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Abstract

We present a new truncation scheme for the Schwinger-Dyson equations of QCD that respects

gauge invariance at any level of the dressed loop expansion. When applied to the gluon self-

energy, it allows for its non-perturbative treatment without compromising the transversality of the

solution, even when entire sets of diagrams (most notably the ghost loops) are omitted, or treated

perturbatively.
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Introduction – The quantitative understanding of the non-perturbative properties of

Quantum Chromodynamics (QCD) [1] constitutes still one of the most challenging prob-

lems in particle physics. The basic building blocks of this theory are the Green’s (correla-

tion) functions of the fundamental degrees of freedom, gluons, quarks, and ghosts. Their

non-perturbative structure is at the center stage of extensive research that could furnish

invaluable clues for deciphering the infrared dynamics of QCD.

Lattice simulations are indispensable in this quest, since they capture all the non-

perturbative information of the theory. It has become clear by now that the lattice simu-

lations yield an infrared finite gluon propagator in the Landau gauge. This rather charac-

teristic behavior has recently been firmly established using lattices with large volumes; in

addition, the non-perturbative ghost propagator in the same gauge diverges, at a rate that

deviates only mildly from the tree-level expectation [2]. These clean lattice results consti-

tute a serious challenge for the QCD theorists: obtaining the same results from the theory

formulated in the continuum is bound to expose a fundamental dynamical mechanism at

work.

In the continuous formulation the dynamics of all Green’s functions are determined by

an infinite system of coupled non-linear integral equations known as Schwinger-Dyson equa-

tions (SDE) [3]. These equations are inherently non-perturbative and can be used to address

problems related to e.g., chiral symmetry breaking, dynamical mass generation, and forma-

tion of bound states. Since this system involves an infinite hierarchy of equations, in practice

one is severely limited in their use, and the need for a self-consistent truncation scheme is

evident [4]. Devising such a scheme, however, is very challenging, especially in the context

of non-abelian gauge theories, like QCD [5]. The central problem stems from the fact that

the SDEs are built out of unphysical off-shell Green’s functions; thus, the extraction of re-

liable physical information depends crucially on delicate all-order cancellations, which may

be inadvertently distorted in the process of the truncation.

The situation may best exemplified with the SDE of the gluon propagator ∆αβ(q). In

the Feynman gauge,

∆αβ(q) = −i

[(
gαβ −

qαqβ

q2

)
∆(q2) +

qαqβ

q4

]
, (1)

where Παβ(q) = (gαβ − qαqβ/q2)Π(q2) is the gluon self-energy and ∆−1(q2) = q2 + iΠ(q2).
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FIG. 1: The PT procedure to construct the new SDE of the gluon propagator. External legs ending

in a gray circle represents background gluons.The corresponding Feynman rules can be found in

[10].

The conventional SDE for Πµν reads

Παβ(q) =

5∑

i=1

(ai)αβ , (2)

where the diagrams (ai) are shown in Fig.1a. Since the self-energy enters in the latter

diagrams (white blobs in the same figure), Eq.(2) constitutes a dynamical equation that can

in principle determine Παβ. Due to general arguments based on the Becchi-Rouet-Stora-

Tyutin (BRST) symmetry [6], Παβ(q) is transverse, i.e. qαΠαβ(q) = 0. Notice, however,

that enforcing this fundamental property on the rhs of Eq.(2), i.e., through the contraction of

individual graphs by qα, is far from trivial, essentially due to the complicated Slavnov-Taylor

identities (STI) satisfied by the fully-dressed vertices. As a result, the SDE of Fig.1a cannot

be truncated without compromising the transversality of Παβ(q). For example, keeping only

graphs (a1) and (a2) is not correct even at one loop. Adding (a3) is still not sufficient for a

SDE analysis, because (beyond one-loop) qα[(a1) + (a2) + (a3)]αβ 6= 0.

In this letter we present a new truncation scheme for the SDE of (quarkless) QCD that

respects gauge invariance at any level of the dressed loop expansion. This becomes possible

due to the drastic modifications implemented to the building blocks of the SD series, i.e.

the off-shell Green’s functions, following the field-theoretic method known as pinch tech-
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nique (PT) [7]. The PT is a well-defined algorithm that exploits systematically the BRST

symmetry in order to construct new Green’s functions endowed with very special properties.

Most importantly, they satisfy abelian, Ward identities (WI) instead of the usual STIs, have

correct analytic properties and displays only physical thresholds [8].

The PT rearrangement gives rise dynamically to a new SD series analogous to the one

in Eq.(2), with the following characteristics: the graphs appearing on the rhs are made out

of new vertices (Fig.1d), but contain the conventional self-energy Παβ as before. These new

vertices correspond precisely to the Feynman rules of the Background Field Method (BFM)

in the Feynman gauge, i.e., it is as if the external gluon had been converted dynamically into

a background gluon. The lhs, in addition to the term Παβ(q) already there, contains addi-

tional terms, also proportional to Παβ(q), which are generated during the PT rearrangement

of the original rhs of Eq.(2).

A new SD equation for the gluon propagator – The relevant PT rearrangements take place

when the longitudinal momenta of the three-gluon vertex trigger the STIs satisfied by specific

subsets of fully dressed vertices appearing in the ordinary perturbative expansion. Unlike

QED, due to the non-linearity of the BRST transformations, these STIs are realized through

auxiliary (ghost) Green’s functions involving composite operators such as 〈0|T [sΦ(x) · · · |0〉,

where s is the BRST operator and Φ is a generic QCD field. It turns out that the most

efficient framework for dealing with these type of objects is the so-called Batalin-Vilkovisky

formalism [12]. In this framework, one adds to the original gauge-invariant Lagrangian LI

the term LBRST =
∑

Φ Φ∗sΦ, coupling the composite operators sΦ to the BRST invariant

external sources (usually called anti-fields) Φ∗, to obtain the new Lagrangian LBV = LI +

LBRST. One advantage of this formulation is that it allows one to express the STIs of

the theory in terms of auxiliary functions which can be constructed using a well-defined

set of Feynman rules (derived from LBRST). In particular, the usual STI satisfied by the

three-gluon vertex, an essential ingredient in the ensuing construction, assumes the form

qαΓAa
αAm

µ An
ν
(k1, k2) = q2Daa′

(q)
[
Γca′An

ν A
∗γ
d

(k2, k1)ΓAd
γAm

µ
(k1)Γca′Am

µ A
∗γ
d

(k1, k2)ΓAd
γAn

ν
(k2)

]
, (3)

where ΓAa
αAb

β
(q) = (∆−1)ab

αβ(q) − iδabqαqβ [with −ΓAαAβ
(q) = Παβ(q)], and the auxiliary

function ΓcAA∗, given in Fig.2a, is nothing but the standard function appearing in the con-

ventional derivation [13] now written in the anti-field language. An important property of

auxiliary functions involving the gluon anti-field, A∗, is encoded into the so-called Faddeev-
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FIG. 2: The auxiliary functions −ΓcmA
∗γ
d

, −ΓΩa
αA

∗γ
d

, iΓca′An
ν A

∗γ
d

and iΓΩa
αAd

γ c̄n . Black and white

blobs represent one-particle irreducible and connected Green’s functions, respectively, while gray

blobs are connected kernels.

Popov equation: δΓ
δc̄a + iqµ δΓ

δA∗a
µ

= 0. This equation amounts to the simple statement that

contracting A∗ with its own momentum q converts it to an anti-ghost, c̄. This property will

be used extensively in what follows. In addition, one can obtain a set of useful identities re-

lating Green’s functions of background fields to those of quantum fields. These Background

Quantum Identities (BQIs) [11] are realized through auxiliary functions involving normal

fields, anti-fields, and a background source Ω, coupled through the term −gfamnc̄aΩm
µ Aµ

n,

see Fig.2b. The BQIs satisfied by the gluon propagator are

iΓ bAa
αAb

β
(q) =

[
igγ

αδad + ΓΩa
αA

∗γ
d

(q)
]
ΓAd

γAb
β
(q), (4)

iΓ bAa
α

bAb
β
(q) =

[
igγ

αδad + ΓΩa
αA

∗γ
d

(q)
]
ΓAd

γ
bAb

β
(q), (5)

which can be combined into the single identity

iΓ bAa
α

bAb
β

= iΓAa
αAb

β
+ ΓΩa

αA
∗γ
d

ΓAd
γAb

β
+ ΓΩb

β
A

∗γ
d

ΓAa
αAd

γ

+ ΓΩa
αA

∗γ
d

ΓAd
γAe

ǫ
ΓΩb

β
A∗ǫ

e
. (6)

Other BQIs needed in our construction will be

iΓ bAa
αϕφ

(k1, k2) =
[
igγ

αδad + ΓΩa
αA

∗γ
d

(q)
]
ΓϕAd

γφ(k1, k2)

+ RΩa
αϕφ(k1, k2), (7)

where (ϕ, φ) ∈ {(A, A), (c, c̄), (c, A∗)}, and

RΩa
αAm

µ An
ν

= ΓΩa
αAn

ν A
∗γ
d

ΓAd
γAm

µ
+ ΓΩa

αAm
µ A

∗γ
d

ΓAd
γAn

ν
,

RΩa
αcmc̄n = −ΓcmA

∗γ
d

ΓΩa
αAd

γ c̄n − ΓΩa
µcmc∗dΓcdc̄n , (8)

RΩa
αcmA∗n

ν
= −ΓcmA

∗γ
d

ΓΩa
αAd

γA∗n
ν

− ΓΩa
αcmc∗dΓcdA∗n

ν
.
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Equipped with these relations we may now proceed to the derivation of our main result.

The aim will be to start from the conventional SDE of Fig.1a and generate dynamically

through the PT algorithm all the terms appearing in the BQI of Eq.(6), thus arriving at the

SDE equation of Fig.1d. This will be accomplished by constructing the two BQIs of Eq.(4)

and (5), one at a time. The starting point is diagram (a1) of Fig.1a. The tree-level three

gluon vertex Γ can be decomposed [7] into the sum ΓF + ΓP, where (factoring out the color

structure)

iΓF
AαAµAν

(k1, k2) = gµν(k1 − k2)α − 2qµgαν + 2qνgαµ,

iΓP
AαAµAν

(k1, k2) = gανk1µ − gαµk2ν . (9)

This splitting assigns a special role to the physical momentum q, making ΓF Bose symmetric

only with respect to the Aµ and Aν legs inside the loop. In fact, ΓF coincides with the BFM

vertex Γ
(0)
bAαAµAν

. ΓP contains the longitudinal momenta that will get contracted with the full

three-gluon vertex, triggering the STI of Eq.(3). The result will be (a1) = (a1)
F + (a1)

P,

with (a1)
F coinciding with diagram (b1), and

(aP
1 )ab

αβ = −iΓΩa
αA

∗γ
d

(q)ΓAd
γAb

β
(q) − igfamd

{∫

k1

k2αD(k1)D(k2)ΓcmAb
β
c̄d(−q, k2)

+

∫

k1

D(k1)Γ
′
ceA∗d

α
(k2)D(k2)ΓcmAb

β
c̄e(−q, k2) + i

∫

k1

D(k1)ΓcmAb
β
A∗d

α
(−q, k2)

}
. (10)

In the equation above we have used the ghost SDE k2D(k) = 1 − iΓcc̄(k)D(k) to transform

a tree-level ghost propagator appearing in the second term of the rhs into a full one. The

first integral on the rhs of Eq.(10) symmetrizes the ghost-gluon vertex of (a3), giving rise

to the characteristic BFM vertex ∝ (k1 − k2)α, and thus to diagram (b3). The second term

coincides precisely with the diagram (b10); the third term (see Fig.2) gives rise to diagram

(b4) [through the tree-level part of ΓcAA∗ ], as well as (b6), (b7) and (b8). Finally, due to

the fact that the four gluon vertices Γ bAAAA and ΓAAAA coincide at tree-level, we will have

(a2) = (b2), (a4) = (b5), and (a5) = (b6). Thus taking into account the first term in Eq.(10)

we have dynamically reproduced the propagator BQI of Eq.(4).

At this point we have constructed Γ bAa
αAb

β
(q); the next step will be to exploit the obvious

equality Γ bAa
αAb

β
(q) = Γ

Aa
α

bAb
β
(q) to interchange the background and quantum legs (see Fig.1c).

This introduces a considerable simplification: on the one hand we keep identifying the

pinching momenta from the the PT decomposition of the (tree-level) Γ, while on the other

hand the equality between diagrams (c5), (c6) and (d5), (d6) is immediate.
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Let us now carry out the PT splitting of Eq.(9) to diagram (c1). The ΓF part of the vertex

generates directly diagram (d1); the longitudinal momenta contained in ΓP get contracted

as before with the full three-gluon vertex, which, however, has now an external background

leg. Using Eq.(7) with (ϕ, φ) = (A, A), we get

(cP
1 )ab

αβ = −i
[
igγ

βδbd + ΓΩb
β
A

∗γ
d

(q)
]
(aP

1 )ad
αγ + gfamn

∫

k1

∆ν
α(k2)

kµ
1

k2
1

RΩb
β
Am

µ An
ν
(k1, k2). (11)

The presence of the prefactor igγ
βδbd + ΓΩb

β
A

∗γ
d

allows one to use the BQIs of Eq.(7) to convert

the full vertices ΓcAc̄ and ΓcAA∗, appearing in the last three terms of (aP
1 ), into Γc bAc̄ and

Γ
c bAA∗ , respectively. This operation has two effects: (i) it generates (d7), (d8), (d9), and

(d10), plus the contribution needed to convert (c3) and (c4) into (d3) and (d4), respectively;

(ii) it gives rise to leftover contributions given by the three integrals appearing in Eq.(10)

where the corresponding vertex is replaced by either −RΩcc̄ or −RΩcA∗ . These latter terms

cancel exactly against the second term in Eq.(11), after its tree-level contribution has been

extracted and used to convert (c2) into (d2). At this point we have generated all diagrams

of Fig.1d [14]. In addition, using the BQI of Eq.(4) (already proven in the previous step),

the term in (aP
1 ) proportional to ΓΩA∗ will give precisely −iΓΩa

αA
∗γ
d

(q)ΓAd
γ

bAb
β
(q). Thus, we

have constructed the full BQI of Eq.(5). Having dynamically realized the BQIs of Eqs.(4)

and (5), we can combine them into Eq.(6), which constitutes the announced result. We

emphasize that (i) all rearrangements have been induced by the PT manipulation of only one

diagram [(a1) and (c1) of Fig.1] and (ii) all quantities encountered exist in the conventional

formulation. In that sense, the Batalin-Vilkovisky formalism serves simply as an efficient

way of keeping track of them.

Discussion – The new SD series just constructed reads

[1 + G(q2)]2Παβ(q) =

10∑

i=1

(di)αβ, (12)

where G is defined as the part of ΓΩαA∗

β
proportional to gαβ: ΓΩαA∗

β
(q) = iG(q2)gαβ+ ∼ qαqβ.

The rhs of Eq.(12) has a very special structure. The diagrams of Fig.1d can be separated into

four subgroups [(d1), (d2)], [(d3), (d4)], [(d5), (d6)], and [(d7), (d8), (d9), (d10)], corresponding

to one- or two-loop dressed gluonic or ghost contributions. Due to the abelian WIs satisfied

by these new vertices, the contribution of each of the four subgroups is individually transverse

[15].

7



The practical implications of this property for the treatment of the SD series are far-

reaching, since it furnishes a systematic, manifestly gauge-invariant truncation scheme. In

the case of the gluon self-energy, for instance, the transversality of the answer is guaranteed

at every step. Specifically, keeping only the diagrams in the first group, we obtain the

truncated SDE

Παβ(q) = [1 + G(q2)]−2[(d1) + (d2)]αβ , (13)

and we have that qα[(d1) + (d2)]αβ = 0 by virtue of qαΓ bAa
αAm

µ An
ν
(k1, k2) = gfamn[∆−1

µν (k1) −

∆−1
µν (k2)]. Therefore, Παβ(q) is transverse, as it should, despite the omission of the remaining

graphs (most notably the ghost loops). In fact, one can envisage the possibility of employing

completely different treatments for each subgroup: for example, one may treat the graphs

(d1) and (d2) non-perturbatively, while opting for a perturbative treatment of the ghost

diagrams (d3) and (d4), without compromising the transversality of the self-energy. The

price one has to pay is the need to consider the additional SDE governing G (see Fig.2b).

Notice, however, that the approximations employed for the treatment of this latter SDE will

not interfere with the transversality of Παβ . The abelian WIs furnish an additional technical

advantage: one may use gauge-technique inspired Ansätze, a common practice when dealing

with the SDE of QED [4], to express the vertices in terms of propagators, in such a way as

to automatically enforce gauge invariance. Finally, notice that (i) the SDEs for the QCD

vertices can be constructed in a very similar way [16], and (ii) the analysis presented here can

be generalized to other gauges (e.g., the Landau gauge) using the methodology developed

in [9].

In conclusion, the new SD series constructed in this letter provides a powerful tool for

the systematic exploration of the non-perturbative sector of QCD, allowing the study of the

fundamental Green’s functions in a manifestly gauge-invariant way.
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