 nm
R900 nm

Xu et al. (2007)

SAVI SAVI ¼ RNIR"RREDð Þ 1þLð Þ
RNIRþRREDþL λNIR=800 nm Yang et al. (2007)

λRED=640 nm

L=0.5

PRI PRI ¼ R531 nm"R570 nm
R531 nmþR570 nm

λ531 nm≈500 nm Huang et al. (2007)

RVSI RVSI ¼ R714 nmþR752 nm
2"R733 nm

λ714 nm≈710 nm Naidu et al. (2009)
λ752 nm≈750 nm

λ733 nm≈730 nm

MCARI MCARI ¼ R700 nm " R670 nmð Þ " 0:2 R700 nm " R550 nmð Þ½ ( ) R700 nm
R670 nm

Naidu et al. (2009)

VARI VARI ¼ RGREEN"RRED
RGREENþRRED"RBLUE

λGREEN=550 nm Naidu et al. (2009)
λRED=640 nm

λBLUE=480 nm

WI WI ¼ R900 nm
R970 nm

Naidu et al. (2009)

TCARI TCARI ¼ 3) R700 nm " R670 nmð Þ " 0:2 R700 nm " R550 nmð Þ½ ( ) R700 nm
R670 nm

Haboudane et al. (2002)

OSAVI OSAVI ¼ RNIR"RREDð Þ 1þ0:16ð Þ
RNIRþRREDþ0:16 λNIR=800 nm Rondeaux et al. (1996)

λRED=640 nm

CCI CCI ¼ a)1;000
L)b a, b and L are the

coordinates of the
CIELAB colour space

Jiménez-Cuesta et al. (1981)

Other indexes RNIR−RRED λNIR=800 nm Yang et al. (2007)
λRED=640 nm

RRED
RNIR

λNIR=800 nm Yang et al. (2007)
λRED=640 nm

RGREEN
RRED

λGREEN=550 nm Yang et al. (2007)
λRED=640 nm

RNIR
RRED

λNIR=800 nm Yang et al. (2007)
λRED=640 nm

Rλ is the reflectance value at band λ

NDVI normalised difference vegetation index, WBI water band index, SAVI soil-adjusted vegetation index, PRI photochemical reflectance index,
RVSI red-edge vegetation stress index, MCARI modified chlorophyll absorption in reflectance index, VARI visible atmospherically resistant index,
WI water index, TCARI transformed chlorophyll absorption in reflectance index, OSAVI optimised soil-adjusted vegetation index, CCI citrus
colour index
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the first feature of the global ranking and its success
rate is evaluated, this process is then repeated including
the next feature of the ranking and so on, until all the
features are employed sequentially. Then, the first
number of input features n satisfying the two conditions
in Eqs. 3 and 4 is chosen, where successn is the success
rate of classification using n features, successn+1 the
success rate with n+1 input features and so on.

successnþ1 " successn * 1% ð3Þ

successnþ2 " successnþ1 * 1% ð4Þ

Classifier

The classifier used to explore the possibilities of the
proposed feature selection methodology is a MLP with a
single hidden layer, which is the simplest kind of ANN.
However, the feature selection procedure is independent of
the chosen classification method. ANN is considered to be
a commonly used pattern recognition tool in hyperspectral
image processing because it is capable of handling a large
amount of heterogeneous data with considerable flexibility
and has non-linear properties (Plaza et al. 2009).

The most popular ANN is the MLP, which is a feed-
forward ANN model that maps sets of input data onto a set of
appropriate output and consists of multiple layers of nodes
(neurons) in a directed graph that is fully connected from one
layer to the next. In particular, the MLP used in this work has
an input layer, a single hidden layer and an output layer. MLP
can use a large variety of learning techniques, the most
popular being backpropagation, which is a supervised
learning method based on gradient descent in error that
propagates classification errors back through the network and
uses those errors to update parameters (Shih 2010). In these
classical learning methods, the parameters of the ANN are
normally tuned iteratively and thus entail several disadvan-
tages, such a high degree of slowness and convergence to
local minima. In order to avoid these problems, the MLP

used in this work was trained using ELM, which is a new
learning algorithm that determines the ANN parameters (not
the optimal architecture) analytically in a faster way instead
of tuning them iteratively. This increase of speed in the
learning algorithm is very important in order to search the
optimal features in our particular feature selection problem
using ROC curve. Moreover, this learning algorithm for
feed-forward neural networks with a single hidden layer, like
an MLP, provides good generalisation performance, as well
as an extremely fast learning speed (Huang et al. 2006).

Considering a set of n patterns, fxi; tigi¼1::n and M nodes
in the hidden layer, the MLP output for the ith sample is
given by Eq. 5, which is obtained in a straightforward way
taking into account the structure of an artificial neuron, as
well as the MLP structure (Fig. 3).

yi ¼
XM

j¼1

gðwj $ xiÞ $ bj ð5Þ

where wj is the weight vector connecting the jth hidden
node and the input nodes, βj is the weight vector connecting
the jth hidden node and the output nodes and g is an
activation function applied to the scalar product of the input
vector and the hidden layer weights.

Equation 6 can be written compactly in matrix notation
as y=G ·β, where β is the weight vector of the output layer
and G is given by:

G ¼
gðw1 $ x1Þ $ $ $ gðwM $ x1Þ

..

. . .
. ..

.

gðw1 $ xnÞ $ $ $ gðwM $ xnÞ

0

B@

1

CA ð6Þ

ELM proposes a random choice of the weights of the
hidden layer, wj, thus making it necessary only to determine
the weights of the output layer, β, analytically through
simple generalised inverse operation of the matrix G
according to the Eq. 7:

b ¼ Gy $ t ð7Þ

where Gy ¼ GT $ Gð Þ"1 $ GT is the Moore–Penrose gener-
alised inverse of matrix G (Rao and Mitra 1972), GT being
the transpose of matrix G.

... ...

x1

x2 y

xn

Input
layer

Hidden
layer

Output
layer

w

β

Σ
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w1

w2

wm

g

p1
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Figure 3 Structures of a
multilayer perceptron with a
single hidden layer (left) and an
example of artificial neuron
(right)
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An important issue in practical applications of ELM is
how to obtain an optimal number of the hidden nodes in the
network architecture in order to achieve a good generalisa-
tion performance when training a neural network. The
methodology used to select the optimum number of hidden
neurons was to estimate the classification success rate for
several models, obtained by varying the number of neurons
in the hidden layer (Huang et al. 2006). In a first step,
architectures with a variable number of hidden neurons
from 25 to 1,025 in increments of 100 elements were tested
in order to obtain the range of the architectures that fit
correctly the data maintaining the generalisation capabilities

of the model. These limits were set because networks that
are too small cannot model the data properly, while
networks that are too large may lead to overfitting (Prechelt
1996). Attending the curve of success rate, the optimum
range was selected between 75 and 225 neurons. In a
second step, architectures using 75 from 225 neurons were
tested selecting finally a MLP that used M=125 neurons in
the hidden layer and the sigmoid function as the activation
function (g). The classification success rate for the model
with 125 hidden neurons was 91.4%, while the success rate
for the model with 1,025 neurons was about 95.6%, thus
improving by only 4% while the training time burst.

Figure 4 The z statistic of the
74 input features for each of the
five classes: defects by scars on
the rind, green sound skin,
orange sound skin, decay
caused by P. digitatum and
decay caused by P. italicum.
Horizontal solid lines indicate
the limit at the 95% level
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Approaches to the Problem of Decay Detection

This work considers three different approaches to feature
selection in the problem of the detection of decay in
mandarins, depending on the number of classes involved in
the problem and the weight or importance of each class. The
typical problem involves the five classes described in the
labelled set, all of them having equal importance or weight.

The first approach considers five different classes of
similar importance in the classification problem. Therefore,
when obtaining the global relevance of each feature, the
weights of all the classes were considered to be equal. The
aim of this approach is to know the behaviour of the
method by considering a quality classification of the fruit,
which separates sound fruits from those that only contain
cosmetic effects that degrade the appearance and from
dangerous infections. However, it is reasonable to assume
that in the real world, the classes belonging to decaying
skin should be more important for the problem which is the
detection of decay.

Therefore, the approach II rests on the idea that the
problem has five classes of different importance in the
classification. To know the behaviour of the proposed
method to enhance the detection of these most important
cases, empirical weights were assigned to the classes in
Eq. 2, more importance being given to decay classes (wPD=
wPI=15), medium importance was given to the scar class
(wSC=5) and less to sound classes (wGS=wOS=1).

Moreover, decay is the disease whose detection is of
most importance and which has still not been solved by
automatic systems. Hence, since the actual aim of a
potential inspection system would be to detect decay, it is
also important to study the potential of the detection of just
infected fruit, which leads to a binary problem: the
separation between infected or not infected fruit (approach
III). Two classes were defined:

& Decay. This class includes the two kinds of decay
presented in this work: infection caused by P. digitatum
and by P. italicum

& Not decay. This class groups the remaining classes:
green sound skin, orange sound skin and scars

Results and Discussion

Feature Selection

Figure 4 shows the z statistic obtained for the 74 input
features for each of the five classes. This statistic gives the
same information as the variation in AUC. In addition, it
makes it possible to study whether an input feature is
discriminant or not.

After obtaining the z values of the input features for each
class, the global relevance of each feature was computed for
approaches I and II, considering five classes of similar
importance and five classes of different importance,
respectively. The resulting optimal number of features
according to the proposed mathematical criterion, shown
in Eqs. 3 and 4, is six for the first approaches and seven for
the second. Table 2 shows the set of selected features for
the first approach, as well as the correspondence between
these features and the spectral indexes or reflectance values
associated to them. Similarly, Table 3 shows the set of
selected features, ordered according to their importance in
the classification problem, for the second approach and the
correspondence between the selected input features and the
spectral indexes or reflectance values.

When comparing Tables 2 and 3, it can be noticed that
most of the input features are coincident in both sets, except
feature 16 for approach I and features 74 and 22 in the case
of approach II. This is due to the fact that these two features
are really important for the detection of pixels belonging to
the classes of decay, the highest weights being achieved
when the global value of z is obtained, as can be
straightforwardly seen from the z values for the P. italicum
class in Fig. 4.

Furthermore, feature 16 is not selected for the second
approach, while in the first approach it is. This is due to the

Table 3 Selected features and their correspondence with the spectral
bands or indexes for approach II

Input feature Spectral index or reflectance value

24 Reflectance at 690 nm

58 NDVI

27 Reflectance at 720 nm

50 Reflectance at 950 nm

10 Reflectance at 550 nm

74 CCI

22 Reflectance at 670 nm

NDVI normalised difference vegetation index, CCI citrus colour index

Table 2 Selected features and their correspondence with the spectral
bands or for approach I

Input feature Spectral index or reflectance value

24 Reflectance at 690 nm

10 Reflectance at 550 nm

58 NDVI

27 Reflectance at 720 nm

16 Reflectance at 610 nm

50 Reflectance at 950 nm

NDVI normalised difference vegetation index
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fact that, although this feature has a high level of
importance for the classification of pixels belonging to the
orange skin class, as shown in Fig. 4, it is considered of low
importance when obtaining the global relevance in the
second approach. In addition, a general conclusion drawn
from analysing the results for both approaches is that all the
selected features are important for at least one of the five
classes.

Finally, the z values were computed for the third
approach, which considers the classification problem to be
binary. Therefore, the z statistic values were obtained
directly without employing the OVA structure which is
only necessary in multi-class problems. The resulting
optimal number of features was chosen according to the
mathematical criterion shown in Eqs. 3 and 4, being a total
of four. Table 4 shows the selected features for the third
approach and the correspondence between these features
and the spectral indexes or reflectance values.

Classifier Performance Evaluation

The MLP classifier, trained with the ELM algorithm,
was evaluated using the selected features for each
approach to the problem on the test set of labelled
data. Table 5 shows the results for the first approach using
the set of six input features provided by the proposed
feature selection methodology. An average success rate of
87.5% is achieved with this approach, this parameter
being calculated as the sum of the elements on the main

diagonal of the obtained confusion matrix divided by the
number of classes.

For the second approach, the evaluation of pixel
classification using the set of seven optimal features leads
to the confusion matrix shown in Table 7. This approach
yields an average success rate of 89.1%.

When comparing the two confusion matrixes (Tables 5
and 6), it can be observed that the number of well-classified
pixels of decay classes (PD and PI) for the second approach is
greater than that obtained for the first approach. This is due to
the fact that these two classes were given the highest weight
when obtaining the global relevance for the second approach.
Moreover, in the second approach, the classification of pixels
with scars (SC) is improved, although to a lesser extent than
the classification of the PD and PI classes. It can also be
observed that the results for the classification of the sound
classes (GS and OS) hardly vary between the two approaches,
since these classes are considered of low importance when
obtaining the global relevance in the second approach.

Tables 5 and 6 show, in both cases, that the most
difficult task in the pixel classification problem is to
discriminate the PD class from the PI class, due to the
similarity of the damage caused by the two fungi. On the
other hand, the low percentage of sound pixels (GS and
OS) classified as rotten pixels (PD and PI) in both
approaches should also be highlighted. In practice, this is
of great importance since most confusion is done between
classes that could be grouped into the same category or
commercial importance such as decay (PD and PI) and
sound (GS and OS).

To conclude the comparison between approaches I and
II, from the results obtained, it can be said that the second

Table 4 Selected features and their correspondence with the spectral
indexes or reflectance values for approach III

Input feature Spectral index or reflectance value

23 Reflectance at 680 nm

60 Green NDVI, version II

28 Reflectance at 730 nm

15 Reflectance at 600 nm

NDVI normalised difference vegetation index

Table 5 Confusion matrix of the classification of pixels for
approach I

Prediction/reality GS (%) OS (%) SC (%) PD (%) PI (%)

Green skin 96.91 0.13 0.06 0.03 0.00

Orange skin 2.42 94.69 0.01 2.77 1.22

Scars 0.11 0.03 97.34 0.17 0.83

P. digitatum 0.33 3.02 1.49 74.43 23.93

P. italicum 0.23 2.14 1.10 22.60 74.02

Average success rate=87.5%

Table 6 Confusion matrix of the classification of pixels for
approach II

Prediction/reality GS (%) OS (%) SC (%) PD (%) PI (%)

Green skin 96.61 0.09 0.03 0.06 0.00

Orange skin 2.40 94.56 0.26 2.72 1.79

Scars 0.08 0.05 98.08 0.00 1.10

P. digitatum 0.82 2.38 0.17 75.90 16.83

P. italicum 0.09 2.92 1.47 21.32 80.28

Average success rate=89.1%

Table 7 Confusion matrix of the classification of pixels for
approach III

Prediction/reality Decay (%) Not decay (%)

Decay 96.48 5.13

Not decay 3.52 94.87

Average success rate=95.5%
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approach generally provides better results than the first one,
with an increase in the average success rate from 87.5% to
89.1%. This improvement is obtained by taking into
account classes with different degrees of importance in
the classification problem.

Similarly, Table 7 shows the results of the evaluation
of classifier performance for approach III using the set of
four input features selected with the proposed method,
where an average success rate of 95.5% was achieved.
Better results are obtained for this approach, since similar
classes are grouped into a single class, thus avoiding the
confusion that occurs in the classification of these similar
classes.

Conclusions

In this work, a feature selection methodology has been
proposed that expands the use of the ROC curve to multi-
class classification problems, in order to select a reduced set
of features that are effective in the detection of decay in
citrus fruits using hyperspectral images. Once the optimal
features have been selected, pixels from the images were
classified using an MLP trained with a fast new learning
algorithm (ELM).

This selection methodology was applied specifically to the
detection of decay in citrus fruits caused by two different
fungi, P. digitatum and P. italicum, and other common types
of damage, such as scars. The conclusions drawn after
performing several tests can be summarised as follows:

& A reduced number of features have been obtained for each
of the three approaches to the problem, these numbers
being six for the first approach, seven for the second
approach and four for the third one. In addition, all the
selected features for the first and second approaches are
important for at least one of the five classes defined (two
kinds of sound skin, two kinds of decay and scars).

& The set of features selected with the second approach
provides better classification results than those obtained
with the first one and increases the average success rate
from 87.5% to 89.1% by taking into account classes
with different degrees of importance in the classification
problem. On the other hand, as expected, better results
were obtained for the third approach (95.5%), specifi-
cally aimed at the detection of decay.
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Abstract Hyperspectral imaging systems allow to detect
the initial stages of decay caused by fungi in citrus fruit
automatically, instead of doing it manually under dangerous
ultraviolet illumination, thus preventing the fungal infesta-
tion of other sound fruit and, consequently, the enormous
economical losses generated. However, these systems pres-
ent the disadvantage of generating a huge amount of data,
which is necessary to select for achieving some result useful
for the sector. There are numerous feature selection methods
to reduce dimensionality of hyperspectral images. This work
compares a feature selection method using the area under
the receiver operating characteristic (ROC) curve with other
common feature selection techniques, in order to select an
optimal set of wavelengths effective in the detection of
decay in a citrus fruit using hyperspectral images. This
comparative study is done using images of mandarins with
the pixels labelled in five different classes: two types of
healthy skin, two types of decay and scars, ensuring that
the ROC technique generally provides better results than the
other methods.

Keywords Computer vision . Citrus fruit . Decay . Non-
destructive inspection .Hyperspectral imaging .ROCcurve .

Feature selection

Introduction

Decay caused by fungi is among the main defects affecting
the post-harvest and marketing processes of citrus fruit.
Infected fruit can be neither stored for a long time nor
long-term transported during exportation since a small num-
ber of decayed fruit can infect a whole consignment. Thus,
fungal infections generate great economic losses to the
citrus industry if damaged fruit are not early detected,
being Penicillium sp. as the fungi that lead to the most
post-harvest loses in citrus packinghouses (Eckert and
Eaks 1989). In current packing lines, the detection of
decayed fruit is made visually by trained operators
examining the fruit as it passes under ultraviolet (UV)
light. Nevertheless, this method is subjective and poten-
tially dangerous for human skin. The use of automatic
machine vision systems is a possible solution for pre-
venting these drawbacks.

Technology based on colour cameras has spread rapidly
for the detection of skin damage of fruit and vegetables
(Zude 2008; Cubero et al. 2011), being a common technique
for the inspection of citrus fruit. For instance, Kondo et al.
(2000) studied the possibility of detecting sugar content and
acid content of oranges ‘Iyokan’ using a machine vision
system and neural networks. Slaughter et al. (2008) devel-
oped a non-contact method of detecting freeze-damaged
oranges based on UV fluorescence, and López-García et
al. (2010) used multivariate image analysis to detect peel
diseases in citrus fruit. Nevertheless, decay lesions are dif-
ficult to detect using standard artificial vision systems since
they are hardly visible to the human eye and, therefore, by
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standard colour cameras (Fig. 1). Blasco et al. (2007)
used visible computer vision to detect different types of
damages in citrus fruit including decay by green mould.
While the success in other defects was high, the detec-
tion of decay was lower than 60 % because the dam-
ages caused for this disease in the citrus skin are not
clearly visible before sporulation. On the other hand,
following the fluorescence technique used in the indus-
try to detect decay by humans, Kurita et al. (2009) tried
to detect decay in citrus using two lighting systems
(visible and UV) changing between them while the fruit
is under the view of the camera.

Hyperspectral sensors have been used successfully as
an alternative to detect non-visible damages on fruit
(Lorente et al. 2012). In the particular case of citrus
fruit, different works have been carried out to detect
decay lesions (Qin et al. 2009, 2012; Gómez-Sanchis
et al. 2012). A hyperspectral image consists of a large
number of consecutive monochromatic images of the
same scene in each wavelength becoming very impor-
tant to select only those bands with the most relevant
information, while discarding those that do not contrib-
ute in any significant way to improve the results, con-
taining redundant information or exhibiting a high

degree of correlation. There are numerous feature selec-
tion methods to reduce dimensionality that retain most
of the original information in fewer bands.

For example, Gómez-Sanchis et al. (2008) evaluated
four feature selection methods with the aim of selecting
an optimal set of wavelengths in the range 460–
1,020 nm for detecting decay in citrus fruit. Xing et
al. (2005) used principal component analysis (PCA) to
reduce data from a hyperspectral imaging system (400–
1,000 nm) for detecting bruises on ‘Golden Delicious’
apples. PCA was also used by Liu et al. (2005) to
obtain spectral features for the detection of chilling
injury in cucumbers imaged using a hyperspectral sys-
tem (447–951 nm). More recently, Li et al. (2011) have
used PCA to select most discriminant wavelengths in
the range 400–1,000 nm for detecting various common
skin defects on oranges. Partial least squares (PLS) or
artificial neural networks (ANN) are another techniques
commonly used for feature selection purposes. ElMasry
et al. (2008) determined some important wavelengths
for detecting bruises in ‘McIntosh’ apples using PLS
on hyperspectral images in the range 400–1,000 nm
and ElMasry et al. (2009) used ANN to classify apples
into injured and normal classes and to detect changes in

Fig. 1 Sound orange (left) and
the same fruit showing decay
caused by P. digitatum (right)
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firmness due to chilling injury by selecting optimal
wavelengths.

Objective

The method used by Lorente et al. (2011) to select most
spectral relevant features for detecting decay in citrus fruit
was based on the area under the receiver operating charac-
teristic (ROC) curve, which is a promising method to mea-
sure the quality of a binary classifier. A novel approach was
presented to extend its use to multiclass problems, as is the
automatic discrimination of decay lesions in citrus fruits,
which is a problem still under research and very important
from the agricultural point of view since the damages caused
by fungi are hardly visible to the naked human eye and
standard vision systems and can be quickly spread to other
sound fruits during storage. This work aims to compare our
novel approach of the ROC feature selection method with
other common feature selection techniques for agricultural
multiclass classification problems. We use the detection of
decay in citrus fruits using hyperspectral imaging as a
benchmark problem by selecting an optimal set of wave-
lengths effective in the discrimination between common
defects and decay lesions in citrus fruit. The comparison
of different feature selection techniques is aimed at knowing
if the ROC method is a promising technique in multiclass
classification problems relative to other commonly used
methods in terms of classification accuracy.

Material and Methods

Image Acquisition

The hyperspectral imaging system used was based on liquid
crystal tunable filters (LCTF; e.g. Lorente et al. 2011). The
system consists of a monochrome camera (CoolSNAP ES,
Photometrics, Tucson, USA), a lens providing a uniform
focus in the working range (Xenoplan 1.4/17MM, Jos.
Schneider Optische Werke GmbH, Bad Kreuznach,
Germany), and two LCTF (CRI Varispec VIS07 and
NIR07, UK) sensitive to the visible (400–720 nm) and
NIR (650–1,100 nm), respectively. The scene was illumi-
nated by halogen lamps placed inside an aluminium hemi-
spherical domo.

For hyperspectral images, a total of 240 ‘Clemenules’
mandarins (Citrus clementina Hort. ex Tanaka) collected
from a local producer company were used, including 60
without visible damages, 60 presenting external scars, 60
inoculated with spores of Penicillium digitatum and 60
inoculated with spores of Pitalicum italicum. The inocula-
tion was performed using a suspension of spores with a

concentration of 106 spores/ml for both fungi, which is
sufficient to cause infestation in laboratory conditions
(Palou et al. 2001). The images were acquired by presenting
manually the damage on the fruit to the camera. A total of
240 hyperspectral images were taken in the range of 460–
1,020 nm, with a 10-nm spectral resolution. Each sample
pattern in the labelled set consisted of 74 spectral features
associated to each pixel (reflectance level for each acquired
band—grey level in each monochromatic image—and sev-
eral spectral indexes) and a class label assigned manually by
a human expert. Five different classes were considered in
this work: green sound skin (GS), orange sound skin (OS),
defective skin by scars (SC), decay caused by P. digitatum
(PD) and decay caused by P. italicum (PI).

Feature Selection Methods

The performance of the method based on the area under the
ROC curve is compared with other common feature selec-
tion methods. The methods included in this comparative
study are: correlation analysis (Rodgers and Nicewander
1988), mutual information (Bonnlander and Weigend
1994), Fisher’s discriminant analysis (Venables and Ripley
2002), t test (Li et al. 2006), Wilks’ lambda (Ouardighi et al.
2007), Bhattacharyya distance (Choi and Lee 2003), mini-
mum redundancy maximum relevance difference criterion
(MRMRd) (Ponsa and López 2007), minimum redundancy
maximum relevance quotient criterion (MRMRq) (Peng et
al. 2005) and Kullback–Leibler divergence (Kullback 1987;
Abe et al. 2000). These feature selection techniques have
been chosen because they are commonly applied to the
analysis of hyperspectral imaging in the fields of pattern
recognition and remote sensing, although they have not
been used before for automatic fruit or vegetable inspection
using computer vision. Therefore it will also be studied if
they are suitable and accurate methods for this kind of
problems.

In order to get a feature selection for each method, two
steps were followed: (1) to obtain a ranking of features
ordered according to the discriminant relevance of the fea-
tures and (2) the selection of an optimal number of features
from the feature ranking. The feature selection methods and
the classification procedure used in this work were imple-
mented using Matlab 7.9 (The Mathworks, Inc., Natick,
USA).

Step I Obtainment of a feature ranking

The obtainment of a feature ranking for each class is the
initial step to follow. The feature selection techniques stud-
ied are intended for binary classification problems but this
work deals with problems with more than two classes.
Therefore, the one vs. all approach (Rifkin and Klautau
2004) is employed to obtain a feature ranking for each class,
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which maximises the separation between that class and the
others. The second step consists in obtaining a single global
feature ranking for each method that is achieved from the
relevance values corresponding to the partial rankings for
each class. These relevance values are weighted in propor-
tion to the relative importance of the class in the problem
and combined using Eq. 1.

rj ¼

PN

k¼1
rjk " wk

PN

k¼1
wk

ð1Þ

where rj is the global relevance of feature xj, N is the number
of different classes, rjk is the relevance value of feature xj
from the partial ranking for the kth class, and wk is the
weight for the kth class.

After obtaining the global relevance of each feature, each
input feature is ranked.

Step II Selection of an optimal number of features

Once the global feature ranking has been obtained, a
minimum number of features leading to a saturation trend
in the success rate of classification is chosen for each meth-
od. The success rate is calculated using the first features in
the ranking, then successive features are added in an itera-
tive process until the increment of the success rate is lower
than a certain threshold (1 %). The n features that satisfy this
condition are then selected.

Area Under ROC Curve

The ROC curve is a graphical plot of the true-positive rate
vs. false-positive rate for a binary classifier, as its discrim-
ination threshold is varied; this value being defined as that
from which a positive class prediction is made (Fawcett
2006). The area under a ROC curve (AUC) is used as a
global measure of classifier performance that is invariant to
the classifier discrimination threshold and the class distribu-
tion (Bradley 1997). Maximum classification accuracy cor-
responds to an AUC value of 1, while a random guess
separation involves an AUC value of 0.5. Basically, the
ROC feature selection method for binary classification prob-
lems consists in calculating a z statistic from the discrimi-
nant relevance of each feature xj, defined as the difference
between the AUC of a classifier using all the features
(AUC0) and the AUC of a classifier without taking into
account the effect of feature xj (AUCj) (Serrano et al. 2010).

Classifier

The classifier used in this comparative study is a multilayer
perceptron (MLP) with a single hidden layer, being a type of

ANN (Plaza et al. 2009). MLP can use a wide range of
learning techniques for determining the network param-
eters, the most commonly used being backpropagation.
In these classical learning methods, the parameters of
the ANN are usually tuned iteratively, thus entailing
several disadvantages, such a high computational com-
plexity and convergence to local minima (Shih 2010).
To avoid this, the MLP used in this work avoids these
problems by being trained using extreme learning ma-
chine (Huang et al. 2006), in the same way as that used
in Lorente et al. (2011), which is a new learning algo-
rithm that determines the MLP parameters analytically
in a faster way instead of tuning them iteratively pro-
viding a good generalisation performance at an extreme-
ly fast learning speed.

Approaches to the Problem of Decay Detection

In this work, three different approaches to the problem of the
decay detection in mandarins are considered, depending on
the number of classes implicated and the importance of each
class (Lorente et al. 2011). The approach I involves the five
classes described in the labelled set, all of them having equal
importance or weight. Therefore, the weights of all the
classes were considered to be equal when obtaining the
global relevance.

It is, however, realistic to assume that the classes belong-
ing to decaying skin should be more important for decay
detection. Hence, approach II gives more importance to
decay classes (wPD0wPI015), medium to the scar class
(wSC05) and less to sound classes (wGS0wOS01).
Furthermore, since the actual objective of a potential inspec-
tion system would be to detect decay, it is also important to
study the detection of just infected fruit, leading to a binary
problem: the separation between infected or not infected
fruit (approach III).

Methodology of Comparison

Two different tests were carried out in order to compare
the different selection techniques with the ROC feature
selection method. The comparison, in both tests, is
based on the performance evaluation of the classifier
using the different sets of features provided by the
methods. The first test (test I) consists in selecting an
optimum number of features for each method and for
each approach. Therefore, for each method, a different
number of features that maximises the classification will
be obtained. A different way to make the comparison is
using a fixed number of features for all methods (test
II). For this test, we have chosen the number of features
obtained for the ROC method for each approach.
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Results and Discussion

The classification obtained using the ROC method is in
general better than those obtained for the other methods in
all cases, but MRMRd and MRMRq using the third ap-
proach. These results could be expected since the MRMR
criterion is recognised as one of the most powerful techni-
ques for feature selection (Peng et al. 2005; Ponsa and
López 2007). The success of ROC approach is similar to
that obtained using the rest of the methods tested. The
differences are not significant and therefore we cannot
say that our approach is better than the others in terms
of decay detection accuracy. It is, however, important to
highlight that the best results are achieved using the
ROC method for all tests and all approaches. This result
should to be taken into account because it is probably
due to the fact that this method not only evaluates the
features selection but also optimises the performance of
the classifier. Therefore, having similar results, ROC
method can achieve slightly better scores.

Table 1 shows the results of the classifier performance
evaluation using the different sets of features provided by
the feature selection methods, described above,
corresponding to the test I. The accuracy, achieved with
the ROC method, is higher than that obtained with the other
methods, except for MRMR in approach III. However, on
one hand, minimal redundancy methods try to extract the
features with a high degree of relevance, avoiding those
features with redundant information. On the other hand,
ROC is a method that provides those bands that were used
in a classification problem which fit a classifier in a much
robust way in terms of accuracy and significance of the
model.

In general, the rest of the methods saturate the criterion of
success with fewer bands than those selected by the ROC.
This, in theory, means that to reach more approximate

results than ROC, the number of bands needed by these
methods should be higher. Therefore, the test II was
used in order to check the performance of the ROC
method using the same number of bands, being six for
the first approach, seven for the second approach and
four for the third one. As shown in Table 2, the ROC
feature method provides higher scores than most of the
feature selection methods used in this study. As it
happens in test I, the only two methods surpassing the
ROC are MRMRd and MRMRq for the third approach.
This fact shows that, in the most pessimistic scenario
for ROC method (permitting an increase of the number
of features for the rest of the methods), it obtains better
results than the others except in the case of MRMR
methods in approach III. Even though the differences
with the other methods are small since all of them are
good feature selection methods, in the case of the ap-
proach II, which is probably the most realistic scenario

Table 1 Results of the classifier
performance evaluation using
the features selected by the dif-
ferent methods for each ap-
proach, but being possible a
different number of features for
each case (test I)

Selection
method

Approach I Approach II Approach III

Success rate
(%)

Selected
features

Success rate
(%)

Selected
features

Success rate
(%)

Selected
features

CA 85.94 5 82.44 3 95.02 2

MI 85.53 5 84.87 4 93.08 4

FDA 86.65 5 82.21 3 95.02 2

TT 85.67 5 79.43 2 95.00 2

WL 85.96 5 82.43 3 95.03 2

BD 83.61 3 81.59 4 94.34 3

MRMRd 85.69 5 85.58 5 96.06 2

MRMRq 85.39 4 88.30 7 95.86 3

KLD 85.55 5 87.48 7 95.43 4

ROC 87.46 6 89.07 7 95.52 4

Table 2 Results of the classifier performance evaluation using the fea-
tures selected by the different methods for each approach, but always
employing the same number of features for each method (test II)

Selection
method

Approach I (%)
(6 features)

Approach II (%)
(7 features)

Approach III (%)
(4 features)

CA 86.48 83.39 95.09

MI 85.88 87.50 93.08

FDA 86.78 84.12 95.10

TT 85.72 82.92 95.10

WL 86.56 83.39 95.11

BD 85.18 83.59 94.93

MRMRd 86.72 86.37 97.18

MRMRq 86.53 88.30 96.42

KLD 85.77 87.48 95.43

ROC 87.46 89.07 95.52
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in the real world, the ROC method is clearly the one
that obtains better accuracy.

Conclusions

In the first test, the classification average success rate
obtained using the ROC method is greater than that obtained
for the other methods in almost every case, except for
MRMRd and MRMRq using the third approach. When we
use the same number of features for all the methods, the
ROC feature method provides generally better results than
most of the feature selection methods used in this compar-
ative study, being the average success rate for ROC almost
always greater than that obtained for the other methods, only
being surpassed by the MRMR methods for the third
approach.

Therefore, the ROC feature selection method is a suitable
feature selection technique that can be applied with success
to multiclass classification problems with a huge amount of
features such as the segmentation of hyperspectral images to
detect decay in citrus fruit, having at least similar results
than other recognised feature selection methods but with the
advantage of to optimise, by its nature, the performance of
the classifier.
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a  b  s  t  r a  c t

Early  detection of fungal  infections  in citrus  fruit still remains one of the  major problems  in postharvest
technology.  The  potential of laser-light  backscattering imaging  was evaluated  for  detecting  decay  in citrus
fruit after  infection with  the  pathogen Penicillium  digitatum, before the  appearance  of fruiting  structures
(green  mould).  Backscattering  images  of  oranges  cv.  Navelate with  and  without  decay were obtained  using
diode lasers emitting  at five different  wavelengths  in the  visible and  near  infrared  range  for addressing  the
absorption  of  fruit carotenoids,  chlorophylls and water/carbohydrates.  The apparent  region of backscat-
tered  photons  captured by  a  camera had  radial symmetry  with  respect to the  incident  point of the  light,
being  reduced  to a one-dimensional  profile  after  radial averaging. The Gaussian–Lorentzian  cross  prod-
uct  (GL)  distribution function with  five independent  parameters  described radial profiles  accurately  with
average  R2 values  higher or  equal  to  0.998,  pointing  to  differences  in the  parameters at the  five wave-
lengths  between sound  and  decaying  oranges. The GL parameters at each wavelength  were  used as  input
vectors  for  classifying  samples  into sound  and  decaying  oranges  using  a  supervised  classifier  based  on
linear  discriminant  analysis. Ranking  and combination  of  the  laser  wavelengths  in terms  of their  contri-
bution  to the  detection of decay resulted  in the  minimum  detection  average  success rate  of 80.4%,  which
was  obtained using  laser  light  at  532 nm  that  addresses  differences  in scattering properties  of the  infected
tissue  and carotenoid  contents. However,  the  best  results were  achieved  using the  five  laser  wavelengths,
increasing the  classifier  average success rate  up  to  96.1%.  The results  highlight  the potential of laser-light
backscattering  imaging for  advanced  citrus  grading.

© 2013  Elsevier  B.V.  All rights  reserved.

1. Introduction

Decay caused by Penicillium spp. is  among the main problems
affecting postharvest and marketing processes of citrus fruit (Palou
et al., 2011). Early detection of fungal infections still remains one
of the major issues in  packinghouses because a  small number of
decayed fruit can cause the infection of a  whole consignment dur-
ing storage and distribution. Currently, the detection of decayed
fruit in packing lines is carried out visually by trained workers
inspecting each fruit individually as it passes under ultraviolet (UV)
light along a  conveyor belt. However, this procedure has a  high
risk of human error and is  potentially harmful for operators (Lopes
et al., 2010). Machine vision systems potentially provide a means to

∗ Corresponding author. Tel.: +34 963424000; fax: +34 963424001.
E-mail address: blasco josiva@gva.es (J. Blasco).

detect decayed fruit automatically, thus preventing the drawbacks
related to human inspection.

Although the use of technology based on colour cameras has
spread rapidly for detecting skin damage of fruit and vegetables
(cf. Zude, 2009; Cubero et al., 2011), its application to the exter-
nal inspection of citrus fruit is only currently under research. For
example, Kim et al. (2009) detected peel diseases in grapefruit using
colour texture features based on HSI (Hue, Saturation, Intensity)
and the colour co-occurrence method. Nevertheless, some defects,
such as decay at very early stages, are  virtually identical to the
sound skin, thus very difficult to detect by the human eye, and con-
sequently, by standard artificial vision systems, which are limited
to  the visible region of the electromagnetic spectrum (Blasco et al.,
2009).

Various machine vision technologies have been incorporated for
automatically detecting decay in citrus fruit imitating the fluores-
cence technique used in  the industry by  humans. Kurita et al. (2009)
developed an inspection system based on two  lighting systems

0925-5214/$ – see front matter © 2013 Elsevier B.V. All  rights reserved.
http://dx.doi.org/10.1016/j.postharvbio.2013.07.021
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Fig. 1. RGB images of a  sound orange used for a  control (left) and an  orange showing early decay symptoms caused by P. digitatum (right).

(visible and UV) that should be powered alternatively using a  stro-
boscopic mode since the fluorescence effect produced by UV light
would be undetectable with a  simultaneous use of both systems
due to  the high intensity of white light. However, the use of UV light
has some limitations because not all decay lesions, and not all the
citrus cultivars, present the same level of sensitivity to the fluores-
cence phenomena, and on the contrary, other defects like chilling
injury can result in some fluorescence (Slaughter et al., 2008), thus
reducing the performance of these systems. In this sense, the recent
introduction of hyperspectral sensors for food inspection is a suc-
cessful alternative to detect non-visible damages on fruit (Lorente
et al., 2012b). In the particular case of citrus fruit, different research
has been conducted to detect decay lesions. For instance, Gómez-
Sanchis et al. (2012, 2013) and Lorente et al. (2012a, 2013) studied
the feasibility of a  hyperspectral vision system based on liquid
crystal tuneable filters (LCTF; 460–1020 nm)  for detecting decay in
citrus fruit in  early stages of infection using halogen lighting instead
of the traditional inspection using UV lighting.

Recently, light backscattering imaging (LBI) has been stud-
ied as an alternative machine vision technique for assessing fruit
quality. When a light beam interacts with a fruit, reflectance,
absorption and transmittance occur (Birth, 1976). Particularly, light
reflectance (scattering) appears with two different geometries:
Fresnel reflectance, which happens when photons are reflected
on the surface of the sample; and diffuse reflectance (Meinke
and Friebel, 2009). In the latter case, light enters the sample and
interacts with the internal components of the fruit, and then it
is scattered backward to the exterior tissue surface, thus carry-
ing information related to the morphology and structures of the
tissue additional to the absorption properties (Lu, 2004). In recent
years, much work has focused on using LBI systems to  assess qual-
ity of apples and other fresh fruit; however, no research has been
reported to  detect decay in citrus fruit using this technique. For
example, Lu (2004) analyzed backscattering images from apples
at multiple wavelengths in the visible and the near-infrared (NIR)
region for predicting firmness and soluble solids content. In another
study, the variation of moisture content of banana slices subjected
to different drying conditions was evaluated by  taking backscat-
tering images at 670 nm (Romano et al., 2008). From experiments
on bruised apples, Lu  et al. (2010) suggested that the scattering
analysis would provide good results.

Decay process in citrus fruit implies changes in  enzymatic activ-
ity, resulting in  an enhanced water-soluble pectin fraction, and
consequently, weakening of the cell wall (Barmore and Brown,
1979). The subsequent water soaking of the tissue is an early visible
symptom of infection in  citrus (Barmore and Brown, 1981). Hence,
since later changes in  the pigment contents, and therefore in  the

optical properties of fruit tissue, can be expected, the LBI technique
could be a  promising tool for detecting decay in citrus fruit. The
main objective of this research work was  to evaluate the poten-
tial of laser-light backscattering imaging as a  tool for the automatic
detection of green mould caused by P. digitatum on citrus fruit. For
this purpose, diode lasers emitting in the visible and NIR range were
used to  obtain backscattering images of citrus fruit aiming for the
classification of fruit into two classes (sound and decaying oranges).
The ultimate aim of this work was  to evaluate and compare laser
wavelengths in terms of their contribution to  the detection of decay.

2. Materials and methods

2.1. Fruit and fungal inoculation

The experiments were carried out using sweet oranges (Citrus
sinensis L. Osbeck) cv.  Navelate collected during the 2012 harvest
season from the field collection of the Citrus Germplasm Bank at
the IVIA (Spain) (Navarro et al., 2002). A  total of 100 fruit were
used for the experiments: 50 oranges were superficially injured on
the rind and inoculated with spores of P. digitatum and the other
50 were injured in the same way  but treated with sterilized water
for control purposes. P. digitatum isolate NAV-7, from the fungal
culture collection of the IVIA CTP, was  cultured on potato dextrose
agar (PDA, Sigma–Aldrich Chemical Co., St. Louis, MA,  USA) plates
at 25 ◦C. Conidia from 7 to 14 day old cultures were taken from
the agar surface with a  sterile glass rod and transferred to  a sterile
aqueous solution of 0.05% Tween® 80 (Panreac, S.A.U., Spain). The
conidial suspension was filtered through two layers of cheesecloth
to separate hyphal fragments and adjusted to a  concentration of
106 spores/mL using a  haemocytometer. For inoculation, 20 !L of
the conidial suspension was  placed on the equator of  each fruit by
immersing the tip of a  stainless steel rod, 1 mm wide and 2  mm  in
length, in  the suspension and inserting it in  the fruit rind. A concen-
tration of 106 spores/mL of P. digitatum is the most appropriate to
effectively infect citrus fruit in laboratory conditions (Palou et al.,
2001). The fruit were stored for four days in a  controlled environ-
ment at 20 ◦C and 65% RH. After this period, all the inoculated fruit
presented lesions due to decay of an average diameter of 30 mm.
Fig. 1 shows the images of a  sound control orange and an infected
orange.

2.2. Imaging system

In this work, a  laser light backscattering imaging system was
employed. This system mainly consisted of a  CCD (charge-coupled
device) based camera (JAI CV-A50 IR) with a zoom lens (F2.5 and
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Fig. 2.  Example of a  raw  backscattering image.

focal lengths of 18–108 mm),  five solid-state laser diode modules
emitting at different wavelengths (532, 660, 785, 830 and 1060 nm)
used alternately as light sources and a  computer for controlling the
camera. After penetrating into the fruit tissue, the fraction of the
light backscattered to  the fruit surface was recorded by  the cam-
era and transferred to the computer. A typical raw backscattering
image is shown in Fig.  2.

The imaging system was set up in a  dark room in  order to  pre-
vent the influence of ambient light. It was configured to acquire
720 × 576 pixel images with a  resolution of 0.073 mm/pixel. Param-
eters of laser sources are shown in Table 1. The incident angle of
the light beam was set to 7◦ with respect to the vertical axis for
all the laser sources and the distance from the laser sources to
the fruit sample was chosen according to  the focus of each laser
(Qing et al., 2007). This setting allowed for the assumption that
the light beam was almost perpendicular to the fruit surfaces, thus
obtaining images symmetric with respect to  the incident point
(Mollazade et al., 2012). The arrangement of the image acquisi-
tion system is pictured in  Fig. 3. The backscattering images were
acquired by placing the fruit manually in  the imaging system pre-
senting the damage to the camera. A total of five images were
acquired for each of the 100 orange samples at the five laser
wavelengths which gave a total number of 500 backscattering
images.

2.3. Function for describing backscattering profiles

Backscattering images had radial symmetry with respect to  the
light incident point and their intensity decreases with increasing
distance from the incident point (Fig. 2). The images were reduced
to one-dimensional profiles after radial averaging (Lu, 2004). For
this purpose, the centre of beam incident point was identified for
each backscattering image using the weighted centre of gravity
method (Weeks, 1996), which considers that the centre is  a  point
in which the maximum light intensity occurs. The radial intensity
of the backscattering profiles was then calculated by obtaining the

Table 1
Parameters of laser sources.

Wavelength (nm) Output (mW)  Beam size (mm)

532 10 2.5 ×  2.5
660  2 4.0  ×  4.0
785  45  1.0  ×  1.0
830  30 1.0  ×  1.0

1060 85  1.5 ×  5.25

Fig. 3. Scheme of the laser light backscattering system. 1: CCD camera with lens; 2:
laser source; 3: fruit sample; and 4: computer.

average value of all pixels within each circular ring with one pixel
size (0.073 mm).

Backscattering profiles thus obtained could be  used directly as a
feature vector to predict the presence of damage on the skin of  the
fruit by a  multivariate calibration model. In order to  get more robust
and fast predictions, data reduction was  targeted. One method for
this is to find the parameters of symmetric distribution functions
describing the backscattering profiles.

Moreover, it is  advisable to  perform some pre-processing on
the profiles to  fit the backscattering profiles more accurately, such
as removing the data points within and adjacent to the light inci-
dent area since these points are saturated, or shifting the profiles
towards the profile centre by a  distance equal to  the number of
removed data points in the saturation area (Peng and Lu, 2005). In
this work, all the data points with a  greyscale level (0–255) higher
than 253 were removed.

Subsequently to pretests using various distribution func-
tions (data not shown), the Gaussian–Lorentzian cross product
(GL) function was applied. This distribution function is a  Voigt
approximation that  combines a Gaussian and a  Lorentzian in a
multiplicative form. GL is commonly used in  spectroscopy; also for
describing laser profiles (Penache et al., 2002; Limandri et al., 2008;
Stace et al., 2012). The GL function is mathematically expressed by
Eq.  (1):

I(x) = a + b

[1  + e((x −  c)/d)2] exp [((1 −  e)/2)((x − c)/d)2]
(1)

where I  is the light intensity of each circular band after radial aver-
aging; x  is the scattering distance expressed as number of  data
points (pixels); a is  the asymptotic value of light intensity when x
approaches infinity; b is the peak value of estimated light intensity
at the centre; c is  the centre parameter; d  is  the full scattering width
that produces the half maximum peak value; e is related to  the
shape. The shape parameter e varies from 0 to 1; a value of 0 results
in the pure Gaussian function, whereas the pure Lorentzian occurs
with a  value of 1. Fig. 4 shows a  backscattering profile described by
this GL distribution function with five parameters.

The GL function was  used to fit the backscattering profiles at the
five laser wavelengths for each fruit sample. A programme based on
nonlinear least squares regression analysis (Gelman and Hill, 2006)
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Fig. 4. Gaussian–Lorentzian cross product distribution model for backscattering profiles.

was written using Curve Fitting Toolbox of Matlab 7.9 (Mathworks,
Inc.) in order to fit  the backscattering profiles to the GL function
and to estimate the five GL parameters for each sample at each
laser wavelength. The remaining algorithms in this work, such as
classification methods, were also implemented using Matlab envi-
ronment.

2.4. Classifier

Linear discriminant analysis (LDA), also known as Fisher dis-
criminant analysis (Fisher, 1936), is a supervised method of
dimensionality reduction and classification used in  statistics, pat-
tern recognition and machine learning (Sierra, 2002; Wang et al.,
2011). LDA aims to find a  linear projection of high-dimensional data
onto a lower dimensional space (c −  1 dimensions in  a  problem with
c classes) where the class separation is maximized. This is achieved
by maximizing the ratio of the variance between the classes and
variance within the classes (Duda et al., 2001). LDA has no free
parameters to be adjusted and the extracted features are poten-
tially interpretable under linearity assumptions. Furthermore, LDA
is closely related to principal component analysis (PCA). The main
difference between both linear projection techniques is that LDA
explicitly attempts to  model the difference between the classes of
data, while PCA does not take into account any difference in class
due to its unsupervised nature. LDA method therefore performs
better for classification purposes (Martínez and Kak, 2004).

2.5. Labelled set

In supervised classification, there is  a set of n labelled samples,
{xi, ti}i=1..n,  where xi represents the m-dimensional feature vector
for the i-th sample with label ti In this work, the supervised nature
of the LDA classifier required the construction of a labelled data
set, consisting of m =  25 features associated to  each orange sam-
ple, specifically the five GL  parameters at each of the five laser
wavelengths obtained from fitting the profiles.

In order to build this labelled set, the n =  100 oranges were
assigned to  one of the two classes considered in this work: sound
oranges and oranges presenting decay. Each sample pattern was
therefore composed by 25 features and a class label. The labelled
set was divided into a  calibration set of 50 samples (50% of the total)
and a  validation set of 50 samples (50% of the total). The first set
was used to build the proposed classification method and the sec-
ond one to evaluate its performance. In the validation set,  the same
number of samples as in  the calibration set was chosen in  order to
check the generalization capability of the classifier.

2.6. Development and validation of the classification models

LDA classification method and parameters obtained with GL at
five laser wavelengths were used to classify fruit samples. Laser
wavelengths were ranked in terms of their contribution to  decay
detection. In order to rank wavelengths, the LDA classifier was  first
build and evaluated using the five GL parameters corresponding to
each individual wavelength as feature vector. Laser wavelengths
were then ranked in  ascending order of classification average suc-
cess rate values. The best single wavelength that had the highest
success rate was selected. The next step is to obtain the best two
wavelengths. Each of the remaining wavelengths was individually
added to the best single wavelength, and the corresponding success
rate values were computed for all two-wavelength combinations.
The best two wavelengths were chosen when they had the highest
success rate among all two-wavelength combinations. This proce-
dure was then repeated for obtaining the best three wavelengths
and so on, until all wavelengths were ranked.

The calibration set of labelled data was used to  build the
classification models and the validation set to evaluate classifier
performance. Apart from calculating the classification average suc-
cess rates to assess the performance of classification, Cohen’s kappa
statistic values were computed to evaluate the classification bias
(Fleiss, 1981). Classification average success rate provided a  mea-
sure for classification accuracy with a  range from 0%  to 100%, this
parameter being calculated as the number of  correctly classified
samples divided by the total number of samples. Cohen’s kappa
statistic gave information about if classifier was  biased towards one
of the two classes, varying from 0 to 1,  with a  value of  1 representing
a completely unbiased classifier.

3. Results and discussion

3.1. Description of backscattering profiles

For the five laser wavelengths, the GL function described
backscattering profiles with average R2 values higher or equal to
0.998 and average RMSE lower or equal to 2.54 (CCD greyscale)
(Table 2). These values were calculated by averaging the coefficients
of determination and the RMSEs corresponding to the 100 orange
samples at each laser wavelength.

The average GL parameters and the resulting average fitted
curves obtained for the backscattering profiles of sound oranges
and oranges with decay at the five laser wavelengths are shown
in  Fig. 5.  A significance test (p-value <  0.05, one-tailed paired
t-test) was  applied to  the data in order to determine if the differ-
ences between average parameters of sound oranges and decaying
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Fig. 5. Average Gaussian–Lorentzian cross product (GL) parameters and average GL distribution curves for the backscattering profiles of sound oranges and oranges with
decay  at: (a) 532 nm,  (b) 660 nm,  (c) 785 nm, (d) 830 nm,  and (e) 1060 nm.  Parameters marked with *  presented statistically significant differences between sound and
decaying  oranges.
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Table  2
Average determination coefficients (R2) and average root mean squared errors
(RMSE) from fitting backscattering profiles by  the GL function for all samples at
the five laser wavelengths.

Wavelength (nm) R2 (unitless) RMSE (CCD greyscale)

532 0.998 2.14
660 0.999 0.61
785 0.998 2.48
830 0.998 2.54

1060 0.998 2.32

oranges were statistically significant. Some GL parameters pre-
sented a general trend at all the laser wavelengths (parameters b, c
and e). The sound oranges had lower peak values (parameter b) than
the oranges with decay at all wavelengths. By contrast, an opposite
trend for centre values (parameter c) was observed, these being
consistently higher for the sound oranges. However, the differences
between both kinds of fruit for these two parameters were not sig-
nificant enough at 660 nm.  Furthermore, for both backscattering
profiles, shape parameter (parameter e) generally had an almost
constant value close to 1, even though this was slightly higher for
the oranges with decay at 660 nm.

On the other hand, the asymptotic values (parameter a) and
scattering widths (parameter d) showed a  different trend between
both backscattering profiles according to the laser wavelength.
The sound oranges presented lower asymptotic values than the
decaying oranges at almost every wavelength, except at 532 nm
(parameter a was higher for the sound oranges) and at 1060 nm
(parameter a  did not present significant differences between both
kinds of oranges). With regard to scattering widths, for the sound
oranges, these values were lower than for the decaying oranges at
532, 785 and 830 nm and, conversely, higher at 660 and 1060 nm.
From these results, it can be said that backscattering profiles, and
consequently GL parameters, were dependent on the orange state:
sound or decaying, since GL parameters differed between both
states at the five laser wavelengths.

3.2. Classifier performance evaluation

Table 3 shows the classification results for the ranked wave-
length combinations, obtained from the validation set of labelled
data. Values of classification average success rate and Cohen’s
kappa statistic, as well as the corresponding confusion matrixes,
are shown for all wavelength combinations. According to the scale
proposed by Landis and Kock (1977),  Cohen’s kappa values were
interpreted as follows: 0.00–0.20 regarded as slight, 0.21–0.40 as

fair, 0.41–0.60 as moderate, 0.61–0.80 as good and 0.81–1.00 as
very good.

When comparing the classification results, it can be  noticed that
the minimum average success rate of 80.39% and the lowest Cohen’s
kappa value of 0.610 were obtained for the single wavelength. In
contrast, the best classification results were achieved using the five
laser wavelengths with an average success rate of  96.08% and a
value of Cohen’s kappa of 0.921. As  shown in the confusion matrix
for this classification model using all the wavelengths, the percent-
age of well-classified fruit samples exceeded 95% for both classes
despite the evident similarity between sound oranges and oranges
with decay.

Moreover, the increase in the average success rate of around
10% from the single wavelength (80.39%) to the two-wavelength
combination (90.20%) should be highlighted. Both wavelengths are
in the visible wavelength range. Therefore, we assume that the vis-
ible wavelength range may  provide more robust information on
the differences in  the scattering properties of the tissue, due to
(i) higher scattering coefficients and resulting increased signal to
noise ratio and (ii) increased perturbation in the NIR range due to
highly variable water and carbohydrates contents that absorb in
the NIR. From the corresponding confusion matrixes, it can be also
observed that, while the number of well-classified sound oranges
remained the same (87.50%) for both cases, the classification of
oranges with decay was  greatly improved for the two-wavelength
combination, increasing from 74.07% to 92.59%. In  practice, this
reduction of the number of badly classified oranges with decay
is  of major importance for a  potential inspection system since
only a  reduced number of infected and sporulated fruit can be the
source for important spread of fungal infections to healthy fruit
handled or stored in the packinghouse, thus causing great economic
losses.

On the other hand, for all the other cases, from one wavelength
combination to another, the increase in the average success rate
was only approximately 2% by including one wavelength more in
the model.

Effective control of green mould and other citrus posthar-
vest diseases has relied for many years on the application of
conventional synthetic chemical fungicides such as imazalil or
thiabendazole. However, there is currently a  clear need to find
and implement alternative control methods because of increasing
concerns about environmental contamination and human health
risks associated with fungicide residues (Palou et al., 2008). Find-
ings from this research are a significant step for the adoption
by  the citrus industry of nonpolluting alternative control meth-
ods, because early decay detection is an effective tool to reduce

Table 3
Classification results for the ranked wavelength combinations.

Number of wavelengths Wavelength combination (nm) Average success rate (%) Cohen’s kappa Confusion matrix

1 532 80.39 0.610 Sound (%) Decay (%)
Sound 87.50 25.93
Decay 12.50 74.07

2  532, 660 90.20 0.803 Sound (%) Decay (%)
Sound 87.50 7.41
Decay 12.50 92.59

3  532, 660, 1060 92.16 0.843 Sound (%) Decay (%)
Sound 91.67 7.41
Decay 8.33 92.59

4  532, 660, 1060, 830 94.12 0.882 Sound (%) Decay (%)
Sound 95.83 7.41
Decay 4.17 92.59

5  532, 660, 1060, 830,  785 96.08 0.921 Sound (%) Decay (%)
Sound 95.83 3.70
Decay 4.17 96.30
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fungicide usage in the context of integrated disease management
(IDM) programmes.

4. Conclusions

The feasibility of laser-light backscattering imaging was  proved
for detecting superficial decay in citrus fruit caused by P. digita-
tum. Backscattering images of oranges at five laser wavelengths in
the visible and NIR range were used for non-destructive detection.
The GL distribution function with five independent parameters
described backscattering profiles accurately, with average R2 val-
ues higher or equal to  0.998. GL parameters were dependent on the
orange state (sound or decaying), observing differences between
both states at all wavelengths.

In the classification of sound and decaying oranges, all wave-
lengths contributed to  the highest average success rate of 96.1%. The
increase in the average success rate of around 10% from the single
wavelength (80.4%) to the two-wavelength combination (90.2%),
both in  the visible range, should be highlighted.

Therefore, the early detection of decaying fruit by means of
backscattering imaging analysis has a high potential for its inte-
gration in  a  commercial system. Nevertheless, for future setting up
on a sorting line, perhaps a  line laser should be applied on rotating
fruit, instead of point lasers.
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