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Abstract

We demonstrate how to obtain from the Schwinger-Dyson equations of QCD an infrared finite

ghost propagator in the Feynman gauge. The key ingredient in this construction is the longitudinal

form factor of the non-perturbative gluon-ghost vertex, which, contrary to what happens in the

Landau gauge, contributes non-trivially to the gap equation of the ghost. The detailed study of

the corresponding vertex equation reveals that in the presence of a dynamical infrared cutoff this

form factor remains finite in the limit of vanishing ghost momentum. This, in turn, allows the

ghost self-energy to reach a finite value in the infrared, without having to assume any additional

properties for the gluon-ghost vertex, such as the presence of massless poles. The implications of

this result and possible future directions are briefly outlined.

PACS numbers: 12.38.Lg, 12.38.Aw
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I. INTRODUCTION

The non-perturbative properties of the basic Green’s functions of QCD have been the focal

point of intensive scrutiny in recent years, with particular emphasis on the propagators of the

fundamental degrees of freedom, gluons, quarks, and ghosts. Even though it is well-known

that these quantities are not physical, since they depend on the gauge-fixing scheme and

parameters used to quantize the theory, it is generally accepted that reliable information

on their non-perturbative structure is essential for unraveling the infrared (IR) dynamics of

QCD.

There are two main tools usually employed in this search: the lattice, where space-time

is discretized and the quantities of interest are evaluated numerically [1, 2, 3], and the

intrinsically non-perturbative equations governing the dynamics of the Green’s functions,

known as Schwinger-Dyson equations (SDE) [4, 5, 6, 7]. In principle, the lattice includes all

non-perturbative features and no approximations are employed at the level of the theory. In

practice, the main limitations appear when attempting to extrapolate the results obtained

with finite lattice volume to the continuous space-time limit. On the other hand, the main

difficulty with the SDE has to do with the need to devise a self-consistent truncation scheme

that preserves crucial field-theoretic properties, such as the transversality of the gluon self-

energy, known to be valid both perturbatively and non-perturbatively, as a consequence of

the BRST symmetry [8].

Significant progress has been accomplished on this last issue due to the development of

the truncation scheme that is based on the all-order correspondence [9] between the pinch

technique (PT) [10, 11] and the Feynman gauge of the Background Field Method (BFM) [12].

One of its most powerful features is the special way in which the transversality of the gluon

self-energy is realized. Specifically, by virtue of the Abelian-like WIs satisfied by the vertices

involved, gluonic and ghost contributions are separately transverse, within each order in

the “dressed-loop” expansion of the SDE [13] for the gluon propagator. This property, in

turn, allows for a systematic truncation of the full SDE, preserving at every step the crucial

property of gauge invariance.

The first approximation to the SDE of the gluon propagator involves the one-loop dressed

gluonic graphs only, since in this scheme the ghost loops may be omitted without compro-

mising the transversality of the answer. As is well-known, the Feynman gauge of the BFM
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is particularly privileged, being dynamically singled out as the gauge that directly encom-

passes the relevant gauge cancellations of the PT [9]. Therefore, the aforementioned one-loop

dressed graphs have been considered in this particular gauge. The detailed study of the re-

sulting integral equation for the gluon propagator gave rise to solutions that reach a finite

value in the deep IR [13, 14]. Following Cornwall’s original idea [10, 15] of describing the IR

sector of QCD in terms of an effective gluon mass [16, 17], these solutions have been fitted

using “massive” propagators of the form ∆−1(q2) = q2 + m2(q2), with m2(0) > 0, and the

crucial characteristic that m2(q2) is not “hard”, but depends non-trivially on the momentum

transfer q2. In addition, finite solutions for the gluon propagator in the Landau gauge have

been reported in various lattice studies [18], and were recently confirmed using lattices with

significantly larger volumes [19].

Even though the omission of the ghost loops within this formulation does not introduce

any artifacts, such as the loss of transversality, the actual behavior of the ghosts may change

the initial prediction for the gluon propagator, not just quantitatively but also qualitatively.

For example, an IR divergent solution for the ghost propagator could destabilize the finite

solutions found for the gluon propagator. Therefore, a detailed study of the ghost sector

constitutes the next challenge in this approach. In the present work we will consider the SDE

for the ghost sector in the (BFM) Feynman gauge, in order to complement the corresponding

analysis presented in [13, 14] in the same gauge. The BFM Feynman rules are in general

different to those of the covariant renormalizable gauges [12]; in the former, for example,

in addition to the bare gluon propagator, the bare three- and four-gluon vertices involving

background and quantum gluons depend on the (quantum) gauge fixing parameter. Notice,

however, that, since there are no background ghosts, the Feynman rules relevant for the ghost

sector are identical to both the covariant gauges and the BFM. Therefore, the analysis and

the results presented in this article carries over directly to the conventional Feynman gauge.

In this article we demonstrate that the ghost propagator in the Feynman gauge can be

made finite in the IR, through the self-consistent treatment of the gluon-ghost vertex and

the ghost gap equations. The key ingredient that makes this possible is the “longitudinal”

form-factor in the tensorial decomposition of the gluon-ghost vertex, IΓbcd
µ (p, q, k), i.e. the co-

factor of kµ, where k is the four-momentum of the gluon; evidently this term gets annihilated

when contracted with the usual transverse projection operator. As we will explain in detail,

this component acquires a special role for all values of the gauge fixing parameter, with the
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very characteristic exception of the Landau gauge. The reason is simply that in the Landau

gauge the entire gluon propagator is transverse, both its self-energy and its free part, whereas

for any other value of the gauge-fixing parameter the free part is not transverse. As a result,

when the gluon-ghost vertex is inserted into the SDE for the ghost propagator, D(p2), its

part proportional to kµ dies when contracted with the gluon propagator in the Landau gauge;

however, in any other gauge it survives due to the free-part of the gluon propagator. The

resulting contribution has the additional crucial property of not vanishing as the external

momentum of the ghost goes to zero. Therefore, contrary to what happens in the Landau

gauge where only the part of the vertex proportional to pµ survives, one does not need to

assume the presence of massless pole terms of the form 1/p2 in order to obtain a nonvanishing

value for D−1(0). Instead, the only requirement is that the longitudinal form factor simply

does not vanish in that limit.

The paper is organized as follows: In section II we set up the SDE for the ghost propa-

gator, assuming the most general Lorentz structure for the fully dressed gluon-ghost vertex

IΓbcd
µ (p, q, k). We then discuss under what condition the resulting expression may yield a

finite value for D−1(0), and analyze the profound differences between the Landau and the

Feynman-type of gauges. In section III we first derive the gluon-ghost vertex under certain

simplifying assumptions, discuss in detail the approximations employed. Next we study its

non-perturbative solutions employing various physically motivated, IR finite Ansätze IR for

the gluon and ghost propagators. In Section IV we combine the results of the previous

two sections, deriving the self-consistency condition necessary for the system of equations

to be simultaneously satisfied. Finally, in section V we discuss our results and present our

conclusions.

II. GENERAL CONSIDERATIONS ON THE IR BEHAVIOR OF THE GHOST

In this section we derive the SDE for the ghost propagator D(p2) in a general covariant

gauge, and study qualitatively its predictions for D(0) for various gauge choices. In particu-

lar, we establish that away from the Landau gauge the ghost propagator may acquire a finite

value at the origin, without the need to assume a singular IR behavior for the form factors

of the fully dressed ghost-gluon vertex entering into the SDE. Our attention will eventually

focus on the Feynman gauge, which, as mentioned in the Introduction, is singled out within
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the PT-BFM scheme.

The full ghost propagator Dab(p) is usually written in the form

Dab(p) = iδabD(p) , (2.1)

and the SDE satisfied by D(p2), depicted diagrammatically in Fig.1, reads

D−1(p2) = p2 + iCAg2

∫

[dk] Γµ∆µν(k)IΓν(p, p + k, k)D(p + k) . (2.2)

We have used facdf bcd = δabCA, with CA the Casimir eigenvalue in the adjoint representation

[CA = N for SU(N)], and have introduced the short-hand notation [dk] = ddk/(2π)d , where

d = 4− ǫ is the dimension of space-time used in dimensional regularization. ∆µν(k) is the

fully dressed gluon propagator, whereas IΓ denotes the fully dressed gluon-ghost vertex and

Γ its tree-level value.

p
−→
p

→
p

→
p

= +

( )

−→

( )

−1 −1

−→

a b

µ, dν, f

e c

p + k

k
←−

FIG. 1: The SDE of the ghost propagator.

Specifically, in the covariant gauges the full gluon propagator ∆df
µν(k) = −iδdf∆µν(k) has

the general form

∆µν(k) =

[

Pµν(k)∆(k2) + ξ
kµkν

k4

]

, (2.3)

where

Pµν(k) = gµν −
kµkν

k2 , (2.4)

is the transverse projector, and ξ is the gauge fixing parameter; ξ = 1 corresponds to the

Feynman gauge and ξ = 0 to the Landau gauge. The scalar function ∆(k2) is related to the

all-order gluon self-energy Πµν(k),

Πµν(k) = Pµν(k)Π(k2) , (2.5)

through

∆−1(k2) = k2 + iΠ(k2) . (2.6)
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The bare gluon-ghost vertex appearing in (2.2) is given by Γeaf
µ = −gf eafqµ, with

(q = p + k). Choosing pµ and kµ as the two linearly independent four-vectors, the most gen-

eral decomposition for the fully dressed gluon-ghost vertex IΓbcd
ν (p, q, k) is expressed as [20]

IΓbcd
µ (p, q, k) = −gf bcd IΓµ(p, q, k) ,

IΓµ(p, q, k) = A(p2, q2, k2)pµ + B(p2, q2, k2)kµ , (2.7)

where k is the outgoing gluon momentum, and p, q the outgoing and incoming ghost mo-

menta, respectively. The dimensionless scalar functions A(p2, q2, k2) and B(p2, q2, k2) are

the form factors of the gluon-ghost vertex. In particular, notice that the tree-level result

is recovered when we set A(p2, q2, k2) = 1 and B(p2, q2, k2) = 0. Finally, it is important to

emphasize that all fully-dressed scalar quantities (D, ∆, A, and B) depend explicitly (and

non-trivially) on the value of the gauge-fixing parameter ξ already at the level of one-loop

perturbation theory.

It is then straightforward to derive the Euclidean version of Eq.(2.2); to that end, we

set p2 = −p2
E
, define ∆E(p

2
E
) = −∆(−p2

E
), and DE(p

2
E
) = −D(−p2

E
) , and for the integration

measure we have [dk] = i[dk]E = id4kE/(2π)4. Suppressing the subscript “E” everywhere

except in the integration measure, and without any assumptions on the functional form of

A(p2, q2, k2) and B(p2, q2, k2), the ghost SDE of Eq. (2.2) becomes

D−1(p2) = p2 − CAg2

∫

[dk]E

[

p2 −
(p · k)2

k2

]

A(p2, q2, k2) ∆(k) D(p + k)

−CAg2ξ

∫

[dk]E
p · k

k2

[

A(p2, q2, k2) + B(p2, q2, k2) +
p · k

k2

]

D(p + k)

−CAg2ξ

∫

[dk]E B(p2, q2, k2) D(p + k) , (2.8)

As a check, we can recover from (2.8) the one-loop result for the ghost propagator in the

Feynman gauge (ξ = 1) by substituting the tree-level expressions for the ghost and gluon

propagators and setting A(p2, q2, k2) = 1 and B(p2, q2, k2) = 0; specifically

D−1(p2) = p2

[

1 +
CAg2

32π2
ln

(

p2

µ2

)]

. (2.9)

In order to obtain from (2.8) the behavior of D(p2) for the full range of the momen-

tum p2 one needs to provide additional information for the forms factors A(p2, q2, k2) and

B(p2, q2, k2), obtained from the corresponding SDE satisfied by the gluon-ghost vertex.
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Thus, the complete treatment of this problem would require the solution of a complicated

system of coupled SDE. However, several interesting conclusions about the IR behavior of

D(p2) may be drawn, by considering the qualitative behavior of the forms factors A(p2, q2, k2)

and B(p2, q2, k2), as p→ 0.

We start by considering what happens in the Landau gauge. First of all, let us assume

that the various quantities appearing on the r.h.s. of (2.8) are regular functions of ξ [21].

Then, if we set ξ = 0, only the first integral on the r.h.s. of (2.8) survives; thus, D−1(p2) is

only affected by the functional form of A(p2, q2, k2). In particular, the behavior of D(p2) as

p→ 0 will depend on whether A(p2, q2, k2) is divergent or finite in that limit, i.e. on whether

or not A(p2, q2, k2) contains (1/p2) terms. Evidently, if A(p2, q2, k2) does not contain poles,

one has that lim
p→0

D−1(0) = 0, and therefore the ghost propagator will be divergent in the IR.

On the other hand, if A(p2, q2, k2) contains (1/p2) terms, lim
p→0

D−1(0) 6= 0 allowing for finite

solutions for the ghost propagator.

According to this general argument, the only way for getting an IR-finite propagator

in the Landau gauge is by assuming that A(p2, q2, k2) contains poles [22, 23]. However,

lattice simulations in the Landau gauge seem to favor a IR-finite A(p2, q2, k2); specifically, it

was found that deviations of the gluon-ghost vertex from its tree-level value are very small

in the IR, i.e. A(p2, q2, k2) ≈ 1 [24]. In addition, a detailed study of the SDE equation

for IΓ in the same gauge shows no singular behavior for A(p2, q2, k2) [25] . These findings

appear to be consistent with recent lattice results on the non-perturbative structure of the

ghost propagator, which indicate that D−1(p2) in the Landau gauge diverges, at a rate that

deviates only mildly from the tree-level expectation of 1/p2 [19].

Evidently, the picture for ξ 6= 0 is drastically different. Indeed, away from the Landau

gauge the r.h.s of (2.8) involves both form factors, A(p2, q2, k2) and B(p2, q2, k2). Moreover,

unlike the first two terms, the third one does not contain any kinematic factors proportional

to p. Thus, in order for it not to vanish as p→ 0 one does not need to assume any singular

structure for B(p2, q2, k2); instead, it is sufficient to simply have that B(0, k2, k2) 6= 0.

After this key observation, we will take the limit of of Eq. (2.8) as p → 0, assuming

that A(p2, q2, k2) does not contain (1/p2) terms. Focusing for concreteness on the physically

relevant case of ξ = 1, we find that in the aforementioned kinematic limit Eq.(2.8) reduces
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to

D−1(0) = −CAg2

∫

[dk]E B(0, k2, k2) D(k) . (2.10)

Of course, if the assumption that A(p2, q2, k2) is regular as p → 0 does not hold, then the

other integrals will also contribute to the r.h.s. of (2.10). However, modulo the rather

contrived scenario of fine-tuned cancellations, the r.h.s. will still be different from zero.

Evidently, from (2.10) we deduce that if B(0, k2, k2) = 0 than D−1(0) = 0. On the other

hand, if B(0, k2, k2) 6= 0, i.e. if it does not vanish identically, then one may have a non-

vanishing D−1(0). Of course, having a non-vanishing B(0, k2, k2) is not a sufficient condition

for D−1(0) 6= 0; one has to assume in addition that (i) the integral on the r.h.s. of (2.10).

is convergent, or it can be made convergent through proper regularization, and (ii) that

the integral is not zero due to some other, rather contrived circumstances (for instance,

if B(0, k2, k2) turned out not to be a monotonic function, the various contributions from

different integration regions could cancel against each other).

An explicit calculation may confirm that B(0, k2, k2) vanishes at one-loop [26], and it is

reasonable to expect this to persist to all orders in perturbation theory. Therefore, in what

follows we will examine the possibility that B(0, k2, k2) may not vanish non-perturbatively.

In particular, we will study the SDE determining B(p2, q2, k2) for the special kinematic

configuration appearing in (2.10), namely where the outgoing ghost momentum, p, is set

equal to zero (i.e. p = 0 and q = k). In the context of the linearized approximation that

we employ in the next section this kinematic configuration offers the particular technical

advantage of dealing with a function of only one variable instead of two.

III. THE GLUON-GHOST VERTEX

In this section we set up and solve, after certain simplifying approximations, the SDE

governing the behavior of the form factor B(0, k2, k2). This can be done by taking the

following limit of the gluon-ghost vertex, IΓµ(p, q, k) ,

B(0, k2, k2) = lim
p→0

[

1

k2
kµ IΓµ(p, q, k)

]

. (3.1)

where IΓµ(p, q, k) obeys the SDE [7] represented in Fig.2

We next introduce some approximations regarding the form of the two-ghost–two-gluon

scattering kernel, appearing on the r.h.s. of Fig.(2). The first approximation is to keep only
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=

p

+

µ, d µ, d µ, d

↑ k ↑ ↑

p

cbc b c b

q

q
q

p

k k

FIG. 2: SDE for the gluon-ghost vertex.

the lowest order contributions in its skeleton expansion, i.e. we expand the aforementioned

kernel in terms of the 1PI fully dressed three-particle vertices of the theory, neglecting

diagrams that contain four-point functions.

We then arrive at the truncated SDE shown in Fig.(3), which reads,

= + +

pq

(a1) (a2)

տւ

←− −→

l + q

l l

qp p

ցl + p l − q

k↑
↑ k

µ, d

bc

↑ k

q p
q

ր

↑k

l − p

FIG. 3: Truncated version of the SDE for the gluon-ghost vertex.

IΓbcd
µ (p, q, k) = Γbcd

µ + IΓbcd
µ (p, q, k) |a1

+ IΓbcd
µ (p, q, k) |a2

, (3.2)

where the closed expressions corresponding to the diagrams (a1) and (a2) are given by

IΓbcd
µ |a1

=

∫

[dl] IΓemd
µ (l + p, l + q, k)Dee′(l + p) IΓbe′n′

ν′ (p, l + p, l) ∆νν′

nn′(l) Γm′cn
ν Dmm′(l + q) ,

IΓbcd
µ |a2

=

∫

[dl] IΓdem
µνσ (−k, q − l, l − p)∆σσ′

mm′(l − p) IΓbn′m′

σ′ (p, l, l − p) Dnn′(l) Γnce′

ν′ ∆νν′

ee′ (l − q) ,

(3.3)

with the momentum routing as given in Fig.(3).

Our next approximation is to linearize the equation by substituting in (3.3)

IΓemd
µ (l + p, l + q, k) and IΓdem

µνσ (−k, q− l, l−p) by their bare, tree-level expressions. Since we
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are eventually interested in the limit of the equation as p → 0, this amounts finally to the

replacement

IΓemd
µ (l + p, l + q, k) → −gf emdlµ ,

IΓdem
µνσ (−k, q − l, l − p) → gfdem[(2l − k)µgνσ − (k + l)νgµσ + (2k − l)σgµν ] . (3.4)

in diagrams (a1) and (a2), respectively. The diagrammatic representation of the resulting

contributions at p→ 0 is given in Fig.(4).

µ, dµ, d ↑ k ↑ k

c b bc

տ lւր

ր ց

m e

e ′m ′

ν ′ν

n n ′

σ, m

ν ′, e ′

ν, e

n n ′

(a2)(a1)

←−
l

−→
l

k

l + k l − k

k
p = 0 p = 0

ց

σ ′, m ′

l

FIG. 4: Contributions for the gluon-ghost vertex equation in the limit of p→ 0.

Factoring out the color structure by using the standard identity faxmf bmnf cnx = 1
2
CAfabc,

it is easy to verify that in the limit p→ 0 the linearized version of Eq.(3.3) reads

IΓbcd
µ (0, k, k) |a1 = if bcdCAg3

2

∫

[dl] lµ(l + k)ν′ lν∆
νν′

(l)B(0, l2, l2)D(l)D(l + k) ,

IΓbcd
µ (0, k, k) |a2 = −if bcd CAg3

2

∫

[dl] Γµνσ lν′lσ′∆σσ′

(l)∆νν′

(l − k)B(0, l2, l2)D(l) . (3.5)

Since the bare gluon-ghost is proportional to pµ, it follows immediately from Eqs.(3.1),

(3.2) and (3.5), that

B(0, k2, k2) =
kµ

k2

[

IΓµ(0, k, k) |a1
+ IΓµ(0, k, k) |a2

]

,

kµIΓµ(0, k, k) |a1
= −

i

2
CAg2

∫

[dl]

[

k · l +
(k · l)2

l2

]

B(0, l2, l2)D(l)D(l + k) ,

kµIΓµ(0, k, k) |a2
= +

i

2
CAg2

∫

[dl]

[

(k · l)2

l2
− k2

]

B(0, l2, l2)D(l)∆(l + k) . (3.6)
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The Euclidean version of (3.6) can be easily derived using the same rules as before, leading

to

B(0, k2, k2) = −
CAg2

32π4

{

1

k2

∫

d4l
(k · l)2

l2
B(0, l2, l2)D(l)

[

D(l + k)−∆(l + k)
]

+

∫

d4l B(0, l2, l2)D(l)∆(l + k) +
1

k2

∫

d4l (k · l)B(0, l2, l2)D(l)D(l + k)

}

. (3.7)

It is convenient to express the measure in spherical coordinates,
∫

d4l = 2π

∫ π

0

dχ sin2 χ

∫

∞

0

dyy ; (3.8)

and rewrite (3.7) in terms of the new variables x ≡ k2, y ≡ l2, and z ≡ (l + k)2. In order to

convert Eq.(3.7) into a one-dimensional integral equation, we resort to the standard angular

approximation, defined as
∫ π

0

dχ sin2 χ f(z) ≈
π

2

[

θ(x− y)f(x) + θ(y − x)f(y)

]

, (3.9)

where θ(x) is the Heaviside step function.

Then, introducing the above change of variables and using Eq.(3.8) and (3.9) in (3.7), we

arrive at the following linear and homogeneous equation

B(0, x, x) =
CAg2

128π2

{

1

x

[

D(x)−∆(x)
]

∫ x

0

dy y2B(0, y, y)D(y)

+

∫

∞

x

dy (x− 2y)B(0, y, y)D(y)
[

D(y)−∆(y)
]

+ 2

∫

∞

x

dy yB(0, y, y)D(y)∆(y)

−
2

x
D(x)

∫ x

0

dy y2B(0, y, y)D(y) + 4 ∆(x)

∫ x

0

dy yB(0, y, y)D(y)

}

. (3.10)

Due to the linear nature of (3.10) it is evident that if B is one solution then the entire

family of functions cB, generated by multiplying B by an arbitrary constant c, are also

solutions.

Before embarking into the numerical treatment of (3.10), it is useful to study the asymp-

totic solution that this equation furnishes for x→∞. In this limit on can safely replace the

various propagators appearing on the r.h.s of (3.10) by their tree-level values, i.e. ∆(t)→ 1/t

and D(t) → 1/t with (t = x, y). Then, the first and second terms vanish, and the leading

contribution comes from the third term of (3.10). Specifically, the asymptotic behavior of

B(0, x, x) is determined from the integral equation

B(0, x, x) = λ

∫

∞

x

dy
B(0, y, y)

y
, (3.11)
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where λ = CAg2/64π2. Eq.(3.11) can be solved easily by converting it into a first-order

differential equation, which leads to the following asymptotic behavior

B(0, x, x) = σx−λ , (3.12)

with σ is an arbitrary parameter, with dimension [M2]λ, where M is an arbitrary mass-scale.

As we will see in what follows, σ will be treated as an adjustable parameter, whose dimen-

sionality will be eventually saturated by that of the effective gluon mass, or, equivalently,

by the QCD mass scale Λ.

With the asymptotic behavior (3.12) at hand, we can solve numerically the integral

equation given in (3.10). To do so, we start by specifying the expressions we will use for the

gluon and ghost propagators.

As has been advocated in a series of studies based on a variety of approaches, the gluon

propagator reaches a finite value in the deep IR [27, 28]. This type of behavior has been

observed in Landau gauge in previous lattice studies [18], and more recently in new, large-

volume simulations [19]. Within the gauge-invariant truncation scheme implemented by

the PT, the gluon propagator (effectively in the background Feynman gauge) was shown to

saturate in the deep IR [13, 14]. The numerical solutions may be fitted very accurately by

a propagator of the form

∆(k2) =
1

k2 + m2(k2)
, (3.13)

where m2(k2) acts as an effective gluon mass, presenting a non-trivial dependence on the

momentum k2. Specifically, the mass displays either a logarithmic running

m2(k2) = m2
0

[

ln

(

k2 + ρ m2
0

Λ2

)

/

ln

(

ρ m2
0

Λ2

)

]

−1−γ1

, (3.14)

where γ1 > 0 is the anomalous dimension of the effective mass, or power-law running of the

form

m2(k2) =
m4

0

k2 + m2
0

[

ln

(

k2 + ρ m2
0

Λ2

)

/

ln

(

ρ m2
0

Λ2

)

]γ2−1

, (3.15)

with γ2 > 1. Which of these two behaviors will be realized is a delicate dynamical prob-

lem, and depends, among other things, on the specific form of the full three-gluon vertex

employed in the SDE for the gluon propagator (for a detailed discussion see [14]). Here we

will employ both functional forms, and study the numerical impact they may have on the
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solutions of (3.10). A plethora of phenomenological studies favor values of m0 in the range

of 0.5− 0.7 GeV.

In addition, when solving (3.10) an appropriate Ansatz for the ghost propagator D(k2)

must also be furnished, given that we are in no position to solve the ghost SDE of (2.8) for

arbitrary values of the momentum, since this would require the solution of a coupled system

of several integral equations involving D, A, and B, for arbitrary values of the four-momenta.

Given that our aim is to study the self-consistent realization of an IR finite ghost-propagator,

it is natural to employ an Ansatz in close analogy to (3.13), namely

D(k2) =
1

k2 + M2(k2)
, (3.16)

where M2(k2) stands for a dynamically generated, effective “ghost mass”. Evidently,

D−1(0) = M2(0), and D−1(0) 6= 0 provided that M2(0) 6= 0. Of course, once the corre-

sponding solutions for B(0, x, x) have been obtained the self-consistency of the Ansatz for

M2(k2) must be verified. The way this will be done in the next section is by substitut-

ing B(0, x, x) into the (properly regularized) integral on the r.h.s. of Eq. (2.10), and then

demanding that its value is equal to the M2(0) appearing on the l.h.s.

For the actual momentum dependence of the effective ghost mass, M(k2) we will assume

three different characteristic behaviors and will analyze the sensitivity of B(0, x, x) on them.

We will employ the following three types of M(k2):

(i) “hard mass”, i.e. a constant mass with no running,

M2(k2) = M2
0 , (3.17)

(ii) logarithmic running of the form

M2(k2) = M2
0

[

ln

(

k2 + ρ M2
0

Λ2

)

/

ln

(

ρ M2
0

Λ2

)

]

−1−κ1

, (3.18)

(iii) power-law running, given by

M2(k2) =
M4

0

k2 + M2
0

[

ln

(

k2 + ρ M2
0

Λ2

)

/

ln

(

ρ M2
0

Λ2

)

]κ2−1

. (3.19)

Clearly, the last two possibilities, (3.18) and (3.19), are exactly analogous to the correspond-

ing two types of running of the gluon mass, (3.14) and (3.15), respectively.
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We then solve numerically Eq.(3.10) using the gluon and ghost propagators given by

Eqs.(3.13) and (3.16), respectively, supplemented by the various types of running for m2(k2)

and M2(k2). The integration range is split in two regions, [0, s] and (s,∞], where s ≫ Λ2.

For the second interval we impose the asymptotic behavior of (3.12), choosing a value for σ.

It turns out that the numerical solution obtained for B(0, x, x) is rather insensitive to the

form of the gluon mass employed, and it mainly depends on the form of the ghost propagator.

More specifically, we can fit the numerical solution with an impressive accuracy by means

of the simple, physically motivated function

B(0, x, x) =
σ

[x + M2(x)]λ
, (3.20)

regardless of the form of momentum dependence employed for M2(x). Evidently, for large

values of x the above expression goes over the asymptotic solution of Eq.(3.12). In Figs.(5),

we present a typical solution for B(0, x, x) together with the fit given by (3.20).

FIG. 5: The black solid line is the numerical solution of Eq.(3.10), assuming logarithmic type of

running for m2(k2) and M2(k2), with γ1 = κ1 = 0.6, m2
0 = 0.35GeV2, M2

0 = 0.4GeV2, ρ = 4, and

σ1/λ = 1GeV2. The red dashed line represents the fit of Eq.(3.20); the relative difference between

the two curves is less than 1% (note the fine spacing of the y axis).
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IV. INFRARED FINITE GHOST PROPAGATOR

In the previous section we have obtained the general solutions for B(0, x, x), under the

assumption that the ghost propagator was finite in the IR, and more specifically that it

was given by the general form of (3.16). The next crucial step consists in substituting the

solutions obtained for B(0, x, x) into (2.10) and in examining under what conditions the

two hand sides of the equation can be made to be equal. As we will see this procedure will

eventually boil down to constraints on the values that one is allowed to choose for the free

parameter σ.

Substituting Eqs.(3.16) and (3.20) into (2.10), we arrive at

D−1(0) = −CAg2σ

∫

[dk]
1

[k2 + M2(k2)]1+λ
. (4.21)

The r.h.s. of (4.21) is simply given by

D−1(0) = M2
0 , (4.22)

for any form of M2(k2). Let us first verify the self-consistency of (4.21) for the case where

the ghost mass vanishes identically, i.e. M2(k2) = 0. Then, (4.21) reduces to nothing but

the standard dimensional regularization result [29]

∫

[dk](k2)−α = 0 , (4.23)

valid for any value of α, for the special value α = 1 + λ.

For non-vanishing M2(k2) the integral on the r.h.s. of (4.21) is UV divergent: at large k2

it goes as (ΛUV)1+λ, where ΛUV is a UV momentum cutoff. It turns out that the r.h.s. can

be made UV finite by simply subtracting from it its perturbative value, i.e. the vanishing

integral of (4.23) [30].

Carrying out this regularization procedure explicitly, one obtains

M2
0 = −CAg2 σ

∫

[dk]

(

1

[k2 + M2(k2)]1+λ
−

1

(k2)1+λ

)

= −CAg2σ

∫

[dk]

[k2 + M2(k2)]1+λ

(

1−

[

1 +
M2(k2)

k2

]1+λ
)

. (4.24)

It is now elementary to verify that the integral on the r.h.s of (4.24) converges. At large

k2 we can expand the second term in the parenthesis and neglecting in the denominator
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M2(k2) next to k2, we find that the resulting integral (apart of multiplicative factors) is

given by
∫

dy
M2(y)

y1+λ
. (4.25)

Notice that the above integral converges even for the less favorable case of a constant M2(y);

then, (4.25) is proportional to y−λ, and is therefore convergent, since λ > 0. Clearly, when

M2(y) drops off in the UV, as described by (3.18) or (3.19), the integral converges even

faster. Next we will analyze separately what happens for each one of the three different

Ansätze we have employed for M2(y), Eqs.(3.17) – (3.19).

The case of a constant ghost mass can be easily worked out. Replacing M2(k2)→M2
0

in Eq.(4.24), keeping only the leading contribution to the integral, we arrive at (notice the

cancellation of the coupling constant g2 appearing in front of the integral)

M2
0 =

4σ

1− λ
M

2(1−λ)
0 . (4.26)

Then, in order to enforce the equality of both sides of (4.26) σ must satisfy

σ =
(1− λ)

4
M2λ

0 . (4.27)

Evidently, σ depends very weakly on M0, and its value is practically fixed at 1/4. Indeed,

given that λ is a small number, of the order of O(10−2), Eq.(4.27) may be expanded as

σ ≈
(1− λ)

4
Λ2λ

[

1 + λ ln

(

M2
0

Λ2

)]

, (4.28)

from where it is clear that σ can only assume values slightly different of 1/4. In Fig.(6), we

show this mild dependence of σ on M0, for Λ = 300 MeV.

We next turn to the case where M2(y) displays the logarithmic or power-law dependence

on the momentum, described by Eqs. (3.18) and (3.19), respectively. Now the integrals

cannot be carried out analytically and have been computed numerically. Choosing different

values for κ1, κ2, and ρ, we obtain the curves presented in Fig.(7) and Fig.(8), showing the

dependence of σ on M0.
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FIG. 6: σ as a function of the hard ghost mass M0, obtained from Eq.(4.27).

Several observations are in order:

(i) For both types of running the results show a stronger dependence on M0 than in the

case of the hard mass.

(ii) The range of possible values for σ increases significantly. Whereas in the case of

constant mass one was practically restricted to a unique value for σ, namely σ ≈ 1/4 [viz.

Fig.(6)], now one may obtain self-consistent solutions choosing values for σ over a much

wider interval.

FIG. 7: σ as function of M0, when M2(k2) runs logarithmically, as in Eq.(3.18).
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FIG. 8: σ as function of M0, when the power-law running of Eq.(3.19) is assumed for M2(k2).

(iii) There is a qualitative difference between the logarithmic and power-law running:

in the former case σ is a decreasing function of M0, while in the latter it is increasing.

This offers the particularly interesting possibility of finding values for σ that furnish self-

consistent solutions for either types of running of M2(k2). A characteristic example where

Eq.(4.24) is satisfied for the same value of M0 for both types of running is shown in Fig.(9):

for σ ≈ 20 one may generate a ghost mass of M0 ≈ 560 MeV, assuming for M2(k2) either

the logarithmic running of Eq.(3.18), or the power-law running of Eq.(3.19).

FIG. 9: For σ = 20, a ghost mass can be generated from Eq.(4.24) for either type of running.
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V. DISCUSSION AND CONCLUSIONS

In this article we have demonstrated that it is possible to obtain from the SDEs of QCD

an IR finite ghost propagator in the Feynman gauge. In this construction the longitudinal

component of the gluon-ghost vertex, which is inert in the Landau gauge, assumes a central

role, allowing for D(0) to be finite. This is accomplished without having to assume any

special properties of the form-factor, other than a nonvanishing limit in the IR; in particular,

we do not need to impose the presence of massless poles of the type 1/p2.

Our procedure may be summarized as follows. First of all, since we are interested in the

possibility of obtaining D−1(0) 6= 0 we have focused on the form of the ghost gap equation

in the limit of vanishing external momentum, p → 0. Next we have linearized the SDE

for the form-factor B(p2, q2, k2) , and have looked for solutions for the special kinematic

configuration of vanishing ghost momentum, B(0, k2, k2), which is relevant for the ghost gap

equation. The solution may be fitted in the entire range of momenta with a particularly

simple, physically motivated expression. Coupling the two equations together, we have

obtained the conditions necessary for self-consistency. It essentially boils down to relations

between the free parameter σ and the values of D−1(0), or equivalently M2
0 , as captured

in Figs (6)–(8). These figures furnish the value of M0 one obtains if a concrete value of σ

is chosen, assuming certain characteristic types of running for the the ghost mass function

M2(k2). The freedom in choosing the value of σ will be restricted, or completely eliminated,

in the non-linear version of the vertex equation. It would certainly be interesting to venture

into such a study, because it is liable to pin down completely the value of D−1(0).

The most immediate physical implication of the results presented here is that the finite

gluon propagator obtained in the previous SDE studies in the PT-BFM framework, with

the ghost contributions gauge-invariantly omitted, will not get destabilized by the inclusion

of the ghost loops. Specifically, one would expect that the addition of the ghost loop into

the corresponding SDE should not change the qualitative picture. The quantitative changes

induced should also be small; mainly the correct coefficient of 11CA/48π2 multiplying the

renormalization group logarithms will be restored (without the ghosts it is 10CA/48π2), and

it might inflate or deflate slightly the corresponding solutions for the gluon propagator in
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the intermediate region between 0.1−1 GeV2. Of course, a complete analysis of the coupled

SDE system is needed in order to fully corroborate this general picture.

Given the complexity and importance of the problem at hand it would certainly be

essential to confront these SDE results with lattice simulations of the ghost propagator in

the Feynman gauge. In addition, since the formulation of the BFM on the lattice has been

presented long ago by Dashen and Gross (in the Feynman gauge) [31], and has already been

used [32, 33], one might also consider the possibility of simulating the gluon propagator

within that particular gauge-fixing scheme, thus enabling a direct comparison with the SDE

results predicting an IR finite answer.
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