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Analyzing dynamical gluon mass generation
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We study the necessary conditions for obtaining infrared finite solutions from the Schwinger-Dyson
equation governing the dynamics of the gluon propagator. The equation in question is set up in the
Feynman gauge of the background field method, thus capturing a number of desirable features. Most
notably, and in contradistinction to the standard formulation, the gluon self-energy is transverse
order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions.
Various subtle field-theoretic issues, such as renormalization group invariance and regularization of
quadratic divergences, are briefly addressed. The infrared and ultraviolet properties of the obtained
solutions are examined in detail, and the allowed range for the effective gluon mass is presented.
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The most widely used approach for studying in the con-
tinuum QCD effects that lie beyond the realm of pertur-
bation theory are the Schwinger-Dyson (SD) equations.
This infinite system of coupled non-linear integral equa-
tions for all Green’s functions of the theory is inherently
non-perturbative and can accommodate phenomena such
as chiral symmetry breaking and dynamical mass gener-
ation. In practice one is of course severely limited in
their use, and various approximations have been imple-
mented throughout the years. Devising a self-consistent
truncation scheme for the SD series is far from trivial.
The main problem in this context is that the SD equa-
tions are built out of unphysical Green’s functions; thus,
the extraction of reliable physical information depends
crucially on delicate all-order cancellations, which may
be inadvertently distorted in the process of the trun-
cation. In order to partially compensate for this type
of shortcomings, one usually attempts to supplement as
much independent information as possible, by “solving”
the complicated Slavnov-Taylor identities (STI), or by
combining with results from lattice simulations.

The truncation scheme based on the pinch technique
(PT) [1, 2] implements a drastic modification already at
the level of the building blocks of the SD series, namely
the off-shell Green’s functions themselves. The PT is
a well-defined algorithm that exploits systematically the
symmetries built into physical observables, such as S-
matrix elements, in order to construct new, effective
Green’s functions endowed with very special properties.
Most importantly, they are independent of the gauge-
fixing parameter, and satisfy naive (ghost-free, QED-like)
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Ward identities (WI) instead of the usual STI. The up-
shot of this program is to first trade the conventional SD
series for another, written in terms of these new Green’s
functions, and subsequently truncate it, keeping only a
few terms in a “dressed-loop” expansion, maintaining at
the same time exact gauge-invariance.

Of central importance in this context is the connec-
tion between the PT and the Background Field Method
(BFM). The latter is a special gauge-fixing procedure
that preserves the symmetry of the action under ordinary
gauge transformations with respect to the background

(classical) gauge field Âa
µ, while the quantum gauge fields

Aa
µ appearing in the loops transform homogeneously un-

der the gauge group [3]. As a result, the background
n-point functions satisfy QED-like all-order WIs. The
connection between PT and BFM, known to persist to all
orders, affirms that the (gauge-independent) PT effective
n-point functions coincide with the (gauge-dependent)
BFM n-point functions provided that the latter are com-
puted in the Feynman gauge [4].

In this talk we consider the all-order diagrammatic

structure of the effective gluon self-energy, Π̂µν(q), ob-
tained within the PT-BFM framework. We explain that,
as a consequence of all-order WI satisfied by the full
vertices appearing in the corresponding diagrams, the

transversality of Π̂µν(q) is realized in a very special way:
the contributions of gluonic and ghost loops are sepa-

rately transverse. In particular, we study a truncated
version of this new series, keeping only the terms of the
gluonic one-loop dressed expansion, while still maintain
exact gauge invariance. Our attention will focus on a de-
tailed scrutiny of the necessary conditions for obtaining
infrared finite solutions from the SD equation.

Let us first define some basic quantities. First of all,
it should be clear from the beginning that there are two
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different gluon propagators appearing in this problem,

∆̂µν(q), denoting the background gluon propagator, and
∆µν(q), denoting the quantum gluon propagator appear-

ing inside the loops. In the Feynman gauge, ∆̂µν(q) is
given by

∆̂µν(q) = −i

[
Pµν(q)∆̂(q2) +

qµqν

q4

]
, (1)

where the transversal projector,

Pµν(q) = gµν −
qµqν

q2 . (2)

The scalar function ∆̂(q2) is related to the all-order gluon

self-energy Π̂µν(q) by

Π̂µν(q) = Pµν(q) Π̂(q2) ; ∆̂(q2) =
1

q2 + iΠ̂(q2)
. (3)

Exactly analogous definitions relate ∆µν(q) with Πµν(q).

The diagrammatic representation of ∆̂−1
µν (q) is shown

in Fig.(1). Notice that diagrams (b2), (d1), (d2), (d3) and
(d4), are characteristic to the BFM; within the PT they
are generated dynamically, from the STIs triggered by
the pinching momenta.

FIG. 1: The SD equation for the gluon propagator. Wavy
lines with grey blobs represent full-quantum gluon propaga-
tors, while the dashed lines with grey blobs denote full-ghost
propagators. All external wavy lines (ending with a vertical
line) are background gluons. The black dots are the tree-level
vertices in the BFM, while black blob represents the full con-
ventional vertices. The white blobs denote three or four-gluon
vertices with one external background leg.

As is widely known, in the conventional formalism the
inclusion of ghosts is instrumental for the transversality
of Πab

µν(q), already at the level of the one-loop calculation.
On the other hand, in the PT-BFM formalism, due to
new Feynman rules for the vertices, the one-loop gluon
and ghost contribution are individually transverse [3].

As has been shown in [5], this crucial feature persists
at the non-perturbative level, as a consequence of the
simple WIs satisfied by the full vertices appearing in the
diagrams of Fig.(1). Specifically, the gluonic and ghost

sector are separately transverse, within each individual
order in the dressed-loop expansion

We will show this property for the one-loop dressed
terms. We start by writing down the fundamental all-
order WI for the full three-gluon vertex with one back-

ground gluon, ĨΓ
abc

µαβ , and for the full background gluon-

ghost vertex ĨΓ
acb

µ ,

qµ
1 ĨΓ

abc

µαβ(q1, q2, q3) = gfabc
[
∆−1

αβ(q2) − ∆−1
αβ(q3)

]
,

qµ
1 ĨΓ

acb

µ (q2, q1, q3) = gfabc
[
D−1(q2) − D−1(q3)

]
, (4)

where on the RHS we have differences of inverse of the
quantum gluon, ∆µν(q), and ghost, D(q), propagators.

The closed expressions corresponding to the gluonic
sector, at one-loop dressed expansion, (see Fig.(1)) are
given by

Π̂ab
µν(q)

∣∣
a1

=
1

2

∫
[dk] Γ̃aex

µαβ∆αρ
ee′ (k)ĨΓ

be′x′

νρσ ∆βσ
xx′(k + q) ,

Π̂ab
µν(q)

∣∣
a2

=
1

2

∫
[dk] Γ̃abex

µναβ∆αβ
ex (k) , (5)

with Γ̃aex
µαβ and Γ̃abex

µναβ being the three and four bare gluon

vertices in the Feynman gauge of the BFM [3].
For the ghost sector, we have

Π̂ab
µν(q)

∣∣
b1

= −

∫
[dk] Γ̃aex

µ Dee′ (k)ĨΓ
be′x′

ν Dxx′(k + q) ,

Π̂ab
µν(q)

∣∣
b2

= −

∫
[dk] Γ̃abex

µν Dex(k) . (6)

where Γ̃aex
µ and Γ̃abex

µν represent the tree-level ghost-gluon
vertices with one (two) background gluon(s) respectively
[3]; the measure [dk] = ddk/(2π)d with d = 4 − ǫ the
dimension of space-time. Observe that in our notation
all the three and four-point functions with a tilde are
vertices with at least one external (background) gluon
leg.

With the above WI we can prove that the groups (a)
and (b) are independently transverse. We start with
group (a)

qνΠ̂ab
µν(q)

∣∣
a1

= CA g2δab qµ

∫
[dk] ∆ρ

ρ(k) ,

qνΠ̂ab
µν(q)

∣∣
a2

= −CA g2δab qµ

∫
[dk] ∆ρ

ρ(k) , (7)

and thus

qν
(
Π̂ab

µν(q)
∣∣
a1

+ Π̂ab
µν(q)

∣∣
a2

)
= 0 . (8)

Similarly, the one-loop-dressed ghost contributions
give upon contraction

qνΠ̂ab
µν(q)

∣∣
b1

= 2 CA g2δab qν

∫
[dk] D(k) ,

qνΠ̂ab
µν(q)

∣∣
b2

= −2 CA g2δab qν

∫
[dk] D(k) , (9)
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and so

qν
(
Π̂ab

µν(q)
∣∣
b1

+ Π̂ab
µν(q)

∣∣
b2

)
= 0 . (10)

The proof of the individual transversality of the groups
(c) and (d), constituting the two-loop dressed expansion

of Π̂µν(q), is slightly more cumbersome but essentially
straightforward [5].

The importance of this transversality property in the
context of SD equation is that it allows for a meaning-
ful first approximation: instead of the system of coupled
equations involving gluon and ghost propagators, one
may consider only the subset containing gluons, with-
out compromising the crucial property of transversality.
More generally, one can envisage a systematic dressed
loop expansion, maintaining transversality manifest at
every level of approximation. This is not to say, of course,
that we have some a-priori guarantee that the subset of
diagrams considered here is numerically dominant. Ac-
tually, as has been argued in a series of SD studies, in the
context of the conventional Landau gauge it is the ghost
sector that furnishes in fact the leading contribution [6]
Clearly, it is plausible that this characteristic feature may
persist within the PT-BFM scheme as well, and we will
explore this crucial issue in the near future

Thus, in this formalism, the first non-trivial approx-

imation for ∆̂−1(q2) that preserves its transversality is
given by the gluonic terms of the one-loop expansion (di-
agrams (a1) and (a2) in Fig.(1)), written in closed form
in Eq. (5).

However, the equation given in (5) is not a genuine
SD equation, in the sense that it does not involve the

unknown quantity ∆̂ on both sides; instead, in the inte-

grals of the RHS appears ∆. Replacing ∆ by ∆̂ is a highly
non-trivial proposition, whose self-consistency is still an
open issue. Its implementation may be systematized by

resorting to a set of crucial identities relating ∆ and ∆̂
by means of a set of auxiliary Green’s functions involving
anti-fields and background sources. At this point we will
assume that to a first approximation one may neglect the
effects of the aforementioned auxiliary Green’s functions,

and carry out the substitution ∆ → ∆̂ on the RHS of (5).
Hence, the SD equation we will solve is written as

∆̂−1(q2) = q2 + i
[
Π̂(a1)(q2) + Π̂(a2)

]
, (11)

where

Π̂(a1)
µν (q) =

1

2
CA g2

∫
[dk]Γ̃µαβ∆̂αα′

(k)ĨΓνα′β′∆̂ββ′

(k + q) ,

Π̂(a2)
µν = −CA g2 gµν

∫
[dk]∆̂(k) . (12)

With the above equation at hand, we proceed to es-
tablish the conditions necessary for obtaining infrared

finite solutions for ∆̂−1(q2), i.e. solutions for which

∆̂−1(0) 6= 0. There are two such conditions: one must
(i) allow for non-vanishing seagull-like contribution, and

(ii) introduce massless poles into the Ansatz for the full
three-gluon vertex.

The necessity of the first condition can be appreciated
by observing that, on dimensional grounds, the value of

∆̂−1(0) can only be proportional to two types of seagull-
like contributions,

T0 =

∫
[dk] ∆̂(k), T1 =

∫
[dk] k2 ∆̂2(k) , (13)

since, inside the diagrams of Eq.(12), there can be at

most two full gluon self-energies, ∆̂. However, it is well
known that, due to the dimensional regularization rules,
such contributions vanish perturbatively, ensuring the
masslessness of the gluon order by order in perturba-
tion theory. In order for finite solutions to emerge, one
must assume that seagull-like contributions, such as those
of Eq.(13), do not vanish non-perturbatively. Naturally,
this last step will force us to deal with the quadratic
divergences, present in both integrals of Eq.(13), and
therefore a suitable regularization scheme must be sub-
sequently employed.

Allowing the non-vanishing of seagull-like terms is not
the whole story however; one must determine in addi-
tion the mechanism that will produce their appearance.
One thing is certain: the seagull contributions determin-

ing ∆̂−1(0) do not originate from diagram (a2) in Fig.(1).
Instead, the required seagull contributions will stem from
diagram (a1), after the inclusion of massless poles into the

Ansatz for the full three-gluon vertex ĨΓ. Diagram (a2)
plays of course a crucial role in enforcing the transversal-

ity of Π̂µν non-perturbatively, but in the absence of mass-

less poles in the vertex one would still get ∆̂−1(0) = 0.
There is a relatively simple argument that amply

demonstrates the subtle interplay between both require-

ments. Specifically, iΠ̂
(a1)
µν (q) can be written in the gen-

eral form

iΠ̂(a1)
µν (q) = q2A(q2)gµν + B(q2)qµqν , (14)

where A(q2) and B(q2) are arbitrary dimensionless func-
tions, whose precise expressions depend on the de-

tails of the ĨΓνα′β′ employed. The transversality of

i
[
Π̂

(a1)
µν (q) + Π̂

(a2)
µν

]
implies immediately the condition

q2
[
A(q2) + B(q2)

]
= iCA g2 T0 , (15)

and thus the sum of the two graphs reads

i
[
Π̂(a1)

µν (q) + Π̂(a2)
µν

]
= −q2B(q2)Pµν(q) . (16)

Clearly from Eq.(11), we conclude that ∆̂−1(0) =
lim

q2→0
(−q2B(q2)).

Interestingly enough, once the transversality of Π̂µν

has been enforced, the value of ∆̂−1(0) is determined
solely by lim

q2→0

(
−q2B(q2)

)
. Evidently, if B(q2) does not
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contain (1/q2) terms, one has that lim
q2→0

(−q2B(q2)) = 0,

and therefore ∆̂−1(0) = 0, despite the fact that T0 has
been assumed to be non-vanishing. Thus, if the full three-

gluon vertex ĨΓ satisfies the WI of (4), but does not con-
tain poles, then the seagull contribution T0 6= 0 of graph
(a2) will cancel exactly against analogous contributions

contained in graph (a1), forcing ∆̂−1(0) = 0.
We next proceed to study the SD of Eq.(11). We will

follow the methodology developed in [1] and linearize
the equation by resorting to the Lehmann representa-
tion, together with a gauge-technique inspired Ansatz

for the vertex ĨΓναβ . This approximation yields a more
tractable form for the resulting SD equation, which for
the purposes of this preliminary analysis should suffice;
of course, a non-linear study must eventually be carried
out, and lies within our immediate plans.

To simplify the form of the vertex required, we drop

the longitudinal parts of ∆̂µν inside the integrals, using

∆̂µν(k) = −igµν∆̂(k). Omitting these terms does not

interfere with the transversality of the external ∆̂µν(q)
[5]. Then we obtain

Π̂µν(q) =
1

2
CA g2

∫
[dk] Γ̃αβ

µ ∆̂(k)ĨΓναβ∆̂(k + q)

− CA g2 d gµν

∫
[dk] ∆̂(k) , (17)

with

Γ̃µαβ = (2k + q)µgαβ − 2qαgµβ + 2qβgµα , (18)

and

qν ĨΓναβ =
[
∆̂−1(k + q) − ∆̂−1(k)

]
gαβ . (19)

The Lehmann representation for the scalar part of the
gluon propagator reads

∆̂(q2) =

∫
dλ2 ρ (λ2)

q2 − λ2 + iǫ
, (20)

with no special assumptions on the form of the spectral
density.

This way of writing ∆̂(q2) allows for a relatively simple

gauge-technique Ansatz for Γ̃L
ναβ , which linearizes the

resulting SDE. In particular, setting on the first integral
of the RHS of Eq.(17)

∆̂(k) ĨΓναβ ∆̂(k + q) =

∫
dλ2 ρ (λ2)

1

k2 − λ2 + iǫ
Γ̃L

ναβ

1

(k + q)2 − λ2 + iǫ
, (21)

where Γ̃L
ναβ must be such as to satisfy the tree-level WI

qν Γ̃L
ναβ =

[
(k + q)2 − k2

]
gαβ =

[
(k + q)2 − λ2

]
gαβ − (k2 − λ2)gαβ . (22)

Then, it is straightforward to show by contracting both sides of (21) with qν , and employing (20) and (22), that Γ̃L
ναβ

satisfies the all-order WI of Eq.(19). Of course, choosing Γ̃L
ναβ = Γ̃ναβ solves the WI, but as we will see in detail in

what follows, due to the absence of pole terms, it does not allow for mass generation, in accordance with our previous
discussion. Instead we propose the following form for the vertex

Γ̃L
ναβ = Γ̃ναβ + c1

(
(2k + q)ν +

qν

q2

[
k2 − (k + q)2

])
gαβ +

(
c3 +

c2

2 q2

[
(k + q)2 + k2

])
(qβgνα − qαgνβ) , (23)

which, due to the presence of the massless pole is expected to allow the possibility of infrared finite solution. Further-
more, we treat the constants c1, c2 and c3 as arbitrary parameters, in order to check quantitatively the sensitivity
of the obtained solutions on the specific details of the form of the vertex. Notice that all new terms contributing to

Γ̃L
ναβ have the correct properties under Bose symmetry.

Thus, the vertex ĨΓ entering in Eq.(12), can be obtained as a combination of Eqs.(21) and (23). After rather lengthy
algebraic manipulations of Eq.(11) (see [5] for details), fixing c3 = 1

3c1 to recover the perturbative result, we obtain

for the renormalized ∆̂(q2) (in the Euclidean space)

∆̂−1(q2) = q2

{
K + b̃ g2

∫ q2/4

0

dz

(
1 −

4z

q2

)1/2

∆̂(z)

}
+ γb̃g2

∫ q2/4

0

dz z

(
1 −

4z

q2

)1/2

∆̂(z) + ∆̂−1(0) , (24)

with b̃ = 10 CA/48π2,

∆̂−1(0) = −
b̃g2σ

π2

∫
d4k ∆̂(k2) , (25)

and

σ ≡
6 (c1 + c2)

5
, γ ≡

4 + 4 c1 + 3 c2

5
. (26)
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The renormalization constant K is to be fixed by the

condition, ∆̂−1(µ2) = µ2, with µ2 ≫ Λ2. Notice that

the deviation of b̃ from the value b = 11 CA/48π2, the
standard coefficient of the one-loop β function of QCD,
is due to the omission of the ghosts. From (25) it is clear

that when σ = 0 automatically ∆̂−1(0) vanishes, despite
the inclusion of (a2). Note however that having poles is
not a sufficient condition: if c1 = −c2, there is no effect.

It is interesting to study the UV behavior for ∆̂(q2)
predicted by the integral equation (24). At large q2 we
can safely replace the factors (1−4z/q2)1/2 → 1, arriving
at the following simplified version of that equation,

∆̂−1(q2) = q2

(
1 + b̃g2

∫ q2

µ2

dz ∆̂(z)

)
, (27)

whose solution can be easily obtained by casting it into an
differential equation, written in terms of the form factor

G(q2) = q2∆̂(q2), which lead us to

∆̂−1(q2) = q2

[
1 + 2b̃g2 ln

(
q2

µ2

)]1/2

. (28)

Obviously, upon expansion this expression recovers the

one-loop result ∆̂−1(q2)|pert = q2
(
1 + b̃ g2 ln(q2/µ2)

)

correctly, but ∆̂(q2) does not display the expected RG

behavior at higher order. The fundamental reason for
this discrepancy can be essentially traced back to having
carried out the renormalization subtractively instead of
multiplicatively [1, 7], a fact that distorts the RG struc-
ture of the equation.

As is well-known, due to the Abelian WI satisfied by

the PT effective Green’s functions, ∆̂−1(q2) absorbs all
the RG-logs, exactly as happens in QED with the photon

self-energy. Consequently, the product d̂(q2) = g2∆̂(q2)
should form a RG-invariant (µ-independent) quantity.
Notice however that Eq.(24) does not encode the cor-
rect RG behavior: when written in terms of the RG in-
variant quantity d̂(q2) = g2∆̂(q2) it is not manifestly
g2-independent, as it should.

In order to restore the correct RG behavior at the level
of (24), observe that such equation requires an extra
power of g2 in their integrands on the RHS. Then, we
use the simple prescription whereby we substitute every

∆̂(z) appearing on RHS of Eq.(24) by [1, 7]

∆̂(z) →
g2 ∆̂(z)

ḡ2(z)
≡ [1 + b̃g2 ln(z/µ2)]∆̂(z) . (29)

which allows us to cast Eq.(24) in terms of the RG-

invariant quantities d̂(q2) and ḡ2(q2) in the following way:

d̂−1(q2) = q2

{
1

g2
+ b̃

(∫ q2/4

0

dz

(
1 −

4z

q2

)1/2
d̂(z)

ḡ2(z)
−

∫ µ2/4

0

dz

(
1 −

4z

µ2

)1/2
d̂(z)

ḡ2(z)

)}

+ γb̃

(∫ q2/4

0

dz z

(
1 −

4z

q2

)1/2
d̂(z)

ḡ2(z)
−

q2

µ2

∫ µ2/4

0

dz z

(
1 −

4z

µ2

)1/2
d̂(z)

ḡ2(z)

)
+ d̂−1(0) , (30)

where

d̂−1(0) = −
b̃σ

π2

∫
d4k

d̂(k2)

ḡ2(k2)
. (31)

It is easy to see now that Eq.(30) yields the correct UV

behavior, i.e. d̂−1(q2) = b̃ q2 ln(q2/Λ2).
When solving (30) we will be interested in solutions

that are qualitatively of the general form

d̂(q2) =
g2

NP
(q2)

q2 + m2(q2)
, (32)

where

g2
NP

(q2) =

[
b̃ ln

(
q2 + f(q2, m2(q2))

Λ2

)]−1

, (33)

The quantity g2
NP

(q2) represents a non-perturbative ver-
sion of the RG-invariant effective charge of QCD: in the

deep UV it goes over to g2(z), while in the deep IR it will
be finite due to the presence of the function f(q2, m2(q2)),
whose form will be determined by fitting the numerical
solution.

The function m2(q2) may be interpreted as a momen-
tum dependent “mass”. On general arguments dynam-
ically generated masses must vanish asymptotically. In
order to determine the asymptotic behavior that Eq.(30)
predicts for m2(q2) at large q2, we replace Eq.(32) on
both sides of Eq.(30), set (1 − 4z/q2)1/2 → 1, and de-
mand the consistency of both sides, obtaining finally

m2(q2) ∼ m2
0 ln−a

(
q2/Λ2

)
, with a = 1 + γ . (34)

Indeed the gluon mass vanishes at UV as an inverse power
of ln(q2), since a > 0. Actually, as we will see below,
the regularization of Eq.(31) imposes a more stringent
constraint, requiring that γ > 0, thus restricting through

Eq.(26) the possible values of c1 and c2 in Γ̃L
ναβ .
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As mentioned before, the seagull-like contribution (de-

noted collectively by d̂−1(0) in Eq.(30)) are essential for

obtaining IR finite solution for d̂(q2). However, the in-
tegral (31) should be properly regularized, in order to
ensure the finiteness of such a mass term.

For the regulation of the quadratic divergences present
in the integral (31), we rely on two basic ingredients: (i)
the standard integration rules of the dimensional regu-
larization and (ii) a constraint on the allowed values of
the anomalous mass-dimension a.

With this in mind, we recall that according to the di-
mensional regularization rules,

∫
[dk]/k2 = 0, allowing us

to rewrite the Eq.(31) (using (32)) as

d̂−1(0) ≡ −
b̃σ

π2

∫
[dk]

(
g2

NP
(k2)

[k2 + m2(k2)]ḡ2(k2)
−

1

k2

)

=
b̃σ

π2

∫
[dk]

m2(k2)

k2 [k2 + m2(k2)]

+
b̃2σ

π2

∫
[dk] d̂(k2) ln

(
1 +

f(k2, m2(k2))

k2

)
. (35)

The inspection of the two integrals on the RHS sep-
arately reveals that, if m2(k2) falls asymptotically as
power of ln−a(k2), with a > 1, then the first integral
would converge, by virtue of the elementary result

∫
dz

z (ln z)1+γ
= −

1

γ (ln z)γ
, (36)

which, of course, requires that γ > 0. The second integral
will converge as well, provided that f(k2, m2(k2)) drops
asymptotically at least as fast as ln−c(k2), with c > 0.
If, for example, f = ρm2(k2) (with 1+γ > 1, for the first
integral to converge), then the convergence condition for
the second integral is automatically fulfilled. Notice that

perturbatively d̂−1(0) vanishes; this is because m2(k2) =
0 to all orders, and therefore, since in that case also f = 0,
both integrals on the RHS of (35) vanish.

Evidently, Eqs.(30) and (35) form a system of equa-
tion; the role of the first is to provide a solution for the

unknown RGI quantity, d̂(q2), while the second acts as
an additional constraint, restricting the number of pos-
sible solutions. Therefore, Eqs.(30) and (35) should be
solved simultaneously.

Using an iterative method, we performed a detailed

study of these two equations, where for each d̂−1(0) cho-
sen we vary γ and σ in order to scan the two-parameter
space of solutions.

In Fig.(2), we show numerical results for d̂(q2), for dif-

ferent values of d̂−1(0). All these solutions satisfy the
constraint imposed by Eq.(35) and their respective val-
ues for σ are described in the inserted legend. As ex-
pected, the gluon propagator behaves at low momenta

like a constant, whose value is determined by d̂(0); in ad-
dition, it obeys the correct ultraviolet behavior. As can

be observed from the plot, d̂(q2) starts off as constant
until the neighborhood of q2 = 0.01 GeV 2, where the

curve bends downward in order to match with the per-
turbative asymptotic behavior at a scale of a few GeV 2.
All these solutions can be perfectly fitted by Eq.(32); the
functional form of f(q2, m2(q2)) and m2(q2) that better
describe our data sets are given by

f(q2, m2(q2)) = ρ 1m
2(q2) + ρ 2

m4(q2)

q2 + m2(q2)
, (37)

and the dynamical mass,

m2(q2) = m2
0

[
ln

[
q2 + ρ 1 m2

0

Λ2

]/
ln

[
ρ 1 m2

0

Λ2

]]−a

, (38)

with exponent a = 1 + γ.
In all cases, we fixed ρ1 = 4; therefore, the unique

free parameter is ρ 2, since the value of m2
0, which is also

related to ρ 2, can be directly obtained by setting q2 = 0
in Eq.(32). From this follows immediately that the value
of the infrared fixed point of the running coupling, g −2

NP
(0)

will be determined by the value assumed by f(0, m2
0),

since

g −2
NP

(0) = b̃ ln

[
(4 + ρ 2)m2

0

Λ2

]
. (39)

Obviously, the maximum value obtained for g2
NP

(0), is
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FIG. 2: Results for d̂(q2) fixing different values for d̂−1(0) (all
in GeV 2). All these solutions satisfy the condition given by
Eq.(35). Their respective values for σ are given in the legend,
in all cases we set c2 = 0 in Eq.(26).

the one that minimizes (4 + ρ 2)m2
0 and, at same time,

keeps it bigger than Λ2, in order to avoid the pole. Of
course, if we set ρ 2 = 0 in Eq.(37), we automatically re-
cover the solution proposed in [1]; however our numerical
solution requires bigger values for the coupling g2

NP
(q2),

and therefore ρ 2 assumes negative values, as can be ob-
served on Fig.(3)

The running charges, α(q2), for each solution presented
on Fig.(2) are displayed in Fig.(3). Observe that as the

value of d̂−1(0) decreases, the value of the infrared fixed
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FIG. 3: The running charge, α(q2), corresponding to the

gluon propagator of Fig.(2). Clearly, α(0) increases as d̂−1(0)
decreases
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FIG. 4: The ratio m0/Λ as function of the parameter σ. The
increase is exponential, given by m0/Λ = A1 exp(σ/t1) + y0,
where A1 = 0.775, t1 = 0.25 and y0 = 0.436.

point of the running coupling, α(0), increases. Accord-
ingly, from Fig.(2) and Fig.(3), we can conclude that, if
smaller values of σ were to be favored by QCD, the freez-
ing of the running coupling would occur at higher values.
It should also be noted that the values of α(0) found here
tend to be slightly more elevated compared to those of
[1] (for the same value of m2

0) .

Finally, we analyze the dependence of the ratio m0/Λ
on σ; the former is extracted from Eq.(32) by setting
q2 = 0. This dependence is shown in the Fig.(4), corre-
sponding to the cases presented in Fig.(2). We observe
that as we increase the value of σ, namely the sum of the
coefficients of the massless pole terms appearing in the
three gluon vertex, the ratio m0/Λ grows exponentially.

In conclusion, we have presented an analysis of the var-
ious intertwined issues involved in the study of dynam-
ical gluon mass generation through SD equations. The
analysis was carried out in the context of the PT-BFM
scheme, where various crucial properties are preserved
manifestly. Most notably, the transversality of the non-
perturbative gluon self-energy is enforced order by order
in the dressed loop expansion and separately for gluons
and ghost. We have seen in detail that for the existence
of infrared finite solutions two requirements are indis-

pensable: (i) the non-vanishing of seagull-like contribu-
tions beyond perturbation theory, and (ii) the presence
of massless poles in the trilinear gluon vertex. The result-
ing equation was linearized by resorting to the Lehmann
representation and a gauge-technique inspired solution
of the corresponding WI. A simple Ansatz for the three-
gluon vertex was constructed, which contains massless
poles, thus allowing for the appearance of infrared finite
solutions. This vertex satisfies the correct WI, but oth-
erwise is purely phenomenological, in the sense that it is
not QCD-derived, nor does it contain the most general
Lorentz structure. Numerical solutions were obtained for
the RG-invariant quantity d̂(q2); they can be fitted per-
fectly by means of a running coupling that freezes in the
IR, and a dynamical mass that vanishes in the UV. We
have found that the actual values of α(0) depend strongly
on the combined strength of the pole terms appearing in
the vertex. This strongly suggests that the value of this
IR fixed point should be determined by means of a de-
tailed non-perturbative study of the three-gluon vertex,
either on the lattice or through its own SD equation.
Needless to say, many of the issues considered in this
talk are far from settled, and a lot of independent work
is necessary before reaching definite conclusions.
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