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Abstract

In this work we compute, at the “one-loop-dressed” level, the nonperturbative contribution of the

ghost loops to the self-energy of the gluon propagator, in the Landau gauge. This is accomplished

within the PT-BFM formalism, which guarantees the gauge-invariance of the emerging answer.

In particular, the contribution of the ghost-loops is automatically transverse, by virtue of the

QED-like Ward identities satisfied in this framework. Using as nonperturbative input the available

lattice data for the ghost dressing function, we show that the ghost contributions have a rather

sizable effect on the overall shape of the gluon propagator, both for d = 3, 4. Then, by exploiting

a recently introduced dynamical equation for the effective gluon mass, whose solutions depend

crucially on the characteristics of the gluon propagator at intermediate energies, we show that

if the ghost loops are removed from the gluon propagator then the gluon mass vanishes. These

findings strongly suggest that, at least at the level of the Schwinger-Dyson equations, the effects of

gluons and ghosts are inextricably connected, and must be combined suitably in order to reproduce

the results obtained in the recent lattice simulations.

PACS numbers: 12.38.Aw, 12.38.Lg, 14.70.Dj
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I. INTRODUCTION

Our understanding of the infrared (IR) properties of the fundamental Green’s functions

of Yang-Mills theories has improved considerably in the last few years, due to a variety

of parallel efforts in lattice simulations [1–12], Schwinger-Dyson equations (SDEs) [13–20],

functional methods [21, 22], and algebraic techniques [23–26]. The majority of the aforemen-

tioned studies have focused on the low-momentum behavior the gluon and ghost propagators,

which can be directly or indirectly related to some of the most fundamental nonperturba-

tive phenomena of QCD, such as quark confinement, dynamical mass generation, and chiral

symmetry breaking.

It is by now well-established that, in the Landau gauge, the lattice yields a gluon propaga-

tor and a ghost dressing function that are finite in the IR (in d = 3, 4) [13, 14, 20]. Evidently,

these lattice results furnish strong support to the idea of dynamical gluon mass generation

through the well-known Schwinger mechanism [27–29], as proposed by Cornwall and oth-

ers [30, 31]. On the other hand, these important lattice findings have motivated the critical

revision of the original Gribov-Zwanziger confinement scenario, leading to the formulation of

its “refined” version [23]. In addition, the “ghost-dominance” picture of QCD [32, 33], whose

theoretical cornerstone has been the existence of a divergent (“IR-enhanced”) ghost dressing

function, is at odds with the above lattice results, and, at least in this strict formulation,

has been practically ruled out (in the Landau gauge, and for d = 3, 4) [13, 14, 20].

This last statement, however, does not necessarily mean that the ghost has been relegated

to a marginal role in the QCD dynamics. In fact, compelling evidence to the contrary

has emerged from detailed studies of the gap equation that controls the breaking of chiral

symmetry and the dynamical generation of a constituent quark mass [34, 35]. Specifically,

the proper inclusion of the corresponding ghost sector (essentially the ghost dressing function

and the quark-ghost kernel) is crucial for obtaining a realistic symmetry breaking pattern,

with quark masses in the phenomenologically relevant range. The main lesson that can

be drawn from the above studies is that even a finite (i.e., “non-enhanced”) ghost sector

may have a strong numerical impact, at least in the framework of the SDEs, and affect

nontrivially the realization of various underlying dynamical mechanisms [35]. In fact, for

the concrete case of the quark gap equation, the ghost contributions provide the necessary

enhancement to the kernel of the gap equation precisely in the range of momenta around
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1 GeV, which is the most relevant for obtaining the right type of quark mass solutions [36].

Given the importance of the ghost sector for the dynamical generation of a constituent

quark mass, it is natural to ask whether a similar situation applies in the case of the dy-

namical generation of an effective gluon mass. The main purpose of the present article is to

address in detail this important question.

This problem is technically rather subtle, and hinges on the ability to treat self-

consistently various field theoretic ingredients. To that end, we will employ the general

formalism based on the pinch technique (PT) [15, 30, 37–39] and the background field

method (BFM) [40], which is particularly suited for dealing precisely with this type of prob-

lem. Specifically, the truncation scheme based on the PT-BFM formalism [41–43] allows for

subtraction of the ghost contributions to the gluon self-energy in a physically meaningful way

(i.e., without introducing gauge artifacts). Indeed, in the conventional SDE formulation,

any attempt to isolate the ghost contributions is bound to interfere with the transversality of

the resulting gluon self-energy; this can be seen already at the one-loop level, where only the

sum of the gluon and ghost diagrams (but not their individual contributions) is transverse.

Instead, as was first pointed out in the classic paper by Abbott [40], the calculation of the

same diagrams using the BFM Feynman rules gives rise to two transverse contributions.

This crucial property persists unaltered at the level of the SDE for the gluon self-energy:

the SDE is composed by concrete subsets of “one-” and “two-loop dressed” diagrams, which

are separately transverse, e.g., qµΠ
µν
c (q) = 0, where Πµν

c (q) = (a3)
µν + (a4)

µν - see Fig. 1.

Therefore, one can study the individual contribution of the different blocks [in this case

Πµν
c (q)] to the full gluon self-energy, without compromising the transversality of the answer

(these points have been addressed in great detail in [15, 41–43])

Given that within the PT-BFM framework the ghost contributions to the gluon self-

energy may be disentangled gauge invariantly, the next step will be to compute this particular

contribution nonperturbatively, and then subtract it out from the full gluon propagator

obtained from the lattice. The basic operating assumption underlying this analysis is that

the gluon propagator found on the lattice coincides with that obtained from the solution of

the full SDE series. Then, instead of solving the SDE series without the loops contained

in Πµν
c (q) to determine the resulting gluon propagator (technically an impossible task at

the moment), we compute nonperturbatively only the contribution of Πµν
c (q) and subtract

it from the gluon propagator obtained from the lattice. The nonperturbative computation
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FIG. 1: The SDE corresponding to the PT-BFM gluon self-energy Πab
µν(q). The graphs inside each

box form a gauge invariant subgroup, furnishing an individually transverse contribution. White

(black) circles denote full propagators (vertices).

of the aforementioned ghost contribution Πµν
c (q) [graphs (a3) and (a4) in Fig. 1] proceeds

through the following main steps.

(i) We introduce a suitable Ansatz for the full (background) gluon-ghost vertex, Γ̃µ, [the

black circle in graph (a3)] which satisfies automatically (i.e., by construction) the

all-order Ward identity given in Eq. (2.6). This is an indispensable requirement for

maintaining the gauge invariance (transversality) of the answer. The Γ̃µ obtained from

this procedure [given in Eq.(3.1)] is expressed entirely in terms of the ghost propagator.

As a result, the only quantity appearing finally inside the graphs (a3) and (a4) is the

ghost propagator (or its dressing function).

(ii) We invoke the so-called “seagull identity”, given in Eq. (3.4), which enforces the can-

cellation of all sorts of seagull-type contributions, leading to the absence of quadratic

divergences [44]. Specifically, by means of this identity the purely seagull contribution

of graph (a4) cancels in its entirety against a term obtained from (a3).

(iii) The remaining expression for Πµν
c (q) is renormalized subtractively, according to the

rules of the momentum-subtraction (MOM) prescription.
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(iv) The renormalized expression for Πµν
c (q) is then computed numerically, by substituting

for the (infrared finite) ghost dressing function, appearing inside the integrals, the

available lattice data for this quantity [1, 5, 9].

(v) The latter contribution is subtracted from the entire gluon propagator obtained from

the lattice, according to the formula given in Eq. (2.17).

The results turn out to be rather striking (see the right panels of Figs. 5, 8 and 11): the

gluon propagator without Πµν
c (q) is significantly different from the full one. In addition, the

results suggest a strong dependence on the space-time dimensionality: the effect of removing

ghosts becomes considerably more enhanced as the space-time dimensionality is lowered.

At this point one can turn to the main question of this work, and study what would

happen to the gluon mass if the ghost contributions, computed in the previous steps, were

to be removed from the full gluon propagator obtained from the lattice. This question

can be addressed in quantitative detail by means of the integral equation, derived recently

in [45], which describes the evolution (i.e., momentum-dependence) of the dynamical gluon

mass,m2(q2). This particular equation, given in Eq. (5.1), contains as its main ingredient the

full gluon propagator ∆, which practically determines the form of its kernel. The detailed

analysis of an approximate version of Eq. (5.1) carried out in [45] reveals that the existence

of physically acceptable solutions hinges crucially on the shape of the gluon propagator in

the entire range of physical (Euclidean) momenta, and in particular on the precise behavior

that ∆ displays in the region between (1-5) GeV2. Specifically, in order for the gluon mass

to be positive definite, the first derivative of the quantity q2∆(q2) (the “gluon dressing

function”) must furnish a sufficiently negative contribution in the aforementioned range of

momenta. Note that, as was shown in [45], the full ∆ obtained from the lattice has indeed

this particular property, giving rise [when inserted into Eq. (5.1)] to a dynamically generated

gluon mass with the expected characteristics. Evidently, the main effect of removing the

ghost contributions contained in Πµν
c (q) from ∆(q2) is to restrict significantly the negative

area displayed by the (ghostless) ∆(q2) (see the right panels of Fig. 12), a fact which, in

turn, leads to the vanishing of the gluon mass, i.e., the homogeneous Eq. (5.1) can only

admit the trivial solution m2(q2) = 0.

Interestingly enough, this result appears to be completely analogous to what happens

in the case of chiral symmetry breaking, where failure to include ghost contributions into
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the gap equation [the quark analogue of Eq. (5.1)] prevents the dynamical generation of

a constituent quark mass [35]. Thus, in the picture of QCD emerging from this analysis,

ghosts and gluons must be in a state of harmonious synergy in order for a mass gap to be

produced, regardless of the nature of the fundamental particle in question (gluon or quark).

The article is organized as follows. In Section II we study the general properties of the

ghost sector in the Landau gauge and explain how it is possible within the PT-BFM frame-

work to disentangle gauge-invariantly the (one-loop dressed) ghost contributions, Πµν
c (q),

from the full gluon propagator. In Section III we derive the non-perturbative expression

that determines Πµν
c (q) solely in terms of the ghost propagator and the coupling constant.

In Section IV we evaluate numerically the expressions for Πµν
c (q) derived in the previous sec-

tion, using as input the ghost dressing function obtained in recent lattice simulations [1, 5, 9].

Next, we determine how the removal of Πµν
c (q) affects the overall shape of the resulting gluon

propagator, for three different cases: d = 4 and N = 2, 3, as well as d = 3 and N = 2, where

d is the dimensionality of space-time and N is the number of colors [corresponding to the

gauge group SU(N)]. In Section V we turn to the main question of the present work, and

study in detail how the kernel of the dynamical integral equation governing the gluon mass

gets modified after removing the aforementioned ghost contributions. Finally, our conclu-

sions are presented in Section VI.

II. GAUGE INVARIANT SUBTRACTION OF GHOST LOOPS

In this section we first derive the formula that will determine the residual gluon propagator

obtained from the full gluon propagator after removing from the latter the “one-loop dressed”

ghost contributions, given by diagrams (a3) and (a4) in Fig. 1. Then, we work out the

nonperturbative expression that determines the aforementioned ghost contribution in terms

of integral involving the ghost dressing function.

The first important fact to recognize is the transversality of the ghost contributions to

be removed. Specifically, denoting their sum by

Πµν
c (q) = (a3)

µν + (a4)
µν , (2.1)
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we have that

(a3)µν = −g2CA

∫

k

Γ̃(0)
µ (k, q,−k − q)D(k)D(k + q)Γ̃ν(k + q,−q,−k),

(a4)µν = 2g2CAgµν

∫

k

D(k). (2.2)

In the equations above, Dab(q2) = δabD(q2) denotes the full ghost propagator, defined in

terms of the ghost dressing function F as

D(q2) =
F (q2)

q2
, (2.3)

while Γ̃µ represents the three-particle vertex describing the interaction of the background

gluon with a ghost and an antighost, with (all momenta entering)

iΓcbÂa
µc̄

c(r, q, p) = gfacbΓ̃µ(r, q, p); Γ̃(0)
µ (r, q, p) = (r − p)µ. (2.4)

Finally, CA is the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)],

and we have introduced the d-dimensional integral measure (in dimensional regularization)

according to ∫

k

≡
µǫ

(2π)d

∫
ddk, (2.5)

with µ the ’t Hooft mass, and ǫ = 4− d.

Then, by virtue of the PT-BFM Ward identity

iqµΓ̃µ(r, q, p) = D−1(r)−D−1(p), (2.6)

it is immediate to establish the transversality of Πµν
c (q), namely [41]

qµΠ
µν
c (q) = 0. (2.7)

Let us now denote by Πµν
r (q) the sum of the remaining subsets of diagrams in Fig. 1, i.e., both

the gluon one- and two-loop dressed diagrams, as well as two-loop dressed ghost diagrams,

Πµν
r (q) =

10∑

i=1
i 6=3,4

(ai)
µν . (2.8)

Again, due to the special Ward identities satisfied by the PT-BFM vertices, Πµν
r (q) is

also transverse, and, of course, so is the full self-energy Πµν(q), given simply by

Πµν(q) = Πµν
r (q) + Πµν

c (q). (2.9)
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+Λµν(q) = νµ µ ν

Hνµ(q, p, r) = gµν +

µ

q
ν

r

p

FIG. 2: Definitions and conventions of the auxiliary functions Λ and H. Gray blobs denote 1-PI

kernels (with respect to vertical cuts).

The SDE for the full gluon propagator in the Landau gauge of the PT-BFM scheme

assumes then the form

∆−1(q2)P µν(q) =
q2P µν(q) + i [Πµν

r (q) + Πµν
c (q)]

[1 +G(q2)]2
, (2.10)

where the gluon propagator ∆µν(q) is defined as (we suppress color indices)

∆µν(q) = −i∆(q2)Pµν(q); Pµν(q) = gµν −
qµqν
q2

, (2.11)

The function G appearing in (2.10) is the form factor associated with gµν in the Lorentz

decomposition of the auxiliary two-point function Λ, given by

Λµν(q) = −ig2CA

∫

k

∆σ
µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν
q2

L(q2). (2.12)

This latter function, together with the auxiliary function H , are diagrammatically rep-

resented in Fig. 2; also notice that H is related to the (conventional) gluon-ghost vertex by

the identity

pνHνµ(p, r, q) + Γµ(r, q, p) = 0, (2.13)

and that, in the (background) Landau gauge, the following all order relation holds [46, 47]

F−1(q2) = 1 +G(q2) + L(q2). (2.14)

Now, let us return to Eq. (2.10), and define in a completely analogous way the quantity

∆r(q
2), given by

∆−1
r (q2)P µν(q) =

q2P µν(q) + iΠµν
r (q)

[1 +G(q2)]2
. (2.15)
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Evidently, ∆r represents the propagator obtained by subtracting out (gauge invariantly)

from the full propagator ∆ the one-loop dressed ghost contributions. Then, taking the trace

of both Eqs. (2.10) and (2.15), defining the trace of Πµν
c (q) as

Πc(q
2) ≡ Πµ

c µ(q), (2.16)

and solving for ∆r, we arrive at

∆r(q
2) = ∆(q2)

{
1−

i∆(q2)Πc(q
2)

(d− 1) [1 +G(q2)]2

}−1

, (2.17)

which represents our master formula.

In order to obtain the behavior of the propagator ∆r(q
2) from Eq. (2.17) we will (i) iden-

tify the full gluon propagator ∆(q2) with that obtained from the lattice, and (ii) determine

nonperturbatively the quantity Πc from Eqs. (2.2) and (2.16), and evaluate it numerically

using as input the lattice results for the ghost dressing function F (q2). These points will be

the subject of the next two sections.

III. THE NONPERTURBATIVE EXPRESSION FOR Πc(q
2).

To accomplish step (ii) above, we first need to introduce an Ansatz for the fully-dressed

ghost vertex Γ̃µ, appearing in graph a3 of Eq. (2.2), which satisfies the crucial Ward identity

of Eq. (2.6) (this general procedure is known as the “gauge-technique [48]). The required

Ansatz is easily constructed from that derived in [49] for the case of scalar QED case,

requiring the absence of kinematic or dynamical singularities. It reads

Γ̃µ(r, q, p) = i
(r − p)µ
r2 − p2

[
D−1(p2)−D−1(r2)

]
, (3.1)

and evidently satisfies Eq. (2.6) when contracted with qµ. Obviously, the procedure of recon-

structing the vertex by “solving” its Ward identity (known in general as “gauge technique”)

leaves the transverse (automatically conserved) part of the vertex undetermined [48, 50].

In this case this term has the form A(r, q) [(r · q)pµ − (p · q)rµ]. This particular term van-

ishes as q → 0, provided that the form factor A(r, q) does not diverge too strongly in that

limit, which we will assume in what follows. Under this assumption, the transverse part

of the vertex is subleading in the IR. On the other hand, its omission is known to affect

the renormalization properties of the resulting SDE, a fact that forces one to renormalize

subtractively instead of multiplicatively (see below).
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Substituting (3.1) in the first equation of (2.2) and taking the trace, it is relatively

straightforward to obtain the result

Πc(q
2) = g2CA

[
4T (q)− q2R(q)

]
, (3.2)

where

R(q) =

∫

k

D(k + q)−D(k)

(k + q)2 − k2
,

T (q) =

∫

k

k2D(k + q)−D(k)

(k + q)2 − k2
+

d

2

∫

k

D(k). (3.3)

To further evaluate Πc(q
2), we must invoke the so-called “seagull-identity” [44],

∫

k

k2∂f(k
2)

∂k2
+

d

2

∫

k

f(k2) = 0, (3.4)

valid in dimensional regularization, which enforces the cancellations of all seagull-type of

divergences. This identity guarantees the (nonperturbative) masslessness of the photon in

scalar QED [by setting f(k2) → D(k2), where D(k2) is the full massive scalar propagator],

as well as the absence of quadratic divergences from the SDE determining the dynamical

gluon mass [by equivalently setting f(k2) → ∆(k2)] [44].

For the case at hand, what we want to guarantee is that Πc(0) = 0; this must be indeed so,

because the ghost-loop giving rise to Πc(q
2) has no direct knowledge of the mass generating

mechanism, namely the fact that ∆−1(0) = m2(0). The easiest way to appreciate this is

by recalling that the mechanism responsible for endowing the gluon with a dynamical mass

relies on the presence of massless poles in the nonperturbative tree-gluon [the black circle

in graph (a1) of Fig. 1], whereas the ghost vertex has the usual structure [note the absence

of poles in the Ansatz of Eq. (3.1)] [45].

Evidently, in the limit q → 0, the term q2R(q) vanishes, and so does T (q), since

T (q)
q→0
→ T (0) =

∫

k

k2∂D(k2)

∂k2
+

d

2

∫

k

D(k),

= 0, (3.5)

where in the last step we have employed Eq. (3.4), with f(k2) → D(k2).

In addition, note that the perturbative (one-loop) version of the terms R(q) and T (q),

obtained from Eq. (3.3) by setting D(k2) = 1/k2, is given by

R(1)(q) = −

∫

k

1

k2(k + q)2
,

T (1)(q) = (d/2− 1)

∫

k

1

k2
. (3.6)
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Evidently, due the dimensional regularization result
∫
k
k−2 = 0 , we have that T (1)(q) = 0,

and in the limit q → 0, q2R(1)(q) vanishes (in d = 3, 4).

It is clear that, when d = 4, R(q) is ultraviolet divergent, and must be properly renormal-

ized, by introducing in the original Lagrangian the appropriate counterterm or wave-function

renormalization (the need to renormalize is seen explicitly already at the level of R(1)(q),

which diverges logarithmically). The (nonperturbative) renormalization of Πc(q
2) that we

will employ proceeds as follows. First of all, as happens almost exclusively at the level

of SDEs, the renormalization must be carried out subtractively instead of multiplicatively.

The main reason for that is the mishandling of overlapping divergences due to the ambigu-

ity inherent in the gauge-technique construction of the vertex, related with the unspecified

transverse part [51].

The (subtractive) renormalization must be carried out at the level of (2.10). Specifically

(setting directly d = 4),

∆−1(q2) =
ZAq

2 + i
3
[Πr(q) + Πc(q)]

[1 +G(q2)]2
, (3.7)

where the renormalization constant ZA is fixed in the MOM scheme through the condition

∆−1(µ2) = µ2. This condition, when applied at the level of Eq. (3.7), allows one to express

ZA as

ZA = [1 +G(µ2)]2 −
i

3µ2
[Πg(µ) + Πc(µ)] . (3.8)

Now, as is well-known [47, 56], the validity of the BRST-driven relation (2.14) before and

after renormalization prevents G(µ2) from vanishing when, according to the MOM prescrip-

tion, F (µ2) = 1; instead, we must impose that G(µ2) = −L(µ2). However, given that L(x) is

considerably smaller than G(x) in the entire range of momenta, we can use the approxima-

tion 1 + G(µ2) ≈ F−1(µ2) = 1, without introducing an appreciable numerical error. Thus,

we obtain the following approximate equation for ZA

ZA = 1−
i

3µ2
[Πr(µ) + Πc(µ)] . (3.9)

Finally, substituting Eq. (3.9) into Eq. (3.7), and defining (in a natural way) the renormalized

∆−1
r (q2) as

∆−1
r (q2) =

q2 + i
3
[Πr(q)− (q2/µ2)Πr(µ)]

[1 +G(q2)]2
, (3.10)
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the renormalized version of the master formula (2.17) will read

∆−1
r (q2) = ∆−1(q2)−

i

3

[Πc(q)− (q2/µ2)Πc(µ)]

[1 +G(q2)]2
. (3.11)

Evidently (3.11) is obtained from (2.17) by replacing ∆−1(q2) → ∆−1
R (q2) (“R” for “renor-

malized”), and Πc(q) → Πc,R(q), where

Πc,R(q) = Πc(q)− (q2/µ2)Πc(µ). (3.12)

As an elementary check, note that the application of the last formula at one loop yields

Π
(1)
c,R(q) = −g2CAq

2[R(1)(q)−R(1)(µ)]

=
ig2CA

16π2
q2 ln

(
q2/µ2

)
, (3.13)

which is the standard one-loop result of the PT-BFM [37, 40], renormalized in the MOM

scheme.

For the ensuing numerical treatment of R(q) and T (q) carried out in the next section, it

is advantageous to have the crucial property T (0) = 0 a priori built in, in order to avoid

possible deviations due to minor numerical instabilities. To that end, we introduce the

quantity T

T (q) = T (q)− T (0)

=

∫

k

k2

[
D(k + q)−D(k)

(k + q)2 − k2
−

∂D(k)

∂k2

]
, (3.14)

which has the property of ensuring (by construction) that T (0) = 0, while, at the same time,

coinciding with the original T for all momenta q.

In addition, it is convenient to re-express R(q) and T (q) in terms of the ghost dressing

function. Using Eq. (2.3), after some elementary algebra, one obtains

R(q) = −

∫

k

F (k)

k2(k + q)2
+

∫

k

F (k + q)− F (k)

k2[(k + q)2 − k2]
,

T (q) =

∫

k

[
F (k + q)− F (k)

(k + q)2 − k2
−

∂F (k)

∂k2

]
; (3.15)

note that the angular integration of the first term in R can be carried out analytically for

any value of the space-time dimension d.

Finally, note that up until this point we have been working in Minkowski space. To

make the transition to Euclidean space, we must employ the usual rules. Specifically, we set

12
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FIG. 3: Left panel: Lattice result for the SU(3) gluon propagator, ∆(q), in d = 4, renormalized

at µ = 4.3 GeV. The continuous line represents the fit given by Eq. (4.1). Right panel: The

SU(3) ghost dressing function, F (q2), renormalized at the same point, µ = 4.3 GeV; the solid line

corresponds to the fit given by Eq. (4.3).

∫
k
= i

∫
kE

and q2
E
= −q2, and use that

∆E(q
2
E
) = −∆(−q2

E
); FE(q

2
E
) = F (−q2

E
); GE(q

2
E
) = G(−q2

E
), (3.16)

suppressing the subscript “E” in what follows.

IV. NUMERICAL EVALUATION OF Πc(q
2) AND ∆r(q

2).

We will now proceed to perform the numerical analysis. Using the available lattice data

on the ghost dressing function F , we evaluate the terms R and T given in Eq. (3.15),

and combine them following the Eqs. (3.2) and (3.12) to obtain the (renormalized) ghost

contribution to the gluon self-energy Πc (of course, all relevant formulas must be properly

“euclideanized”). Finally, we construct ∆r using (2.17) and the lattice results available for

the gluon propagator ∆. This exercise is carried out for three different cases: d = 4 and

N = 2, 3, as well as d = 3 and N = 2.
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A. The case with d = 4, N = 3

In Fig. 3 we show the lattice results for the four-dimensional SU(3) gluon propagator

∆(q2) (left panel), and the corresponding ghost dressing function F (q2) (right panel), ob-

tained from [9], and renormalized at µ = 4.3 GeV.

As has been discussed in detail in the literature [35, 45, 52], both sets of data can be

accurately fitted in terms of IR-finite quantities. More specifically, for the case of ∆(q2), we

have proposed a fit of the form [52]

∆−1(q2) = M2(q2) + q2
[
1 +

13CAg
2
1

96π2
ln

(
q2 + ρ1M

2(q2)

µ2

)]
, (4.1)

where

M2(q2) =
m4

0

q2 + ρ2m
2
0

. (4.2)

Notice that in the above expression, the finiteness of ∆−1(q2) is assured by the presence

of the function M2(q2), which forces the value of ∆−1(0) = M2(0) = m2
0/ρ2. The continuous

line on the left panel of Fig. 3 corresponds our best fit, which can be reproduced setting

m0 = 520 MeV, g21 = 5.68, ρ1 = 8.55 and ρ2 = 1.91.

The SU(3) lattice data for F (q2), shown in the right panel of Fig. 3, will be fitted by the

following expression

F−1(q2) = 1 +
9

4

CAg
2
1

48π2
ln

(
q2 + ρ3M

2(q2)

µ2

)
; M2(q2) =

m4
0

q2 + ρ2m2
0

, (4.3)

with the parameters given by m0 = 520 MeV, g22 = 8.65, ρ2 = 0.68 and ρ3 = 0.25 . Notice

that the M(q2) has the same power-law running as the one reported in Eq. (4.2) [53–55].

It is interesting to notice that the aforementioned fits share the following important prop-

erties: (i) they connect smoothly the IR and UV regions by means of a unique expression;

(ii) their finiteness is associated with the presence of the parameter M in the argument

of the perturbative (renormalization group) logarithm, which it is responsible for taming

the Landau pole and for doing the logarithm saturates at a finite value [52]; and (iii) for

large values of q2, Eqs. (4.1) and (4.3) reproduce their respective one-loop expressions in the

Landau gauge.

The only missing ingredient for the actual nonperturbative determination of Πc, and

therefore ∆r, is the value of αs = g2/4π. Instead of choosing a single value for αs, we will

establish a certain physically motivated range of values, which will furnish a more repre-

sentative picture of the numerical impact of the ghost corrections on the gluon propagator.

14
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FIG. 4: The solution of the SDE (4.4) that best matches the ghost dressing function data is

obtained for αs = 0.29.

The lower value for αs will be fixed simply by resorting to the the 4-loop (perturbative)

calculations in the MOM scheme [19], and extracting the value of αs that corresponds to

the subtraction point of µ = 4.3 GeV, used to renormalize the lattice data. The value so

obtained is αs = 0.2.

In order to establish a reasonable upper bound, in a consistent way, we resort to the

methodology employed in [56], which makes use of the standard SDE for the ghost dressing

function, given by (Euclidean space)

F−1(q2) = 1 + g2CA

∫

k

1

(k + q)2

[
1−

(k · q)2

k2q2

]
∆(k)F (k + q), (4.4)

derived in the Landau gauge, and under the assumption that the full ghost-gluon vertex is

approximated by its tree-level value [56, 57]. In this integral equation one substitutes for

∆(k) the fit given in Eq. (4.1), and solves it numerically for the unknown function F (q2);

evidently, for each value of αs we obtain a different solution for F (q2). The correct value of

αs is then determined as the one for which the corresponding (renormalized) solution best

matches the lattice results (see Fig. 4); for µ = 4.3 GeV we obtain αs = 0.29, showing that

the perturbative MOM value (αs = 0.2) is 30% lower.

The results obtained for the renormalized R and T , after substituting into the corre-

sponding formulas our best fit for F , given by Eq. (4.3), are shown on the left panel of

Fig. 5, together with the combination q2R − 4T , which appears on the rhs of Eq. (3.2).

It is clear that the contribution of the term 4T is rather negligible; in a way this is to be

15
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FIG. 5: Left panel: Numerical evaluation of the ghost contribution Πc(q) to the gluon propagator

using as input our best fit for the d = 4, N = 3 ghost dressing lattice data. Right panel: The

removal of the one-loop dressed ghost contribution from the (lattice) gluon propagator results in a

diminished “swelling” in the momentum region below 1 GeV2.

expected, given that this term vanishes identically in perturbation theory (for all values of

q), and vanishes nonperturbatively at the origin [viz. Eqs.(3.6) and (3.5), respectively].

Next, we use these results to construct Πc, given in Eq. (3.12), and finally ∆r, expressed

by Eq. (3.11) (Fig. 5 right panel), using both values of αs, namely αs = 0.29 (SDE, red

dotted line) and αs = 0.20 (4-loop MOM, blue dashed-dotted line).

We then see that the net effect of removing the ghost contribution is to suppress signifi-

cantly the support of the gluon propagator in the region below 1 GeV2. Higher values of αs

increase the impact of the ghost contributions, but only slightly, as can be seen on the right

panel of Fig. 5. As we will see in the next section, this “deflating” of the gluon propagator

in the intermediate region of momenta, produced by the removal of the ghost contributions,

has far-reaching consequences on the generation of a dynamical gluon mass.

B. The case with d = 4, N = 2

It turns out that, changing the gauge group to SU(2) does not significantly alter the

characteristic qualitative behavior found in the SU(3) case. Specifically, in Fig. 6 we show

the gluon propagator (left panel), and the ghost dressing function (right panel), obtained

16



1E-3 0.01 0.1 1 10 100

0

1

2

3

4

 

 

Gluon Propagator
 V=1284 and =2.2
 Fit

(q
2 )[G

eV
- 2

]

q2[GeV2]

1E-3 0.01 0.1 1 10 100

0.8

1.2

1.6

2.0

2.4

2.8

 

 

Ghost dressing function
 V=1284 and =2.2
 Fit (lattice)

F(
q2 )

q2[GeV2]

FIG. 6: Left panel: Lattice results for the SU(2) gluon propagator in d = 4, renormalized at µ = 2.2

GeV. The continuous line represents our best fit to the data obtained from Eq. (4.1). Right panel:

The SU(2) ghost dressing function F (q2), renormalized at the same point, µ = 2.2 GeV; the solid

line corresponds to the best fit given by Eq. (4.3).

from [7] and renormalized at µ = 2.2 GeV.

As in the SU(3) case, the gluon and ghost data can be accurately fitted by the expres-

sions (4.1) and (4.3), where now CA = 2 and the fitting parameters are m0 = 865MeV,

g21 = 10.80, ρ1 = 1.96 and, ρ2 = 2.68 (gluon) and g22 = 15.03, m0 = 523 MeV ρ3 = 0.215 and

ρ4 = 0.781 (ghost).

The coupling αs can be also fixed using the same procedure described in the previous

subsection (Fig. 7); the value obtained from the SD solution that best matches the lattice

data is in this case is αs = 0.99.

On the left panel of Fig. 8, we show the resulting curves for R and T obtained through

our best fit for F given by Eq. (4.3). Then, using Eqs. (3.2) and (3.11) we combine the

previous results to get the SU(2) ghost self-energy Πc and, finally, ∆r (right panel of the

same figure). We use again two values for αs namely the one obtained through the solution

of the ghost SDE (αs = 0.99) and a 30% lower one (αs = 0.70). Evidently, the SU(2) results

do not differ qualitatively from those of the SU(3) case: a lower value for αs suppresses

the ghost contribution to the gluon propagator, and the removal of the ghost gives rise to a

lower curve in the region below 1 GeV2.
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FIG. 8: Left panel: Numerical evaluation of the ghost contribution Πc to the gluon propagator

using as input our best fit (4.3) for the d = 4, N = 2 ghost dressing lattice data. Right panel: The

removal of the one-loop dressed ghost contribution from the (lattice) gluon propagator causes, as

in the SU(3) case, a considerable suppression in the momentum region below 1 GeV2.

C. The case with d = 3, N = 2

Let us start, as in the previous cases, by showing in Fig. 9 the lattice results [6, 7] for

the three-dimensional gluon propagator ∆(q) (left panel) and the ghost dressing function

F (q) (right panel). Notice that, in Fig. 9, the lattice data for ∆(q) presented in Ref. [6, 7]
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FIG. 9: Left panel: Lattice results for the SU(2) gluon propagator in d = 3. The continuous line

represents our best fit to the data obtained from Eq. (4.5). Right panel: Lattice data for the SU(2)

ghost dressing function F (q) in 3 dimensions; the solid line corresponds to the best fit given by

Eq. (4.6).

were appropriately rescaled, following the procedure explained in detail in [14], to match

correctly the perturbative tail. Both ∆(q) and F (q) saturate in the deep IR region, and can

therefore be fitted by means of IR finite expressions.

In the case of the gluon propagator, an accurate fit is giving by

∆(q) = A exp
[
−(q − q0)

2/w
]
+

1

a + bq + cq2
, (4.5)

where the fitting parameters are A = 0.49, q0 = 0.11, w = 0.37, a = 0.43, b = −0.85, and

c = 1.143. For the ghost dressing function, we use the following piecewise interpolator

F (q) =
1

a + bq + cq2
, for q2 ≤ 3

= 1 +
d

eq + q2
, for q2 > 3 (4.6)

with fitting coefficients a = 0.19, b = 0.61, c = −0.14, d = 0.63 and e = 0.26 obtained by

requiring the function to be continuous at q2 = 3.

The contribution of R and T of Eq. (3.15) can be then evaluated using the above fit, and

the results of this calculation are shown in the left panel of Fig. 11. Since d = 3 Yang-Mills

is a super-renormalizable theory, all aforementioned quantities are directly UV finite, and

do not need to undergo renormalization.
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FIG. 10: The solution of the SDE (4.4) that best matches the ghost dressing function data in d = 3

is obtained for g = 1.208.

The next step is to determine the value of the coupling constant g (which, in d = 3,

has dimensions of m1/2) entering in the formulas for Πc and ∆r, given by Eqs. (3.2) and

(2.17), respectively. The procedure followed is the same as before, i.e. we will employ

the three-dimensional ghost SDE, solve it for various values of g, and choose the one that

best reproduces the lattice data for F . The most favorable case is shown in Fig. 10, where

the solution for F (q) obtained from the SDE with g = 1.208 [in the same arbitrary mass

units used in the plots of Fig. 9] (red line) is compared with the lattice results for the same

quantity.

Next, substituting the results presented on the left panel of Fig. 11 into Eqs. (3.2) and

(2.17), and using g = 1.208, we compute Πc and ∆r. On the left panel of Fig. 11, we compare

the residual propagator ∆r (blue dashed line) with the full propagator ∆(q). Clearly, the

effect in the tridimensional case is even more pronounced: the ghost contribution completely

dominates over the rest, determining to a large extent the overall shape and structure of the

propagator.

V. NO GLUON MASS WITHOUT GHOST LOOPS

In the previous section we have studied how the subtraction of the ghost contributions

affects the profile of the gluon propagator. However, as we will now show, the effects goes
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FIG. 11: Left panel: Numerical evaluation of the ghost contribution Πc to the gluon propagator

using as input our best fit for the d = 3, N = 2 ghost dressing lattice data. Right panel: The

result of removing the one-loop dressed ghost contribution from the gluon propagator in d = 3.

The effect is much more dramatic than in the d = 4 case, since all the structure is determined by

the ghost contribution, while ∆r has the sole (but crucial!) role of rendering the propagator finite

at q = 0.

way beyond a simple change in the overall propagator shape, modifying its salient qualitative

characteristics, and in particular the generation of a dynamical gluon mass.

To establish this, we start from the dynamical equation describing the effective gluon

mass, recently derived in [45]; it reads (Euclidean space)

m2(q2) =
2g2CA

1 +G(q2)

∫

k

[
k2 −

(k · q)2

q2

]
m2(k + q)−m2(k)

(k + q)2 − k2
∆(k)∆(k + q). (5.1)

Taking the q → 0 limit, one then gets

m2(0) =
2g2CA

1 +G(0)

d− 1

d

∫

k

k2[m2(k)]′∆2(k)

= −
4g2CA

1 +G(0)

d− 1

d

∫

k

m2(k)∆(k)
[
k2∆(k)

]′
, (5.2)

where in the last step we have used integration by parts. Introducing spherical coordinates

(setting y = k2) and the d-dimensional integral measure [notice that in (5.1) there is no

dependence on the d− 2 polar angles ϕi]

∫

k

=
1

(2π)d
π

d−1

2

Γ
(
d−1
2

)
∫ π

0

dθ sind−2 θ

∫ ∞

0

dy y
d
2
−1, (5.3)
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Eq. (5.2) finally becomes

m2(0) = −
d− 1

d(4π)
d
2Γ

(
d
2

)
4g2CA

1 +G(0)

∫ ∞

0

dy m2(y)Kd;N(y), (5.4)

with the kernel Kd;N given by

Kd;N(y) = y
d
2
−1∆(y)[y∆(y)]′. (5.5)

The dependence of Kd;N on N (the number of colors) is implicit in the form of ∆(y) that

must be employed in each case, i.e., ∆(y) = ∆N (y). The same is true for G(0) in (5.4), and,

of course, CA = N .

Since the constant multiplying the integral is positive, the negative sign in front of

Eq. (5.4) tells us that the required physical constraint m2(0) > 0 can be fulfilled if and

only if the integral kernel Kd;N (constructed solely out of the gluon propagator) displays a

sufficiently deep and extended negative region at intermediate momenta [45].

In the left panels of Fig. 12 we plot the kernels Kd;N obtained from the lattice data for

the cases d = 4, N = 3 (top row) and N = 2 (middle row), as well as d = 3 N = 2 (bottom

row), considered in the previous section; they all posses the characteristic negative region

that allows, at least in principle, the existence of solutions of Eq. (5.1), furnishing a positive

value for the condition (5.2). We emphasize that, for the d = 4 and N = 3, 2 cases such

a solution has been explicitly found and studied in [45]. Notice the striking resemblance

between the kernels obtained for the different cases.

On the other hand, the situation changes substantially once the ghost loop is removed, in

which case the kernels Kd;N must be constructed from ∆r (right panels of the same figure).

For d = 4 one observes a shift towards higher qs of the zero crossing, and a correspondingly

suppressed negative region; even though this is not sufficient to exclude per se the existence

of a physical solution to the mass equation (5.1), a thorough study of the approximate

equation derived in [45] reveals that no physical solution may be found. The d = 3 situation

is even more obvious: the highly suppressed negative region present in this case cannot

support solutions of (5.2) with m2(0) > 0, thus leaving as the only possibility the trivial

m2 = 0 solution.

The main conclusion one can draw, therefore, is that the ghosts play a fundamental role

in the mechanism of dynamical gluon mass generation, since the failure to properly include

them results in the inability of the theory to generate dynamically a mass for the gluon.
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FIG. 12: The kernel Kd;N of Eq. (5.5) constructed out of the lattice propagator ∆ (left panels) and

the ghost-less propagator ∆r (right panels) for the d = 4 N = 3 (top row), N = 2 (middle row)

and d = 3 N = 2 (bottom row) cases. The insets show in each case the shape of the propagator

used to evaluate the kernels.

This, in turn, implies that what is displayed in the right panels of Figs. 5, 8, 11, and 12 are

not the gluon propagators one would actually obtain, assuming that one were actually able

to perform this “experiment”, e.g., remove the ghosts on the lattice. Indeed, according to

our results, if ghosts were not included, m2 = 0, and thus ∆ would not saturate in the IR

at all!
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To understand what happens, let us concentrate on the d = 4, N = 3 case and imagine

a simplified setting, where one can switch off adiabatically the ghosts, neglecting all other

effects this operation would entail (we will come back to this point at the end of this section).

This could be achieved by multiplying the self-energy Πc, appearing in Eq. (2.10), by a

parameter γ ∈ [0, 1], such that when γ = 1 the full ∆ of the right panel of Fig. 5 is

reproduced. Now, by slowly decreasing γ (for fixed α) one would give rise to a set of

intermediate ∆r,γ profiles, showing progressively less “swelling” in the q2 < 1 [GeV2] region,

and ideally one would get ∆r,0 ≡ ∆r. However before that will happen, there will exist

a critical value γc for which the kernel K4;3 constructed from ∆r,γc will fail to provide the

required negative region that would ensure the positivity of m2(0), as calculated from the

condition (5.4). At that point the theory will undergo a drastic change, showing a gluon

propagator that does not saturate in the IR. Even though we cannot actually predict what

such a propagator might behave like in the deep IR, it is likely that the typical singularity

associated with the (perturbative) Landau pole (tamed by the presence of the mass) may

reappear.

Obviously in this analysis we are neglecting any type of back-reaction due to the changes

in the gluon propagator: to be sure, any modification to the latter quantity would affect not

only the ghost – since the gluon propagator appears in fact in the ghost SDE, see Eq. (4.4)

– but also the gluon mass, and therefore the IR saturation value – through Eqs. (5.1) and

(5.2). While such effects might be numerically appreciable (changing, e.g., the critical value

γc), we expect the qualitative description given above to persist.

VI. CONCLUSIONS

In this article we have presented a detailed study of the impact of the ghost sector on the

overall form of the gluon propagator in a pure Yang-Mills theory, for different space-time

dimensions (d = 3, 4) and SU(N) gauge groups (N = 2, 3).

The key ingredients for performing this analysis have been basically two. To begin with,

the PT-BFM framework allowed us to subtract out gauge-invariantly the “one-loop dressed”

ghost diagrams from the SDE describing the full gluon propagator. Second, we have been

able to express these ghost contributions as a simple integral involving the ghost dressing

function only. This was achieved by employing a judicious Ansatz for the ghost-gluon vertex,
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obtained by solving the corresponding Ward identity, and by resorting to the “seagull-

identity”, in order to enforce certain crucial properties. The nonperturbative evaluation of

the resulting expressions have been carried out numerically, using available lattice data as

input for the ghost dressing function. Our results reveal that the (“one-loop dressed”) ghost

diagrams furnish a sizable contribution to the gluon propagator in d = 4, and the dominant

one in d = 3.

The suppression of the gluon propagator induced by the removal of the ghost-loops has

far-reaching consequences on the mechanism that endows gluons with a dynamical mass,

associated with the observed IR-finiteness of the gluon propagator and the ghost-dressing

function. Specifically, using a recently derived integral equation controlling the dynamics

of the (momentum-dependent) gluon mass, we have demonstrated that when the reduced

gluon propagators are used as inputs, the corresponding kernels are modified in such a way

that no physical solutions may be found, thus failing to generate a mass gap for the pure

Yang-Mills theory. Instead, as has been shown in [45], the use of the full gluon propagator

in the same equation generates a physically acceptable gluon mass.

Once the results of the present work are combined with those of [35] for the chiral sym-

metry breaking, a compelling picture of QCD emerges, where the generation of a dynamical

mass for quarks and gluons requires the synergistic participation of all fields (physical and

unphysical) of the theory.
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