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Impact of the pion mass on nonpower expansion for QCD observables
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A new set of functions, which form a basis of the massive nonpower expansion for physical observables, is

presented in the framework of the analytic approach to QCD at the four-loop level. The effects due to the π meson

mass are taken into account by employing the dispersion relation for the Adler function. The nonvanishing pion

mass substantially modifies the functional expansion at low energies. Specifically, the spacelike functions are

affected by the mass of the π meson in the infrared domain below few GeV, whereas the timelike functions

acquire characteristic plateaulike behavior below the two–pion threshold. At the same time, all the appealing

features of the massless nonpower expansion persist in the considered case of the nonvanishing pion mass.

The renormalization group (RG) method plays
a key role in the framework of the Quantum
Field Theory (QFT) and its applications. Indeed,
one is able to handle reliably the strong interac-
tion processes at high energies by employing this
method together with perturbative calculations.
However, such perturbative solutions to the RG
equation possess unphysical singularities in the
infrared domain, a fact that contradicts the gene-
ral principles of the local QFT, and significantly
complicates the theoretical description and inter-
pretation of the intermediate- and low-energy ex-
perimental data. Nevertheless, an effective way
to overcome these difficulties is to complement
the perturbative results with a proper nonpertur-
bative insight into the infrared hadron dynamics.

One of the sources of the nonperturbative in-
formation about the strong interaction processes
is the dispersion relations. The idea of employ-
ing the latter together with perturbation theory
forms the underlying concept of the so-called ana-
lytic approach to QFT, which was first proposed
in the framework of Quantum Electrodynam-
ics [1]. Recently, this approach has been extended
to Quantum Chromodynamics (QCD) [2] and ap-
plied to the “analytization” of the perturbative
power series for the QCD observables [3,4,5]. The
term analytization means the restoring of the cor-
rect analytic properties in the kinematic variable
of a quantity under consideration by making use

of the Källén–Lehmann integral representation
(positive q2 corresponds to a spacelike momen-
tum transfer hereinafter)
{

F (q2)
}

an
=

∫

∞

0

̺(σ)

σ + q2
dσ (1)

with the spectral function defined by the ini-
tial (perturbative) expression for the quantity at
hand:

̺(σ) =
1

2πi
lim

ε→0+

[

F (−σ − iε) − F (−σ + iε)
]

. (2)

However, there are several ways to embody the
analyticity requirement into the RG formalism,
that eventually has given rise to different models
for the analytic running coupling.

Thus, in the original model due to Shirkov
and Solovtsov [2] the analyticity requirement (1)
is imposed on the perturbative running coupling
itself. At the one-loop level this leads to

α(1)
ss (q2) =

4π

β0

(

1

ln z
+

1

1 − z

)

, z =
q2

Λ2
, (3)

whereas at the higher loop levels the integral re-
presentation of the Källén–Lehmann type

α(q2) =
4π

β0

∫

∞

0

ρ(σ)

σ + q2
dσ (4)

holds for this invariant charge. Ultimately, the
prescription [2] results in the infrared finite limi-
ting value for the running coupling (see papers
[3,4,5] and references therein for the details).
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Another way to incorporate the analyticity
condition into the RG formalism is to impose the
analyticity requirement (1) on the perturbative
approximation of the β function with subsequent
solution of the corresponding RG equation [6]. At
the one-loop level this leads to

α(1)
an (q2) =

4π

β0

z − 1

z ln z
, (5)

whereas at the higher loop levels the running cou-
pling at hand can be represented in the form of
the Källén–Lehmann integral (4) as well. Here
the invariant charge possesses the infrared en-
hancement, which plays an essential role in ap-
plications of this model to the study of the quark
confinement [6] and the chiral symmetry break-
ing [7]. It is of particular interest to mention that
the explicit one-loop form of the analytic running
coupling (5) has recently been rediscovered [8],
proceeding from entirely different motivations.

The dispersion relations also play an important
role for the congruous description of the hadron
dynamics in the spacelike and timelike regions. In
particular, it has been argued that the dispersion
relation for the Adler function [9]

D(q2, m2
π) = q2

∫

∞

4m2
π

R(s)

(s + q2)2
ds (6)

provides a firm ground for comparing the pertur-
bative results for D(q2, m2

π) with the measurable
ratio R(s) of the e+e− annihilation into hadrons.
Indeed, one can continue an explicit expression
for the Adler function into the timelike domain
by making use of the inverse relation

R(s, m2
π) =

1

2πi
lim

ε→0+

∫ s−iε

s+iε

D(−ζ, m2
π)

dζ

ζ
, (7)

where the integration contour lies in the region of
the analyticity of the integrand (see Refs. [10,11]).

The only information about the Adler func-
tion (6) available from the perturbation theory
is its behavior in the asymptotical ultraviolet re-
gion q2 → ∞. Specifically, at the ℓ-loop level

D(q2) ≃ 1 +
∑ℓ

j=1
dj

[

a(ℓ)
s (q2)

]j

, (8)

where the overall factor Nc

∑

f Q2
f is omitted

throughout, as(q
2) = αs(q

2)β0/(4π) is the per-
turbative “couplant”, β0 = 11 − 2nf/3, nf is

the number of active flavors, and d1 = 4/β0,
d2 ≃ (4/β0)

2 (1.99 − 0.12 nf), see Refs. [12,13]
for the details. At the same time, the dispersion
relation (6) implies that D(q2, m2

π) is the ana-
lytic function in the complex q2-plane with the
only cut along the negative semiaxis of real q2

beginning at the two–pion threshold. Thus, the
perturbative approximation (8) violates this con-
dition due to unphysical singularities of αs(q

2).
Nonetheless, this disagreement can be avoided
within the analytic approach to QCD.

In particular, in the framework of the so–called
analytic perturbation theory (APT) [3,4,5] the
pion mass was ignored in dispersion relation (6),
and the analyticity requirement of the form (1)
has been imposed on the perturbative approxi-
mation (8). Since both real and imaginary parts
of the strong running coupling contribute to the
relevant spectral density, eventually this led to
the nonpower expansion for the Adler function:

D(q2) = 1 +
∑ℓ

j=1
djA

(ℓ)
sl, j(q

2) (9)

(subscript “SL” stands for “spacelike”), where

A
(ℓ)
sl, j(q

2) =

∫

∞

0

̺
(ℓ)
j (σ)

σ + q2
dσ (10)

and

̺
(ℓ)
j (σ) =

1

π
lim

ε→0+

Im

{

[

a(ℓ)
s (−σ − iε)

]j
}

. (11)

In turn, the continuation of D(q2) (9) into time-
like domain (7) can also be represented in a form
of the nonpower functional expansion:

R(s) = 1 +
∑ℓ

j=1
djA

(ℓ)
tl, j(s) (12)

(subscript “TL” stands for “timelike” here), with

A
(ℓ)
tl, j(s) =

∫

∞

s

̺
(ℓ)
j (σ)

dσ

σ
. (13)

Since the functions (13) automatically take into
account the so-called π2–terms, the expansion co-
efficients dj in Eqs. (9) and (12) are identical.
The first–order expansion functions (j = 1) cor-
respond to the ℓ-loop running couplings in space-
like (10) and timelike (13) domains, whereas the
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Figure 1. The four-loop nonpower expansion functions in spacelike [A
(4)
sl, j(q

2, m2
π), q2 > 0, Eq. (16)] and

timelike [A
(4)
tl, j(s, m

2
π), s = −q2 > 0, Eq. (18)] regions. The plots A, B, C, and D correspond to the

first-, second-, third-, and fourth-order expansion functions (j = 1, 2, 3, 4), respectively. The case of the
nonvanishing mass of the π meson is denoted by solid curves, whereas the dashed curves show the limit
of the massless pion [see Eqs. (10) and (13)]. The values of parameters are: Λ = 500 MeV, nf = 2.

higher–order functions (2 ≤ j ≤ ℓ) play the role of
their effective powers. The sets of those functions
form the ℓ-loop bases of the nonpower expansions.
Remarkably, the spacelike functions (10) deviate
from the perturbative expansion basis at rather

high energies. Thus, A
(4)
sl,1(q

2) differs by 20 %

from a
(4)
s (q2) at q ≃ 2 GeV, whereas the diffe-

rence between A
(4)
sl,4(q

2) and [a
(4)
s (q2)]4 is 40 % at

q ≃ 10 GeV (see also Refs. [3,4,5] for the details).
In fact, the effects due to the masses of the

light hadrons can be safely neglected only when
one handles the strong interaction processes at
high energies. However, in the intermediate- and

low-energy regions such mass effects become sub-
stantial. So, for the case of the nonvanishing
pion mass, one can bring the perturbative expan-
sion (8) in conformity with the dispersion rela-
tion (6) by requiring the former to satisfy the in-
tegral representation of the form (see Ref. [14])

D(q2, m2
π) =

∫

∞

4m2
π

κ(σ)

σ + q2
dσ. (14)

Ultimately, this also leads to the nonpower ex-
pansions for the Adler function and Re+e− ratio:

D(q2, m2
π) =

q2

q2 + 4m2
π

+

ℓ
∑

j=1

djA
(ℓ)
sl, j(q

2, m2
π), (15)
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where

A
(ℓ)
sl, j(q

2, m2
π) =

∫

∞

4m2
π

̺
(ℓ)
j (σ)

σ + q2
dσ (16)

[the spectral function (11) is adopted herein]. It

is worth noting that A
(ℓ)
sl,1(q

2, m2
π) is a process–

dependent quantity, which can be identified with
the QCD invariant charge at high energies only,
where the influence of the pion mass on Eq. (16)
is negligible. Then, the continuation of D(q2, m2

π)
[see Eq. (15)] into timelike domain (7) reads

R(s, m2
π) = θ(s − 4m2

π)+
ℓ

∑

j=1

djA
(ℓ)
tl, j(s, m

2
π), (17)

where θ(x) is the Heaviside step function and

A
(ℓ)
tl, j(s, m

2
π) =

∫

∞

s

θ(σ − 4m2
π) ̺

(ℓ)
j (σ)

dσ

σ
. (18)

It is worth emphasizing here that the main impact
of the mass of the π meson on Eqs. (15) and (17)
is twofold; not only the strong corrections, but
also the parton model predictions are modified at
low energies (see Ref. [15] for the details).

The four-loop massive nonpower expansion
functions (16) and (18) are presented in Figure 1.
It turns out that all the appealing features of
the massless APT [3,4,5] persist in the considered
case of the nonvanishing pion mass. Specifically,
the functions (16) and (18) have no unphysical
singularities and contain no additional parame-
ters. The timelike expansion functions (18) auto-
matically take into account the π2–terms. The
higher–order functions are suppressed with re-
spect to the preceding ones, a fact that ultimately
leads to the higher loop and scheme stability of
outcoming results. It is worth noting that the
spacelike expansion functions (16) are influenced
by the pion mass in the infrared domain below
few GeV, whereas the timelike expansion func-
tions (18) are affected by the mass of the π me-
son only below the two–pion threshold, where
they acquire characteristic plateaulike behavior
(see Figure 1).

The impact of the effects due to the nonvani-
shing mass of the π meson on the model (5) (see
Ref. [6]) and on the processing the experimental
data on the inclusive τ lepton decay has been dis-
cussed in detail in Ref. [14].

Acknowledgments

Authors wish to thank D. Shirkov, K. Chetyrkin,
A. Dorokhov, S. Kluth, S. Narison, P. Raczka,
I. Solovtsov, and V. Zakharov for the stimulat-
ing discussions and useful comments, as well as
the organizers of QCD 05 for their hospitality.
The work has been supported by grants SB2003-
0065 of the Spanish Ministry of Education, CI-
CYT FPA20002-00612, RFBR 05-01-00992 and
NS-2339.2003.2.

REFERENCES

1. P.J. Redmond, Phys. Rev. 112, 1404 (1958);
N.N. Bogoliubov, A.A. Logunov, and D.V.
Shirkov, Sov. Phys. JETP 37, 574 (1960).

2. D.V. Shirkov and I.L. Solovtsov, Phys. Rev.
Lett. 79, 1209 (1997); hep-ph/9604363.

3. I.L. Solovtsov and D.V. Shirkov, Theor.
Math. Phys. 120, 1220 (1999); D.V. Shirkov,
ibid. 127, 409 (2001).

4. K.A. Milton and I.L. Solovtsov, Phys. Rev. D
55, 5295 (1997); 59, 107701 (1999).

5. D.V. Shirkov, Eur. Phys. J. C 22, 331 (2001);
hep-ph/0408272.

6. A.V. Nesterenko, Phys. Rev. D 62, 094028
(2000); 64, 116009 (2001); Int. J. Mod. Phys.
A 18, 5475 (2003).

7. A.C. Aguilar, A.V. Nesterenko, and J. Pa-
pavassiliou, J. Phys. G 31, 997 (2005).

8. F. Schrempp, J. Phys. G 28, 915 (2002).
9. S.L. Adler, Phys. Rev. D 10, 3714 (1974).
10. A.V. Radyushkin, JINR report No. 2-82-159

(1982); JINR Rapid Comm. 4, 9 (1996);
hep-ph/9907228.

11. N.V. Krasnikov and A.A. Pivovarov, Phys.
Lett. B 116, 168 (1982).

12. S.G. Gorishny, A.L. Kataev, and S.A. Larin,
Phys. Lett. B 259, 144 (1991).

13. L.R. Surguladze and M.A. Samuel, Phys.
Rev. Lett. 66, 560 (1991); 66, 2416(E)
(1991).

14. A.V. Nesterenko and J. Papavassiliou, Phys.
Rev. D 71, 016009 (2005); hep-ph/0409220.

15. A.V. Nesterenko and J. Papavassiliou, in
preparation.

http://arxiv.org/abs/hep-ph/9604363
http://arxiv.org/abs/hep-ph/0408272
http://arxiv.org/abs/hep-ph/9907228
http://arxiv.org/abs/hep-ph/0409220

