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Abstract

We study chiral symmetry breaking using the standard gap equation, supplemented with the

infrared-finite gluon propagator and ghost dressing function obtained from large-volume lattice

simulations. One of the most important ingredients of this analysis is the non-abelian quark-

gluon vertex, which controls the way the ghost sector enters into the gap equation. Specifically,

this vertex introduces a numerically crucial dependence on the ghost dressing function and the

quark-ghost scattering amplitude. This latter quantity satisfies its own, previously unexplored,

dynamical equation, which may be decomposed into individual integral equations for its various

form factors. In particular, the scalar form factor is obtained from an approximate version of the

“one-loop dressed” integral equation, and its numerical impact turns out to be rather considerable.

The detailed numerical analysis of the resulting gap equation reveals that the constituent quark

mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a mass in

the range of (750-962) MeV.
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I. INTRODUCTION

The dynamical mechanism responsible for chiral symmetry breaking (CSB) in QCD has

been the focal point of extensive research during several years [1–15]. The study of CSB

in the continuum involves almost invariably some version of the Schwinger-Dyson equation

(SDE) for the quark propagator (gap equation). This non-linear integral equation has a

notoriously rich structure, being extremely sensitive to the details of its kernel; the latter

is composed by the various non-perturbative ingredients entering into the gap equation,

most notably the gluon propagator and the quark gluon vertex. As is well-known, the gap

equation displays “critical” behavior: the support of the kernel throughout the entire range

of integration must exceed a certain critical value in order to generate non-trivial solutions

for the quark propagator [3]. Given that most of this support originates from the infrared

region, i.e. around the QCD mass scale of a few hundred MeV, the study of CSB through the

gap equation furnishes stringent probes on the various methods and models aiming towards

a quantitative description of the non-perturbative sector of QCD.

In recent years, a large number of independent large-volume lattice simulations have

furnished highly non-trivial information on the infrared (IR) behavior of two fundamental

ingredients of pure Yang-Mills theories, namely the (quenched) gluon and ghost propagators,

for both SU(2) and SU(3) [16–21]. In particular, these simulations have firmly established

that (in the Landau gauge) the QCD gluon propagator and the ghost dressing function are

IR finite and non-vanishing [22–24].

Given that the lattice is expected to capture reliably the full non-perturbative information

contained in the gluon and ghost propagators, it is natural to explore their consequences

for CSB. To that end, in this article we use lattice results for these Green’s functions as

inputs for the gap equation, and study the emerging CSB pattern for quarks (fundamental

representation) and for fermions in the adjoint representation. Specifically, we will employ

the lattice data of [18], given that they perform SU(3) simulations for both the gluon and

the ghost propagators. As it will become clear from the results presented in the main body

of the paper, the analysis carried out here may be regarded as a serious test of the robustness

of the aforementioned lattice results, and can serve as a characteristic example of the rich

phenomenology that one may extract with them.

The detailed implementation of the idea described above is far from straightforward,
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mainly due to the complicated structure of the gap equation, which makes it difficult to

determine its exact dependence on the aforementioned lattice ingredients (propagators). In

fact, of particular importance for the self-consistency of the whole picture is the role played

by the ghost sector (see, e.g. [11], and references therein). The way the ghost sector enters

into the gap equation is through the fully-dressed quark-gluon vertex. Specifically, recall

that, in virtually all treatments, the fully-dressed quark-gluon vertex is not obtained from

the corresponding dynamical equation (the SDE of the vertex), but is rather expressed in

terms of the quark propagator, such that its Slavnov-Taylor identity (STI) is automatically

satisfied (this procedure is known as the “gauge technique” [25]). The STI itself contains ex-

plicit reference to both the ghost dressing function and the so-called “quark-ghost scattering

kernel” [26]; the latter is given by its own dynamical equation, and, as we will see, its numer-

ical impact to the solutions obtained from the gap equation is quite important. If, instead,

one were to “abelianize” this part of the problem by assuming that the quark-gluon vertex

satisfies a QED-like Ward identity rather than the correct (non-abelian) STI, the resulting

gap equation would contain the gluon propagator as its sole ingredient, a fact that would

lead to an apparent incompatibility, in the sense that the kernel would not exceed the critical

value (no CSB), or would fail to generate realistic constituent quark masses [6, 7, 10, 15].

The main results of the present article may be summarized as follows:

(a) The non-abelian Ansatz for the full quark-gluon vertex depends explicitly on the

the ghost-dressing function and the quark-ghost scattering kernel; the latter quantity has

a rather complicated Dirac structure [27], being composed by four independent form fac-

tors [see Eq. (2.10)]. As a consequence, the corresponding expressions for the form factors

appearing in the Lorentz decomposition for the longitudinal part of the quark-gluon ver-

tex [see Eq. (3.1)] are modified (with respect to the case where the quark-ghost scattering

kernel is set to its tree-level value); their full form is presented in Eq. (3.5). As a result,

the gap equation acquires a more complicated structure, given in Eqs. (3.11)-(3.12). To the

best of our knowledge, both Eq. (3.5) and Eqs. (3.11)-(3.12) appear for the first time in the

literature.

(b) The quark-ghost scattering kernel satisfies its own dynamical equation, which may

be decomposed into individual integral equations for the various form factors entering into

the gap equation. In turn, these integral equations depend, among other quantities, on the

quark propagator, a fact which converts the full treatment of the problem into the solution
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of a complicated system of various coupled integral equations.

(c) In order to make the above system of equations more tractable, without compromising

its main features, we retain only the dependence of the gap equation on the scalar form

factor of the quark-ghost scattering kernel, discarding all other form factors. In addition, we

choose a very particular kinematic configuration, which further simplifies the corresponding

integral equation that determines the aforementioned quantity. The final “one-loop dressed”

equation is given in Eq. (3.16), and constitutes, to the best of our knowledge, a novel result.

For the actual calculation of the scalar form factor we will use on the rhs of Eq. (3.16) the

lattice results of [18], and then substitute the result (shown in Fig. 6) into the gap equation.

(d) A well-known endemic shortcoming of all approaches based on the gauge-technique

is that the transverse (i.e. identically conserved) part of the (quark-gluon) vertex remains

largely undetermined; this fact, in turn, distorts the cancellations of overlapping divergences,

the multiplicative renormalizability of the Green’s functions in question, and their compli-

ance with the renormalization group (RG). The construction of the appropriate transverse

piece has been carried out in detail for the case of QED [28], but no real progress has been

made in a non-abelian context. As is common practice, the aforementioned problem is reme-

died by multiplying (by hand) the kernel of the gap equation by an appropriate functions,

which restores the desired properties. For the case at hand, the simplest quantity that ac-

counts for the missing dynamics is the full ghost dressing-function. As we will explain in

the corresponding subsection, this choice is dictated by the STI satisfied by the quark-gluon

vertex, and enforces the correct RG behavior of the dynamical (running) mass obtained

from the gap equation. It should be stressed that the inclusion of the dressing-function has

a considerable numerical impact on the obtained CSB solution, boosting up the quark mass

to phenomenologically acceptable values.

(e) After substituting all necessary ingredients comprising its kernel, the resulting gap

equation is finally solved numerically, for two different cases. First, we study fermions in

the fundamental representation (quarks), obtaining a quark mass that in the IR is about

300 MeV. Second, we consider CSB with fermions in the adjoint representation; the latter

are particularly interesting, due to the clear separation between chiral symmetry restoration

and deconfinement they display [29–31]. The corresponding mass obtained for the adjoint

fermions is within the range (750-962) MeV, depending on the details of the quark-gluon

vertex used. This values are not too far from what one would expect naively, given the
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enhancement of 9/4 produced to the kernel of the adjoint gap equation due to the ratio of

the Casimir eigenvalues of the two representations.

The article is organized as follows. In Section II we introduce the necessary notation, and

review the general the structure of the gap equation. In Section III we first construct an

Ansatz for the quark-gluon vertex which makes full reference on the quark-ghost scattering

kernel, and use this vertex to derive the corresponding gap equation. Then, the “one-loop

dressed” approximation for the scalar part of the quark-ghost scattering kernel is set up,

and the improvements necessary for restoring the correct RG properties are discussed in

detail. In Section IV we present the main results of this work. In particular, after briefly

reviewing the recent lattice results on the gluon and ghost propagators that enter into the

gap equation, we proceed to the numerical solution of the gap equation. In Section V we

discuss our results and comment on possible future directions. Finally, in an Appendix we

analyze for completeness the structure of the gap equation within the framework of the pinch

technique (PT) [32–34] or, equivalently, the background field method (BFM) [35].

II. GENERAL STRUCTURE OF THE GAP EQUATION

In this section we will introduce the basic definitions and ingredients necessary for the

study of the quark SDE (gap equation). Then, we will give a special emphasis in the con-

struction of a general Ansatz for full fermion-gluon vertex, where its non-abelian character

will be kept intact. Finally, we will incorporate it into the gap equation and explore its

effects.

A. Definitions and ingredients

Let us first introduce the necessary notation. In covariant gauges, the inverse of the full

quark propagator in the Minkowski space has the general form [26]

S−1(p) = /p−m− Σ(p) , (2.1)

where m is the bare current quark mass, and Σ(p) the quark self-energy. It is common

practice to decompose Σ(p), in terms of a Dirac vector component, A(p2), and a scalar

component, B(p2), which allow us to define the dynamical quark mass function as being the
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ratioM(p2) = B(p2)/A(p2), explicitly we have [9]

S−1(p) = A(p2) /p−B(p2)I = A(p2)[/p−M(p2)I] , (2.2)

where I is the identity matrix, and the term A−1(p2) is often referred to in the literature as

the “fermion wave function”. Note that, the fermion acquires a dynamical mass as long as

B(p2) is different from zero. Therefore, the CSB will be signaled when we obtain B(p2) 6= 0.

p3

a, µ

p1 p2

FIG. 1: The full fermion-gluon vertex.

In addition, the gluon propagator ∆µν(q) in the covariant renormalizable (Rξ) gauges,

has the form

∆µν(q) = −i

[
Pµν(q)∆(q2) + ξ

qµqν
q4

]
, (2.3)

where ξ denotes the gauge-fixing parameter, and

Pµν(q) = gµν − qµqν/q
2 , (2.4)

is the usual transverse projector. In this work, we are particularly interested in the Landau

gauge which is reached when ξ = 0. Moreover, the full ghost propagator D(q2) and its

dressing function F (q2) are related by

D(q2) =
iF (q2)

q2
. (2.5)

An essential ingredient in our study is the fermion-gluon vertex, represented in Fig. 1,

and given by

Γa
µ(p1, p2, p3) = gT aΓµ(p1, p2, p3) , (2.6)

with T a (a = 1, 2, ..., N2 − 1) being the generators of the group SU(N) where the fermions

are assigned. The matrices T a are hermitian and traceless, generating the closed algebra

[T a, T b] = ifabcT c , (2.7)
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H(p1, p2, p3) = p1

p2

p3

FIG. 2: Diagrammatic representation of the fermion-ghost scattering kernel H(p1, p2, p3).

where fabc are the (totally antisymmetric) structure constants. In the case of SU(3), and

for fermions in the fundamental representations (quarks), we have that T a = λa/2, where

λa are the Gell-Mann matrices. When fermions are in the adjoint, (T a)bc = −ifabc.

The vertex Γµ(p1, p2, p3) satisfies the fundamental STI [26]

pµ3Γµ(p1, p2, p3) = F (p3)[S
−1(−p1)H(p1, p2, p3)−H(p2, p1, p3)S

−1(p2)] , (2.8)

where the fermion-ghost scattering kernel H(p1, p2, p3) is defined diagrammatically in Fig. 2,

and is written as

Ha(p1, p2, p3) = T aH(p1, p2, p3) . (2.9)

The kernel H(p1, p2, p3) and the “conjugated” H(p2, p1, p3) have the following Lorentz

decomposition [27] (note the change p1 ↔ p2 in the arguments of the latter)

H(p1, p2, p3) = X0I+X1/p1 +X2/p2 +X3σ̃µνp
µ
1p

ν
2 ,

H(p2, p1, p3) = X0I−X2/p1 −X1/p2 +X3σ̃µνp
µ
1p

ν
2 , (2.10)

where the form factors Xi are functions of the momenta, Xi = Xi(p1, p2, p3), and we use the

notation X i(p, r, q) ≡ Xi(r, p, q) and σ̃µν ≡
1
2
[γµ, γν] (Note the difference between σ̃µν and

the usually defined σµν = i
2
[γµ, γν]).

B. The renormalized gap equation

The SDE for the fermion propagator is diagrammatically represented in Fig. 3. Using

the momenta flow and Lorentz indices indicated in Fig. 3, the gap equation can be written

as

S−1(p) = /p−m− Crg
2

∫

k

Γ[0]
µ S(k)Γν(−p, k, q)∆

µν(q) , (2.11)
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p
−→

p

→

p

= +

( )

−→

( )

−1 −1

−→

k

q = p − k
−→

µ
ν

→

p

FIG. 3: The SDE for the fermion propagator given by Eq. (2.11). The gray blobs represent the

fully dressed gluon and quark propagators, while the black blob denotes the dressed fermion-gluon

vertex.

where q ≡ p− k,
∫
k
≡ µ2ε(2π)−d

∫
ddk, with d = 4− ǫ the dimension of space-time, and Γ

[0]
µ

is the fermion-gluon vertex at tree level. Cr is the Casimir eigenvalue of the given fermion

representation (r = F for the fundamental, and r= A for the adjoint). More specifically, for

the gauge group SU(3), we have CA = 3 and CF = 4/3. Note that, m is a current fermion

mass, the same appearing in the QCD Lagrangian, and in case of m 6= 0 in Eq. (2.11), the

chiral symmetry is explicitly broken. In this work, we will consider the case m = 0, i.e., the

chiral symmetry is kept intact at the Langragian level.

All quantities appearing in Eq. (2.11) are unrenormalized; they are related to their re-

spective renormalized counterparts, denoted with a subscript “R”, through the relations [36]

SR(p;µ) = Z−1
F (µ)S(p) ,

∆R(q;µ) = Z−1
A (µ)∆(q) ,

FR(q;µ) = Z−1
c (µ)F (q) ,

Γν
R(p, k, q;µ) = Z1(µ)Γ

ν(p, k, q) ,

gR(µ) = Z−1
g (µ)g = Z−1

1 Z1
FZ

1/2
A g , (2.12)

where ZF , ZA, Zc, Z1, and Zg are the corresponding renormalization constants. Substituting

Eqs. (2.12) into Eq. (2.11), we obtain

S−1
R (p) = ZF/p− Z1Crg

2
R

∫

k

γµSR(k)ΓRν(−p, k, q)∆
µν
R (q) . (2.13)

In addition, the STIs of Eq. (2.8) imposes the all-order constraint

Z1 = Z−1
c ZFZ

−1
H , (2.14)

where ZH is the renormalization constant needed for the quark-ghost kernel, i.e.,

H = Z−1
H HR. Now, in the Landau gauge, both the quark self-energy and the quark-ghost

8



kernel are finite at one-loop; thus, at that order, ZF = ZH = 1, and, therefore, Z1 = Z−1
c ,

i.e., at one-loop the quark-gluon vertex renormalizes as the inverse the ghost propagator.

Imposing the above approximation in the Eq. (2.13), we obtain

S−1(p) = /p− Z−1
c Crg

2

∫

k

γµS(k)Γν(−p, k, q)∆
µν(q) , (2.15)

where we have suppressed the subscript “R” to avoid notation clutter.

III. INFLUENCE OF THE GHOST SECTOR ON THE GAP EQUATION

In this rather lengthy and technical section we study in detail how the ghost sector enters

into the gap equation. To that end, in subsection IIIA we will use the STI to determine

the dependence of the form factors of the longitudinal part of the quark-gluon vertex on

the corresponding form factors Xi appearing in the Dirac decomposition of the quark-ghost

scattering kernel, given in Eq. (2.10). Then, we will use the resulting vertex in order to

derive the most general expression for the gap equation, displaying the dependence on all

form factors Xi. In subsection IIIB we derive the “one-loop dressed” expression for the

scalar form factor X0, which is the only one that will be considered in the ensuing analysis.

The modifications introduced into some standard forms of the quark-gluon vertex vertex,

and the form of the gap equations obtained with them are presented in subsection IIIC.

Finally, the adjustments necessary in order to enforce the correct RG properties of the gap

equation are discussed in subsection IIID.

A. The full fermion-gluon vertex

The most general Lorentz decomposition for the longitudinal part of the vertex

Γµ(p1, p2, p3) can be written as [27]

Γµ(p1, p2, p3) = L1γµ + L2(/p1 − /p2)(p1 − p2)µ + L3(p1 − p2)µ + L4σ̃µν(p1 − p2)
ν , (3.1)

where Li are the form factors, whose dependence on the momenta has been suppressed,

in order to keep a compact notation i.e. Li = Li(p1, p2, p3). The tree level expression is

recovered setting L1 = 1 and L2 = L3 = L4 = 0; then, Γ
[0]
µ (p1, p2, p3) = γµ.
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Due to the fact that the behavior of the vertex Γµ(p1, p2, p3) is constrained by the STI

of Eq. (2.8), the form factors Li’s appearing into the Eq. (3.1) will be given in terms of the

form factors Xi’s of Eq. (2.10).

More specifically, using the standard decomposition of S−1(p) expressed in Eq. (2.2), it

is relatively straightforward to demonstrate that the rhs of Eq. (2.8) becomes

pµ3Γµ(p1, p2, p3) = F (p3)[C0I+ C1/p1 + C2/p2 + C3σ̃µνp
µ
1p

ν
2] , (3.2)

with

C0 = −A(p1)
(
p21X1 + p1 ·p2X2

)
+ A(p2)

(
p22X1 + p1 ·p2X2

)
− B(p1)X0 − B(p2)X0 ;

C1 = A(p1) (p1 ·p2X3 −X0)− p22A(p2)X3 − B(p1)X1 +B(p2)X2 ;

C2 = A(p2)
(
p1 ·p2X3 −X0

)
− p21A(p1)X3 −B(p1)X2 − B(p2)X1 ;

C3 = A(p2)X2 − A(p1)X2 − B(p1)X3 +B(p2)X3 . (3.3)

On the other hand, contracting Eq. (3.1) with pµ3 , we have

pµ3Γµ(p1, p2, p3) = (p22−p
2
1)L3I+[(p22−p

2
1)L2−L1]/p1−[(p

2
2−p

2
1)L2+L1]/p2−2L4σ̃µνp

µ
1p

ν
2 . (3.4)

Equating the right-hand sides of Eq. (3.2) and Eq. (3.4), we can express the Li’s in terms

of the functions A, B and Xi’s. Specifically,

L1 =
F (p3)

2

{
A(p1)[X0 + (p21 − p1 ·p2)X3] + A(p2)[X0 + (p22 − p1 ·p2)X3]

}

+
F (p3)

2

{
B(p1)(X1 +X2) +B(p2)(X1 +X2)

}
;

L2 =
F (p3)

2(p22 − p21)

{
A(p1)[(p

2
1 + p1 ·p2)X3 −X0]− A(p2)[(p

2
2 + p1 ·p2)X3 −X0]

}

+
F (p3)

2(p22 − p21)

{
B(p1)(X2 −X1) +B(p2)(X1 −X2)

}
;

L3 = −
F (p3)

p22 − p21

{
A(p1)

(
p21X1 + p1 ·p2X2

)
− A(p2)

(
p22X1 + p1 ·p2X2

)
+B(p1)X0 − B(p2)X0

}
;

L4 =
F (p3)

2

{
A(p1)X2 −A(p2)X2 +B(p1)X3 − B(p2)X3

}
. (3.5)

The standard approximation in the literature is to use the tree-level value of H(p1, p2, p3),

which is equivalent to setting X0 = X0 = 1 and Xi = X i = 0, for i ≤ 1, in the above

equation. In addition, the effects of the ghost-dressing are also neglected, by imposing
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F (p3) = 1. In this limit, we obtain the following expressions

L1 =
A(p1) + A(p2)

2
;

L2 =
A(p1)− A(p2)

2(p21 − p22)
;

L3 =
B(p1)− B(p2)

p21 − p22
;

L4 = 0 ; (3.6)

which leads to the so-called Ball-Chiu (BC) vertex [38]

Γµ
BC(p1, p2, p3) =

A(p1) + A(p2)

2
γµ

+
(p1 − p2)

µ

p21 − p22

{
[A(p1)−A(p2)]

/p1 − /p2
2

+ [B(p1)− B(p2)]

}
. (3.7)

We will next insert into Eq. (2.15) the general quark-gluon vertex of Eq. (3.1) with the

expressions for the form factors Li given in Eq. (3.5). Defining p1 = −p, p2 = k, and p3 = q

and taking appropriate traces, it is straightforward to derive the following expressions for

the integral equations satisfied by A(p2) and B(p2)

p2A(p2) = p2 − Z−1
c Crg

2

{∫

k

L1(2pµpν − k ·p gµν) + 2(k2 + p2)L2pµpν
A2(k2)k2 −B2(k2)

∆µν(q)A(k2)

+

∫

k

p·(k + p)L4gµν − 2(L3 + L4)pµpν
A2(k2)k2 − B2(k2)

∆µν(q)B(k2)

}
, (3.8)

B(p2) = Z−1
c Crg

2

{∫

k

2(L4 − L3)pµpν − k ·(k + p)L4gµν
A2(k2)k2 − B2(k2)

∆µν(q)A(k2)

+

∫

k

L1gµν + 4L2pµpν
A2(k2)k2 − B2(k2)

∆µν(q)B(k2)

}
. (3.9)

Using that, for the gluon propagator in the Landau gauge, ∆µ
µ(q) = −i3∆(q), and

pµpν∆
µν(q) = −ih(p, k)∆(q), where

h(p, k) ≡
[k2p2 − (k ·p)2]

q2
, (3.10)

we can cast the gap equation in the form

p2A(p) = p2 + iZ−1
c Crg

2

{∫

k

2[(L1 + (k2 + p2)L2]h(p, k)− 3(k ·p)L1

A2(k2)k2 −B2(k2)
∆(q)A(k2)

+

∫

k

3p·(k + p)L4 − 2(L3 + L4)h(p, k)

A2(k2)k2 − B2(k2)
∆(q)B(k2)

}
, (3.11)
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B(p) = −iZ−1
c Crg

2

{∫

k

2(L4 − L3)h(p, k)− 3k ·(k + p)L4]

A2(k2)k2 −B2(k2)
∆(q)A(k2)

+

∫

k

3L1 + 4h(p, k)L2

A2(k2)k2 −B2(k2)
∆(q)B(k2)

}
. (3.12)

B. The “one-loop dressed” approximation for X0

In order to evaluate Eqs. (3.11) and (3.12) further, it is necessary to determine the

behavior of the form factors Xi entering into the definition of the Li through the Eq. (3.5).

From Eq. (2.10), one can projected out the form factors Xi in the following way

X0 =
Tr{H}

4
;

X1 =
p22Tr{/p1H} − (p1 ·p2)Tr{/p2H}

4 [p21p
2
2 − (p1 ·p2)2]

;

X2 =
p21Tr{/p2H} − (p1 ·p2)Tr{/p1H}

4 [p21p
2
2 − (p1 ·p2)2]

;

X3 =
Tr{σ̃αρ p

α
1 p

ρ
2H}

4 [(p1 ·p2)2 − p21p
2
2]
. (3.13)

It is clear from the diagrammatic representation given in Fig. 2 that H(p1, p2, p3), and its

form factors given in Eq. (3.13), depend among other things, on the fully dressed quark

propagator. Therefore, the treatment of the full gap equation given in Eqs. (3.11) and

(3.12) boils down to a complicated system of several coupled integral equations. In order to

make the problem at hand technically more tractable, we will only retain one of the form

factors given in Eq. (3.13), and study it in an approximate kinematic configuration, which

simplifies the resulting structures considerably. Specifically, we will only consider the form

factor X0, and assume that p1 = p2 ≡ p, and p = −p3/2, so that X0 = X0.

Note that the momentum p3 coincides with the momentum of the gluon in the gap

equation; therefore we will denote p3 = q, and p = −q/2. To obtain a non-perturbative

estimate for X0, we will study the “one-loop dressed” contribution given by the diagram of

Fig. 4.

Denoting the full gluon-ghost vertex by Gab
µ = δabGµ, the expression for X

[1]
0 reads

X
[1]
0 (p, p, q) = 1− i

(
1

4

)
CAg

2

2

∫

k

∆µν(k)D(k − p)Gν Tr{S(k + q)Γµ} . (3.14)
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FIG. 4: Diagrammatic representation of the quark-ghost scattering kernel, H(−q/2,−q/2, q), at

one-loop.

To evaluate this further, we will use the following approximations: (i) Gν will be replaced

by its tree-level value, Gν = (k− p)ν . Note that, since the full ∆
µν(k) is transverse (Landau

gauge), only the pµ part survives. (ii) For the vertex Γµ we will use a slightly modified

Ansatz than that of Eq. (3.7) [3, 12, 39], in order to reduce the algebraic complexity of the

resulting equation.

Specifically, we will use as our starting point the Ansatz

Γµ(q,−k − q, k) =
1

2

(
[A(k + q) + A(q)]γµ +

kµ
k2

[A(k + q)− A(q)](2/q + /k)

)
, (3.15)

which satisfies the STI of Eq. (2.8) in the chiral limit, B = 0, and with the ghost sector

switched off (F = H = 1). Since the second term on the rhs of Eq. (3.15) is proportional to

kµ, it vanishes when inserted into (3.14), again due to the transversality of ∆µν(k), a fact

that simplifies considerably the resulting expressions.

According to the procedure discussed in the next section [see Eq. (3.22)], we will improve

the Ansatz of Eq. (3.15) by multiplying it by F (k), but keeping H = 1. Under these

approximations, and after setting p = −q/2, Eq. (3.14) becomes (in Euclidean space)

X
[1]
0 (q) = 1 +

CAg
2

8

∫

k

[
q2 −

(q ·k)2

k2

]
∆(k)D

(
k +

q

2

)
F (k)

A(k + q)[A(k + q) + A(q)]

A2(k + q)(k + q)2 +B2(k + q)
.

(3.16)

We will finally approximate A(k + q) = A(q) = 1, and B(k + q) = 0, then we obtain

X
[1]
0 (q) = 1 +

1

4
CAg

2q2
∫

k

[1− f(k, q)]∆(k)F (k)
F (k + q)

(k + q)4
, (3.17)

where

f(k, q) ≡
(k · q)2

k2q2
. (3.18)
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After carrying out the integral on the rhs of Eq.(3.17) one obtains an approximate expression

for X
[1]
0 (q) in terms of ∆(k) and F (k); the result will be reported in section IV. Note that if

we had multiplied Eq. (3.15) not only by F (q) but also by X
[1]
0 (q), as is done in Eq. (3.22),

then, instead of simply computing the integral of Eq. (3.17), one would have to deal with

the more difficult task of solving an integral equation for the unknown X
[1]
0 (q).

C. The gap equation with ghost-improved quark-gluon vertices

There are two basic forms of the “abelianized” quark-gluon vertex usually employed in

the literature: (i) the BC vertex, denoted by Γµ
BC, whose closed form is given in Eq. (3.7),

and (ii) the so-called Curtis and Pennington (CP) vertex [40], to be denoted by Γµ
CP. These

two vertices differ by a transverse (automatically conserved term), namely

Γµ
CP(p1, p2, p3) = Γµ

BC(p1, p2, p3) + Γµ
T(p1, p2, p3) , (3.19)

with

Γµ
T(p1, p2, p3) =

γµ(p22 − p21)− (p1 − p2)
µ(/p1 + /p2)

2d(p1, p2)
[A(p2)− A(p1)] , (3.20)

where

d(p1, p2) =
1

p21 + p22

{
(p22 − p21)

2 +

[
B2(p2)

A2(p2)
+

B2(p1)

A2(p1)

]2}
. (3.21)

Evidently, under the approximations employed, the ghost effects due to F (p3) and X
[1]
0 (p3)

may be incorporated into these two vertices through simple multiplication of their form

factors by F (p3)X
[1]
0 (p3). Denoting their “ghost-improved” versions by Γ

µ

CP(p1, p2, p3) and

Γ
µ

CP(p1, p2, p3), respectively, we have

Γ
µ

BC(p1, p2, p3) = F (p3)X
[1]
0 (p3)Γ

µ
BC(p1, p2, p3) ,

Γ
µ

CP(p1, p2, p3) = F (p3)X
[1]
0 (p3)Γ

µ
CP(p1, p2, p3) . (3.22)

Notice that, one recovers the vertex used in Ref. [11] by setting X
[1]
0 (q) = 1 in the above

equations.

Substituting the form factors of Γ
µ

BC(p1, p2, p3) into Eqs. (3.11) and (3.12), we arrive at

14



the following coupled system for A(p2) and B(p2)

A(p2) = 1 + Crg
2Z−1

c

∫

k

K0(p− k)

A2(k2)k2 +B2(k2)
KBC

A (k, p) , (3.23)

B(p2) = Crg
2Z−1

c

∫

k

K0(p− k)

A2(k2)k2 +B2(k2)
KBC

B (k, p) , (3.24)

where the kernel K0(q) corresponds to the part that is not altered by the tensorial structure

of the quark-gluon vertex, namely

K0(q) = ∆(q)F (q)X
[1]
0 (q) , (3.25)

while the parts that are affected, KBC
A (k, p) and KBC

B (k, p), are given by [8]

KBC
A (k, p) =

A(k2)

2p2
[A(k2) + A(p2)] [3p·k − 2h(p, k)]− 2B(k2)∆B(k2, p2)

h(p, k)

p2

−A(k2)∆A(k2, p2)

[
k2 −

(k ·p)2

p2
+ 2

k ·p

p2
h(p, k)

]
, (3.26)

KBC
B (k, p) =

3

2
B(k2)[A(k2) + A(p2)] + 2

[
B(k2)∆A(k2, p2)− A(k2)∆B(k2, p2)

]
h(p, k) ,

where h(p, k) is given by Eq. (3.10) and

∆A(k2, p2) ≡
A(k2)−A(p2)

k2 − p2
, ∆B(k2, p2) ≡

B(k2)− B(p2)

k2 − p2
. (3.27)

Similarly, the effect of the vertex Γ
µ

CP(p1, p2, p3) is to replace the kernels KBC
A (k, p) and

KBC
B (k, p) appearing in Eq. (3.23) and (3.24) by KCP

A (k, p) and KCP
B (k, p), respectively, where

KCP
A (k, p) = KBC

A (k, p) +
3k · p

2p2
A(k2)∆A(k2, p2)

(k2 − p2)2

d(k, p)
,

KCP
B (k, p) = KBC

B (k, p) +
3

2
B(k2)∆A(k2, p2)

(k2 − p2)2

d(k, p)
. (3.28)

Note that the above equations are written in the Euclidean space. Specifically, the Wick

rotation was performed by setting p2 = −p2
E
, ∆E(p

2
E
) = −∆(−p2

E
), A(−p2

E
) = AE(−p

2
E
), and

B(−p2
E
) = BE(−p

2
E
). Therefore, ∆A(k2, p2), ∆B(k2, p2), and h(p, k) change the sign under

Wick rotation. For the integration measure, we used
∫
k
= i

∫
kE
; as a last step, we have

suppressed the subscript “E” everywhere.

D. Asymptotic behavior and renormalization group properties

The study of the ultraviolet (UV) behavior of the dynamical quark mass, M(p2), pre-

dicted by the coupled system formed by Eqs. (3.23) and (3.24), reveals the need of one
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final adjustment. Specifically, as is well known, the correct UV behavior forM(p2) is given

by [1, 2]

M(x) =
c

x

[
ln
( x

Λ2

)]γf−1

, (3.29)

where c is a µ-independent constant, related to the chiral condensate 〈q̄q〉µ by [8]

c = −
4π2γf
3
〈q̄q〉µ

[
ln

(
µ2

Λ2

)]−γf

. (3.30)

and the mass anomalous dimension is given by γf = 9Cr/(11CA − 3/2Crnf). For the fun-

damental representation, we have Cr = 4/3 and then γf = 12/(11CA − 2nf). Equivalently,

we can rewrite it in terms of the first coefficient b = (11CA − 2nf )/(48π
2) of the QCD β

function, where γf = 3CF/(16π
2b).

On the other hand, after setting Z1 = 1 and X
[1]
0 = 1, neglecting ∆A(k2, p2) and

∆B(k2, p2), and setting A(p2) = A(k2)→ 1, the asymptotic equation that the system (3.23)-

(3.24) yields forM(p2) is given, after the standard angular approximation, by

M(p2) =
3Crg

2

16π2

[
∆(p2)F (p2)

∫ p2

0

dk2M(k2) +

∫ ∞

p2
dk2∆(k2)F (k2)M(k2)

]
. (3.31)

In order to we verify whether indeedM(p2) of Eq. (3.29) satisfies Eq. (3.31), we substitute

M(p2) into the rhs of Eq. (3.31), together with the one-loop gluon propagator

∆−1(p2) = p2
[
1 + γ1g

2 ln

(
p2

µ2

)]
, (3.32)

where γ1 = (13
3
CA − Crnf)/32π

2, and the one-loop ghost dressing function

F−1(p2) =

[
1 +

9

4

CAg
2

48π2
ln

(
p2

µ2

)]
. (3.33)

After performing the above substitutions, it is straightforward to see that for asymptotic

large values of p2, the dominant contribution comes from the first integral, and that the

solution of Eq. (3.31) is indeed of the form given in (3.29), but with one important difference:

the anomalous dimension assumes the value γf = 36Cr/(35CA−6Crnf), instead of the correct

value given above. Note that the difference is due to the non-Abelian contributions (gluons);

setting CA = 0, the two values coincide.

The reason for this discrepancy can be traced back to a typical ambiguity, intrinsic to

the gauge-technique. Specifically, the standard procedure of constructing a vertex based
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on the requirement that it should satisfy the correct STI, leaves the transverse (i.e. auto-

matically conserved) part of the vertex undetermined [25, 28]. While, in the presence of

mass gaps, the infrared dynamics appear to be largely unaffected, this ambiguity is known

to modify the ultraviolet properties of the SD equations [25]. Essentially, failing to provide

the correct transverse part leads to the mishandling of overlapping divergences, which, in

turn, compromises the multiplicative renormalizability of the resulting SD equations. The

construction of the appropriate transverse part is technically complicated even for QED [40],

and its generalization to a non-abelian context is still pending. Given the expectation that

the restoration of the transverse part should not affect the infrared dynamics, the usual

short-cut employed in the literature is to account approximately for the missing pieces by

modifying (by hand) the SDE in question.

Specifically, for the case at hand, the correct asymptotic behavior for M(p2) may be

restored by carrying out in Eqs. (3.23) and (3.24) the replacement

Z−1
c KA,B(k, p)→ KA,B(k, p)F (p2) . (3.34)

given that, for large p2, the perturbative (one-loop) expression for F (p2) is given by Eq.(3.33).

It is straightforward to verify that, with this modification, Eq. (3.31) yields the correct

value for γf . Note that even though, strictly speaking, one needs to supply only the asymp-

totic form given in (3.33), it is natural to assume that the non-perturbative completion of

this formula will be given by Eq. (4.3), namely the full F (p2).

At first sight it would seem that the modification introduced in Eq. (3.34) amounts to

the counter-intuitive replacement Z−1
c → F (p2), i.e. trading a (cutoff-dependent) constant

for a (µ-dependent) function of p2 [11]. Even though from the operational point of view this

is indeed what happens, the idea behind is slightly more subtle. A more intuitive way to

interpret Eq. (3.34) is that the corresponding kernels are modified due to the presence of the

(unknown) transverse parts, whose additional contributions must be such that, when prop-

erly renormalized, will effectively amount to the replacement given in Eq. (3.34). Needless

to say, it would be very important to determine the precise mechanism that leads to these

modifications, but this is at present beyond our powers.

It is instructive to understand from a slightly different (but ultimately equivalent) point

of view why the (minimal) factor that must be supplied to Eq. (3.31) is indeed F (p2). The

argument relies on the (expected) RG-invariance of the mass functionM(p2). Specifically,
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let us for the moment assume that the underlying theory is QED, and set F = 1 into

Eq. (3.31). Then, M(p2) is RG-invariant, because, in QED, due to the abelian Ward

identities, the product g2∆ appearing on the rhs of Eq. (3.31) is RG-invariant. In the case

of QCD this is no longer true in general; instead, in the Rξ-type of gauges the corresponding

RG-invariant combination is given by g2∆F 2 [11, 41]. Therefore, the simplest way to convert

the product g2∆F into a RG-invariant combination is to multiply it by F , which restores

the RG-invariance ofM(p2).

IV. NUMERICAL ANALYSIS

In this section we will first review some of the recent lattice data for the gluon prop-

agator ∆(q) and the ghost dressing function F (q). Then, we will substitute them into

Eq. (3.17), in order to to obtain an estimate for X
[1]
0 (q). With all necessary ingredients

[∆(q), F (q), and X
[1]
0 (q)] available, we proceed to solve numerically the coupled system

formed by the integral equations (3.23) and (3.24) when the non-abelian modifications of

the BC and CP vertices are implemented. We will solve the corresponding equations both

for fermions in the fundamental (quarks) and in the adjoint representations; for the former

case we will use the numerical results obtained to compute the pion decay constant and the

quark condensate.

A. Nonperturbative ingredients: gluon and ghost propagators from lattice and

the form factor X
[1]
0 (q)

In this subsection we will comment on the nonperturbative form of the three basic Green’s

functions entering into the gap equation, namely ∆(q), F (q), and X
[1]
0 (q).

We start by showing on the left panel of Fig. 5 the lattice data for gluon propagator

obtained in [18]. The lattice data presented there correspond to a SU(3) quenched lattice

simulation, where ∆(q) is renormalized at µ = 4.3 GeV. In this plot, we clearly see the

appearance of a plateau in the deep IR region. The IR finiteness of the gluon propagator has

been long associated with the dynamical generation of an effective gluon mass [22, 32, 42]. In

fact, the above set of lattice data can be accurately fitted in terms of the following physically
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FIG. 5: Lattice results for the gluon propagator, ∆(q), and ghost dressing, F (q), obtained in

Ref. [18] and renormalized at µ = 4.3 GeV. Left panel: The continuous line represents the gluon

lattice data fitted by Eq. (4.1) when m = 520 MeV, g21 = 5.68, ρ1 = 8.55 and, ρ2 = 1.91. Right

panel: The lattice data for F (q) fitted by Eq. (4.3) using g22 = 8.57, m = 520 MeV, ρ3 = 0.25 and,

ρ4 = 0.68.

motivated expression [43]

∆−1(q2) = m2(q2) + q2
[
1 +

13CAg
2
1

96π2
ln

(
q2 + ρ1 m

2(q2)

µ2

)]
, (4.1)

with m2(q2) given by

m2(q2) =
m4

q2 + ρ2m2
, (4.2)

where the fitting parameters are m = 520MeV, g21 = 5.68, ρ1 = 8.55 and, ρ2 = 1.91. The

parameter m acts as a physical mass scale, whose function is to regulate the perturbative

RG logarithm; so, instead of diverging at the Landau pole, the logarithm saturates at a finite

value [43]. In addition, for large values of q2, we recover the one-loop expression of the gluon

propagator in the Landau gauge given by Eq. (3.32). Note that, contrary to conventional

masses, dynamically generated masses display a non-trivial dependence on the momentum

transfer q2 [32]. In particular, m2(q2) assumes a non-zero value in the IR, and drops rapidly

in the UV in a way consistent with the operator product expansion [44–46].

On the right panel of Fig. 5, we show the lattice results for F (q) obtained from [18];

evidently, F (q) saturates in the deep IR at the constant value [22, 23]. The ghost dressing

function is also renormalized at µ = 4.3 GeV, and the data can be accurately fitted by the
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FIG. 6: Numerical result for the form factor X
[1]
0 (q) of the quark-ghost scattering kernel given by

Eq. (3.17) when α(µ2) = 0.295.

expression

F−1(q2) = 1 +
9

4

CAg
2
2

48π2
ln

(
q2 + ρ3m

2(q2)

µ2

)
, (4.3)

where the dynamical mass is given by Eq. (4.2) changing the parameter ρ2 → ρ4. The fitting

parameters are g22 = 8.57, m = 520 MeV, ρ3 = 0.25 and, ρ4 = 0.68.

The last ingredient to be determined is the form factor X
[1]
0 (q). We proceed substituting

the fit for lattice data for ∆(q) and F (q) presented in Fig. 5 into Eq. (3.17). Then, for deter-

mining the integral given by Eq. (3.17), we should fix the value of g2(µ2). We adopt the same

procedure of Ref. [43], where it was found that the perturbative tail of effective coupling,

determined from the lattice data, is compatible with four-loop perturbative calculation at

MOM scheme, presented in [47]. More specifically, we use α(µ2) = g2(µ2)/4π = 0.295. The

numerical result for X
[1]
0 (q) is shown in the Fig. 6, and it can be fitted by

a2 +
a1 − a2

1 + (q2/q20)
p , (4.4)

where a1 = 1.0, a2 = 1.27, q20 = 0.027GeV2 and, p = 1.0 when q2 ≤ 0.202GeV2; while for

q2 > 0.202GeV2, we choose a1 = 1.40, a2 = 1.0, q20 = 0.45GeV2 and, p = 0.63.

X
[1]
0 (q) shows a maximum located in the intermediate momentum region (around

450 MeV), while in the UV and IR regions X
[1]
0 (q) → 1. Although this peak is not very

pronounced (notice the small scale in y-axis), we will see soon that it is essential for pro-

viding to the kernel of the gap equation the enhancement required for the generation of

phenomenologically compatible constituent quark masses.
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FIG. 7: Left panel: The individual contribution of the ingredients composing K0(q). The

green dotted-dashed line represents the case where K0(q) = ∆(q), the blue dotted line the case

where K0(q) = ∆(q)F (q), in the red dashed curve K0(q) = ∆(q)F 2(q) and, finally the black

continuous line represents the case where K0(q) assumes the full form used in our calculation

K0(q) = ∆(q)F 2(q)X
[1]
0 (q). Right panel: The corresponding dynamical quark mass generated when

we use in Eqs.(3.23) and (3.24) the different forms of K0(q) are shown in the left panel.

B. Chiral symmetry breaking in the fundamental representation and the pion

decay constant

We now proceed to the solution of the coupled system of integral equations defined by

the Eqs.(3.23) and (3.24). Note that, in addition, and in accordance to the discussion given

in subsection IIID, we carry out the substitution

F (q)→ F 2(q) , (4.5)

in the Eq. (3.25). In other words, the kernel K0(q) appearing on the rhs of Eqs.(3.25) and

(3.24) will assume the final form

K0(q) = ∆(q)F 2(q)X
[1]
0 (q) . (4.6)

Before solving the system formed by Eqs.(3.23) and (3.24) with K0(q) given by Eq. (4.6),

it is instructive to study the numerical impact that each of the functions composing K0(q)

has on the value of the resulting quark mass.

The results of this exercise are presented in Fig. 7, where on the left panel we show

the support that K0(q) receives when we turn on one by one the Green’s functions that
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compose it. Without a doubt, the biggest numerical contribution comes from the ghost

dressing function, F (q2). Nonetheless, one should not underestimate the effect caused by

the scattering kernel, X
[1]
0 (q), which is responsible for a considerable contribution to the

dynamical mass generation, as presented on the right panel of Fig. 7. On this panel, we

show the corresponding dynamical quark masses that are obtained solving the system of

Eqs.(3.25) and (3.24) when K0(q) assumes one of the four forms presented in the left panel.

Notice that, neither K0(q) = ∆(q) nor K0(q) = ∆(q)F (q) furnish the right amount of

support necessary to trigger chiral symmetry breaking. The chiral symmetry is only broken

when K0(q) = ∆(q)F 2(q) and, phenomenologically compatible values are only obtained

when the effects of X
[1]
0 (q) are incorporated in the K0(q). It is important to mention that,

although X
[1]
0 (q) does not provide a sizable support for K0(q) in the deep IR, the small

contribution it furnishes in the intermediate region is enough for increasing the mass from

M(0) = 190 MeV toM(0) = 295 MeV. This result is consistent with previous observations

in the literature [9, 48], stating that the support crucial for quark generation originates from

the intermediate region of the integration momenta.

Let us now return to the solution of the system formed by Eqs.(3.23) and (3.24).

Substituting ∆(q2), F (q2), and X
[1]
0 (q) into Eqs.(3.23) and (3.24), with the modification

of Eq. (4.6), and fixing the Casimir eigenvalue in the fundamental representation i.e.

Cr = CF = 4/3, we determine numerically the unknown functions A(p2) and B(p2).

On the left panel of Fig. 8, the red dashed line represents the numerical result for the

quark wave function A−1(p2). As we can see, for large values of p2, the function A(p2) goes

to 1, in agreement with the discussion presented in the Section IIID. In the opposite limit,

A−1(p2) develops a plateau saturating in a finite value around 0.85.

The red dashed line in the right panel of Fig. 8 represents the corresponding dynamical

quark massM(p2), obtained as the ratio B(p2)/A(p2). One clearly sees thatM(p2) freezes

out and acquires a finite value in the IR, while in the UV it shows the expected perturbative

behavior given by Eq. (3.29) and represented by the blue dotted-dashed curve.

For the sake of comparison, we also solve numerically the coupled system when the non-

abelian version of the CP vertex is employed. As we can see from the continuous black curve

of Fig. 8, the qualitative behavior of the results obtained with the CP vertex is very similar

to that obtained with the BC vertex. Note that both vertices generate phenomenologically

acceptable values forM(0). More specifically, for the BC vertex we obtainM(0) = 294 MeV
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FIG. 8: Left panel: The numerical solution for the quark wave function A−1(p2) in the fundamental

representation when the non abelian versions of BC (red dashed curve) and CP (black continuous

curve) vertices. are employed Right panel: The numerical solution for the dynamical quark mass

M(p2). The red dashed curve represents the dynamical mass generated when the BC vertex is

used, while the black continuous line is the solution found with the CP vertex.

while for the CP vertex the value is slightly higherM(0) = 307 MeV.

Once the behavior of the dynamical quark mass is determined, one may attempt to

reproduce some of the phenomenological parameters that depend directly on it. Such a

parameters is the pion decay constant fπ, which measures the “strength” of the CSB. The

pion decay constant is defined through the axial-vector transition amplitude for an on-shell

pion,
〈
0 |Aaµ

5 (0)|πb(k)
〉
= ifπk

µδab. Making use of the method developed by Pagels and

Stokar [49], and Cornwall [50], f̄π can be expressed in terms of the dynamical quark mass as

f̄ 2
π =

3

4π2

∫ ∞

0

dy
M(y)

[y +M2(y)]2

[
M(y)−

y

2

dM(y)

dy

]
. (4.7)

Substituting in the above equation the numerical solutions for M(p2) presented in the

Fig. 8, we obtain f̄π = 64.3 MeV for the case of the BC vertex, while with the CP ver-

tex we get f̄π = 68 MeV. These values should be compared to the experimental value

fπ = 93 MeV [51]. Evidently, the obtained values underestimate f̄π by almost 30%. The ori-

gin of this suppression could possibly be traced back to some of the approximation used for

the quark-quark-pion proper vertex [50]. Some improved versions of Eq. (4.7) can be found

in the literature; in particular, we will employ the expression of [52], where a correction term
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is added to Eq. (4.7). More specifically,

f 2
π = f̄ 2

π + δf 2
π , (4.8)

with

δf 2
π =

3

4π2

∫ ∞

0

dy

[
y3

(
dM(y)

dy

)2

− y2M2(y)

(
dM2(y)

dy

)
− y2M2(y)

dM(y)

dy

]
. (4.9)

Adding this term to the expression of Eq. (4.7), we obtain fπ = 76.4 MeV for the case of

the BC vertex, and fπ = 80.6 MeV for the CP vertex. Although the results are still below

the experimental value, the correction added clearly contributes in the right direction.

Finally, we will compute the quark condensate, which plays the role of the order parameter

for dynamical CSB. The quark condensate at scale of ν = 1GeV2 is given by [9]

〈q̄q〉 (1GeV2) = −
3

4π2

∫ ν

0

dy
yM(y)

A(y)[y +M2(y)]
. (4.10)

Substituting again the solution M(p2) and A(p2) presented in Fig. 8 into

Eq. (4.10), we obtain 〈q̄q〉 (1GeV2) = (211MeV)3 when the BC vertex is employed and

〈q̄q〉 (1GeV2) = (217MeV)3. This value should be compared to the typical value of the

quark condensate 〈q̄q〉 (1GeV2) = (229± 9MeV)3 [53].

C. Chiral symmetry breaking in the adjoint

Next we will solve the same system of integral equations formed by Eqs.(3.23) and (3.24)

for both BC and CP kernels, given by Eqs. (3.27) and (3.28) respectively, when the Casimir

eigenvalue in the adjoint representation i.e. Cr = CA = 3.

When one switches from the fundamental to the adjoint representation, the overall effect

in the gap equation is an enhancement factor of 9/4 due to the difference in the correspond-

ing Casimir eigenvalues. Of course, due to the nonlinear nature of the gap equation, the

wave function A−1
adj(p

2) and the adjoint mass Madj(p
2) are not obtained from their quark

counterparts through simple multiplication by 9/4.

The numerical results for the adjoint representation are shown in the Fig. 9. On the left

panel, we compare the fermion wave functions, A−1
adj(p

2), when we use the modified BC and

CP vertices. As expected, both solutions displays the right asymptotic behavior while in

the IR limit the fermion wave functions saturate in smaller values compared to those of the
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FIG. 9: Left panel: The numerical solution for the fermion wave function A−1
adj(p

2) in the adjoint

representation when the modified BC vertex (dotted red curve) and the modified CP vertex (black

continuous curve) are employed. Right panel: The numerical solution for the dynamical fermion

massMadj(p
2). The dotted red curve represents the dynamical mass generated when the BC vertex

is used. The black continuous line is the solution obtained with the CP vertex.

fundamental representation. In addition, we can notice that in the adjoint, A−1
adj(p

2) does

not display anymore a minimum as it does in the fundamental representation.

On the right panel, we show the fermion dynamical mass Madj(p
2). We see that the

infrared saturation of Madj(p
2) occurs for higher values compared to the values of M(p2)

in the fundamental. In particular, when the modified BC vertex is employed, one obtains

Madj(0) = 750 MeV, while for the CP vertex Madj(0) = 962 MeV. Clearly we can see hat

the latter values are higher than 9/4M(0). In addition, it is interesting to notice that the

adjoint representation is more sensitive to the change from the BC to the CP vertex, since

the difference between the results obtained with the both vertices is much more pronounced

here than in the fundamental representation.

V. DISCUSSION AND CONCLUSIONS

In this article we have studied the CSB pattern that emerges when the gap equation is

combined with the available lattice data for the gluon and ghost propagators [18]. Partic-

ular attention has been payed to the way the ghost sector enters into the gap equation. In

particular, a complete Ansatz for the longitudinal part of the quark-gluon vertex has been

constructed, which, in addition to the ghost-dressing function [11], captures the full depen-
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dence on the various form factors composing the quark-ghost scattering kernel. This new

vertex has been used to derive a more complete version of the gap equation, containing ad-

ditional contributions from the quark-ghost scattering kernel. This latter quantity satisfies

its own dynamical equation, which is coupled to the gap equation in a complicated way.

In order to reduce the complexity of the problem, we have restricted ourselves to the

interplay of the gap equation with the only the scalar part, X0, of the quark-ghost scattering

kernel, deriving its “one-loop dressed” expression. The form factor X0 was then determined

from this latter expression, for a special momentum configuration, using the lattice data for

the gluon and ghost propagators appearing in it. The resulting expression for X0, shown

in Fig. 6, reaches its maximum at a momentum of a few hundred MeV, where it displays a

25% enhancement compared to its tree-level value. We emphasize that the numerical effect

of including X0 into the gap equation is rather sizable; indeed, as can be seen from Fig. 7,

it accounts for about 30% of the final result for the quark mass.

Finally, all ingredients are substituted into the gap equation, which is solved for the

case of quarks (fundamental representation), and for fermions in the adjoint representation.

The quark mass obtained is about 300 MeV, in good agreement with phenomenology, and

is rather insensitive to the details of the quark-gluon vertex employed (BC vs CP). The

corresponding mass obtained for the adjoint fermions displays a stronger dependence on the

form of this vertex, varying between (750-962) MeV.

It is important to emphasize that there is a crucial complementarity between using lat-

tice data as input into the gap equation, and, at the same time, employing an Ansatz for

the vertex that captures suitably the dependence on quantities such as the ghost-dressing

function and the quark-ghost scattering kernel. Indeed, the additional dependence on the

ghost sector stemming from the vertex would be insufficient for getting the correct CSB if

one were not to use the lattice results, which capture fully the underlying dynamics, dis-

playing a sizable enhancement with respect to other non-perturbative approaches. Similarly,

no realistic CSB pattern can be obtained if one were to substitute the lattice ingredients

into the gap equation obtained from a less elaborate quark-gluon vertex, i.e., one that fails

to include the effects due to the quark-ghost scattering kernel. Thus, at least within our

framework, it is the interplay between these two points that finally provides an adequate

description of CSB.

Amplifying on the previous point, let us mention that the SDE analysis presented in [22],

26



even though it reproduces qualitatively the lattice results, and most importantly accounts

for the observed IR finiteness of the gluon propagator and the ghost-dressing function,

it underestimates the size of both quantities by a significant amount. Clearly, it is an

important challenge for the SDE approach of the PT-BFM formalism [22, 42, 54] to eliminate

the aforementioned quantitative discrepancy. Perhaps the most obvious step would be to

extend the analysis of [22] beyond the “one-loop dressed” approximation, given that there

is no a-priori guarantee that the omitted “two-loop dressed” contributions are numerically

depreciable. Needless to say, from the technical point of view, such an attempt would

constitute a formidable task.

Another possible source of enhancement for the Green’s functions in question may be

related to the non-trivial structure of the vacuum, and in particular with the presence of

solitonic structures, such as vortices or monopoles. These classic field configurations are

closely linked to the mechanisms of confinement [56] and CSB [57], and are known to affect

the shape and size of the fundamental Green’s functions of the theory [58]. A particularly

instructive example of how to include such effects at the level of the SDEs has been presented

in [59].

Appendix A: The gap equation in the PT-BFM language

Given the recent reformulation of the SD series within the PT-BFM framework [42,

54, 60], it is conceptually interesting to re-express the gap equation using the PT-BFM

terminology. Let us stress from the beginning, however, that, unlike what happens in the

case of the gluon self-energy [54], where the corresponding SD equation in the PT-BFM

formalism is vastly different from the conventional one, the gap equations obtained within

both formalisms are completely identical.

Let us start the discussion by pointing out that the PT quark-self energy coincides with

the conventional one in the Feynman gauge, both perturbatively (to all orders), as well as

nonperturbatively. The reason has been explained in detail in the related literature; here it

should suffice to mention that in the Feynman gauge there are no pinching momenta, and all

three-gluon vertices appearing in the quark-self energy are “internal”, in the sense that all

legs are irrigated by virtual momenta, and, therefore, they should not undergo the standard

PT decomposition, a key ingredient in the construction of the PT gluon self-energy. An

27



equivalent way of saying this in the BFM language [35] is that, unlike gauge fields, fermionic

fields are not split into a background and a quantum component. Therefore, the BFM

fermion propagators are the same as the conventional ones (in all gauges). However, given

that all nonperturbative ingredients we will use come from lattice simulations in the Landau

gauge, the gap equation we study here is not the genuine PT gap equation. Away from the

Feynman gauge, one must switch to the BFM language, or, equivalently, to the generalized

PT. In any case, the central result remains the same: the gap equation in the Landau gauge

is the same as the conventional one.

The PT-BFM gluon self-energy, denoted by ∆̂, behaves in many aspects as that of QED;

in particular, the product g2∆̂ is RG-invariant (for any choice of the BFM gauge-fixing

parameter). Of course, the propagator appearing in Eq. (2.15) is not ∆̂ but rather the

conventional ∆; indeed, background field propagators do not propagate inside loops, only

quantum ones. However, there exists a set of powerful identities that allows one to establish

some important connections [41, 61, 62]. Specifically,

∆(q2) =
[
1 +G(q2)

]2
∆̂(q2) ,

F−1(q2) = 1 +G(q2) + L(q2) . (A1)

The functions G(q2) and L(q2) are the two form factors of a particular two-point function,

denoted by Λµν(q), defined as [54, 55]

Λµν(q) = −ig2CA

∫

k

H(0)
µρ D(k + q)∆ρσ(k)Hσν(k, q)

= gµνG(q2) +
qµqν
q2

L(q2) . (A2)

Turns out that the function L(q2) is subleading both in the IR and in the UV; therefore,

for the purposes of this argument can be safely neglected [41]. Then, the combination of the

two identities in (A1) leads to the approximate relation

∆̂(q2) = ∆(q2)F 2(q2) , (A3)

leading to exactly the same conclusion as before.

Finally, the above discussion may be recast in the more intuitive language of an effec-

tive (running charge), traditionally employed in QED-inspired studies of QCD. From the

(dimensionful) RG-invariant quantity g2∆̂ introduced above, one may define a nonpertur-
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bative effective charge, denoted by α(q2), as

g2∆̂(q2) =
4πα(q2)

q2 +m2(q2)
, (A4)

where m2(q2) is the momentum-dependent dynamical gluon mass, whose value in the deep

IR is about (500 − 700) MeV. Using Eq. (A3), and after implementing Eq. (3.34), the

alternative (and completely equivalent) form of Eq. (3.23) reads [6, 7] (setting q ≡ p− k)

A(p2) = 1 + 4πCr

∫

k

α(q2)

q2 +m2(q2)

KA(k, p)

A2(k2)k2 +B2(k2)
, (A5)

with an exactly analogous expression for B(p2). Note that finally there is no explicit ref-

erence to F (q2), because it has all been absorbed into the definition of the effective charge

α(q2). The RG-invariance of this equation can be easily established, given that both α(q2),

the gluon mass m2(q2), are RG-invariant. The final inclusion of the X
[1]
0 into Eq. (A5) is

straightforward.
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