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Abstract.

Infrared finite solutions for the gluon propagator of pure QCD are obtained from the
gauge-invariant non-linear Schwinger-Dyson equation formulated in the Feynman gauge of
the background field method. These solutions may be fitted using a massive propagator,
with the special characteristic that the effective “mass” employed drops asymptotically as
the inverse square of the momentum transfer, in agreement with general operator-product
expansion arguments. Due to the presence of the dynamical gluon mass the strong effective
charge extracted from these solutions freezes at a finite value, giving rise to an infrared fixed
point for QCD.

1. Introduction

The systematic study of Schwinger-Dyson equations (SDE) in the framework of the pinch
technique (PT) has led to the conclusion that the non-perturbative QCD dynamics generate an
effective, mometum-dependent mass for the gluon, while preserving the local SU(3)c invariance
of the theory [1, 2, 3]. This picture is further corroborated by lattice simulation and a variety
of theoretical and phenomenological works [4]. One of the most important consequences of
this picture is that this dynamical mass tames the Landau singularity associated with the
perturbative β function, giving rise to a strong effective charge “freezing” at a finite value
in the infrared. In this talk we report recent progress in the study of a non-linear SDE for the
gluon propagator [3].

2. The non-linear SDE

The relevant SDE for ∆µν(q) is shown in Fig.(1). Due to the special properties of the truncation
scheme based on the PT [1, 5](and its connection with the Feynman gauge of the background
field method (BFM) [6]), this equation is gauge-invariant despite the omission of ghost loops
or higher order graphs [2]. Dropping for simplicity the longitudinal momenta, i.e. setting
∆µν(q) = −igµν∆(q2), one looks for solutions where ∆(q2) reaches a finite (non-vanishing)
value in the deep infrared; such solutions may be fitted by “massive” propagators of the form
∆−1(q2) = q2+m2(q2), where m2(q2) is not “hard”, but depends non-trivially on the momentum
transfer q2. The tree-level expressions for the three- and four-gluon vertices appearing in the two
graphs of Fig.(1) are given in the first item of [6]. For the full three-gluon vertex, ĨΓ, denoted by
the white blob in graph (a1), we employ a gauge technique Ansatz, expressing it as a functional
of ∆, in such a way as to satisfy (by construction) the all-order Ward identity

qµĨΓµαβ(q, p1, p2) = i[∆−1

αβ(p1) − ∆−1

αβ(p2)] , (1)
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Figure 1. The gluonic “one-loop dressed” contributions to the SDE.

characteristic of the PT-BFM. Specifically, we use the following closed form for the vertex [3]:

ĨΓ
µαβ

= Γ̃µαβ + igαβ qµ

q2
[Π(p2) − Π(p1)] − i

c1

q2
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)
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−ic2
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1
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2

]
. (2)

with Γ̃µαβ(q, p1, p2) = (p1 − p2)µgαβ + 2 qβgµα − 2 qαgµβ , and iΠ(q2) = ∆−1(q2) − q2.

Defining the renormalization-group invariant quantity [5] d(q2) = g2∆(q2), we arrive at

d−1(x) = K ′x + b̃
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Âi(x) + d−1(0) , (3)

with
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where x = q2. The renormalization constant K ′ is fixed by the condition d−1(µ2) = µ2/g2, (with
µ2 ≫ Λ2), and L(q2) ≡ b̃ ln

(
q2/Λ2

)
, where Λ is QCD mass scale. Due to the poles contained in

the Ansatz for ĨΓ
µαβ

, d−1(0) does not vanish, and is given by the (divergent) expression

d−1(0) =
3b̃

5π2

[
2(1 + c1)

∫
d4kL(k2) d(k2) − (1 + 2c1)

∫
d4k k2

L
2(k2) d 2(k2)

]
, (5)

which can be made finite using dimensional regularization, and assuming that m2(q2) drops
sufficiently fast in the UV [2].



3. Results

The way to extract from d(q2) the corresponding m2(q2) and g2(q2) is by casting the numerical
solutions into the form [1]

d(q2) =
g2(q2)

q2 + m2(q2)
, g2(q2) =

[
b̃ ln

(
q2 + f(q2,m2(q2))

Λ2

)]
−1

. (6)

with

f(q2,m2(q2)) = ρ 1m
2(q2) + ρ 2

m4(q2)

q2 + m2(q2)
+ ρ 3

m6(q2)

[q2 + m2(q2)] 2
, (7)

The functional form used for the running mass is

m2(q2) =
m4

0

q2 + m2
0

[
ln

(
q2 + ρm2

0

Λ2

)/
ln

(
ρm2

0

Λ2

)]γ2−1

, (8)

where γ2 = 4

5
+ 6c1

5
; ρ, ρ1, ρ2, and ρ3 are adjustable constants. Evidently, m2(q2) is dropping in

the deep ultraviolet as an inverse power of the momentum, as expected from general operator-
product expansion calculations [7]. Note that f(q2,m2(q2)) is such that f(0,m2(0)) > 0; as a
result, g2(q2) reaches a finite positive value at q2 = 0, leading to an infrared fixed point [1, 8, 9].

Figure 2. Left: dynamical mass with power-law running, for m2

0
= 0.5 GeV 2 and ρ = 1.046 in Eq.(8).

Right: the running charge, α(q2) = g2(q2)/4π.

3.1. Acknowledgments

This work was supported by the Spanish MEC under the grants FPA 2005-01678 and FPA
2005-00711, and the Fundación General of the University of Valencia.

References
[1] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982); J. M. Cornwall and W. S. Hou, Phys. Rev. D 34, 585 (1986).
[2] A. C. Aguilar and J. Papavassiliou, JHEP 0612, 012 (2006).
[3] A. C. Aguilar and J. Papavassiliou, arXiv:0708.4320 [hep-ph].
[4] For an extensive list of citations, see [2].
[5] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40 (1989) 3474; D. Binosi and J. Papavassiliou, Phys.

Rev. D 66, 111901 (2002); J. Phys. G 30, 203 (2004).
[6] L. F. Abbott, Nucl. Phys. B 185, 189 (1981); R. B. Sohn, Nucl. Phys. B 273, 468 (1986); A. Hadicke,

JENA-N-88-19.
[7] M. Lavelle, Phys. Rev. D 44, 26 (1991).
[8] A. C. Aguilar, A. A. Natale and P. S. Rodrigues da Silva, Phys. Rev. Lett. 90, 152001 (2003); A. C. Aguilar,

A. Mihara and A. A. Natale, Phys. Rev. D 65, 054011 (2002); Int. J. Mod. Phys. A 19 (2004) 249.
[9] S. J. Brodsky, arXiv:hep-ph/0703109.

http://arxiv.org/abs/0708.4320
http://arxiv.org/abs/hep-ph/0703109


reserved for figure


