
ar
X

iv
:0

91
0.

41
42

v2
  [

he
p-

ph
] 

 3
0 

O
ct

 2
00

9

Gluon mass generation without seagull divergences

Arlene C. Aguilar1 and Joannis Papavassiliou2

1Federal University of ABC, CCNH, Rua Santa Adélia 166,
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Abstract

Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all

regularization procedures proposed over the years yield finite but scheme-dependent gluon masses.

In this work we show how such divergences can be eliminated completely by virtue of a characteristic

identity, valid in dimensional regularization. The ability to trigger the aforementioned identity

hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the

Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-

gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral

equations, one for the effective charge and one for the gluon mass. This system of integral equations

has a unique solution, which unambiguously determines these two quantities. Most notably, the

effective charge freezes in the infrared, and the gluon mass displays power-law running in the

ultraviolet, in agreement with earlier considerations.
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1

http://arxiv.org/abs/0910.4142v2


I. INTRODUCTION

The dynamical generation of a non-perturbative gluon mass has been first proposed by

Cornwall [1], and has received significant attention over the years, both from the theoretical

and the phenomenological point of view (see, e.g., [2]). According to this picture, even though

the gluon is massless at the level of the fundamental Lagrangian, and remains massless to

all order in perturbation theory, the non-perturbative QCD dynamics generate an effective,

momentum-dependent mass, without affecting the local SU(3)c invariance, which remains

intact. The generation of such a mass has been established by studying the Schwinger-

Dyson equations (SDEs) [3, 4] of QCD, in a gauge-invariant framework based on the pinch

technique (PT) [1, 5, 6, 7, 8], and its profound correspondence with the background field

method (BFM) [9].

Specifically, when studying the SDE for the PT-BFM gluon propagator, ∆(q2), one looks

for infrared finite solutions, i.e. with ∆−1(0) > 0 (see, e.g.,[1, 10, 11, 12]). Such solutions

may be fitted by “massive” propagators of the form ∆−1(q2) = q2 + m2(q2), where m2(q2)

is not “hard”, but depends non-trivially on the momentum transfer q2. In order to ob-

tain massive solutions gauge-invariantly, it is necessary to invoke the well-known Schwinger

mechanism [13, 14]. In particular, one assumes that the strong QCD dynamics give rise to

longitudinally-coupled composite (bound-state) massless poles [15, 16, 17, 18, 19, 20]. These

poles play a role rather like Goldstone excitations, in the sense that they preserve the form

of the Ward identities satisfied by the Green’s functions of the theory in the presence of a

mass, but they are not associated with the breaking of any local or global symmetry.

When the renormalization-group logarithms are properly taken into account in the SDE

analysis, one obtains, in addition, the non-perturbative generalization of α(q2), the QCD

running coupling (effective charge), of the form [1, 21, 22] α−1(q2) = b ln
(

q2+ 4 m2(q2)
Λ2

)
. The

presence of m2(q2) in the argument of the logarithm tames the Landau singularity associated

with the perturbative β function, and the resulting effective charge is asymptotically free in

the ultraviolet , “freezing” at a finite value in the infrared, namely α−1(0) = b ln(4m2(0)/Λ2).

As has been emphasized in the literature [23, 24], the generation of a gluon mass is

intimately connected with a variety of other related phenomena, and most importantly with

the center vortex picture of confinement [25, 26, 27]. In particular, an effective low-energy

field theory for describing the gluon mass is the gauged non-linear sigma model known as

2



“massive gauge-invariant Yang-Mills” [23]. This model admits vortex solutions, with a long-

range pure gauge term in their potentials, which endows them with a topological quantum

number corresponding to the center of the gauge group [ZN for SU(N)], and is, in turn,

responsible for quark confinement and gluon screening [24] Specifically, center vortices of

thickness ∼ m−1 are assumed to form a condensate because their entropy (per unit size)

is larger than their action. This condensation furnishes an area law to the fundamental

representation Wilson loop, thus confining quarks [28].

The general picture described above appears to be in qualitative agreement with a

plethora of lattice simulations, where the gluon propagators (in various gauges) reach a

finite (non-vanishing) value in the deep infrared, as would happen in the presence of a

“mass” [29]. This rather characteristic behavior was already observed in early studies [30],

and has been firmly established recently (in the Landau gauge) using large-volume lattices,

for both SU(2) [31] and SU(3) [32, 33, 34] pure Yang-Mills (no quarks included).

It is also important to mention that a qualitatively similar situation emerges within

the “refined” Gribov-Zwanziger formalism, presented in [35]. In this latter framework the

gluon mass is obtained through the addition of appropriate condensates to the original

Gribov-Zwanziger action [36, 37]. Interestingly enough, one obtains a gluon mass displaying

power-law running, in agreement with a variety of independent studies [11, 38]), as well as

the results of the present article, as explained below.

Since the dynamical generation of an effective gluon mass is a purely non-perturbative

effect, its technical implementation is rather intricate, and requires the harmonious synthesis

of several ingredients [15, 16, 17, 18, 19, 20]. In particular, the exact way how the Schwinger’s

mechanism will be employed is crucial for the self-consistency of the entire picture. Turns

out that one characteristic drawback in the realization of this dynamical scenario can in fact

be traced back to a certain subtlety in the implementation of the Schwinger’s mechanism at

the level of the relevant SDE.

Specifically, the massless poles necessary for triggering Schwinger’s mechanism and allow-

ing the possibility of a non-vanishing ∆−1(0), enter into the SDE for the gluon propagator

through the particular Ansatz employed for the fully-dressed three-gluon vertex. Of course,

a physically motivated Ansatz must satisfy, in addition, the correct WI, in order to preserve

the transversality of the gluon self-energy. Even though several such Ansätze have been

proposed over the years [1, 10, 11, 12], they all suffer from a typical problem: as desired,
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∆−1(0) does not vanish; however, its value is expressed in terms of seagull integrals, i.e.

divergent integrals of the type
∫

k
∆(k) and

∫
k
k2∆2(k). This fact, in turn, introduces the

need to make sense out of these divergences, given that one is not allowed to absorb them

into a counterterm of the type m2
0(Λ

2
UV

)A2
µ, because this would compromise the gauge in-

variance of the original Lagrangian, which at no point is to be modified. Even though a

variety of regularizations have been proposed in the literature cited above, it is clear that the

appearance of these divergences, the need to regularize them, and the ambiguities resulting

in from such a regularization, are without a doubt some of the weakest theoretical points of

this entire construction.

In this paper we present a more refined Ansatz for the three-gluon vertex, which com-

pletely eliminates all seagull divergences. This new Ansatz is inspired from the photon-scalar

vertex of scalar QED, introduced by Ball and Chiu [39]. When inserted into the gluon SDE

obtained within the PT-BFM formalism, leads to the elimination of all seagull divergences,

by triggering a special identity, valid in dimensional regularization (DR), yielding finally a

non-vanishing and finite value for ∆−1(0).

In the context of scalar QED, the identity in question, given in Eq. (3.14), is instrumental

in enforcing the masslessness of the photon, in the absence of any bound-state poles, i.e.

when the Schwinger mechanism is not in operation. Specifically, the aforementioned Ansatz

of [39], when incorporated into the SDE for the photon, gives rise to a ∆−1(0) that is

expressed in terms of seagull contributions, which do not vanish individually, due to the

simple fact that the charged scalars are massive already at tree level. However, the vertex

of Ball and Chiu is such that the divergent seagull terms appear precisely in the unique

combination that will lead to their mutual annihilation, due to the identity of Eq. (3.14).

The proposed three-gluon vertex consists of two parts: (i) a part that leads to the can-

cellation of all seagull divergences by virtue of the identity of Eq. (3.14), exactly as happens

in the scalar QED case; the only difference is that now the seagull terms in question origi-

nate from the gluonic self-interactions, i.e. they are composed by the (effectively massive)

gluon propagator. (ii) a part that contains massless bound-state poles, thus enforcing the

Schwinger mechanism. It is from this second part of the vertex that, after solving the

resulting integral equation, one finally obtains a finite value for ∆−1(0).

In addition to eliminating the seagull divergences, the use of the aforementioned vertex

brings about a further important advantage. Specifically, the SDE for the gluon propaga-
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tor of the PT-BFM may be separated unambiguously into two distinct but coupled integral

equations, one governing the evolution of the effective charge (running coupling), g2(q2), and

one determining the momentum-dependence of the effective gluon mass, m2(q2). This is to

be contrasted with the standard procedure followed in the literature, where the SDE equa-

tion is solved for the renormalization-group (RG) invariant combination d̂(q2) = g2∆(q2),

which is subsequently decomposed into an effective charge and a running mass according to

d̂(q2) = g2(q2)/(q2 + m2(q2)), by imposing physically motivated constraints on the form of

g2(q2) and m2(q2). This procedure suffers from the obvious ambiguity of trying to extract

two components out of a given function; instead, the new procedure, involving two individ-

ual equations, furnishes uniquely g2(q2) and m2(q2), and it is the d̂(q2) that is subsequently

obtained uniquely, by combining these two quantities.

The present article is organized as follows. In Section II we review the salient features of

dynamical gauge-boson mass generation through the Schwinger mechanism, which consti-

tutes the cornerstone of the entire approach. We explain how the aforementioned mechanism

must be judiciously incorporated into the SDE equations of QCD, and the crucial role played

by the three-gluon vertex. The problem of the seagull divergences, which is endemic to all

existing approaches, is discussed, and some examples of (not fully satisfactory) attempts

for its resolution are mentioned. In Section III we turn to the instructive case of scalar

QED, and demonstrate in detail how the seagull divergences cancel out from the SDE for

the photon propagator, by virtue of the identity of Eq. (3.14), which is in turn triggered by

the vertex Ansatz of [39]. A counter-example of a vertex that does not trigger the identity

is also discussed. In Section IV we apply the lessons of the previous section to the case

of (quarkless) QCD. In particular, an improved Ansatz for the three-gluon vertex is con-

structed, which incorporates the Schwinger mechanism through the appearance of massless

poles, and, at the same time, triggers the identity of Eq. (3.14), leading to total seagull

annihilation. In Section V we obtain the system of two coupled integral equations that

determine the momentum dependence of two RG-invariant quantities, namely g2(q2) and

m2(q2), for the entire range of physical momenta, i.e. from the deep IR to the deep UV.

The system is solved numerically and the obtained solutions are discussed. Most notably,

m2(q2) display power-law running, in agreement with various earlier considerations. Finally,

in Section VI we summarize our conclusions. In addition, in three Appendices we derive in

detail various intermediate results used throughout the article.
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II. MASS GENERATION AND THE PROBLEM OF SEAGULL DIVERGENCES.

The gluon propagator, ∆µν(q), in covariant gauges (in particular, linear, Rξ-type of

gauges, and the BFM) has the form

∆µν(q) = −i

[
Pµν(q)∆(q2) + ξ

qµqν

q4

]
, (2.1)

where ξ denotes the gauge-fixing parameter, and the transverse projector Pµν(q) is given by

Pµν(q) = gµν −
qµqν

q2
. (2.2)

The scalar factor ∆(q2) is given by

∆−1(q2) = q2 + iΠ(q2) , (2.3)

where Πµν(q) = Pµν(q) Π(q2) is the gluon self-energy. One usually defines the dimensionless

vacuum polarization, to be denoted by Π(q2), as Π(q2) = q2Π(q2), and thus

∆−1(q2) = q2[1 + Π(q2)] . (2.4)

As Schwinger pointed out long time ago [13], the gauge invariance of a vector field does

not necessarily imply zero mass for the associated particle, if the current vector coupling is

sufficiently strong. Schwinger’s fundamental observation was that if (for some reason) the

vacuum polarization of the gauge bosons acquires a pole at zero momentum transfer, then

the vector meson becomes massive, even if the gauge symmetry forbids a mass at the level

of the fundamental Lagrangian [14]. Indeed, casting the self-energy in the form of (2.4), it

is clear that if Π(q2) has a pole at q2 = 0 with positive residue µ2, i.e. Π(q2) = µ2/q2, then

(in Euclidean space)

∆−1(q2) = q2 + µ2 . (2.5)

Thus, the vector meson becomes massive, ∆−1(0) = µ2, even though it is massless in the

absence of interactions (g = 0).

There is no physical principle which would preclude Π(q2) from acquiring a pole [40].

Actually, the appearance of the required pole may happen for purely dynamical reasons, and,

in particular, without the need to introduce fundamental scalar field in the Lagrangian [41].

Since bound states are expected to exist in most physical systems one may suppose that,

for sufficiently strong binding, the mass of such a bound state will be reduced to zero, thus
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generating a mass for the vector meson without interfering with gauge invariance [15, 16,

17, 18, 19, 20].

When applying the dynamical concepts described above to pure Yang-Mills theories,

such as quarkless QCD, one assumes that, in a strongly-coupled gauge theory longitudinally

coupled zero-mass bound-state excitations are dynamically produced [42]. Thus, it is clear

that a vital ingredient for this scenario is strong coupling, which can only come from the

infrared instabilities of a non-abelian gauge theories. The aforementioned excitations are like

dynamical Nambu-Goldstone bosons, in the sense that they are massless, composite, and

longitudinally coupled; but, at the same time, they differ from Nambu-Goldstone bosons as

far as their origin is concerned: they do not originate from the spontaneous breaking of any

global symmetry. The main role of these excitations is to trigger the Schwinger mechanism,

i.e. to provide the required pole in the gluon self-energy, and more specifically, the gauge-

independent Π(q2) obtained with the PT, thus furnishing a gauge-independent dynamical

mass for the gluons [43].

Of course, in order to obtain the full dynamics, such as, for example, the momentum-

dependence of the dynamical mass, one must turn eventually to the SDE that governs the

corresponding gauge-boson self-energy. The way the Schwinger mechanism is integrated

into the SDE is through the form of the three-gluon vertex. The latter, even in the absence

of mass generation, constitutes a central ingredient of the SDE, and plays a crucial role in

enforcing the transversality of the gluon self-energy. Therefore, an important requirement

for any self-consistent Ansatz used for that vertex is that it should satisfy the correct WI

(or STI) of the PT-BFM formulation, namely

qµΓ̃µαβ = ∆−1
αβ(k + q) − ∆−1

αβ(k) . (2.6)

In addition, in order to generate a dynamical mass one must assume that the vertex contains

dynamical poles, which will trigger the Schwinger mechanism when inserted into the SDE

for the gluon self-energy.

The point is that the full realization of the procedure outlined above is very subtle.

In particular, even though the use of a three-gluon vertex containing massless poles and

satisfying the correct WI leads indeed to a transverse and infrared finite self-energy (i.e.

∆−1(0) 6= 0), as expected, the actual value of ∆−1(0) has always been expressed in terms of
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divergent integrals, of the form (see, e.g.,[1, 10, 11, 12])

∆−1(0) = c1

∫

k

∆(k) + c2

∫

k

k2∆2(k) , (2.7)

where (in DR)
∫

k
≡ µ2ε(2π)−d

∫
ddk, with d = 4 − ǫ the dimension of space-time [44]. This

is not a problem, in principle, provided that the divergent integrals appearing on the rhs

of (2.7) can be properly regulated and made finite, without introducing counterterms of the

form m2
0(Λ

2
UV

)A2
µ, which are forbidden by the local gauge invariance of the fundamental QCD

Lagrangian. However, various regularization procedures introduced in the literature have

been eventually thwarted by all sorts of additional complications of variable severity.

The simplest regularization possibility, for example, is to employ the usual DR trick

for eliminating quadratic divergences, namely subtract
∫

k
k−2 = 0. Assuming a form

∆(k) = k2 + m2(k), this standard (and completely legitimate) operation,
∫

k

∆(k) =

∫

k

1

k2 + m2(k)
−

∫

k

1

k2
= −

∫

k

m2(k)

k2[k2 + m2(k)]
, (2.8)

leads to a finite integral, provided m2(k) drops off sufficiently fast in the UV, a feature which

is in any case expected from a dynamically generated mass. The general problem with this

procedure, however, is the reversal of sign that it induces [1], which eventually clashes with

the requirement of a positive-definite ∆−1(0).

In a recent work [12] the aforementioned procedure was refined in such a way as to

evade the sign problem. The general idea is to eliminate the perturbative tail of ∆(k) by

subtracting out DR “zeros”, using the generalized formula
∫

k

lnnk2

k2
= 0, n = 0, 1, 2, . . . (2.9)

Specifically, for large enough k2, ∆(k2) goes over to its perturbative expression, to be denoted

by ∆pert(k
2); it has the form

∆pert(k
2) =

N∑

n=0

an
lnn k2

k2
, (2.10)

where the coefficient an are known from the perturbative expansion. Then one may use (2.9)

to regularize the rhs of (2.7), and obtain

16π2∆−1
reg(0) = c1

∫ s

0

dy y [∆(y) − ∆pert(y)] + c2

∫ s

0

dy y2
[
∆2(y) − ∆2

pert(y)
]

, (2.11)

which is finite (and has been shown to be positive). As explained in [12], the obvious

ambiguity of this procedure is the choice of the point s, past which the two curves, ∆(y)
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(d1) (d2)

(d3) (d4) (d5)

FIG. 1: Diagrams contributing to the SDE for the photon self-energy in scalar QED.

and ∆pert(y), are assumed to coincide (and cancel exactly against each other). Thus, the

actual value of ∆−1
reg(0) remains largely undetermined. Even though additional qualitative

arguments may be used to restrict the allowed interval of s, thus reaching good agreement

with recent lattice data, from the theoretical point of view it is clear that this issue is far

from settled.

III. SCALAR QED AND THE SEAGULL IDENTITY

In this section we will study some of the basic issues related to the appearance and

cancellation of seagull divergences in the context of a theory much simpler than QCD, namely

scalar QED. Specifically, we will study the SDE governing the photon, and we will discover

a basic identity, which, in the absence of massless poles (i.e., with the Schwinger mechanism

“switched off”) enforces the masslessness of the photon, despite the fact that individual

seagull contributions do not vanish. In addition, we will see through an explicit detailed

construction that the Ansätze employed for the all-order photon-scalar vertex entering into

the SDE are crucial for the activation of this identity.

The SDE for the photon of scalar QED is shown in Fig. 1. It is a straightforward exercise

to demonstrate that, by virtue of the Abelian WI’s satisfied by the full vertices of the

theory, the SDE may be truncated “loop-wise”, without compromising the transversality of

the photon, i.e., qµΠ
[(d1)+(d2)]
µν = qµΠ

[(d3)+(d4)+(d5)]
µν = 0 .

At the “one-loop dressed” level the SDE for the photon self-energy reads (Fig. 2)

Πµν(q) = e2

∫

k

Γ(0)
µ D(k)D(k + q)Γν + e2

∫

k

Γ(0)
µν D(k) , (3.1)
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(d1) (d2)

q q q q

k + q

k

k

FIG. 2: The “one-loop dressed” SDE for the photon self-energy.

where D(k) is the fully-dressed propagator of the scalar field. Γν is the fully dressed photon-

scalar vertex, whose tree-level expression is given by Γ
(0)
µ = −i(2k + q)µ. Moreover, the bare

quadrilinear photon-scalar vertex is given by Γ
(0)
µν = 2igµν . The photon-scalar vertex Γµ and

the scalar propagator D are related by the Abelian all-order WI

qνΓν = D−1(k + q) −D−1(k) . (3.2)

It is fairly easy to demonstrate the transversality of Πµν(q), namely that qνΠµν(q) = 0. To

that end, act with qν on the two terms on the rhs of (3.1), and notice that, by virtue of (3.2),

the (contracted) first term (after appropriate shifting of the integration variable, a legitimate

operation in DR), cancels exactly against the second. Given that Πµν(q) is transverse, it

assumes the form Πµν(q) = Π(q2)Pµν(q); thus one may determine Π(q2) simply by taking

the trace of both sides of (3.1), i.e.

Π(q2) =
−2ie2

d − 1

[∫

k

D(k)D(k + q)kµΓµ − d

∫

k

D(k)

]
, (3.3)

where Eq. (3.2) was used.

Let us compute from (3.3) the one-loop expression for Π(q2), to be denoted by Π(1)(q2).

We have (we are using DR throughout)

Π(1)(q2) =
−ie2

d − 1

[∫

k

(4k2 − q2)D0(k)D0(k + q) − 2d

∫

k

D0(k)

]
, (3.4)

where D0(k) = (k2 − m2)−1. Taking the limit q → 0, we find

Π(1)(0) =
−4ie2

d − 1

[∫

k

k2D2
0(k) − d

2

∫

k

D0(k)

]
. (3.5)

Of course, there is no doubt that the photon remains massless perturbatively, i.e. we must

have that Π(1)(0) = 0. However, the way this requirement is realized is rather subtle: the

rhs of (3.5) vanishes indeed, by virtue of an identity that is exact in DR, namely
∫

k

k2

(k2 − m2)2
=

d

2

∫

k

1

k2 − m2
, (3.6)
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or, equivalently,

2m2

∫

k

1

(k2 − m2)2
= (d − 2)

∫

k

1

k2 − m2
. (3.7)

The relations given in (3.6) and (3.7) can be easily verified using the standard integration

rules of the DR [45]. Thus, the perturbative masslessness of the photon is explicitly realized

and self-consistently enforced within the DR. Note that Eq.(3.6) may be cast in a form that

is particularly suggestive for the analysis that follows, namely

∫

k

k2 ∂D0(k)

∂k2
= −d

2

∫

k

D0(k) . (3.8)

To demonstrate (3.8) directly, i.e. without deducing it from (3.6), we first go to Euclidean

space, use spherical coordinates (see A2), and integrate by parts (in d dimensions). Setting

k2
E = y, we have (suppressing the angular integral)

∫
∞

0

dy y
d

2

∂D0(y)

∂y
=

[
y

d

2D0(y)
]
∞

0
− d

2

∫
∞

0

dy y(d

2
−1)D0(y) . (3.9)

Evidently, dropping the surface term, an operation that can be formally justified by the

standard analytic continuation employed within the DR (see, e.g. [46]), yields immediately

Eq. (3.8).

We now return to the general Eq.(3.3). In order to analyze it further we must furnish some

information about the form of Γµ. Of course, any meaningful Ansatz for Γµ must satisfy

the WI of (3.2), or else the transversality of Πµν(q) will be compromised from the outset.

The form obtained by Ball and Chiu [39], after “solving” the WI, under the additional

requirement of not introducing kinematic singularities, is

Γµ =
(2k + q)µ

(k + q)2 − k2

[
D−1(k + q) −D−1(k)

]
+ A(k, q) [(k + q) · q kµ − k · q (k + q)µ] , (3.10)

where A(k, q) is finite as q → 0. Clearly the first term satisfies (3.2), while the part propor-

tional to A(k, q) is identically conserved.

It is easy to recognize that when this latter term is inserted into (3.3) it yields a con-

tribution that vanishes as q → 0, with no additional assumptions, other than the regular

nature of A(k, q); we will therefore neglect that term in what follows. On the other hand,

the first term of Γµ yields

Π(q2) =
ie2

d − 1

[∫

k

(4k2 − q2)
D(k + q) −D(k)

(k + q)2 − k2
+ 2d

∫

k

D(k)

]
, (3.11)

11



Taking the limit of Eq.(3.11) as q → 0, using that

D(k + q) −D(k)

(k + q)2 − k2
→ ∂D(k)

∂k2
+ O(q2) , (3.12)

we have that

Π(0) =
4ie2

d − 1

[∫

k

k2∂D(k)

∂k2
+

d

2

∫

k

D(k)

]
, (3.13)

Of course, we must have that Π(0) = 0, given that there is nothing in the dynamics that could

possibly endow the photon with a mass; in particular, we have not employed Schwinger’s

mechanism, i.e. we have not introduced dynamical poles, and, given the form of (3.10),

neither kinematic ones, which might simulate the dynamical ones at the level of the SDE

(see below). Thus, the rhs of (3.13) must vanish, and therefore, we must have that
∫

k

k2 ∂D(k)

∂k2
= −d

2

∫

k

D(k) , (3.14)

which is the non-perturbative generalization of (3.8); its demonstration proceeds exactly in

the same way (and under the same assumptions).

Note a crucial point: the seagull terms appearing in (3.8) cannot be set to zero individ-

ually, because the scalar propagator inside them is massive (already at tree-level): the only

way to keep the photon massless, is to employ (3.8), which cancels them against each other.

For example, if the term
∫

k
D(k) on the rhs were multiplied by any factor other than (d/2)

one would be stuck with seagull divergences.

Let us now try a different Ansatz for Γµ, which, due to its special form will not trigger

Eq. (3.14), and thus will lead to a non-vanishing (but divergent) value for Π(0). Specifically,

consider the vertex given by

Γµ = Γ(0)
µ +

qµ

q2
[Σ(k + q) − Σ(k)] , (3.15)

where Σ(k) is the self-energy of the scalar field, D−1(k) = k2 −m2 + Σ(k). Equivalently, we

may write

Γµ =

{
Γ(0)

µ − qµ

q2
[(k + q)2 − k2]

}
+

qµ

q2

[
D−1(k + q) −D−1(k)

]
. (3.16)

The Γµ in (3.15)-(3.16) satisfies again the WI of (3.2), and thus, as before, the transversality

of the vacuum polarization is guaranteed. There is an important difference, however, between

(3.10) and (3.16): the latter contains massless poles, and thus, is capable of giving rise to a

non-vanishing ∆−1(0).
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Indeed, substituting Γµ of Eq. (3.16) into (3.3), after straightforward algebra we obtain

Π(q2) =
4ie2

d − 1

[∫

k

D(k)D(k)(k + q)

[
(k · q)2

q2
− k2

]
+

d − 1

2

∫

k

D(k)

]
, (3.17)

Using that ∫

k

(k · q)2

q2
D(k)D(k + q)

∣∣∣∣
q2

→0

=
1

4

∫

k

k2 D2(k) , (3.18)

we find from (3.17) (setting d = 4)

Π(0) = ie2

[
2

∫

k

D(k) −
∫

k

k2D2(k)

]
, (3.19)

which has the general form given in (2.7). Evidently, the Ansatz of (3.15) does not trigger

Eq. (3.14), and one ends up with a non-zero ∆−1(0), which, however, is expressed in terms

of divergent seagull-type integrals.

It is evident from the above analysis that the massless poles, indispensable as they may be

for generating a non-vanishing ∆−1(0), must be incorporated into the SDE with particular

care, or else they give rise to seagull divergences. But even without this pathology, it is

clear that the vertex of (3.15) does not constitute an optimal Ansatz. For example, if the

(1/q2) pole is considered to be of purely non-perturbative origin (as it is supposed to), it

has vanishing perturbative expansion, and so, to all orders in perturbation theory Γµ = Γ
(0)
µ ,

which is of course not correct.

In the next section we will see that the correct procedure is to add to the vertex of

(3.10) non-perturbative pole terms, in such a way as to preserve the seagull cancellation

implemented by Eq. (3.14), and, at the same time, obtain a finite ∆−1(0).

IV. FINITE GLUON MASS GENERATION

After having fixed the ideas in the context of a simple Abelian model, we now turn to a

pure Yang-Mills theory. In particular, we will study the SDE of the gluon propagator in the

case of pure (quarkless) QCD, within the PT-BFM framework. As has been explained in

detail in the recent literature [10, 47, 48], this latter formalism allows for a gauge-invariant

truncation of the SD series, in the sense that it preserves manifestly and at every step the

transversality of the gluon self-energy. Specifically, for the case at hand, we will consider

only the “one-loop dressed” part of the gluon SDE that contains gluons shown in Fig. 3,

13



(a1) (a2)

k+q

k

q q

µ, a ν, b

α, c ρ, d

σ, eβ, x
q q

µ, a ν, b

ρ, c σ, d

k

FIG. 3: The “one-loop dressed” gluonic graphs contributing to the SDE for the (background) gluon

self-energy, Π̂µν(q).

leaving out (gauge-invariantly!) the “one-loop dressed” ghost contributions and all “two-

loop dressed” diagrams. Note that the Feynman rules used to build the SD series for the

(background) gluon self-energy, Π̂µν(q), are those of the BFM [9]; in particular, the external

gluons (distinguished by the grey circles attached to them) are treated as if they were

background gluons. The two tree-level vertices necessary for our analysis are given in Fig. 4;

as we will see in a moment, the form of these vertices is crucial for obtaining from the SDE

precisely the right combination of terms (and with the correct relative weights) that appears

in (3.14).

In order to reduce the algebraic complexity of the problem, we drop the longitudinal

terms from the gluon propagators inside the integrals, i.e. we set ∆αβ → −igαβ∆ [49]. This

does not compromise the transversality of Π̂µν(q) provided that we do the same on the rhs

µ, a

α, b β, c

q

k −q − k gfabc [(2k + q)µgαβ + 2qβgµα − 2qαgµβ ] , (4.1)

µ, a β, d

ν, b α, c

− ig2
[
fabxfxcd (gµαgνβ − gµβgνα + gµνgαβ)

+ fadxfxbc (gµνgαβ − gµαgνβ + gµβgνα)

+ facxfxbd (gµνgαβ − gµβgνα)
]

. (4.2)

FIG. 4: The trilinear and quadrilinear gluon vertices in the Feynman gauge of BFM.
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of the WI satisfied by Γ̃ναβ, namely we have simply

qνΓ̃ναβ = [∆−1(k + q) − ∆−1(k)]gαβ , (4.3)

instead of the full WI given in (2.6).

Then, it is straightforward to show that the SDE corresponding to Fig. 3 reduces to

∆̂−1(q) = q2 +
ig2CA

2(d − 1)

[ ∫

k

Γ̃
(0)
µαβ∆(k)∆(k + q)Γ̃µαβ + 2d2

∫

k

∆(k)

]
, (4.4)

where CA the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)].

Γ̃
(0)
µαβ(q, k,−k − q) is the bare three-gluon vertex in the Feynman gauge of the BFM, given

in Fig. 4, and Γ̃µαβ denotes its fully-dressed version.

The function ∆̂(q) appearing on the lhs of (4.4) is the scalar part of the gluon propagator

in the BFM, i.e. two background gluons entering; its relation to the self-energy Π̂µν(q) is

the same as in (2.3). Note that ∆̂(q) is related to the standard ∆(q), defined in the Rξ

gauges, by means of the powerful identity, namely ∆̂(q)[1 + G(q2)]2 = ∆(q), where G(q2) is

an auxiliary two-point function [6, 50] whose dynamics have been studied in detail in the

recent literature (see, e.g. [51], and references therein). To further simplify the problem,

without compromising its essential features, we will next set G(q2) = 0, i.e. we effectively

assume that, inside the quantum loops, ∆(q) = ∆̂(q). Thus, in what follows we will be

dealing with a single propagator, namely ∆̂(q), and will suppress the “hats” in order to

reduce the notation.

A. The three-gluon vertex

Up until this point the analysis presented in this section is completely standard within the

PT-BFM framework. At this point enters a new ingredient, namely the judicious Ansatz for

the three-gluon vertex which, in addition to satisfying (4.3) will allow us to use the seagull

identity (3.14) and get a non-vanishing and finite ∆−1(0).

To begin with, let us first write ∆−1(q) in the alternative form (in Minkowski space)

∆−1(q) = q2H−1(q) − m̃2(q) , (4.5)

The tree-level result for ∆−1(q) is recovered by setting H−1(q) = 1 and m̃2 = 0.
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ρ
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+ · · · +
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ρ
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ρ

1

q2
pole

+ · · ·

FIG. 5: The SDE for the three-gluon vertex. All kernels are one-particle irreducible, and the

1/q2 pole is not kinematic but dynamical (purely non-perturbative); physically it corresponds to

a (composite) Goldstone mode, necessary for maintaining the local gauge invariance.

Then, an appropriate Ansatz for Γ̃ναβ is given by

iΓ̃µαβ =

[
(k + q)2H−1(k + q) − k2H−1(k)

(k + q)2 − k2

]
Γ̃

(0)
µαβ + Vµαβ , (4.6)

where the term Vµαβ contains the non-perturbative contributions due to bound-state poles

associated with the Schwinger mechanism. Thus, Vµαβ represents the term containing the

1/q2 pole on the rhs in Fig. 5. Note that we must have

qµVµαβ = [m̃2(k) − m̃2(k + q)]gαβ , (4.7)

in order for the Γ̃µαβ of Eq. (4.6) to satisfy (by construction) the correct WI of (4.3).

The Ansatz of (4.6) mimics that of Eq. (3.10) to the extent that the first term contains

the right structure to produce, when inserted into the first term on the rhs of (4.4), the

derivative term appearing on the lhs of (3.14). The rhs of (3.14) is already there: it is the

second term on the rhs of (4.4), originating directly from the seagull diagram (a2).

Notice that the first term on the rhs of (4.6) may be expanded perturbatively, whereas

Vµαβ vanishes perturbatively to all orders. Qualitatively speaking, H−1(q) will have the form

(assume for simplicity a constant m̃2)

H−1(q) ∼ g2

∫ 1

0

dx ln[q2x(x − 1) + m̃2] + O(g4) ; (4.8)

perturbatively (to all orders), m̃2 = 0, and one recovers the usual one-loop logarithm g2 ln(q2)

(displaying the typical Landau pole in the IR). Thus the role of the term Vµαβ is two-fold:

(i) it tames the Landau pole inside the dimensionless perturbative logarithm, and (ii) as can

be seen directly from Eq. (4.5), it can furnish an IR-finite propagator, ∆−1(0) = −m̃2(0)
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(in Minkowski space), provided, of course, that the equation governing m̃2 has non-trivial

solutions (see next section).

An important point related to the form of Γ̃µαβ is that the transverse (i.e. identically

conserved) component associated with the first term in Eq. (4.6) has been set to zero [it

would correspond to the term proportional to A(k, q) in Eq. (3.10)]. As is well known, such

an omission, while of little importance in the IR, leads to the mishandling of overlapping di-

vergences in the UV. This, in turn, spoils the multiplicative renormalizability of the resulting

SDE, which must be renormalized subtractively [see also discussion following Eq. (5.12)].

An analogous Ansatz for the vertex Vµαβ may be deduced following a similar philosophy.

For example, a simple Ansatz that captures the two essential characteristics of having a

(composite), longitudinally coupled poles, and satisfying the WI of (4.7) is

Vµαβ = V ℓ
µαβ + V t

µαβ , (4.9)

where

V ℓ
µαβ =

qµ

q2

[
m̃2(k) − m̃2(k + q)

]
gαβ , (4.10)

and with the transverse part V t
µαβ satisfying

qµV t
µαβ = 0 . (4.11)

We emphasize that, in principle, the form of V t
µαβ may not be chosen at will, but must

ideally be determined from solving the corresponding SDE for the three-gluon vertex, shown

schematically in Fig.5. Given that this task lies beyond our present powers, in what follows

we will treat V t
µαβ as being essentially undetermined [see discussion before Eq. (4.21)].

We can write the vertex of (4.6) equivalently as

iΓ̃µαβ =

[
∆−1(k + q) − ∆−1(k)

(k + q)2 − k2

]
Γ̃

(0)
ναβ + V µαβ , (4.12)

with

V µαβ = Vµαβ + V r
µαβ , (4.13)

where

V r
µαβ = (2k + q)µ

[
m̃2(k + q) − m̃2(k)

(k + q)2 − k2

]
gαβ . (4.14)

The term V r
µαβ is a residual piece, acting as an additional (non-perturbative) vertex term,

originating from forcing the vertex to assume the form of (4.12). As we will see shortly, this
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last way of writing Γ̃ναβ makes the use of the basic identity of Eq.(3.14) immediate. Thus,

after these rearrangements, we have that the final non-perturbative effective vertex V µαβ

must be transverse,

qµV µαβ = 0. (4.15)

In summary, the vertex Ansatz proposed in (4.6) [and (4.12)] above has three important

properties: (i) satisfies identically the WIs of (4.3), a fact that ensures the transversality

of the resulting gluon self-energy; (ii) the pole term contained in Vµαβ makes it possible to

have a non-vanishing ∆−1(0); (iii) triggers the basic equation (3.14), which, in turn, allows

one to dispose of the seagull-type terms. Thus, as we will see in the next subsection, the

∆−1(0) obtained from the SDE is both non-vanishing and finite.

B. The implications for the SDE

Let us now study the effect that the three-gluon vertex of (4.6) has on the SDE for ∆(q2)

given in (4.4). Substituting for the Γ̃µαβ on the rhs the expression given in (4.12) we obtain

after simple algebra

∆−1(q2) = q2 − ig2CA

2(d − 1)

[
Π(q) + Π em(q)

]
, (4.16)

with

Π(q) = (7d − 8) q2

∫

k

∆(k + q) − ∆(k)

(k + q)2 − k2
+ 4d

[∫

k

k2 ∆(k + q) − ∆(k)

(k + q)2 − k2
+

d

2

∫

k

∆(k)

]
, (4.17)

and

Π em(q) =

∫

k

Γ̃
(0)
µαβ∆(k)∆(k + q)V

µαβ

=

∫

k

Γ̃
(0)
µαβ∆(k)∆(k + q)[V ℓ + {V t + V r}]µαβ . (4.18)

The term in square brackets on the rhs of (4.17) has exactly the structure needed for em-

ploying (3.14). In particular, using the notation introduced in (A1), we can write (4.17)

as

Π(q) = (7d − 8) q2R∆(q) + 4d T∆(q). (4.19)

Note the perfect balance of relative coefficients required for the precise term T∆(q) to emerge

from the SDE. This becomes possible within the PT-BFM framework thanks to the special

vertices shown in Fig. 4. Instead, in the conventional SD formulation (e.g., in the Rξ gauges)
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it would be very difficult to obtain the precise combination of terms needed for implementing

(3.14).

Perturbatively, at one loop, Π(q) of (4.18) reduces to a simple and rather familiar result

[of course, Π em(q) vanishes perturbatively, to all orders]. Specifically, setting ∆(k) = 1/k2

on the rhs of (4.17), it is immediate to recognize that the term in square brackets vanishes,

since it becomes proportional to the DR integral
∫

k
k−2 = 0, while the first term becomes

Π(q) = −(7d − 8)q2

∫

k

1

k2(k + q)2
. (4.20)

This is the one-loop contribution to the gluon self-energy coming from the graphs contain-

ing only gluons. Remember that the ghosts have been omitted without interfering with

the transversality of the answer; their omission amounts to having in front of the leading

logarithm the coefficient (7d− 8) instead of (7d− 6); as a result (at d = 4) the coefficient of

the one-loop β function is 10CA/48π2 instead of 11CA/48π2 [9, 47].

Let us now turn to the basic non-perturbative features of (4.16). Since by virtue of

(3.14) we have that T∆(0) = 0, it is clear that Π(0) = 0. Thus, the part of the calculation

determining Π(q) is very similar to that of scalar QED, in the sense that it keeps the gluon

(photon) massless. On the other hand, the term Πem(q), not present in the scalar QED study,

makes it possible to have ∆−1(0) 6= 0 for the gluons.

To see this explicitly, we focus on the Π em(q) given in (4.18). The integral on the rhs of

(4.18) receives two contributions, one from the term containing the vertex V ℓ [given in (4.10)]

and one from the term containing the sum {V t + V r}. Let now us assume, for simplicity,

that the (undetermined) transverse vertex V t will be such that, when added to V r [given

in (4.14)], will make the contribution from {V t + V r} to become numerically subleading

compared to that of V ℓ. For instance, V t could be such that the total contribution from

{V t +V r} were proportional to the terms I2(q
2) and I4(q

2), shown to be subleading in (C6).

Then, keeping only V ℓ in (4.18), we obtain

Π em(q) = −2d

q2

∫

k

k2∆(k)∆(k + q)[m̃2(k + q) − m̃2(k)]

= −2d

q2

∫

k

m̃2(k)∆(k)∆(k + q)[(k + q)2 − k2] . (4.21)

Then, from the Appendix C, Eq. (C3), we have that Πem(0) 6= 0, which, in turn, gives rise

to ∆−1(0) 6= 0, as announced.
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An important consequence of this analysis is that Eq. (4.16) can be split unambiguously

into two parts, one that vanishes as q2 → 0 and one that does not. In fact, using (4.5) on the

lhs of (4.16), we can assign the two types of contributions into two separate (but coupled)

equations, i.e.

q2H−1(q) = q2 − ig2CA

2(d − 1)
Π(q) , (4.22)

m̃2(q) =
ig2CA

2(d − 1)
Π em(q) . (4.23)

As we will see in the next section, the first equation will determine the momentum depen-

dence of the effective charge, and the second the running of the gluon mass.

V. COUPLED EQUATIONS FOR EFFECTIVE CHARGE AND GLUON MASS

In this section we will study the system of integral equations given in Eqs. (4.22)-(4.23),

under certain simplifying assumptions. The first step in our analysis consists in rewriting

Eqs. (4.22)-(4.23) in terms of RG-invariant quantities, which will correspond to the effective

charge and the physical gluon mass. Then, the two coupled equations will be expressed in

terms of these two RG-invariant quantities, and will be further evaluated. We will assume

a spectral representation for the gluon propagator [viz. Eq. (B7)], a fact that simplifies

enormously the form of the resulting equations. Finally, we will solve the system numerically

and study the properties of the obtained solutions.

A. RG-invariant quantities

It is well-known that, due to the Abelian WIs satisfied by the PT-BFM Green’s functions,

the propagator ∆−1(q2) absorbs all the RG logs, exactly as happens in QED with the photon

self-energy. Specifically, let us define the renormalization constants of the gauge-coupling

and the effective self-energy as

g(µ2) = Z−1
g (µ2)g0,

∆(q2; µ2) = Z
−1/2
A (µ2)∆0(q

2), (5.1)
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where the “0” subscript indicates bare quantities. Then, since the renormalization constants

above satisfy the QED-like relation

Zg = Z
−1/2
A , (5.2)

the product

d̂0(q
2) = g2

0∆0(q
2) = g2∆(q2) = d̂(q2), (5.3)

retains the same form before and after renormalization, i.e., it forms a RG-invariant

(µ-independent) quantity [1].

For asymptotically large momenta one may extract from d̂(q2) a dimensionless quantity

by writing,

d̂(q2) =
g2(q2)

q2
, (5.4)

where g2(q2) is the RG-invariant effective charge of QCD; at one-loop

g2(q2) =
g2

1 + bg2 ln (q2/µ2)
=

1

b ln
(
q2/Λ2

QCD

) . (5.5)

where ΛQCD denotes an RG-invariant mass scale of a few hundred MeV.

The relation given in Eq.(5.3) is true both perturbatively and non-perturbatively. In

order to realize it non-perturbatively, let us first set

m̃2(q2) = m2(q2)H−1(q2) , (5.6)

where m2(q2) is assumed to be a RG-invariant quantity, to be identified with the dynamical

gluon mass. Then

∆(q2) =
H(q2)

q2 + m2(q2)
, (5.7)

and from the requirement that g2∆(q2) must be RG-invariant we have that

g2H(q2) = g2(q2) . (5.8)

Therefore, we finally arrive at the RG-invariant combination

d̂(q2) ≡ g2∆(q2) = g2(q2)∆̄(q2) , (5.9)

with

∆̄(q2) =
1

q2 + m2(q2)
. (5.10)
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Evidently the dimensionful RG-invariant quantity d̂(q2) is decomposed into the product of

two individually RG-invariant quantities, the dimensionful part [q2+m2(q2)]−1 corresponding

to a massive propagator (with a running mass), and the dimensionless g2(q2) corresponding

to the running coupling (effective charge).

B. The equation for the effective charge

Even though in principle the analysis may be carried out using systematically the for-

mulas of Appendix (A) without imposing any additional constraints on ∆, the presence of

the derivatives makes the numerical treatment rather cumbersome. Instead, as shown in

Appendix (B), the use of the spectral representation for ∆ results in a spectacular simplifi-

cation.

Specifically, assuming that ∆ can be written as in (B7), and using the expressions in

(B11), we have that

− iΠ(q) =
(7d − 8)

16π2
q2

[∫ q2/4

0

dz

(
1 − 4z

q2

)1/2

∆(z) − C
]

+
4d

16π2

∫ q2/4

0

dz z

(
1 − 4z

q2

)1/2

∆(z) ,

(5.11)

The equation for the effective charge, α(q2) = g2(q2)/4π, will be derived from (4.22)

after substitution of (5.11). At this point we go to Euclidean momenta; specifically we

set q2 = −q2
E
, with q2

E
> 0 the positive square of a Euclidean four-vector, and define

the Euclidean propagator as ∆E(q2
E
) = −∆(−q2

E
) (we suppress the subscript “E” in what

follows). Then, from (4.22) we have

H−1(q2) = K + b̃g2

[∫ q2/4

0

dz

(
1 +

4z

5q2

) (
1 − 4z

q2

)1/2

∆(z) − C
]

, (5.12)

where b̃ = 10CA/48π2; the discrepancy from the correct factor b = 11CA/48π2, namely the

first coefficient of the QCD one-loop β-function, is due to the (gauge-invariant!) omission

of the ghost loops. The (infinite) constant K is the gluon wave-function renormalization,

introduced in order to make the equation finite, i.e. eliminate the infinite constant C.

Note that, as is typical in this type of SDE analysis, the renormalization is carried out

subtractively instead of multiplicatively. This is ultimately connected with the fact that

the transverse part of the three-gluon vertex is undetermined by the gauge technique (see

discussion in the previous section).
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The constant K may be determined from (5.12) by imposing a renormalization condition

on the function H−1(q2). Specifically, using the MOM-type of condition H−1(µ2) = 1, we

have that K is given by

K = 1 − b̃g2

[∫ µ2/4

0

dz

(
1 +

4z

5µ2

) (
1 − 4z

µ2

)1/2

∆(z) − C
]

. (5.13)

Inserting the expression for K given in (5.13) back into (5.12), we obtain the renormalized

equation

H−1(q2) = 1+b̃g2

[∫ q2/4

0

dz

(
1 +

4z

5q2

) (
1 − 4z

q2

)1/2

∆(z) −
∫ µ2/4

0

dz

(
1 +

4z

5µ2

) (
1 − 4z

µ2

)1/2

∆(z)

]
,

(5.14)

In order to derive the equation for the effective charge α(q2) = g2(q2)/4π, use the relation

between H(q2) and g2(q2) given in (5.8), to cast (5.14) in the form

1

g2(q2)
=

1

g2(µ2)
+b̃

[∫ q2/4

0

dz

(
1 +

4z

5q2

) (
1 − 4z

q2

)1/2

∆(z) −
∫ µ2/4

0

dz

(
1 +

4z

5µ2

) (
1 − 4z

µ2

)1/2

∆(z)

]
.

(5.15)

Note that again, because of the mishandling of the transverse part of the three-gluon vertex,

the rhs of (5.15) is not RG-invariant. The simplest way to remedy this (by hand) is to

replace ∆(z) → ∆̄(z) of Eq.(5.10). Thus, we arrive at

1

g2(q2)
=

1

g2(µ2)
+b̃

[∫ q2/4

0

dz

(
1 +

4z

5q2

) (
1 − 4z

q2

)1/2

∆̄(z) −
∫ µ2/4

0

dz

(
1 +

4z

5µ2

) (
1 − 4z

µ2

)1/2

∆̄(z)

]
.

(5.16)

Note that
1

g2(0)
=

1

g2(µ2)
− b̃

[∫ µ2/4

0

dz

(
1 +

4z

5µ2

) (
1 − 4z

µ2

)1/2

∆̄(z)

]
. (5.17)

C. The equation for the gluon mass

Let us now turn to the dynamical equation governing the evolution of the mass. From

(4.23) we obtain

m̃2(q2) =
2

5
b̃g2[I1(q

2) + I2(q
2) + I3(q

2) + I4(q
2)] , (5.18)

where the terms Ii(q) are given in (C6). According to the discussion in (C), the terms I2(q
2)

and I4(q
2) are subleading both the IR and the UV, and may be therefore safely neglected
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to a first approximation. Then, keeping only I1(q
2) and I3(q

2), we have

m̃2(q2) =
2

5
b̃g2

[
∆(q2)

∫ q2

0

dyym̃2(y)∆(y)− 1

2

∫
∞

q2

dyy2∆2(y)[m̃2(y)]′
]

. (5.19)

The next step is to rewrite this equation in terms of the RG-invariant quantities. Using

(5.6)-(5.8), we have that

m2(q2)

g2(q2)
=

2

5
b̃g2

[
∆(q2)

∫ q2

0

dyy∆(y)[m2(y)/g2(y)]− 1

2

∫
∞

q2

dyy2∆2(y)[m2(y)/g2(y)]′
]

. (5.20)

Given that g2(y) is expected to be a much slower varying function of the momentum com-

pared to m2(y), both in the UV and the IR, we will simplify the analysis by neglecting the

derivative [g2(y)]′ next to [m2(y)]′. Then, we have that

m2(q2)

g2(q2)
=

2b̃

5

[
∆(q2)

∫ q2

0

dyym2(y){g2∆(y)/g2(y)}−1

2

∫
∞

q2

dyy2[m2(y)]′∆(y){g2∆(y)/g2(y)}
]

,

(5.21)

which, after using (5.9), becomes

m2(q2)

g2(q2)
=

2b̃

5

[
∆(q2)

∫ q2

0

dyym2(y)∆̄(y) − 1

2

∫
∞

q2

dyy2[m2(y)]′∆(y)∆̄(y)

]
. (5.22)

Finally, the rhs of (5.22) is made RG-invariant by setting ∆(q2) → ∆̄(q2) and ∆(y) → d̂(y),

thus obtaining

m2(q2)

g2(q2)
=

2b̃

5

[
∆̄(q2)

∫ q2

0

dyym2(y)∆̄(y) − 1

2

∫
∞

q2

dyy2∆̄2(y)g2(y)[m2(y)]′
]

. (5.23)

Let us now study the behavior of the solutions of (5.23) for asymptotically large q2; in this

limit we set ∆̄(x) → 1/x and ∆̄(y) → 1/y. Then, the equation reduces to

m2(q2) ln q2 =
2

5

[
1

q2

∫ q2

0

dy m2(y) − 1

2

∫
∞

q2

dyg2(y)[m2(y)]′
]

. (5.24)

It is relatively straightforward to establish that the asymptotic solutions of (5.24) display

power-law running. Indeed, substituting on both sides of (5.24) a m2(q2) of the form

m2(q2) =
λ4

0

q2
(ln q2)γ−1 , (5.25)

it is easy to recognize that the second term on the rhs of (5.25) is subleading. Indeed, in

the absence of g2(y) = (b ln y)−1 the integrand is a total derivative, which yields to the

rhs simply a term 1
2
m2(q2); this is suppressed, because it is not multiplied by a ln q2. The
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presence of g2(y) suppresses this integral even further. Specifically, integration by parts and

use of the second equation in (C7) yields

∫
∞

q2

dyg2(y)[m2(y)]′ = −m2(x)g2(x) + O (1/ lnx) , (5.26)

which is indeed further suppressed by an extra logarithm.

Thus, using the elementary integral

∫
dy

y (ln y)1+a
= − 1

a (ln y)a
, (5.27)

[first equation in (C7)], we have that (5.25) is a solution of (5.24) provided that

γ =
2

5
, (5.28)

and so, the asymptotic solution has power-law running, given by

m2(q2) =
λ4

0

q2
(ln q2)−3/5 . (5.29)

Finally, if we were to assume the approximate validity of (5.29) for the entire range of

momenta, we can set [m2(y)]′ ≈ −m2(y)/y; that way, we convert (5.24) from an integro-

differential equation to the simpler integral equation

m2(q2)

g2(q2)
=

2b̃

5

[
∆̄(q2)

∫ q2

0

dyym2(y)∆̄(y) +
1

2

∫
∞

q2

dyy∆̄2(y)g2(y)m2(y)

]
. (5.30)

D. Solving the system numerically

We will next discuss the numerical solutions for the system of integral equations, namely

(5.16) and (5.30) coupled together.

We solve numerically the two coupled integral equations, renormalizing them at three

different points, namely µ = {4, 10, 91}GeV, with α(µ2) = g2(µ)/4π = {0.341, 0.229, 0.127},
respectively. In Fig. 6, we show the results for α(q2); there we see clearly that the three

curves merge practically into a single one, thus confirming numerically the µ-independence

of α(q2), expected on formal grounds. These three curves may be accurately fitted by the

physically motivated functional form [1], namely

α(q2) =
1

4πb̃ ln[(q2 + tm2
0)/Λ2]

, (5.31)
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FIG. 6: Numerical solutions for the effective charge obtained from Eq. (5.16), renormalized at

three different points: µ = 4GeV and α(µ2) = 0.341 (black curve), µ = 10GeV and α(µ2) = 0.229

(red curve), µ = 91GeV and α(µ2) = 0.127 (blue curve). The three curves practically coincide,

showing that indeed α(q2) is independent of the renormalization point chosen. The dashed curve

(magenta) is the perturbative one-loop behavior, and the brown line with circles depicts the fit of

Eq.(5.31), for t = 3.7.

with t = 3.7 and Λ = 645 MeV [see caption of Fig. 6].

In Fig. 7, we show the dynamical gluon mass, m2(q2), obtained as solution of Eq. (5.30)

at the same renormalization points of Fig. 6. Once again, this figure shows us that m2(q2) is

also a RG-invariant quantity, since the three curves, obtained using the three different (and

quite disparate) renormalization points, are practically on top of each other. The behavior

of m2(q2) in the entire range of momenta can be accurately described by the following

parametrization

m2(q2) =
m4

0

q2 + m2
0

[
ln

(
q2 + f(q2, m2

0)

Λ2

) /
ln

(
f(0, m2

0)

Λ2

)]
−3/5

, (5.32)

where the function

f(q2, m2
0) = ρ1m

2
0 + ρ2

m4
0

q2 + m2
0

, (5.33)

with ρ1 = −1/2, ρ2 = 5/2, and m0 = 612 MeV. Notice that in the UV asymptotic limit the

above expression goes over to that of Eq.(5.29), as it should.

Finally, we turn to the RG-invariant quantity d̂(q2), which appears in a natural way in
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FIG. 7: The effective gluon mass, m2(q2), for the same renormalization points used in Fig. (6).

Evidently, the three curves merge into a single one, showing that the numerical solutions are

independent of the renormalization point. The continuous line in magenta is the fit of Eq. (5.32)

with ρ1 = −1/2 and ρ2 = 5/2.

all physical process involving gluon exchange. With the help of Eq. (5.9) we can construct

d̂(q2) out of the numerical solutions for α(q2) and m2(q2); the result is shown in Fig. 8.

Obviously, since d̂(q2) is built out of two quantities that are individually independent of µ,

it too turns out to be µ-independent; this property is clearly observed in Fig. 8.
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FIG. 8: The renormalization-group invariant product d̂(q2) obtained by combining the results for

α(q2) and m2(q2) according to Eq. (5.9).
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VI. DISCUSSION AND CONCLUSIONS

In this article we have demonstrated how to obtain a finite gluon mass from the SDE of

QCD, formulated in the PT-BFM framework. Obtaining a finite mass without the appear-

ance of seagull divergences has been a long-standing problem, that has afflicted all related

studies for a number of years. The key observation that leads to the solution of this problem

is that a judicious Ansatz for the three-gluon vertex eliminates all seagull divergences by

means of a basic identity, valid in dimensional regularization. In retrospect one realizes

that the problem of seagull divergences is not intrinsic to this approach, but has rather

been caused by the inadvertent mismatch of two field theoretic mechanisms, induced by an

imperfect Ansatz for the vertex. Specifically, the Schwinger mechanism, which requires the

appearance of massless poles in the three-gluon vertex, distorts the mechanism responsible

for the cancellation of the seagull divergences, unless the poles enter into the gluon vertex

in a very particular way.

The procedure described in the present work furnishes eventually two separate but cou-

pled equations for the QCD effective charge and the gluon mass, which, when solved simul-

taneously, yield a unique answer for both quantities. This is a considerable improvement

over the existing approaches (e.g. [1, 10, 11]) where one had only one dynamical equation,

determining d̂(q), which was subsequently decomposed according to Eq. (5.9), in order to

obtain (not without a certain ambiguity) the effective charge and gluon mass. It should be

emphasized, however, that even though the values obtained for α(0) and m0 are very rea-

sonable, they are not directly comparable with the values obtained from phenomenological

studies, due to the fact that the gauge used in this work (“stagnant” or “generalized Feyn-

man”) is not the canonical Feynman gauge of the BFM, which, as is well-known, furnishes

the PT effective charge and gluon mass. This may account, in retrospect, for the slightly

elevated value of α(0) ≈ 1 obtained here, compared to a value of 0.5 − 0.7, found in recent

theoretical analysis [52], and various phenomenological studies [53, 54]

The fully dressed three-gluon vertex Γ̃µαβ used in Eq. (4.6) satisfies (by construction) the

WI given in Eq. (4.3), or, after restoring the longitudinal terms, the full WI of Eq. (2.6),

which is crucial for ensuring the transversality of the gluon self-energy. However, this Ansatz

used for Γ̃µαβ is still incomplete from the point of view of full Bose symmetry, in the sense

that it does not satisfy the correct STI when contracted with respect to the two other legs;
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we remind the reader that the other two legs (internal lines, irrigated by virtual momenta)

correspond to “quantum” gluons, as opposed to the external (background) gluon, where the

physical momentum q enters. The corresponding STI satisfied when contracting Γ̃µαβ with

respect to the quantum legs is a variant of the well-known STI satisfied by the conventional

vertex [55], and has been derived in [47]. The construction of a three-gluon vertex satisfying

the correct WI and STIs is currently under investigation, and we hope to report the results

in the near future.

An additional technical issue related to the form of Γ̃µαβ is the omission of the identically

conserved part, as already mentioned in the corresponding sections. It would be most

interesting to extend the QED construction of [56, 57] to the case of the three-gluon vertex

Γ̃µαβ . Such a task, however, appears to be of formidable logistic complexity, given that

there are thirteen linearly independent tensorial structures, with their corresponding form-

factors. The techniques and the special tensorial bases introduced in [58] may prove useful

for simplifying such a task.

In a similar spirit, the part V αβγ of the vertex containing the massless poles, thus trigger-

ing the Schwinger mechanism, should also be appropriately extended, to satisfy the correct

WI with respect to all three legs. A prime candidate for this role is the vertex proposed

in [59], given by

V αβγ(k1, k2, k3) =
kα

1 kβ
2 (k1 − k2)

µ

2k2
1k

2
2

P γ
µ (k3)m

2(k3)−
kγ

3

k2
3

[
m2(k2) − m2(k1)

]
P α

µ (k1)P
µβ(k2)+cp ,

(6.1)

where “cp” denotes “cyclic permutations”. Note that a vertex such as (6.1) will furnish a

concrete (but still not unique) expression for V t, which, in turn, will allow one to scrutinize

some of the assumptions made in Section IV. Of course, for self-consistency, one should

perform the analysis in, e.g., the Landau or conventional Feynman gauges, rather then the

“generalized” Feynman gauge employed here; calculations in this direction are already in

progress.
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APPENDIX A: SOME USEFUL RELATIONS

Let us define the following quantities,

Rf(q) ≡
∫

k

f(k + q) − f(k)

(k + q)2 − k2
,

Tf(q) ≡
∫

k

k2 f(k + q) − f(k)

(k + q)2 − k2
+

d

2

∫

k

f(k) , (A1)

for an arbitrary function f(x) that is finite at the origin.

Let us define q2 = x, k2 = y, (k + q)2 = z, and let us write the (Euclidean) integration

measure [ddk = iddkE] in spherical coordinates

∫
ddkE = 2π

∫ π

0

dθ(sin θ)d−2

∫
∞

0

dy y. (A2)

We then have that z = y + x + 2
√

xy cos θ, and we define w ≡ z − y = x + 2
√

xy cos θ.

Finally, recall the elementary integral

∫ π

0

dθ sinm θ cosn θ =





Γ(m+1

2 )Γ(n+1

2 )
Γ(m+n+2

2 )
, n = 2k

0 , n = 2k + 1
(A3)

Rf (q) and Tf (q) may be expanded systematically as a power series in q2. To that end we

consider the Taylor expansion of f(z) around w = 0, which gives (we are assuming finite

derivatives at the origin),

f(z) − f(y)

w
= f ′(y) +

w

2!
f ′′(y) +

w2

3!
f ′′′(y) + ... (A4)

where the primes denote differentiations with respect to y. Then, one must collect pieces of

a given order in q2 from the various powers of w, using (A3).

It is clear, for example, that when the term f ′(y) on the rhs of (A4) is inserted into Tf (q)

generates the seagull identity (3.14), while all remaining terms proportional to positive

powers of w; so,

Tf(0) = 0. (A5)

As a second example, we determine the term of Rf (q) linear in q2, to be denoted by R
(1)
f (q);

to accomplish this one must collect the appropriate contributions coming from both the

second and the third term on the rhs of (A4). Using (3.14) one then obtains

R
(1)
f (q) = q2

∫

k

[
1

2
f ′′(k2) +

1

6
k2f ′′′(k2)

]
, (A6)
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or after partial integration, assuming that [yf ′]∞0 = 0 and [y2f ′′]∞0 = 0 (valid when f(0) is

finite, and f(y) ∼ y (or faster) at infinity), we have

R
(1)
f (q) =

c

6
q2f(0) , (A7)

where c ≡ i/16π2 .

APPENDIX B: THE SPECTRAL REPRESENTATION

Let us consider a simple massive tree-level propagator,

dm(q) =
1

q2 − m2
, (B1)

and set f = dm directly into (A1). Turns out that both Rdm
(q) and Tdm

(q) can be calculated

exactly; specifically, using that

dm(k + q) − dm(k)

(k + q)2 − k2
= −dm(k)dm(k + q) , (B2)

it is elementary to show that

Rdm
(q) = c

[∫ 1

0

dx ln

(
1 +

q2x(x − 1)

m2

)
− Cm

]
, (B3)

where the cutoff-dependent constant Cm is given in dimensional regularization by

Cm =
2

ǫ
− γ − ln

(
m2

4πµ2

)
. (B4)

Evidently, Rdm
(0) = −cCm. As an additional check, note that the term of Rdm

(q) linear in

q2, obtained by Taylor-expanding (B3), is given by

R
(1)
dm

(q) = −c

6

q2

m2
, (B5)

which coincides with the result obtained when substituting f(0) = dm(0) = − 1
m2 in the

general formula of (A).

For Tdm
(q) we have, using the identities (3.6)-(3.7),

Tdm
(q) = m2

∫

k

q2 + 2q · k
(k2 − m2)2[(k + q)2 − m2]

= −cm2q2

∫ 1

0

dx
x(2x − 1)

q2x(1 − x) + m2

= cm2

∫ 1

0

dx ln

(
1 +

q2x(x − 1)

m2

)
. (B6)
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Evidently, Tdm
(0) = 0, in agreement with (A5).

The results of (B3)-(B6) may be used in a more general way. Specifically, if we assume a

spectral representation for the gluon propagator [1, 60], namely

∆(q2) =

∫
dλ2 ρ (λ2)

q2 − λ2 + iǫ
; (B7)

then from (B3) (with m → λ) we have

R∆(q) = c

[∫
dλ2 ρ (λ2)

∫ 1

0

dx ln

(
1 +

q2x(x − 1)

λ2

)
− C

]
,

T∆(q) = c

∫
dλ2 ρ (λ2)λ2

∫ 1

0

dx ln

(
1 +

q2x(x − 1)

λ2

)
, (B8)

where

C =

∫
dλ2 ρ (λ2)Cλ . (B9)

Note that after the renormalization of the corresponding SDE (see Section V) C will even-

tually drop out. Then, the use of the following identities [61]

∫
dλ2 ρ (λ2)

∫ 1

0

dx ln

(
1 +

q2x(x − 1)

λ2

)
=

∫ q2/4

0

dz

(
1 − 4z

q2

)1/2

∆(z) ,

∫
dλ2 ρ (λ2) λ2

∫ 1

0

dx ln

(
1 +

q2x(x − 1)

λ2

)
=

∫ q2/4

0

dz z

(
1 − 4z

q2

)1/2

∆(z) , (B10)

allows one to cast R∆(q) and T∆(q) again as an integral containing the gluon propagator ∆,

namely

R∆(q) = c

[∫ q2/4

0

dz

(
1 − 4z

q2

)1/2

∆(z) − C
]

,

T∆(q) = c

∫ q2/4

0

dz z

(
1 − 4z

q2

)1/2

∆(z) . (B11)

Note that the simple change of variables t = 4z/q2 allows one to cast R∆(q) and T∆(q) in

the alternative form

R∆(q) = c

[
(q2/4)

∫ 1

0

dt (1 − t)1/2∆(tq2/4) − C
]

,

T∆(q) = c (q2/4)2

∫ 1

0

dt t (1 − t)1/2∆(tq2/4) , (B12)

which makes the identification of the IR behavior of these quantities immediate, and is

particularly useful for their numerical treatment.
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APPENDIX C: THE MASS EQUATION

Let us consider (in Euclidean space) the integral appearing on the rhs of (4.21), to be

denoted by I(q). We have

I(q) =
1

q2

∫

kE

m̃2(k)∆(k)∆(k + q)[(k + q)2 − k2] , (C1)

which, with the notation introduced in Appendix (A), reads

I(x) =

∫

kE

m̃2(y)∆(y)∆(z)

[
1 +

2
√

y√
x

cos θ

]
. (C2)

Then, expand ∆(z) = ∆(y) + w∆′(y) + ..., and collect the terms that survive the angular

integration, to obtain

I(0) =

∫

kE

m̃2(k2)∆(k2)[∆(k2) + 4k2∆′(k2) cos2 θ]

=

∫

kE

m̃2(k2)∆(k2)[∆(k2) + k2∆′(k2)]

= −1

2

∫

kE

k2∆2(k2)[m̃2(k2)]′ . (C3)

Note that a monotonically decreasing mass, [m̃2(k2)]′ < 0, guarantees that I(0) > 0, or,

equivalently, the positivity of m̃2(0) in Euclidean space.

To write I(x) in a form suitable for solving the corresponding dynamical equation, first

split the radial integration into two intervals,
∫
∞

0
dy =

∫ x

0
dy +

∫
∞

x
dy; in the first interval

apply the usual approximation
∫ x

0

dyf1(z)f2(y) ≈ f1(x)

∫ x

0

dyf2(y), (C4)

while in the second, since x < y, we can carry out the Taylor expansion as before. Thus, we

obtain

I(x) ≈ I1(x) + I2(x) + I3(x) + I4(x) , (C5)

with

I1(x) = ∆(x)

∫ x

0

dyym̃2(y)∆(y) ,

I2(x) = −∆(x)

x

∫ x

0

dyy2m̃2(y)∆(y) ,

I3(x) = −1

2

∫
∞

x

dyy2∆2(y)[m̃2(y)]′ ,

I4(x) = −1

2
m̃2(x) x2∆2(x) . (C6)
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Note that, as x → 0, I1(x), I2(x) and I4(x) vanish, and one recovers from I3(x) the exact

result for I(0) given in (C3).

Finally, note that for a m2(x) displaying the asymptotic behavior given in (5.25) the

following results are useful [11],

1

x

∫ x

0

dy m2(y) = γ−1m2(x) ln x +
c′

x
,

∫
∞

x

dy
m2(y)

y
= m2(x) + O (1/ lnx) ,

1

x2

∫ x

0

dy ym2(y) = m2(x) + O (1/ lnx) , (C7)

where c′ is a constant. The first equation is derived using directly the integral of (5.27),

while for the other two we have employed the asymptotic property of the incomplete Γ(a, u)

function. Specifically,

Γ(a, u) =

∫
∞

u

dt e−t ta−1 , (C8)

(with no restriction on the sign of a), and its asymptotic representation for large values of

|u| is given by

Γ(a, u) = ua−1e−u + O(|u|−1) . (C9)
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