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Abstract

In this article we study the general structure and special properties of the Schwinger-Dyson equa-

tion for the gluon propagator constructed with the pinch technique, together with the question of

how to obtain infrared finite solutions, associated with the generation of an effective gluon mass.

Exploiting the known all-order correspondence between the pinch technique and the background

field method, we demonstrate that, contrary to the standard formulation, the non-perturbative

gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for

gluonic and ghost contributions. We next present a comprehensive review of several subtle is-

sues relevant to the search of infrared finite solutions, paying particular attention to the role of

the seagull graph in enforcing transversality, the necessity of introducing massless poles in the

three-gluon vertex, and the incorporation of the correct renormalization group properties. In ad-

dition, we present a method for regulating the seagull-type contributions based on dimensional

regularization; its applicability depends crucially on the asymptotic behavior of the solutions in

the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated

gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a

vertex that satisfies the required Ward identity and contains massless poles belonging to different

Lorentz structures. The resulting integral equation is then solved numerically, the infrared and

ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the

effective gluon mass is determined. Various open questions and possible connections with different

approaches in the literature are discussed.

PACS numbers: 12.38.Lg, 12.38.Aw
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I. INTRODUCTION

The generation of mass gaps in QCD is one of the most fundamental problems in particle

physics. In part the difficulty lies in the fact that the symmetries governing the QCD

Lagrangian prohibit the appearance of mass terms for all fundamental degrees of freedom

at tree-level and, provided that these symmetries are not violated through the procedure of

regularization, this masslessness persists to all orders in perturbation theory. Thus, mass

generation in QCD becomes an inherently non-perturbative problem, whose tackling requires

the employment of rather sophisticated calculational tools and approximation schemes [1].

Whereas the generation of quark masses is intimately connected with the breaking of

chiral symmetry [2], it was argued long ago that the non-perturbative QCD dynamics lead

to the generation of an effective gluon mass, while the local gauge invariance of the theory

remains intact [3, 4, 5, 6, 7, 8, 9]. This gluon “mass” is not a directly measurable quantity,

but must be related to other physical parameters such as the string tension, glueball masses,

or the QCD vacuum energy [10], and furnishes, at least in principle, a regulator for all

infrared (IR) divergences of QCD.

The concept of a dynamically generated gluon mass, its field theoretic realization, and a

plethora of physical and technical issues associated with it, have been explored in great detail

in a classic paper by Cornwall [11]. One of the cornerstones in his analysis was the insistence

on preserving, at every level of approximation, crucial properties such as gauge-invariance,

gauge-independence, and invariance under the renormalization-group (RG). With this mo-

tivation, an effective gluon propagator, ∆̂µν , was derived through the systematic rearrange-

ment of Feynman graphs, a procedure that is now known in the literature as the “pinch

technique” (PT) [12, 13, 14]. The self-energy, Π̂µν , of this propagator is gauge-independent

and captures the leading logarithms of the theory, exactly as happens with the vacuum po-

larization in QED. The central result of [11] was that, when solving the Schwinger-Dyson

(SD) equation governing the PT propagator, and under special assumptions for the form

of the three-gluon vertex, one finds solutions that are free of the Landau singularity, and

reach a finite value in the deep IR. These solutions may be successfully fitted by a massive

propagator, with the crucial characteristic, encoded in the corresponding SD equation, that

the mass employed is not “hard”, but depends non-trivially on the momentum transfer,

vanishing sufficiently fast in the deep ultraviolet (UV). From the dimensionfull massive so-
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lutions one may define a dimensionless quantity, which constitutes the generalization in a

non-Abelian context of the universal (process-independent) QED effective charge. The QCD

effective charge so obtained displays asymptotic freedom in the UV, whereas in the IR it

“freezes” at a finite value.

Various independent field theoretic studies [15, 16, 17, 18, 19, 20, 21], spanning over a

quarter of a century, also corroborate some type of gluon mass generation. In addition, lattice

computations [22, 23, 24] reveal the onset of non-perturbative effects, which in principle can

be modelled by means of effectively massive gluon propagators. It is important to emphasize

that the massive gluon propagator derived in [11] describes successfully nucleon-nucleon

scattering when inserted, rather heuristically, into the two-gluon exchange model [25]; for

additional phenomenological applications, see [26]. Furthermore, several theoretical studies

based on a-priori very distinct approaches [12, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]

support the notion of the “freezing” of the QCD running coupling in the deep IR (but do

not agree, in general, on its actual value).

In recent years there has been significant progress in our understanding of the PT con-

struction in general [39], and the properties of the resulting effective Green’s functions in

particular. The extension of the PT to all orders was carried out in [14], and the known

one- [40] and two-loop [41] connection with the BFM [42, 43] was shown to persist to all

orders. From the practical point of view the established connection permits the direct cal-

culation with a set of concrete Feynman rules, and enables one to prove all-order results,

exploiting the powerful formal machinery of the BFM. In what follows we will refer to the

framework emerging from the synergy between PT and BFM as the “PT-BFM scheme”.

The aim of this article is threefold: First, we initiate a systematic treatment of the SD

equations within the PT-BFM scheme, with particular emphasis on the manifestly gauge-

invariant truncation it offers. Second, we discuss various field-theoretic issues relevant to

the study of gluon mass generation in the context of SD equations in general. Third, we

analyze in detail the SD equation obtained as the first non-trivial approximation in the

aforementioned truncation scheme, and search for infrared finite solutions.

Regarding our first objective, let us point out that one of the most distinct features of

the PT-BFM scheme is the special way in which the transversality of the background gluon

self-energy Π̂µν is realized. In particular, the study of the non-perturbative, SD-type of

equation obeyed by Π̂µν reveals that, by virtue of the Abelian-like Ward Identities (WI)
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satisfied by the vertices involved, the transversality is preserved without the inclusion of

ghosts. Put in another way, gluonic and ghost contributions are separately transverse. In

addition, transversality is enforced without mixing the orders in the usual “dressed-loop” ex-

pansion: the “one-loop-dressed” and “two-loop-dressed” sets of diagrams are independently

transverse. This is to be contrasted to what happens in the usual gauge-fixing scheme

of the covariant renormalizable gauges, where the inclusion of the ghost is crucial for the

transversality already at the level of the one-loop perturbative calculation. This particular

transversality property of the BFM self-energy is known at the level of the one-loop calcu-

lation [43]; however, to the best of our knowledge, its all-order generalization presented in

Sec. II appears for the first time in the literature. The importance of this property in the

context of SD equation is that it allows for a meaningful first approximation: instead of

the system of coupled equations involving gluon and ghost propagators, one may consider

only the subset containing gluons, without compromising the crucial property of transver-

sality. More generally, one can envisage a systematic dressed loop expansion, maintaining

transversality manifest at every level of approximation.

Instrumental for some of the developments mentioned above has been a set of non-trivial

identities [44], relating the BFM n-point functions to the corresponding conventional n-point

functions in the covariant renormalizable gauges, to all orders in perturbation theory. These

identities, to be referred to as Background-Quantum identities (BQIs) [39], are expected

to play a fundamental role in addressing one of the most central issues in the context of

the PT-BFM scheme, namely the actual construction of a new SD series. Specifically, as

is known already from the two-loop analysis [41], the PT-BFM gluon self-energy Π̂µν is

expressed in terms of Feynman diagrams containing the conventional gluon self-energy Πµν ;

this fact is generic, as the all-order diagrammatic representation of Π̂µν demonstrates (see

Sec. II). Clearly, in order to arrive at a genuine SD equation for Π̂µν , one must carry out

the substitution Πµν → Π̂µν inside the loops. It is still an open question whether such a

replacement can be implemented self-consistently to all orders; a preliminary view of how

this might work out is presented in Sec. II.

Turning to the analysis of the SD equations and the search for infrared finite solutions,

after setting up the appropriate theoretical stage in Sec. III, in the next two sections we

eventually study a linearized version of the equation governing the PT propagator ∆̂µν , in

the spirit of [11]. Although several of the techniques developed there are adopted virtu-
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ally unchanged in the present work, there are important theoretical and phenomenological

differences, which we summarize below.

(i) The role of the ghosts: As has become clear from the detailed study of the correspon-

dence between PT and BFM, the rearrangement of graphs (or sets of graphs) implemented

by the PT generates dynamically the characteristic ghost sector of the BFM [14]. However,

since the original one-loop derivation of the PT self-energy [11] the calculations were car-

ried out in the context of the ghost-free light cone gauge, the distinction between gluonic

and ghost contributions was not so obvious. As a result, in the heuristic derivation of the

corresponding SD equation, all contributions were treated as gluonic. This is reflected in the

fact that the coefficient multiplying the characteristic term ln(q2+4m2(q2)) appearing in the

solutions (e.g. the standard RG logarithm supplemented with the non-perturbative mass) is

precisely b = 11CA/48π2, namely the coefficient of the one-loop QCD β function. Instead,

the PT-BFM correspondence reveals that the purely gluonic contributions is b̃ = 10CA/48π2.

Needless to say, the point is not so much the minor numerical discrepancy in the coefficients

multiplying the logs, but rather the possibility that the ghost dynamics may behave in a

completely different way in the IR. Thus, whilst the ghosts will eventually furnish the miss-

ing CA/48π2 asymptotically, their IR contribution may deviate from the massive logarithm

given above, inducing qualitative changes in the form of the full gluon self-energy. Reversing

the argument, in order to actually obtain solutions of the type b ln(q2 + 4m2(q2)) from the

coupled gluon-ghost system of SD equations, a very delicate interplay between gluons and

ghosts must take place.

(ii) Form of the three-gluon vertex: It is well-known that in order to obtain dynamically

generated masses one must allow for the presence of massless poles in the corresponding ex-

pression for the three-gluon vertex [45]. The effective vertex used in the SD equation of [11]

was the bare three-gluon vertex obtained from the Lagrangian of the (non-renormalizable)

massive gauge-invariant Yang-Mills model [46, 47]; it contains kinematic poles, whose di-

mensionality is partially compensated by the explicit appearance of a hard mass term in

the numerator. Instead, we use a gauge-technique inspired Ansatz for the vertex [48], which

also contains kinematic poles, but their dimensionality is saturated solely by appropriate

combinations of the momenta involved, with no explicit reference to mass terms, thus being

closer to what one might expect to obtain within QCD. We hasten to emphasize that our

Ansatz for the vertex is completely phenomenological, and is not derived from any dynam-
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ical principle, other than the WI that it satisfies, nor does it exhaust the possible Lorentz

structures. What we hope to obtain by resorting to such a simplified vertex is a manageable

SD equation, that will allow us to study in detail the complicated interplay of the various

components, and get a feel for the dependence of the solutions on the form of the vertex

used.

(iii) Seagull regularization: As was explained in [11], the integral equation describing gluon

mass generation is supplemented by a non-trivial constraint, expressing ∆̂−1(0) in terms of

(quadratically divergent) seagull-like contributions; after its regularization, this constraint

will restrict severely the number of possible solutions. The phenomenological “glueball

regularization” employed in [11] was based on an elaborate connection between the seagull

contributions, the massive Yang-Mills model, and the finite vacuum expectation value of

a scalar field creating glueball states. Instead, the regulation we introduce in this work

is based solely on dimensional regularization. In particular, the non-perturbative seagull

contributions are regulated by subtracting from them the elementary integral
∫

d4k/k2,

which vanishes in dimensional regularization. It turns out that this subtraction is sufficient

to regulate the expression for ∆̂−1(0), provided that the momentum-dependent mass vanishes

“sufficiently fast” in the deep UV. In turn, this required asymptotic behavior restricts the

values of the parameters appearing in the integral equation.

(iv)Type of solutions: For relatively moderate values of ∆̂−1(0), which at the level of

the integral equation is treated as an input, the type of solutions emerging may be fitted

with great accuracy by means of a monotonically decreasing dynamical mass and a running

coupling, exactly as advocated in [11]. However, as one decreases ∆̂−1(0) beyond a critical

value, a new class of qualitatively different solutions begins to emerge. These solutions

are also finite in the entire range of momentum, but they display a sharp increase in the

deep IR, and the corresponding plateau-like range, associated with the “freezing”, becomes

increasingly narrower.

The paper is organized as follows: In Sec. II we review the BT-BFM scheme, and the

structure of the all-order gluon self-energy. In Sec. III we present some general consider-

ations pertinent to the search for IR finite solutions, with particular emphasis on the role

of transversality, the kinematic poles in the vertex employed, the restoration of the correct

UV behavior at the level of the SD equation, and the regularization of the seagull terms. In

Sec. IV we derive the linearized integral equation and discuss in detail several of its charac-
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teristics. Sec. V contains the numerical analysis, focusing particularly on the appearance of

two types of solutions, as mentioned above. Finally, in Sec. VI we discuss connection of this

work with other approaches in the literature, outline various possible future directions, and

summarize our conclusions.

II. THE PT-BFM SCHEME

In this section we study the structure of the effective gluon self-energy obtained within

the PT-BFM framework. In the first subsection we present a brief overview of the PT and

its connection with the BFM. The discussion presented here is meant to serve as a brief

reminder; for a more complete treatment the reader is referred to the extensive literature

on the subject. In the second subsection we present the all-order diagrammatic structure

of the gluon propagator. In the third subsection we first derive an elementary WI, valid in

the ghost sector of the BFM, and then demonstrate that, to all orders, the contributions of

gluonic and ghost loops to the effective gluon self-energy are separately transverse. Finally,

in the last subsection we present a preliminary view of how the PT may eventually lead to

a new SD series.

A. The connection between PT and BFM

The PT [11, 12] is a well-defined algorithm that exploits systematically the symmetries

built into physical observables, such as S-matrix elements, in order to construct new, ef-

fective Green’s functions endowed with very special properties. Most importantly, they are

independent of the gauge-fixing parameter, and satisfy naive (ghost-free, QED-like) WIs

instead of the usual Slavnov-Taylor identities. The basic observation, which essentially de-

fines the PT, is that there exists a fundamental cancellation between sets of diagrams with

different kinematic properties, such as self-energies, vertices, and boxes. This cancellation is

driven by the underlying BRST symmetry [49], and is triggered when a very particular sub-

set of the longitudinal momenta circulating inside vertex and box diagrams generate out of

them (by “pinching” out internal lines) propagator-like terms. The latter are reassigned to

conventional self-energy graphs, in order to give rise to the aforementioned effective Green’s

functions.
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The longitudinal momenta responsible for these diagrammatic rearrangements stem either

(a) from the bare gluon propagators contained inside the various Feynman diagrams,

∆[0]
µν(k) = −

i

k2

[
gµν − (1− ξ)

kµkν

k2

]
, (2.1)

and/or (b) from the “pinching part” ΓP
αµν(q, p1, p2) appearing in the characteristic decom-

position of the bare three-gluon vertex Γeab
αµν = gf eabΓαµν into [11]

Γαµν(q, p1, p2) = ΓF
αµν(q, p1, p2) + ΓP

αµν(q, p1, p2),

ΓF
αµν(q, p1, p2) = (p1 − p2)αgµν + 2qνgαµ − 2qµgαν ,

ΓP
αµν(q, p1, p2) = p2νgαµ − p1µgαν . (2.2)

The case of the gluon self-energy is of particular interest. Defining the transverse projector

Pµν(q) = gµν −
qµqν

q2 , (2.3)

we have for the full gluon propagator in the Feynman gauge

∆µν(q) = −i

[
Pµν(q)∆(q2) +

qµqν

q4

]
. (2.4)

The scalar function ∆(q2) is related to the all-order gluon self-energy Πµν(q),

Πµν(q) = Pµν(q)Π(q2) , (2.5)

through

∆(q2) =
1

q2 + iΠ(q2)
. (2.6)

Notice that the way Πµν(q) has been defined in (2.6) (e.g. with the imaginary factor i in

front), it is given simply by the corresponding Feynman diagrams in Minkowski space. The

inverse of the full gluon propagator has the form

∆−1
µν (q) = iPµν(q)∆

−1(q2) + iqµqν , (2.7)

or, equivalently,

∆−1
µν (q) = igµνq

2 − Πµν(q) . (2.8)

The PT construction of the effective one-loop self-energy Π̂
[1]
µν(q) can be most easily con-

structed directly in the Feynman gauge. It amounts to adding to the conventional one-loop
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FIG. 1: The PT self-energy at one-loop.

Π
[1]
µν(q) ( Fig. 1, (a) and (b)) the pinch contributions coming from vertex graphs, shown

schematically in (c). Then, the final result is

∆̂−1(q2) = q2

[
1 + bg2 ln

(
q2

µ2

)]
, (2.9)

where b = 11CA/48π2 is the first coefficient of the QCD β-function.

Evidently, due to the Abelian WIs satisfied by the PT effective Green’s functions, the

new propagator-like quantity ∆̂−1(q2) absorbs all the RG-logs, exactly as happens in QED

with the photon self-energy. Equivalently, since Zg and ẐA, the renormalization constants of

the gauge-coupling and the effective self-energy, respectively, satisfy the QED relation Zg =

Ẑ
−1/2
A , the product d̂(q2) = g2∆̂(q2) forms a RG-invariant (µ-independent) quantity [50, 51];

for large momenta q2,

d̂(q2) =
g2(q2)

q2
, (2.10)

where g2(q2) is the RG-invariant effective charge of QCD,

g2(q2) =
g2

1 + bg2 ln (q2/µ2)
=

1

b ln (q2/Λ2)
. (2.11)

Of central importance for what follows is the connection between the PT and the BFM.

The latter is a special gauge-fixing procedure, implemented at the level of the generat-

ing functional. In particular, it preserves the symmetry of the action under ordinary

gauge transformations with respect to the background (classical) gauge field Âa
µ, while

the quantum gauge fields Aa
µ appearing in the loops transform homogeneously under the

gauge group, i.e., as ordinary matter fields which happened to be assigned to the adjoint
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representation [52]. As a result of the background gauge symmetry, the n-point func-

tions 〈0|T
[
Âa1

µ1
(x1)Â

a2

µ2
(x2) . . . Âan

µn
(xn)

]
|0〉 are gauge-invariant, in the sense that they satisfy

naive, QED-like WIs. Notice, however, that they are not gauge-independent, because they

depend explicitly on the quantum gauge-fixing parameter ξQ used to define the tree-level

propagators of the quantum gluons and the three- and four-gluon vertices involving one

and two background gluons, respectively [43]. The connection between PT and BFM may

be stated as follows: The (gauge-independent) PT effective n-point functions (n = 2, 3, 4)

coincide with the (gauge-dependent) BFM n-point functions (n = 2, 3, 4 background gluons

Âa
µ entering) provided that the latter are computed at ξQ = 1 (e.g. setting ξQ = 1 in the

Feynman rules of the Appendix). This connection was first established at one-loop level [40],

and was recently shown to persist to all orders in perturbation theory [14].

B. The SD equation of the effective gluon self-energy

The structure of the effective gluon self-energy, as it emerges from the all-order PT-

BFM correspondence, can be written in a closed non-perturbative form, which coincides

with the SD equation for ∆̂, derived formally from the BFM path integral using functional

techniques [53].

In what follows we assume dimensional regularization, and employ the short-hand nota-

tion [dk] = ddk/(2π)d , where d = 4−ǫ is the dimension of space-time. We refer to diagrams

containing one explicit integration over virtual momenta as “one-loop dressed” and those

with two integrations as “two-loop dressed”.

We will classify the corresponding diagrams into four categories: one-loop dressed gluonic

contribution (group a), one-loop dressed ghost contribution (group b), two-loop dressed

gluonic contribution (group c), and two-loop dressed ghost contribution (group d).

The closed expressions corresponding to the two diagrams of Fig. 2 are given by

Π̂ab
µν(q)

∣∣
a1

=
1

2

∫
[dk] Γ̃aex

µαβ∆αρ
ee′(k)ĨΓ

be′x′

νρσ ∆βσ
xx′(k + q) ,

Π̂ab
µν(q)

∣∣
a2

=
1

2

∫
[dk] Γ̃abex

µναβ∆αβ
ex (k) . (2.12)
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FIG. 2: The gluonic contribution at one-loop dressed expansion. Wavy lines with grey blobs

represent full-quantum gluon propagators. All external wavy lines (ending with a vertical line)

are background gluons. The black dots are the tree-level vertices in the BFM, and the white-blob

denote the full three-gluon vertex with one background gluon.

µ, a ν, b

→

q

(b1)

→

q

c c′

x′

k+q
→

x

k
←

→

q →

q

k
→

µ, a ν, b

c d

(b2)

ĨΓ

FIG. 3: The ghost sector at one-loop dressed expansion. Dashed lines with grey blobs denote

full-ghost propagators, while the white blob represents the full background gluon-ghost vertex

For the Fig. 3 we have

Π̂ab
µν(q)

∣∣
b1

= −

∫
[dk] Γ̃aex

µ Dee′(k)ĨΓ
be′x′

ν Dxx′(k + q) ,

Π̂ab
µν(q)

∣∣
b2

= −

∫
[dk] Γ̃abex

µν Dex(k) . (2.13)

The two-loop dressed gluonic contribution, Fig. 4, reads

Π̂ab
µν(q)

∣∣
c1

=
1

6

∫ ∫
[dk][dℓ] Γ̃acex

µαβγ∆
αα′

cc′ (k)∆ββ′

ee′ (k + ℓ)∆γγ′

xx′(ℓ + q)ĨΓ
bx′e′c′

νγ′β′α′ ,

Π̂ab
µν(q)

∣∣
c2

=
1

2

∫ ∫
[dk][dℓ] Γ̃acex

µαβγ∆
αα′

cc′ (k)∆ββ′

ee′ (k + ℓ)IΓne′c′

σβ′α′∆σσ′

nn′(ℓ)ĨΓ
bx′n′

νγ′σ ∆γγ′

xx′(ℓ + q) .

(2.14)
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FIG. 4: Purely gluonic graphs relevant for the two-loop dressed expansion. The black blob rep-

resents the full conventional three-gluon vertex, while the white blobs denote three or four-gluon

vertices with one external background leg.
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ĨΓ

ĨΓ
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FIG. 5: The ghost sector contribution to the two-loop dressed expansion. The black blobs are

the conventional full gluon-ghost vertices, while the white ones represent ghost vertices with an

(external) background gluon and two ghosts.

The last group represents the two-loop dressed ghost contribution, Fig. 5, and is written
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as

Π̂ab
µν(q)

∣∣
d1

= −

∫ ∫
[dk][dℓ] Γ̃acex

µα Dcc′(k + ℓ)∆αα′

ee′ (k)Dxx′(ℓ− q)ĨΓ
bx′e′c′

να′ ,

Π̂ab
µν(q)

∣∣
d2

= −

∫ ∫
[dk][dℓ] Γ̃acex

µα Dcc′(k + ℓ)Dee′(ℓ− q)IΓe′nc′

β ∆ββ′

nn′(k + q)ĨΓ
bx′n′

να′β′∆αα′

xx′ (k) ,

Π̂ab
µν(q)

∣∣
d3

= −

∫ ∫
[dk][dℓ] Γ̃acex

µα Dxx′(ℓ− q)∆αα′

ee′ (k)IΓx′e′n
α′ Dcc′(k + ℓ)ĨΓ

bn′c′

ν Dnn′(k + ℓ− q) ,

Π̂ab
µν(q)

∣∣
d4

= −

∫ ∫
[dk][dℓ] Γ̃acex

µα Dcc′(k + ℓ)∆αα′

ee′ (k)IΓne′c′

α′ Dnn′(ℓ)ĨΓ
bx′n′

ν Dxx′(ℓ− q) . (2.15)

Notice that, (i) as explained in the Introduction, the propagators appearing inside the

loops are quantum ones, and (ii) there are two general types of vertices, those where all

incoming fields are quantum, and those where one of the incoming fields is background.

C. Special transversality properties

It is well-known that in the conventional formulation, the diagram containing the ghost-

loop (graph (b) in Fig. 1) is instrumental for the transversality of Πµν(q). On the other hand,

in the PT-BFM scheme, due to the special Feynman rules (see Appendix), the contributions

of graphs (â) and (b̂) are individually transverse. Specifically, keeping only the logarithmic

terms, one has [43]

Π̂(â)
µν (q) =

10 CA

48π2
g2 ln

(
q2

µ2

)
Pµν(q) , Π̂(b̂)

µν (q) =
CA

48π2
g2 ln

(
q2

µ2

)
Pµν(q) . (2.16)

In this subsection we will show that, by virtue of the all-order WI satisfied by the full

vertices appearing in the diagrams defining Π̂µν(q), Figs.(2-5), the above property is valid

non-perturbatively, and that gluonic and ghost contributions are separately transverse. In

addition, the one-loop and two-loop dressed diagrams do not mix. This is to be contrasted

to what happens to the conventional case, where the orders of the loop expansion also mix.

There are four fully dressed vertices with one incoming background gluon appearing in the

diagrammatic definition of Π̂µν(q), in Figs.(2-5): ĨΓ
abc

µαβ , ĨΓ
acb

µ , ĨΓ
abcd

µναβ , ĨΓ
cdba

µν . As is known from

formal considerations (see [44], and references therein), the WI obtained when contracting

such vertices with the momentum carried by the background gluon retain to all-orders the

same form as at tree-level. The tree-level WI for ĨΓ
abc

µαβ and ĨΓ
acb

µ are simply

qµΓ̃abc
µαβ(q, p1, p2) = gfabc(p2

1 − p2
2)gαβ , qµΓ̃acb

µ (q, p1, p2) = gfabc(p2
1 − p2

2) . (2.17)
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In addition, the fact that the four-gluon vertex with one incoming background gluon, and

the conventional one (four quantum gluons) coincide at tree-level, as shown in Eq.(A-5),

furnishes the corresponding tree-level WI for ĨΓ
abcd

µναβ (see, for instance [54]). Therefore, the

only ingredient missing is the tree-level identity satisfied by ĨΓ
cdba

µν ; we now proceed to its

derivation.

Contracting the bare vertex Γ̃cdba
µν = −ig2facxfxdbgµν , shown in Fig. A-9, with the mo-

mentum q1 carried by the background gluon, we have that

qµ
1 Γ̃cdba

µν (q1, q2, q3, q4) = −ig2facxfxdbq1ν = ig2
(
fabxf cdx + fadxf bcx

)
q1ν , (2.18)

where we have used the Jaccobi identity

fabxf cdx + facxfdbx + fadxf bcx = 0 . (2.19)

Next we use that

0 = −
(
fabxf cdx + facxfdbx + fadxf bcx

)
(q1 + q4)ν , (2.20)

and add it by parts to (2.18), obtaining

qµ
1 Γ̃cdba

µν = ig2
[
f cdxfaxbq4ν + f cbxfadxq4ν + f caxfxdb(q1 + q4)ν

]

= −ig
[
f cdxΓaxb

ν (q4, q2 + q1, q3) + f cbxΓadx
ν (q4, q2, q3 + q1) + f caxΓxdb

ν (q4 + q1, q2, q3)
]

.

(2.21)

Armed with the above tree-level results, we proceed to state the four fundamental all-

order WIs. First, the WI of the three-field vertices, where on the RHS we have differences

of inverse propagators, are given by

qµ
1 ĨΓ

abc

µαβ(q1, q2, q3) = gfabc
[
∆−1

αβ(q2)−∆−1
αβ(q3)

]
,

qµ
1 ĨΓ

acb

µ (q2, q1, q3) = gfabc
[
D−1(q2)−D−1(q3)

]
. (2.22)

Then, the WI of the four-field vertices, where on the RHS we have sums of three trilinear

vertices, with appropriately shifted arguments, are

qµ
1 ĨΓ

abcd

µναβ(q1, q2, q3, q4) = igfabxIΓcdx
αβν(q3, q4, q1 + q2)

+ igfacxIΓdbx
βνα(q4, q2, q1 + q3)

+ igfadxIΓbcx
ναβ(q2, q3, q1 + q4) , (2.23)
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and

qµ
1 ĨΓ

cdba

µν (q1, q2, q3, q4) = −igf cdxIΓaxb
ν (q4, q2 + q1, q3)

−igf cbxIΓadx
ν (q4, q2, q3 + q1)

−igf caxIΓxdb
ν (q4 + q1, q2, q3) . (2.24)

Notice that Eq.(2.24) is the all-order generalization of (2.21).

With the above WI we can prove that the four groups presented before are independently

transverse. We start with group (a): we contract graph (a1) using the first all-order WI

of (2.22), whereas for (a2) we simply compute the divergence of the tree-level vertex (A-6),

arriving at

qνΠ̂ab
µν(q)

∣∣
a1

= CA g2δab qµ

∫
[dk] ∆ρ

ρ(k) ,

qνΠ̂ab
µν(q)

∣∣
a2

= −CA g2δab qµ

∫
[dk] ∆ρ

ρ(k) , (2.25)

Thus,

qν
(
Π̂ab

µν(q)
∣∣
a1

+ Π̂ab
µν(q)

∣∣
a2

)
= 0 . (2.26)

Similarly, the one-loop-dressed ghost contributions of group (b) give upon contraction

qνΠ̂ab
µν(q)

∣∣
b1

= 2 CA g2δab qν

∫
[dk] D(k) ,

qνΠ̂ab
µν(q)

∣∣
b2

= −2 CA g2δab qν

∫
[dk] D(k) . (2.27)

and so

qν
(
Π̂ab

µν(q)
∣∣
b1

+ Π̂ab
µν(q)

∣∣
b2

)
= 0 . (2.28)

The two-loop dressed demonstration is slightly more involved, but essentially straightfor-

ward. We begin with the two-loop gluonic contributions (group c). The action of qν on the

all-order four-gluon vertex ĨΓ
bx′e′c′

νγ′β′α′(−q, ℓ + q,−k − ℓ, k) appearing on the RHS of the first

equation in (2.14) may be obtained from (2.23), through the following definition of momenta,

q1 = −q, q2 = ℓ + q, q3 = −k − ℓ, q4 = k, and corresponding relabellings of Lorentz and

color indices. Then,

qνΠ̂ab
µν(q)

∣∣
c1

=
1

6
ig

∫ ∫
[dk][dℓ] Γ̃acex

µαβγ∆
αα′

(k)∆ββ′

(k + ℓ)∆γγ′

(ℓ + q)[

f bxiIΓeci
β′α′γ′(−k − ℓ, k, ℓ) + f beiIΓcxi

α′γ′β′(k, ℓ + q,−k − ℓ− q) +

f bciIΓxei
γ′β′α′(ℓ + q,−k − ℓ, k − q)] .

(2.29)
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It is not difficult to verify that, after judicious shifting and relabelling of the integration

momenta and of the “dummy” Lorentz and color indices, the three terms on the RHS of

(2.29) are in fact equal. Thus,

qνΠ̂ab
µν(q)

∣∣
c1

=
1

2
igf bxi

∫ ∫
[dk][dℓ] Γ̃acex

µαβγ∆
αα′

(k)∆ββ′

(k + ℓ)∆γγ′

(ℓ + q)IΓeci
β′α′γ′(−k − ℓ, k, ℓ) .

(2.30)

The other graph gives

qνΠ̂ab
µν(q)

∣∣
c2

=
1

2
ig f bxi

∫ ∫
[dk][dℓ] Γ̃acex

µαβγ∆
αα′

(k)∆ββ′

(k + ℓ)IΓiec
γ′β′α′(ℓ,−k − ℓ, k)∆γ′γ(ℓ + q)

−
1

2
ig f bxi

∫ ∫
[dk][dℓ] Γ̃acex

µαβγ∆
αα′

(k)∆ββ′

(k + ℓ)IΓiec
γ′β′α′(ℓ,−k − ℓ, k)∆γ′γ(ℓ) .

(2.31)

Evidently the second term on the RHS of (2.31) vanishes identically, since the integral is

independent of q, and therefore the free Lorentz index µ cannot be saturated.

We then observe that, due to the full Bose symmetry of the conventional three-gluon

vertex, IΓeci
β′α′γ′(−k − ℓ, k, ℓ) = IΓiec

γ′β′α′(ℓ,−k − ℓ, k), and therefore, finally,

qν
(
Π̂ab

µν(q)
∣∣
c1

+ Π̂ab
µν(q)

∣∣
c2

)
= 0 . (2.32)

Finally, we turn to the two-loop-dressed ghost-graphs (group d). For the calculation of

the divergence of graph (d1) we use Eq.(2.24); this WI generates three distinct terms, i.e.

qνΠ̂ab
µν(q)

∣∣
d1

= − ig

∫ ∫
[dk][dℓ] Γ̃acex

µα D(k + ℓ)∆αβ(k) D(ℓ− q)[

f ebiIΓxic
β (q − ℓ,−k − q, k + ℓ) + f bciIΓxei

β (q − ℓ,−k, k + ℓ− q)

+ f bxiIΓiec
β (−ℓ,−k, k + ℓ)] .

(2.33)

Each one of these three terms can be easily shown to cancel exactly against the individual

divergences of the remaining three graphs. To see this in detail, use the first WI of (2.22)

for graph (d2), and the second of (2.22) for graphs (d3) and (d4). In all three cases one

of the two inverse propagators generated by the WI will give rise to an expression similar

to the second term on the RHS of (2.31), i.e. a q-independent integral with a free Lorentz

index, which cannot be saturated. These three terms are directly set to zero. The terms
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stemming from the other inverse propagator read:

qνΠ̂ab
µν(q)

∣∣
d2

= igf bei

∫ ∫
[dk][dℓ] Γ̃acex

µα D(k + ℓ)∆αβ(k) D(ℓ− q)IΓcxi
β (k + ℓ, q − ℓ,−k − q) ,

qνΠ̂ab
µν(q)

∣∣
d3

= igf bci

∫ ∫
[dk][dℓ] Γ̃acex

µα D(k + ℓ)∆αβ(k) D(ℓ− q)IΓixe
β (ℓ + k − q, q − ℓ,−k) ,

qνΠ̂ab
µν(q)

∣∣
d4

= igf bxi

∫ ∫
[dk][dℓ] Γ̃acex

µα D(k + ℓ)∆αβ(k) D(ℓ− q)IΓcie
β (k + ℓ,−ℓ,−k) .

(2.34)

and, as announced, can be directly identified with the corresponding terms on the RHS of

(2.29). Therefore,

qν
(
Π̂ab

µν(q)
∣∣
d1

+ Π̂ab
µν(q)

∣∣
d2

+ Π̂ab
µν(q)

∣∣
d3

+ Π̂ab
µν(q)

∣∣
d4

)
= 0 . (2.35)

This concludes the non-perturbative proof of the special transversality property of Π̂ab
µν(q):

gluon and ghost loops are separately transverse, and the loops of different order do not mix

D. Towards a new SD series

As explained for the first time in [11], the upshot the PT is to eventually trade the conven-

tional SD series for another, written in terms of the new, gauge-independent building blocks.

Then one could truncate this new series, by keeping only a few terms in a “dressed-loop”

expansion, and maintain exact gauge-invariance, while at the same time accommodating

non-perturbative effects. As mentioned in the Introduction, one of the most central issues in

this context is how to convert the SD-series defining ∆̂µν into a dynamical equation, namely

one that contains ∆̂µν on both sides. For this to become possible, one must carry out inside

the loops of the diagrams shown in the previous subsection the substitution ∆µν → ∆̂µν . In

this subsection we focus only on one particular aspect of this problem, namely the role that

the BQIs might play in implementing the aforementioned substitution.

The connection [39] between the PT and the Batalin-Vilkovisky quantization formalism

[55] has been instrumental for various of the recent developments in the PT. Specifically,

using the formulation of the BFM within this latter formalism, one can derive non-trivial

identities (BQI’s), relating the BFM n-point functions to the corresponding conventional

n-point functions in the covariant renormalizable gauges, to all orders in perturbation the-

ory [44]. The relation between these two types of n-point functions is written in a closed
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form by means of a set of auxiliary Green’s functions involving anti-fields and background

sources, introduced in the BFM formulation. These latter Green’s functions are in turn

related by means of a SD type of equation [39] to the conventional ghost Green’s functions

appearing in the STI satisfied by the conventional all-order three-gluon vertex [56, 57, 58].

We will restrict our discussion to the case of the propagators ∆̂µν and ∆µν . The relevant

quantity appearing in the corresponding BQI is the following two-point function, to be

denoted by Λαβ(q), defined as (we suppress color indices)

Λαβ(q) =

∫
[dk]H(0)

αµ D(k)∆µν(k + q) H∗

βν(k + q,−k,−q), (2.36)

where the elementary vertex H
(0)
αβ is

H
(0)
αβ = α

β

= −iggαβ

and Hαβ is given by

Hαβ(p, r, q) = H
(0)
αβ + Kνβ

D

∆µν

α

β

q

p

r (2.37)

with q + p + r = 0. Kνβ is the conventional one-particle irreducible connected ghost-ghost-

gluon-gluon kernel appearing in the QCD skeleton expansion [1, 57]. Notice that Hαβ appears

in the all-order Slavnov-Taylor identity satisfied by the conventional three-gluon vertex [58],

and is related to the conventional gluon-ghost vertex IΓβ(p, r, q) by [1, 56, 57],

qαHαβ(p, r, q) = IΓβ(p, r, q) . (2.38)

Using the diagrammatic definition of Hαβ shown in Eq.(2.37), we may recast Eq.(2.36) in a

dressed-loop expansion as follows,

Kνρ

D

∆µν

D

∆ρσ

α βα β

D

∆µν

Λαβ(q) = +

(2.39)

Due to the transversality of both Π̂µν(q) and Πµν(q), if we write

Λαβ(q) = gαβG(q2) + qαqβL(q2), (2.40)
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it turns out that the fundamental all-order BQI between ∆(q) and ∆̂(q) involves only G(q2),

and is given by [39, 44]

∆̂(q) = [1 + G(q)]2 ∆(q) . (2.41)

It is then elementary to demonstrate that the full propagators (in the Feynman gauge) are

related by

∆µν(q) = [1 + G(q)]2 ∆̂µν(q)− iG(q2) [1 + G(q)]
qµqν

q4
. (2.42)

The process of replacing ∆µν → ∆̂µν will therefore introduce the function G inside the

loops; however, the theoretical and practical consequences of this operation are not clear to

us at this point. Some of the various possibilities that one might envisage include: to study

the dynamical equation for G (viz. Eq. (2.36)) together with the SD of ∆̂, as a coupled

system [59]; attempt to reabsorb the G’s into a redefinition of the vertices appearing in the

diagrams, together with their corresponding SD equations; consider the diagrams containing

G′s as being of higher order in the dressed loop expansion, due to the additional explicit

integration appearing in their definition, Eq. (2.36).

In the rest of this article we will adopt what appears to be the lowest order approximation

in this context, setting ∆µν = ∆̂µν in the SD equation, and G = 0 everywhere else.

III. GENERAL CONSIDERATIONS FOR IR FINITE SOLUTIONS

In this section we will briefly review some of the main issues involved when trying to

obtain from the corresponding SD equation IR finite solutions for the gluon self-energy ∆̂.

By “IR finite” we mean solutions for which ∆̂−1(0) 6= 0, which is equivalent to saying that

∆̂(0) is finite.

A. Two necessary conditions

Let us start by considering two necessary conditions for obtaining IR finite solutions.

(i) From the one-loop dressed SD equation for the gluon self-energy (see Fig. 2) it is

clear that, since there can be at most two full gluon self-energies inside the diagrams, on

dimensional grounds the value of ∆̂−1(0) will in general be proportional to two types of
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seagull-like contributions,

T0 =

∫
[dk] ∆̂(k) ,

T1 =

∫
[dk] k2 ∆̂2(k) . (3.1)

Perturbatively, both T0 and T1 vanish by virtue of the dimensional regularization result
∫

[dk]

k2
lnN(k2) = 0 , N = 0, 1, 2, . . . (3.2)

which guarantees the masslessness of the gluon to all orders in perturbation theory. In order

to permit IR finite solutions one must assume that seagull-like contributions, such as those

shown in (3.1), do not vanish non-perturbatively. Of course, once assumed non-vanishing,

both T0 and T1 are quadratically divergent, and, in order to make sense out of them, a

suitable regularization must be employed.

(ii) The form of the full three-gluon vertex is instrumental for the generation of IR

finite solutions. Specifically, as is well known from the classic papers on dynamical mass

generation [45], in order to obtain ∆̂−1(0) 6= 0 one must introduce massless poles in the full

three-gluon vertex ĨΓναβ , appearing in the expression for Π̂
(a1)
µν (q), Eq.(2.12) [60]. Notice in

particular that, whereas after allowing for non-vanishing seagull contributions the inclusion

of graph (a2) is essential for the transversality of Π̂µν , its presence does not lead to ∆̂−1(0) 6=

0. Thus, if the full three-gluon vertex ĨΓ satisfies the WI of (2.22), but does not contain

poles, then the seagull contribution T0 6= 0 of graph (a2) will cancel exactly against analogous

contributions contained in graph (a1), forcing ∆̂−1(0) = 0. Put in a different way, the non-

vanishing seagull contribution that will determine the value of ∆̂−1(0) is not the one coming

from graph (a2). This is even more evident in the non-linear treatment, where the term T1

makes its appearance; clearly, such a term cannot be possibly obtained from (a2).

To appreciate the delicate interplay between the points mentioned above, let us consider

the ghostless, one-loop dressed version of the SD equation, by keeping only the two graphs

of group (a). The SD equation has the general form,

∆̂−1(q2)Pµν(q) = q2Pµν(q) + i
[
Π̂(a1)

µν (q) + Π̂(a2)
µν

]
, (3.3)

with

Π̂(a1)
µν (q) =

1

2
CA g2

∫
[dk]Γ̃µαβ∆̂αα′

(k)ĨΓνα′β′∆̂ββ′

(k + q) ,

Π̂(a2)
µν = −CA g2 gµνT0 . (3.4)
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Let us write iΠ̂
(a1)
µν (q) in the general form

iΠ̂(a1)
µν (q) = q2A(q2)gµν + B(q2)qµqν , (3.5)

where A(q2) and B(q2) are arbitrary dimensionless functions, whose precise expressions

depend on the details of the ĨΓνα′β′ employed.

The transversality of i
[
Π̂

(a1)
µν (q) + Π̂

(a2)
µν

]
implies immediately the condition

q2
[
A(q2) + B(q2)

]
= iCA g2 T0 , (3.6)

and thus the sum of the two graphs reads

i
[
Π̂(a1)

µν (q) + Π̂(a2)
µν

]
= −q2B(q2)Pµν(q) . (3.7)

Clearly,

∆̂−1(0) = lim
q2→0

(−q2B(q2)) = lim
q2→0

(q2A(q2))− iCA g2 T0 . (3.8)

Interestingly enough, once the transversality of Π̂µν has been enforced, the behavior

of ∆̂−1(q2) is determined solely by B(q2). In particular, the value of ∆̂−1(0) is given

by lim
q2→0

(−q2B(q2)). Evidently, if B(q2) does not contain (1/q2) terms, one has that

lim
q2→0

(−q2B(q2)) = 0, and therefore ∆̂−1(0) = 0, despite the fact that T0 has been assumed

to be non-vanishing. Actually, as we will see in the context of the linearized SD equation

that we will study in the next section, if ĨΓναβ does not contain massless poles, it is precisely

this latter situation that is realized, by virtue of an identity relating the various integrals in-

volved. On the other hand, if B(q2) contains (1/q2) terms, lim
q2→0

(−q2B(q2)) 6= 0, allowing for

∆̂−1(0) 6= 0. In fact, for physically acceptable solutions, one must demand that ∆̂−1(0) > 0,

which imposes further restrictions on the possible forms of ĨΓ. Of course, this is not to say

that the presence of poles in the vertex is sufficient for obtaining IR-finite solutions, because

B(q2) may end up being non-singular due to accidental algebraic cancellations. As we will

see in a concrete example in the next section, the net contributions of pole terms originating

from different Lorentz structures within the same vertex may lead to an equation that does

not generate mass.

The quantities A(q2) and B(q2) appearing in (3.5), will be functionals of the unknown

quantity ∆̂, as dictated by the SD equation; their specific form will depend on the details
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of the vertex Ansatz chosen. In general, their value at q2 = 0 will be linear combinations of

the two terms defined in (3.1), namely

∆̂−1(0) = g2 (a0T0 + a1T1) , (3.9)

where the values of the numerical coefficients a0 and a1 depend on the details of the problem.

Then, the corresponding SD equation will read schematically

∆̂−1(q2) = ∆̂−1(0) + g2q2

∫
[dk] F{∆̂; q, k} , (3.10)

where the functional F{∆̂; q, k} is regular at q2 = 0. Then, after renormalizing, we will be

looking for solutions of (3.10) that simultaneously: (a) reproduce correctly the asymptotic

behavior for ∆̂(q2) predicted by the RG, viz. Eqs. (2.9) and (2.11); (b) are finite at q2 = 0;

(c) satisfy the (appropriately regulated) constraint of (3.9) [61]. Turns out that points (a),

(b), and (c) are deeply intertwined, in a way that we will sketch below, and further elaborate

upon in Sec. IV.

B. RG behavior and the SD equation

The asymptotic behavior that ∆̂(q2) must satisfy in the deep UV is given by Eqs. (2.9)

and (2.11). In practice, however, it is highly non-trivial to obtain, from the corresponding

SD equation, solutions displaying this asymptotic behavior. This difficulty is intimately

connected to the approximations used for the (all-order) vertex ĨΓ. Of course, within a full

SD equation treatment, ĨΓ satisfies its own non-linear integral equation, which determines

its structure. One must deal then with a very complex system of coupled integral equations

involving ∆̂, ĨΓ, and several many-particle kernels. The usual way to reduce the difficulty of

this problem is to resort to the gauge-technique, namely express ĨΓ as a functional of ∆̂, in

such a way as to satisfy (by construction) the first WI of Eq. (2.22) exactly. This procedure

fixes the “longitudinal” part of the vertex, but leaves its “transverse” (identically conserved)

part undetermined. This ambiguity, in turn, leads to the mishandling of overlapping diver-

gences, which manifests itself in the fact that (i) one cannot renormalize multiplicatively,

but only subtractively, and (ii) the RG-behavior of the solutions is distorted. In particular,

one obtains solutions which asymptotically behave like

∆̂−1(q2) = q2

[
1 + wbg2 ln

(
q2

µ2

)]1/w

, (3.11)
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with w > 1. These solutions reproduce upon expansion the expected (one-loop) perturbative

result, but non-perturbatively they miss the correct RG behavior of (2.9).

The first-principle remedy of the situation would require the full treatment of the con-

served part of the vertex, in a way similar to that followed in [62] for the vertex appearing in

the electron and quark gap equations. Unfortunately, extending their method to the case of

the three-gluon vertex is technically very involved, and is at the moment beyond our powers.

Instead, we propose to model the RG behavior according to the simple prescription put forth

in [11, 63]. The basic observation is that the correct RGI may be restored if every ∆̂(z)

appearing inside F{∆̂; q, k} were to be multiplied (“by hand”) by a factor (see Eq.(2.11))

1 + bg2 ln(z/µ2) =
g2

g2(z)
. (3.12)

Thus, one is effectively switching from (3.10) to the corresponding“RG-improved” equation

∆̂−1(q2) = ∆̂−1(0) + g2q2

∫
[dk] F{∆̂(z)

(
g2/g2(z)

)
; q, k} , (3.13)

with z = k2 or z = (k + q)2; equivalently, in terms of the manifestly RG-invariant quantities

d̂(q2) and ḡ2(q2),

d̂−1(q2) = d̂−1(0) + q2

∫
[dk] F{d̂(z)/g2(z); q, k} (3.14)

and

d̂−1(0) = a0T 0 + a1T 1 , (3.15)

where (in Euclidean space), by virtue of (2.10)

T 0 =

∫
[dk]

d̂(k2)

g2(k2)
,

T 1 =

∫
[dk]

k2 d̂ 2(k2)

g4(k2)
. (3.16)

C. Regularization of seagull-like terms

Returning the issue of the regulation of the constraint (3.15), notice that the integrals

in (3.1) differ from those of (3.16) in an important way. Roughly speaking, the presence

of the RG logarithms in their numerators, (contained in g2(k2) and g4(k2), respectively)

compensates the logarithms contained in d̂(k2) and d̂2(k2), allowing one to regularize them
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simply by subtracting a unique (vanishing) integral, that of Eq.(3.2) for N = 0, provided

the solutions satisfy certain generic conditions.

To study this in detail, let us for the moment concentrate on (potential) solutions of the

SD equation that are qualitatively of the general form

d̂(q2) =
g2

NP
(q2)

q2 + m2(q2)
, (3.17)

where

g2
NP

(q2) =

[
b ln

(
q2 + f(q2, m2(q2))

Λ2

)]−1

. (3.18)

The function m2(q2) may be interpreted as a momentum dependent “mass” with the property

(to be imposed self-consistently) that m2(0) > 0. In addition, we expect that m2(q2) is a

monotonically decreasing function of q2, with m2(q2) → 0 as q2/Λ2 → ∞. The quantity

g2
NP

(q2) represents a non-perturbative version of the RG-invariant effective charge of QCD,

going over to g2(q2) in the deep UV. The (dimensionfull) function f(q2, m2(q2)) is expected to

be such that g2
NP

(q2) will be a monotonically decreasing function of q2, with f(0, m2(0)) > Λ2.

The dimensionality of f is to be saturated by m2(q2); thus if one were to set m2(q2) = 0

then one should have f(q2, 0) = 0. The presence of a f(q2, m2(q2)) with such properties

in the logarithm of g2
NP

(q2) eliminates the Landau pole, and leads in the deep IR to the

characteristic property of “freezing”. For the analysis that follows, note also that

1

g2
NP

(q2)
−

1

g2(q2)
= b ln

(
1 +

f(q2, m2(q2))

q2

)
. (3.19)

It turns out that, for the proposed regularization to work, both m2(k2) and f(q2, m2(q2))

must drop “sufficiently fast” in the deep UV.

To understand this point, we substitute into T 0 of Eq.(3.16) a solution of the form (3.17),

T 0 =

∫
[dk]

g2
NP

(k2)

[k2 + m2(k2)]g2(k2)
, (3.20)

and consider T
reg

0 , obtained after subtracting
∫

[dk]/k2 = 0 from T 0,

T
reg

0 ≡

∫
[dk]

(
g2

NP
(k2)

[k2 + m2(k2)]g2(k2)
−

1

k2

)

= −

∫
[dk]

m2(k2)

k2 [k2 + m2(k2)]
− b

∫
[dk] d̂(k2) ln

(
1 +

f(k2, m2(k2))

k2

)
. (3.21)

Let us examine the two integrals on the RHS separately. If m2(k2) behaved asymptotically as

ln−a(k2), with the anomalous mass-dimension a > 1, then the first integral would converge,
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by virtue of the elementary result

∫
dz

z (ln z)1+γ
= −

1

γ (ln z)γ
. (3.22)

Whether such a behavior of m2(k2) is realized or not must be verified directly from the

corresponding SD equation. For example, this was indeed the case for the equations studied

in [11, 63], (with a = 12/11), and we will observe it again in the next section. In fact, a faster

asymptotic behavior of the form lna(k2)/k2 may be obtained from non-linear versions of the

SD equation [63]. The second integral will converge as well, provided that f(k2, m2(k2))

drops asymptotically at least as fast as ln−c(k2), with c > 0. If, for example, f = ρm2(k2)

(with a > 1, for the first integral to converge), then the convergence condition for the second

integral is automatically fulfilled. Notice that perturbatively T
reg

0 vanishes; this is because

m2(k2) = 0 to all orders, and therefore, since in that case also f = 0, both integrals on the

RHS of (3.21) vanish.

Assuming that m2(k2) and f(k2, m2(k2)) behave as described above, then it is straight-

forward to verify that the difference T 1 − T 0 is automatically finite. Indeed, applying the

elementary identity k2 = [k2 + m2(k2)]−m2(k2) in the numerator of T 1, we arrive at

T 1 − T 0 = −

∫
[dk]

m2(k2) d̂ 2(k2)

g4(k2)
− b

∫
[dk]

g2
NP

(k2)

g2(k2)
d̂(k2) ln

(
1 +

f(k2, m2(k2))

k2

)
, (3.23)

where both integrals on the RHS converge, without any additional assumptions.

Thus, the RHS of (3.15) can be written as

d̂−1(0) = (a0 + a1)T 0 + a1(T 1 − T 0) . (3.24)

Clearly, if we happened to have that a1 = −a0, the RHS of (3.24) would be automatically

convergent, without further need of regularization. If a1 6= −a0, we will replace on the RHS

of (3.24) T 0) by T
reg

0 , arriving at the regularized version of (3.15)

d̂−1
reg (0) = (a0 + a1)T

reg

0 + a1(T 1 − T 0) . (3.25)

It is important to emphasize that the form of the solutions assumed in (3.17) is meant

to quantify the UV behavior necessary for the proposed regularization to work, but does

not restrict their deep IR behavior. Specifically, let us assume that a solution of the type

(3.17), to be denoted by d̂C(q2), satisfies the necessary asymptotic conditions, and consider

a new function, d̂N(q2) = d̂C(q2) + h(q2), where h(q2) vanishes faster than d̂C(q2) in the
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UV, but is not restricted in the IR. Then, if d̂N(q2) is inserted into (3.21), the corresponding

integrals are still finite. As we will see in Sec. V, this situation does in fact occur: when

solving the corresponding SD equation, in addition to the “canonical” solution of the type

(3.17), we find solutions that in the UV go over to (3.17), but in the deep IR display a much

sharper increase. The point is that these new solutions can be regulated following the same

procedure outlined here.

Several comments are now in order.

(i) The above method for regulating the seagull-like terms relies solely on the integration

rules of the only known gauge-invariant regularization scheme, namely dimensional regu-

larization, together with the requirement of an appropriate momentum dependence for the

dynamical mass. In that sense it is conceptually rather economical, evoking a minimum

amount of additional theoretical input.

(ii) The implementation of the proposed regularization hinges crucially on the requirement

that, within the given truncation scheme, the RGI behavior can be encoded faithfully into

the SD equation, and the logarithmic terms are correctly accounted for. In particular,

the compensation (in the UV) of the RG logarithm contained in d̂(k2) by the logarithm

of g−2(k2), is essential for the consistency of the ensuing regularization of (3.16). In the

absence of the compensating logarithm one would have to subtract instead a term 1/k2 ln k2

in order to achieve UV convergence. The rules of dimensional regularization allow such a

possibility; by virtue of the more general result [64]

∫
[dk](k2)α = 0 , (3.26)

valid for any value of α, together with the elementary identity [65]

[
1 + bg2 ln(k2/µ2)

]−R

=
1

Γ(R)

∫
∞

0

dt e−t tR−1 (k2/µ2)−t b g2

(3.27)

(valid for R > 0), one may set

∫
[dk]

k2[1 + bg2 ln(k2/µ2)]
=

∫
∞

0

dt e−t (µ2)tbg2

∫
[dk] (k2)−(1+tbg2) = 0. (3.28)

Subracting such a term would eventually regulate the initial integral in the UV. The problem,

however, is in the IR: the logarithm in the denominator of the regulated integral would give

rise to the very pathology one has set out to cure in the first place, namely the Landau pole.
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(iii) Of course, d̂−1(0) must be positive definite (in Euclidean space). The regularization

possibility offered by (3.21) was in fact appreciated in [11], but was not pursued further,

on the grounds of furnishing the “wrong” sign for d̂−1(0). In the context of that work this

was indeed so, because the three-gluon vertex used (the analogue of ĨΓ) was completely

fixed, being the tree-level vertex derived from the Lagrangian of the massive gauge invariant

Yang-Mills model. After connecting T0 to the finite vacuum expectation value of a composite

scalar field creating 0+ glueball states, the replacement

∫
[dk] ∆(k2) −→ ∆−1(0)

∫
[dk] ∆2(k2) (3.29)

was used instead. Assuming that the correct RG-behavior is captured by the corresponding

SD equation, then the integral on the RHS of (3.29) converges due to the extra logarithms

in the denominator.

In the case we consider here, the sign situation is more involved. The two integrals on the

RHS of Eqs. (3.21) are positive definite (assuming that m2(k2) > 0 and f(k2, m2(k2)) > 0

in the full range of momenta); thus, the sign of T
reg

0 is fixed. On the other hand, the sign

of the RHS of (3.23) is not definite, since the ln z appearing in the numerator of the second

integral (contained in g−2(k2)) becomes negative at z < 1. In addition, and perhaps more

importantly, the signs of a0 and a1 are not a-priori known either. This is so because the

expression for d̂−1(0) is determined not by the (fixed and known) sign of the seagull graph,

but from a delicate combination of the coefficients of the pole terms contained in the full

three-gluon vertex ĨΓ. In our opinion the issue of the sign should be settled within the strict

confines of QCD and dimensional regularization. Thus, if a QCD-derived (approximate, to

be sure) form for ĨΓ were to yield (after applying the proposed regularization) a negative

sign for d̂−1(0), then one should be inclined to conclude that the dynamical mass generation

is not realized, at least not in the context of the specific truncation scheme.

IV. THE LINEARIZED SD EQUATION

In this section we will study in detail a linearized version of the SD equation obtained in

the one-loop dressed approximation, omitting the ghosts. The resulting equation is a close

variant of the one presented in [11], but displays several distinct features, allowing us to

address further points of interest.
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A. Linearizing the SD equation

We start by considering the two diagrams of group (a), shown in Fig. 2. Since we are

working in the Feynman gauge of the renormalizable gauges, instead of the axial gauges

used in [11], the general form of ∆̂µν is that of Eq. (2.4). In order to be able to use the

simplified Ansatz for the vertex given below in conjunction with the Lehmann representation,

it is necessary to drop the longitudinal parts of ∆̂µν inside the integrals, using ∆̂µν(k) =

−igµν∆̂(k). As we will see in a moment, omitting these terms does not interfere with the

transversality of the external ∆̂µν(q); in a way it is like considering scalar QED, with massive

scalars inside the vacuum polarization loop, yielding a transverse photon self-energy.

After dropping the longitudinal parts inside the loops, we obtain

Π̂µν(q) =
1

2
CA g2

(∫
[dk] Γ̃αβ

µ ∆̂(k)ĨΓναβ∆̂(k + q)− 2 d gµν

∫
[dk] ∆̂(k)

)
, (4.1)

with

Γ̃µαβ = (2k + q)µgαβ − 2qαgµβ + 2qβgµα , (4.2)

and

qν ĨΓναβ =
[
∆̂−1(k + q)− ∆̂−1(k)

]
gαβ . (4.3)

Then it is straightforward to check that Π̂µν(q) is transverse.

As in [11], in order to linearize the SD equation of (4.1), we resort to the Lehmann

representation for the gluon propagator, setting [66]

∆̂(q2) =

∫
dλ2 ρ (λ2)

q2 − λ2 + iǫ
. (4.4)

This way of writing ∆̂(q2) allows for a relatively simple gauge-technique Ansatz for Γ̃L
ναβ,

which linearizes the resulting SD equation. In particular, on the RHS of the first integral in

(4.1) one sets

∆̂(k)ĨΓναβ∆̂(k + q) =

∫
dλ2 ρ (λ2)

1

k2 − λ2 + iǫ
Γ̃L

ναβ

1

(k + q)2 − λ2 + iǫ
, (4.5)

where Γ̃L
ναβ must be such as to satisfy the tree-level WI

qνΓ̃L
ναβ =

[
(k + q)2 − k2

]
gαβ =

[
(k + q)2 − λ2

]
gαβ − (k2 − λ2)gαβ . (4.6)

Then it is straightforward to show by contracting both sides of (4.5) with qν , and employing

(4.6) and (4.4), that Γ̃L
ναβ satisfies the all-order WI of Eq.(4.3). Of course, choosing Γ̃L

ναβ =

28



Γ̃ναβ solves the WI, but as we will see in detail in what follows, due to the absence of pole

terms it does not allow for mass generation, in accordance with the discussion in the previous

section. Instead we propose the following form

Γ̃L
ναβ = Γ̃ναβ + c1

(
(2k + q)ν +

qν

q2

[
k2 − (k + q)2

])
gαβ

+

(
c3 +

c2

2 q2

[
(k + q)2 + k2

])
(qβgνα − qαgνβ) . (4.7)

The essential feature of this Ansatz is that, due to the inclusion of the 1/q2 pole term, it can

give rise to IR finite solutions. Note that the additional terms have the correct properties

under Bose symmetry with respect to the two quantum legs. For our purposes the constants

c1, c2, and c3 are treated as arbitrary parameters, offering the possibility of quantitatively

examining the sensitivity of the solutions on the specific details of the form of the vertex.

Of course, in reality their value will be determined by the dynamics of the corresponding

SD equation satisfied by the full vertex, a problem which is beyond our powers at present.

Let us next define the quantities

B(q2, λ2) =

∫
[dk]

(k2 − λ2)[(k + q)2 − λ2]
,

T (λ2) =

∫
[dk]

k2 − λ2
. (4.8)

Substituting in (3.4) the expression for ĨΓ obtained from the combination of (4.5) and (4.7),

after some straightforward algebra we obtain

∆̂−1(q2) = q2 +
CA g2 i

2(d− 1)

∫
dλ2 ρ (λ2)F (q2, λ2) , (4.9)

with

F (q2, λ2) = (7d− 8) q2 B(q2, λ2) + 2d

{
2λ2B(q2, λ2)− (d− 2)T (λ2)

}

+dc1

[
− q2B(q2, λ2) + 4λ2B(q2, λ2) + 2T (λ2)

]

+4(d− 1)c2

[
λ2B(q2, λ2) + T (λ2)

]
+ 4(d− 1) c3 q2B(q2, λ2) . (4.10)

In order to study whether ∆̂−1(0) 6= 0, we must determine the value of F (0, λ2). To that

end, note the crucial identity

2λ2B(0, λ2) = (d− 2) T (λ2) , (4.11)
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which may be easily proved following the standard integration rules of dimensional reg-

ularization. Thus, if we were to eliminate the pole terms in the vertex (4.7) by setting

c1 = c2 = 0, then, by virtue of (4.11), we have F (0, λ2) = 0. Evidently, the terms propor-

tional to c1 and c2 in (4.10) are non-vanishing at q2 = 0, even after the application of (4.11),

thus yielding ∆̂−1(0) 6= 0. To see this in detail, let us define

B(q2, λ2) ≡ B(q2, λ2)− B(0, λ2) , (4.12)

and then replace everywhere in (4.10) B(q2, λ2) = B(q2, λ2) + B(0, λ2), using (4.11) to

eliminate λ2B(0, λ2) in favor of T (λ2). This leads to

F (q2, λ2) = q2

{
(7d− 8)− dc1 + 4(d− 1)c3

}(
B(0, λ2) + B(q2, λ2)

)

+ 4

[
d(1 + c1) + (d− 1)c2

]
λ2B(q2, λ2) + 2d (d− 1) (c1 + c2) T (λ2) , (4.13)

from which follows immediately that

∆̂−1(0) = d (c1 + c2) CA g2 i

∫
[dk]∆̂(k2) . (4.14)

Thus, the value of ∆̂−1(0) is determined solely from the singular part of graph (a1), in

agreement with the general discussion of the previous section. In particular, the seagull term

corresponding to graph (a2), due to the aforementioned cancellation, imposed by (4.11), does

not enter in the expression for ∆̂−1(0). This is of course not to say that (a2) is irrelevant;

on the contrary, as we have seen, the role of (a2) is crucial in enforcing transversality,

which eventually allows one to arrive at Eq.(3.8) and Eq.(4.14). Notice also that the factor

determining the value of ∆̂−1(0) is the sum c1 + c2; thus, one could envisage the possibility

of contributions from pole terms pertaining to different Lorentz structures canceling against

each other, or yielding the wrong sign for ∆̂−1(0) .

B. Further algebraic manipulations

We will now further manipulate Eq. (4.13). The term proportional to B(0, λ2) on the RHS

of (4.13) diverges, and is to be absorbed into the wave-function renormalization constant,

soon to be introduced. Using the expression for B(0, λ2) obtained directly from (4.8), we

can write it in the alternative form
∫

dλ2 ρ (λ2)

∫
[dk]

(k2 − λ2)2
= −

∫
[dk]

∂

∂k2

∫
dλ2 ρ (λ2)

k2 − λ2
= −

∫
[dk]

∂∆̂(k2)

∂k2
, (4.15)
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where we have assumed that the order of integration may be changed. In addition, we will

use the elementary result

B(q2, λ2) =
−i

16π2

∫ 1

0

dx ln

(
1 +

q2x(x− 1)

λ2

)
, (4.16)

together with the following identities [67]
∫

dλ2 ρ (λ2)

∫ 1

0

dx ln

(
1 +

q2x(x− 1)

λ2

)
=

∫ q2/4

0

dz

(
1−

4z

q2

)1/2

∆̂(z) ,

∫
dλ2 ρ (λ2) λ2

∫ 1

0

dx ln

(
1 +

q2x(x− 1)

λ2

)
=

∫ q2/4

0

dz z

(
1−

4z

q2

)1/2

∆̂(z) , (4.17)

which allow us to rewrite the RHS manifestly in terms of the unknown function ∆̂. At this

point it is obvious that the perturbative result, which must be proportional to (7d− 8) [see

Π̂
(â)
µν (q) in (2.16)], will be distorted by the presence of the other two terms inside the curly

brackets on the RHS of (4.13). To avoid this we will use the freedom in choosing the value

of c3, and fix it such that 4(d− 1)c3 = dc1. After this, using the results given above, setting

d = 4 everywhere except in the measure, and defining

b̃ ≡
10 CA

48π2
, σ ≡

6 (c1 + c2)

5
, γ ≡

4 + 4 c1 + 3 c2

5
, (4.18)

we arrive at the integral equation

∆̂−1(q2) = q2

{
1−

b̃g2i

π2

∫
ddk

∂∆̂(k2)

∂k2
+ b̃ g2

∫ q2/4

0

dz

(
1−

4z

q2

)1/2

∆̂(z)

}

+ γb̃g2

∫ q2/4

0

dz z

(
1−

4z

q2

)1/2

∆̂(z) + ∆̂−1(0) , (4.19)

with

∆̂−1(0) =
ib̃g2σ

π2

∫
ddk ∆̂(k2) . (4.20)

Next consider the Euclidean version of (4.19); to that end we set q2 = −q2
E
, with q2

E
> 0

the positive square of a Euclidean four-vector, define the Euclidean propagator as

∆̂E(q2
E
) = −∆̂(−q2

E
), (4.21)

and the integration measure [dk] = i[dk]E = iddkE/(2π)4. To avoid notational clutter, we

will suppress the subscript “E” everywhere except in the ddk measure. Then we have

∆̂−1(q2) = q2

{
1 +

b̃g2i

π2

∫
ddkE

∂∆̂(k2)

∂k2
+ b̃ g2

∫ q2/4

0

dz

(
1−

4z

q2

)1/2

∆̂(z)

}

+ γb̃g2

∫ q2/4

0

dz z

(
1−

4z

q2

)1/2

∆̂(z) + ∆̂−1(0) , (4.22)
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where from now on q2 stands for the (positive) square of a Euclidean vector, and

∆̂−1(0) = −
b̃g2σ

π2

∫
ddkE ∆̂(k2) . (4.23)

C. Renormalization

In order to renormalize the equation, first we define the bare and renormalized quantities

as follows:

go = Ẑg g , Âµ
o = Ẑ

1/2
A Âµ , ∆̂o(q) = ẐA ∆̂(q) , (4.24)

and the fundamental QED-like relation Ẑg = Ẑ
−1/2
A , which holds in the PT-BFM framework,

by virtue of the Abelian-type WIs satisfied. Then, it is straightforward to verify that the

net effect of renormalizing (4.1), or subsequently (4.19), is to simply multiply its RHS by

ẐA and replace all bare quantities by renormalized ones.

However, as usually happens at this level of approximation, where the overlapping diver-

gences are not properly accounted for, due to the ambiguities in the longitudinal parts of

Γ̃L
ναβ, one is forced to renormalize subtractively instead of multiplicatively. This amounts to

interpreting ẐA as an infinite constant that renders the product

ẐA

(
1 +

b̃g2i

π2

∫
ddkE

∂∆̂(k2)

∂k2

)
= K (4.25)

finite, and setting ẐA = 1 in all other terms. This procedure leads to

∆̂−1(q2) = q2

{
K + b̃ g2

∫ q2/4

0

dz

(
1−

4z

q2

)1/2

∆̂(z)

}

+ γb̃g2

∫ q2/4

0

dz z

(
1−

4z

q2

)1/2

∆̂(z) + ∆̂−1(0) . (4.26)

The renormalization constant K is to be fixed by the condition

∆̂−1(µ2) = µ2 , (4.27)

with µ2 a Euclidean momentum, satisfying µ2 ≫ Λ2, yielding

K = 1− b̃g2

∫ µ2/4

0

dz

(
1 + γ

z

µ2

) (
1−

4z

µ2

)1/2

∆̂(z) . (4.28)
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D. Renormalization-group analysis

We next study the UV behavior predicted by the integral equation (4.26) for ∆̂(q2). To

begin with, notice that the perturbative one-loop result may be recovered by replacing on

the RHS of (4.26) ∆̂(z) → 1/z, the tree-level value; then, the second term vanishes, and

after setting (1 − 4z/q2)1/2 → 1 and (1 − 4z/µ2)1/2 → 1 in the first term (curly brackets),

we obtain ∆̂−1(q2)|pert = q2
(
1 + b̃ g2 ln(q2/µ2)

)
. However, if one were to solve this equation

non-perturbatively, one would discover that, even though the perturbative result is correctly

recovered, ∆̂(q2) does not display the expected RG behavior, e.g. that of Eq. (2.9), with

b→ b̃.

The fact that this behavior is not captured by (4.26) can be easily seen by writing down

the simplified version of that equation,

∆̂−1(q2) = q2

(
1 + b̃g2

∫ q2

µ2

dz ∆̂(z)

)
, (4.29)

valid in the deep UV, and converting it into an equivalent differential equation. Setting

∆̂(q2) = G(q2)/q2, and x = q2, we obtain

d G(x)

d x
= −b̃g2G3(x)

x
, (4.30)

which leads to

∆̂−1(q2) = q2

[
1 + 2b̃g2 ln

(
q2

µ2

)]1/2

. (4.31)

Upon expansion this expression yields ∆̂−1(q2)|pert correctly, but differs from (2.9). The

fundamental reason for this discrepancy can be essentially traced back to having carried out

the renormalization subractively instead of multiplicatively [11, 63], thus distorting the RG

structure of the equation.

In order to restore the correct RG behavior at the level of (4.26), we will use the procedure

explained in Sec. III, substituting in the integrands on the RHS of (4.26)

∆̂(z) −→
g2 ∆̂(z)

g2(z)
. (4.32)

Then (4.26) may be rewritten in terms of two RG-invariant quantities, d̂(q2) and g2(q2), as
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follows

d̂−1(q2) = q2

{
K ′ + b̃

∫ q2/4

0

dz

(
1−

4z

q2

)1/2
d̂(z)

g2(z)

}

+ γb̃

∫ q2/4

0

dz z

(
1−

4z

q2

)1/2
d̂(z)

g2(z)
+ d̂−1(0) , (4.33)

with

K ′ =
1

g2
− b̃

∫ µ2/4

0

dz

(
1 + γ

z

µ2

) (
1−

4z

µ2

)1/2
d̂(z)

g2(z)
, (4.34)

and

d̂−1(0) = −
b̃σ

π2

∫
ddkE

d̂(k2)

g2(k2)
. (4.35)

It is easy to see now that Eq.(4.33) yields the correct UV behavior for d̂(q2), given in (2.10).

For example, converting (4.33) into a differential equation, and setting d̂(q2) = F (q2)/q2,

the equivalent of (4.30) now reads

d F (x)

d x
= −b̃

F 3(x)

x ḡ2(x)
, (4.36)

whose solution is F (x) = g2(x), as announced.

E. Asymptotic behavior of m2(q2)

As has been discussed in Sec. III, the ability to regularize condition (4.35) following the

properties of dimensional regularization depends crucially on the asymptotic behavior of

m2(q2). It is therefore essential to determine the asymptotic behavior that Eq.(4.33) yields

for m2(q2) in the deep UV. To that end, substitute (3.17) on both sides of (4.33), and

consider the limit where q2 is large. The integral proportional to γ may be written as

∫ q2/4

0

dz

(
1−

4z

q2

)1/2
z

z + m2(z)
=

q2

6
−

∫ q2/4

0

dz

(
1−

4z

q2

)1/2
m2(z)

z + m2(z)
. (4.37)

Then setting (1− 4z/q2)1/2 → 1, and dropping terms that do not grow logarithmically with

q2, (4.33) reduces to

[q2 + m2(q2)] ln
(
q2/Λ2

)
= q2

∫ q2/4

0

dz

z + m2(z)
− γ

∫ q2/4

0

dz
m2(z)

z + m2(z)
. (4.38)

Let us then separate the terms that go like q2 ln q2 and m2(q2) ln q2; obviously the first

integral on the RHS compensates the q2 ln q2 on the LHS. Then setting

m2(q2) ∼ m2
0 ln−a

(
q2/Λ2

)
, (4.39)

34



we find that the two sides of the equation can be made equal if

a = 1 + γ . (4.40)

Thus, provided that γ > 0, the momentum dependence of the mass term in the deep UV is

of the type needed for the regularization of Eq.(3.21) to go through.

V. NUMERICAL ANALYSIS

The equation we will solve is (4.33) with the renormalization constant K ′ of (4.34) ex-

plicitly incorporated, e.g.

d̂−1(q2) = q2

{
1

g2
+ b̃

(∫ q2/4

0

dz

(
1−

4z

q2

)1/2
d̂(z)

ḡ2(z)
−

∫ µ2/4

0

dz

(
1−

4z

µ2

)1/2
d̂(z)

ḡ2(z)

)}

+ γb̃

(∫ q2/4

0

dz z

(
1−

4z

q2

)1/2
d̂(z)

ḡ2(z)
−

q2

µ2

∫ µ2/4

0

dz z

(
1−

4z

µ2

)1/2
d̂(z)

ḡ2(z)

)

+ d̂−1(0) (5.1)

with d̂−1(0) given by (4.35), eventually to be replaced by its regularized expression, according

to (3.21). In particular, if the numerical solution obtained for d̂(q2) has the general form of

Eq.(3.17), d̂−1(0) will be given by

d̂−1(0) = b̃σ

[∫
∞

0

dz
m2(z)

z + m2(z)
+ b̃

∫
∞

0

dz z d̂(z) ln

(
1 +

f(z, m2(z))

z

)]
, (5.2)

If the solutions deviate in the IR from Eq.(3.17), an analogous expression can be obtained,

(see below) in accordance with the discussion following Eq.(3.25).

Equations (5.1) and (5.2) form a system of equations that must be solved simultaneously.

The role of (5.1) is to furnish possible solutions for d̂(q2), while (5.2) constrains them or

the value of the parameters involved. Roughly speaking, the strategy for solving the system

is the following. Note first that (5.1) contains no information for the value of d̂−1(0); at

q2 = 0, one obtains an identity. Therefore, one chooses an arbitrary value for d̂−1(0),

plugs it in on the RHS of (5.1), and proceeds to solve the integral equation. Given such

a solution, one must then substitute it in (5.2) and calculate the value of d̂−1(0) obtained

after the integration, and compare it with the value of d̂−1(0) chosen at the beginning, the

objective being to reach coincidence between the two values. Assuming that the value of σ
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is considered to be fixed, one must then repeat this procedure, varying the initial value of

d̂−1(0), until agreement has been reached. If instead one is free to choose the value of σ,

then for a given initial value of d̂−1(0) one varies σ until compliance has been achieved. In

this article we will follow the latter philosophy, treating σ as an adjustable parameter.

Specifically, for each value of d̂−1(0) chosen, we should vary γ and σ, in order to scan the

two-parameter space of solutions. In practice, we choose to reduce the number of parameters

down to one, namely σ, since from the ensuing numerical analysis it becomes clear the

dependence of the solution shows a very mild dependence on γ. Therefore, we rewrite γ,

given by Eq.(4.18), as

γ =
2

3
σ +

4

5
−

c2

5
, (5.3)

and then we set c2 = 0, in the order to keep σ as the only free parameter. The small

differences produced when c2 is non-vanishing will be commented later on.

For the numerical treatment we define a logarithmic grid for the variables q2 and z; this

improves the accuracy of the algorithm in the small q2 region, since the size of the steps

is made smaller for IR momenta. We split the grid into two region: [0, µ2] and (µ2, ΛUV].

Such splitting in needed for imposing on d̂(q2) the renormalization condition (given by

Eq.(4.27)) at a perturbative scale µ2. Typically, we chose µ2 = M2
Z = (91.18)2 GeV 2 and

ΛUV = 10 6 GeV 2. Furthermore, one has to specify the coupling g2 = ḡ2(µ2) entering in

Eq.(5.1); its value is obtained from Eq.(2.11), where we have properly replaced b → b̃, and

used as input a value of Λ = 300 MeV for the QCD mass scale. Then, we solve the integral

equation iteratively, starting out with an initial trial function, and using as a convergence

criterion that the relative difference between the input and the output should be smaller

than 10−8.

The general trend displayed by the solutions is that the characteristic IR plateau (“freez-

ing”) becomes increasingly narrower as one increases the value of d̂(0). We have found two

types of solutions, depending on the initial value chosen for d̂−1(0): (i) For values of d̂−1(0)

within the range [0.01 GeV 2, 0.07 GeV 2] the solutions can be perfectly fitted by Eq.(3.17);

we will refer to them as “canonical”. (ii) For d̂−1(0) < 0.01 GeV 2 the solutions can be

fitted by Eq.(3.17) until relatively low values of q2, but deviate significantly in the deep

IR, where they display a sharp rise and a rather narrow plateau; we will call such solutions

“non-canonical”.
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A. Canonical solutions

In Fig. 6, we show a typical case of a canonical solution corresponding to the initial choice

d̂−1(0) = 0.04 GeV 2. As can be observed from the plot, d̂(q2) is essentially a constant,

determined by d̂(0), until the neighbourhood of q2 = 0.01 GeV 2; then, the curve bends

downward in order to match with the perturbative scaling behavior at a scale of few GeV 2.

All such solutions may be fitted very accurately by means of the d̂(q2) of Eq.(3.17), where

the functional form of g2
NP

(q2) is that of Eq.(3.18), with the function f(q2, m2(q2)) fixed as

f(q2, m2(q2)) = ρ 1m
2(q2) + ρ 2

m4(q2)

q2 + m2(q2)
, (5.4)

and the dynamical mass has the form

m2(q2) = m2
0

[
ln

[
q2 + ρ 1 m2

0

Λ2

]/
ln

[
ρ 1 m2

0

Λ2

]]−a

, (5.5)

with exponent a = 1 + γ.
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FIG. 6: The black dots represent the numerical solution for d̂(q2) obtained for the choice d̂−1(0) =

0.04 GeV 2, σ = 0.212 and γ = 0.941. The continuous red line is the fit of Eq.(3.17), setting

ρ2 = −3.208 and m2
0 = 0.45GeV 2. These curves are obtained fixing d̂−1(0) = 0.04 GeV 2,

σ = 0.212 and γ = 0.941. The dashed blue line is the one-loop perturbative behavior.

The dynamical mass, m2(q2), and the running charge, α(q2) = g2
NP

(q2)/4π, corresponding

to the numerical solution presented on the Fig. 6, are shown in Figs. 7 and 8, respectively.

37



10-6 10-4 10-2 100 102 104 106
0,0

0,1

0,2

0,3

0,4

0,5

 

 

m
2 (q

2 ) [
G

eV
2 ]

q2[GeV2]

d - 1(0) = 0.04 and  = 0.212
 Dynamical Mass

FIG. 7: The dynamical mass, m2(q2), corresponding to the solution of Fig. 6.

10-6 10-4 10-2 100 102 104 106
0,0

0,2

0,4

0,6

0,8

1,0

 

 

 (q
2 )

q2[GeV2]

Running Charge 
 d -1(0) = 0.04

FIG. 8: The running charge, α(q2) = g2
NP

(q2)/4π corresponding to the solution of Fig. 6.

In fact, in all cases studied, ρ 1 was fixed to the value ρ 1 = 4, which was found to minimize

the χ2 of the corresponding fits. Therefore, the unique free parameter is ρ 2, since the value
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of m2
0 can be written in terms of ρ 2, simply by setting q2 = 0, in Eq.(3.17), i.e.,

d̂−1(0) = b̃ m2
0 ln

(
f(0, m2

0)

Λ2

)
, (5.6)

where

f(0, m2
0) = (4 + ρ 2) m2

0 . (5.7)

Thus, the value of the IR fixed point of the running coupling is determined by the value

assumed by f(0, m2
0), since

g−2
NP

(0) = b̃ ln

[
(4 + ρ 2) m2

0

Λ2

]
, (5.8)

Obviously, the maximum value obtained for g2
NP

(0), is the one that minimizes (4 + ρ 2) m2
0

and, at same time, keeps it bigger than Λ2, in order to avoid the appearance of a shifted

version of the Landau pole.

Note that the term proportional to ρ 2 in (5.4) is necessary for optimizing the fit for the

range of momenta q2 ∈ [0.01 GeV 2, 2 GeV 2], i.e. the region where d̂(q2) falls down rapidly.

If we were to set ρ 2 = 0 in Eq.(5.4) we would recover automatically the solution proposed

in [11]; however, such a choice would not correspond to the best possible fit: our numerical

solution requires bigger values for the coupling g2
NP

(q2), and therefore, ρ 2 assumes negative

values, as can be observed on Fig. 6, where found that ρ 2 = −3.208.

It is important to mention that other functional forms for f(q2, m2(q2)) were also tried;

although some of them could fit d̂(q2) well, they have been discarded due to the appearance,

at some scale, of an undesired “bump” in the behavior of g2
NP

(q2). In others words, we have

required that g2
NP

(q2) should be a monotonically decreasing function of q2.

In Fig. 9 we plot a series of numerical solution obtained by fixing different values for

d̂−1(0). All these solutions have been subjected to the constraint imposed by Eq.(5.2), and

their corresponding values for σ are reported in the inserted legend. Observe that they all

behave like constants until practically the same scale of 0.01 GeV 2 (the “freezing” plateau),

then they converge down to a common value at around 1 GeV 2, beyond which they start to

develop the known perturbative behavior.

The running charges, α(q2), for each solution presented in Fig. 9, are displayed on Fig. 10.

Observe that as the value of d̂−1(0) decreases, the value of the infrared fixed point of the

running coupling, α(0), increases. Accordingly, from Fig. 9 and Fig. 10, we can conclude

that, if smaller values of σ were to be favored by QCD, the freezing of the running coupling
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FIG. 9: Results for d̂(q2) for various values of d̂−1(0) (all in GeV 2), together with the respective

values for σ, obtained from the constraint of Eq.(5.2).

would occur at higher values. It should also be noted that the values of α(0) found here

tend to be slightly more elevated compared to those of [11] (for the same value of m2
0).

In addition we analyze the dependence of the ratio m0/Λ on σ, extracted from Eq.(5.6).

This dependence is shown in Fig. 11, corresponding to the cases presented in Fig. 9. We

observe that as we increase the value of σ, namely the sum of the coefficients of the massless

pole terms appearing in the three gluon vertex, the ratio m0/Λ grows exponentially as

m0

Λ
= A1 exp

(
σ

t1

)
+ y0 , (5.9)

with A1 = 0.775, t1 = 0.25 and y0 = 0.436.

At this point it is natural to ask by how much these results would change if we were to

turn on again c2 in Eq.(5.3). We have examined values of c2 comparable to those used for

σ, i.e. we exclude the possibility that the typically small values of σ are a result of a very

fine-tuned cancellation between large c1 and c2, opposite in sign. It turns out that, for all

previous cases studied, the effect of including non-vanishing c2’s in Eq.(5.3) is less than 3%,

a fact that justifies their omission.
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FIG. 10: We plot the correspondent running charge, α(q2), for the gluon propagator presented

on Fig. 9. Clearly, we can see as we decrease the values of d̂−1(0) the infrared fixed point, α(0),

becomes bigger.

B. Non-canonical solutions

As we decrease d̂−1(0), it becomes increasingly difficult to fit the numerical solution

obtained from Eq. (5.1) using the expressions given in (3.17), (5.4), and (5.5). In particular,

for solutions with d̂−1(0) < 0.01 GeV 2, the discrepancy is relatively large, especially in the

intermediate region. We will denote such non-canonical solutions by d̂N(q2). A typical

numerical solution is shown by the curve composed by black squares in Fig. 12. It is

important to emphasize that, although the form of Eq.(3.17) is not suited for fitting the entire

momentum range, one may use it for describing a partial region, i.e. q2 ∈ [0.2 GeV 2, ΛUV],

as showed by the line+circle curve on Fig. 12, where we clearly see a quantitative agreement

between both curves. This observation is related to the discussion following Eq.(3.25),

allowing us to use the same regularization procedure as in (5.2).

To see this, let us denote by d̂C(z) the canonical solution that provides the best fit to a

given d̂N(z); then write d̂N(z) = [d̂N(z) − d̂C(z)] + d̂C(z), and substitute into Eq.(5.2), to
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FIG. 11: The ratio m0/Λ as function of the parameter σ. The increase is exponential, given by

Eq.(5.9).

obtain

d̂−1(0) = b̃σ

[
d̂→ d̂C

]
− b̃σ

∫
∞

0

dz z
d̂N(z)− d̂C(z)

ḡ2(z)
, (5.10)

The first term on the RHS of Eq.(5.10) is simply the RHS of Eq.(5.2), with d̂→ d̂C; it clearly

converges, since d̂C is (by construction) a canonical solution. The second term receives an

appreciable contribution only in the low momenta region, i.e. from 0 to 0.2 GeV 2, vanishing

very rapidly in the UV, due to the perfect agreement found between both curves for the

range [0.2 GeV 2, ΛUV].

Other non-canonical solutions with different d̂−1(0) are plotted on Fig. 13, and their

respective values of σ are reported in the legend. Notice that, as the value of d̂(0) increases,

the IR plateau becomes narrower.

Finally, the dependence of d̂−1(0) on σ for all cases presented here is shown on Fig. 14,

in a log-log plot. The results clearly show a linear behavior for smaller values of d̂−1(0),

whereas for values of d̂−1(0) ≥ 0.01 GeV 2 the growth is exponential.
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FIG. 12: The black square points represent the numerical solution for the RGI quantity d̂(q2) =

g2∆̂(q2), when we fixed d̂−1(0) = 0.001 GeV 2 and σ = 7.65 × 10−3. The red line + circle curve

is the fit given by Eq.(3.17), setting ρ2 = −π and m2
0 = 0.304 GeV 2. The small plot is the same

graph on log-log scale.

VI. DISCUSSION AND CONCLUSIONS

In this article we have taken a closer look at various issues relevant to the study of gluon

mass generation through SD equations. The emphasis of our analysis has focused on the fol-

lowing points: (i) The gauge-invariant truncation scheme based on the PT-BFM formalism,

and the possibility it offers in implementing a self-consistent first approximation, omitting

ghost contributions without compromising the transversality of the gluon self-energy. (ii)

The necessity of introducing massless poles in the form of the vertex used in the SD equation,

and the role of the seagull graph in enforcing transversality (iii) A method for regulating

the resulting seagull-type integrals based on dimensional regularization, and the asymptotic

properties that the solutions must display in the UV in order for this regularization to

work. (iv) We have derived a linearized version of the SD equation that originates from the

one-loop dressed approximation, in the absence of ghost loops. (v) We have introduced a

phenomenological form for the three-gluon vertex, containing massless poles associated with

two different tensorial structures. (vi) The resulting equation has been solved numerically
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FIG. 13: Results for d̂(q2) fixing different values for d̂−1(0) (all in GeV 2) in a log-log plot. All

solutions presented satisfy the condition given by Eq.(5.10). Their respective values for σ are

described on its legend.

and two types of qualitatively distinct solutions have been found.

It should be obvious from the present work that the role of the three-gluon vertex is

absolutely central; in particular, the question of whether or not it contains massless poles is

a determining factor when looking for finite solutions. As we have mentioned already, the

form of the vertex employed here attempts to capture some of the main features, such as

the impact of the poles, and the possible interplay between poles originating from different

Lorentz structures (see discussion after (4.14)). Needless to say, an in-depth study of the

form of the vertex is indispensable for further substantiating the appearance of IR-finite

solutions. At the moment we only have indications from the study of SD equation and

lattice simulations (albeit for the three-gluon vertex in the conventional Landau gauge) that

the IR behavior is indeed singular. In addition, one must explore the possibility of improving

the gauge-technique inspired Ansätze employed for the vertex, in the spirit of [62], in an

attempt to correctly incorporate the required asymptotic behavior into the SD equation (see

Sec. III). Given the rich tensorial structure of the three-gluon vertex [68], such a task is

expected to be technically rather demanding.
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It would be interesting to further scrutinize the viability of the new class of solutions

encountered in Sec. V. Such solutions are particularly interesting, because they could in

principle overcome a well-known difficulty related to the breaking of chiral symmetry. Specif-

ically, the class of solutions displaying freezing, when inserted into standard forms of the

gap-equation for the quarks, are not able to trigger non-trivial solution, because they do no

reach high enough values in the IR to overcome the critical coupling [69]. Instead, the new

type of solutions rises sharply in the deep IR, reaching values that could in principle break

chiral symmetry, while for intermediate IR momenta it coincides with a canonical massive

type of solution, that seems to be favored by phenomenology [31] . Of course, it could well

happen that these solutions are particular to the linearized equation, and do not survive a

non-linear analysis.

In recent years the picture that has emerged through the study of SD equations in the

conventional Landau gauge is characterized by the so-called “ghost dominance” [29, 70].

In particular, the gluon self-energy has the form ∆µν(q
2) = ∆(q2)Pµν(q), with ∆(q2) =

Z(q2)/q2, and the ghost propagator is D(q2) = −C(q2)/q2. Assuming that the dressed

ghost-gluon vertex is finite in the IR, the SD equations yields for q2 → 0, C(q2) = A q−2κ,

Z(q2) = B q 4κ, where the constants A and B depend on κ. The value of κ depends on the

details of the dressing of the gluon-ghost vertex at small momenta; SD and lattice studies

45



seem to restrict it within the range 0.5 ≤ κ < 0.6. For the special value κ = 0.5 one

obtains a finite gluon propagator, ∆(0) = B, whereas the ghost propagator diverges as

D(q2) → −A(q2)−3/2. In addition, by virtue of the identity Z̃1 = ZgZ
1/2
3 Z̃3 = 1, valid in

the Landau gauge, where Z̃1, Zg, Z3 and Z̃3 are the gluon-ghost vertex, coupling, gluon and

ghost renormalization constants respectively, one concludes that the product g2Z(q2)C2(q2)

is RG-invariant, and can be adopted as a definition of the non-perturbative running coupling,

i.e. α(q2) = (g2/4π)Z(q2)C2(q2). Then it is clear that the α(q2) so defined has an IR fixed

point, α(0) = (g2/4π)A2 B , regardless of the value of κ. The actual value of α(0) depends

on κ, through the implicit dependence of A and B on it; for values of 0.5 ≤ κ < 0.6, one

obtains 2.5 ≤ α(0) < 3. Evidently, the (dimensionfull) RG-invariant quantity d̂(q2) studied

in this article displays a qualitatively similar behavior to that found for the (dimensionless)

running coupling in the “ghost-dominance” picture, namely IR finiteness. Therefore, despite

the difference in the intermediate steps and the terminology employed, the physics captured

by both pictures appears to be compatible. Notice also that, from the practical point of view,

the method presented here has the advantage of setting up a SD equation directly for the

RG-invariant object of interest; thus, the result obtained does not depend on the exactness

with which a subtle cancellation in the ratio of two quantities, one tending to zero and one to

infinity, is realized. This last comment may be particularly relevant in the context of lattice

simulations, where the above ratio is studied numerically; clearly, a small deviation from the

exact cancellation (due to residual volume dependences, for instance) may lead to serious

qualitative discrepancies. It is also important to mention that, whereas the confinement

mechanism within the “ghost-dominance” description is attributed to the divergence of the

ghost propagator [71], in the picture where the gluon is massive the origin of confinement

is the condensation of vortices [4, 72]. Actually, recent investigations advocate interesting

connections between the center-vortex picture and the Gribov-horizon scenario [73].

As mentioned in the Introduction, in the PT-BFM scheme the omission of the ghost loop

does not interfere with gauge-invariance, but it might alter the actual form of the gluon

self-energy. Therefore, the study of the gluon-ghost system should be eventually considered.

Of particular relevance in such a study is the nature of the gluon-ghost vertices involved; in

fact, in the PT-BFM scheme there will be two such vertices: ĨΓν , appearing in Fig. 3, and

IΓβ, which will appear in the SD equation for the ghost propagator. The IR behavior of IΓβ

(in the Landau gauge) is currently under investigation on the lattice [74]; it would clearly
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be important to settle the issue of whether it is divergent or finite.

Last but not least, the theoretical situation concerning the SD equations within the PT-

BFM scheme merits further intense scrutiny. First of all, the correspondence between the

PT and BFM has been established perturbatively to all orders, but no analogous proof exists

non-perturbatively, i.e. at the level of the SD equations themselves. In this article we have

assumed that the PT-BFM correspondence persists non-perturbatively. A preliminary study

in a simplified context (scalar QED) fully corroborates this assumption [75] ; however, the

actual realization is highly non-trivial, and its generalization to QCD deserves a thorough

analysis. In the same context, the consequences of the second crucial ingredient, namely

the substitution of quantum quantities by background ones inside the loops, are virtually

unexplored. One must study in detail, preferably in the context of the toy model mentioned

above, the viability and self-consistency of this procedure. We hope to be able to undertake

some of these tasks in the near future.
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APPENDIX: FEYNMAN RULES IN THE BFM

In this Appendix we list for completeness the Feynman rules appearing in [43].

ν, bµ, a −i

[
gµν − (1− ξQ)

kµkν

k2

]
δab

k2 + iǫ
(A-1)

a b
iδab

k2 + iǫ
(A-2)

ր տ

↓

µ, b ν, c

q

p1
p2

α, a

gfabc
[
(p1 − q)ν gµα + (q − p2)µ gνα + (p2 − p1)α gµν

]
(A-3)
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ր տ

↓

α, a

µ, b ν, c

q

p1
p2 gfabc

[(
p1 − q +

1

ξQ

p2

)

ν

gµα +

(
q − p2 −

1

ξQ

p1

)

µ

gνα + (p2 − p1)α gµν

]
(A-4)

µ, a

ν, b α, c

β, d

µ, a
β, d

ν, b α, c

−ig2

[
fabxfxcd (gµαgνβ − gµβgνα)

+ fadxfxbc (gµνgαβ − gµαgνβ)

+facxfxbd (gµνgαβ − gµβgνα)

]
(A-5)

ν, b

β, d
µ, a

α, c

−ig2

[
fabxfxcd

(
gµαgνβ − gµβgνα +

1

ξQ
gµνgαβ

)

+ fadxfxbc

(
gµνgαβ − gµαgνβ −

1

ξQ
gµβgνα

)

+facxfxbd (gµνgαβ − gµβgνα)

]
(A-6)

µ, c

p

q

b

a

−gfabc(p + q)µ (A-7)

µ, c

p

q

b

a

−gfabcpµ (A-8)
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a b

ν, dµ, c

−ig2facxfxdbgµν (A-9)

a b

µ, c ν, d

−ig2gµν

(
facxfxdb + fadxfxcb

)
(A-10)
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