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Abstract

We consider a pattern of neutrino masses in which there is an approximate mass
degeneracy between the two mass eigenstates most coupled to the νµ and ντ flavour
eigenstates. Earth-matter effects can lift this degeneracy and induce an effectively
maximal mixing between these two generations. This occurs if νe’s contain comparable
admixtures of the degenerate eigenstates, even rather small ones. This provides an
explanation of the atmospheric neutrino anomaly in which the ab initio introduction
of a large mixing angle is not required. To test this possibility we perform a novel and
detailed analysis of the 52 kiloton-year SuperKamiokande data, and we find that in a
large region of parameter space the corresponding confidence levels are excellent. The
most recent results from the Chooz reactor experiment, however, severely curtail this
region, so that the conventional scenario with nearly maximal mixing angles –which
we also analyse in detail– is supported by the data.
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1 Introduction

The results of the SuperKamiokande collaboration (SK) on the atmospheric neutrino
deficit [1] can be explained in terms of neutrino oscillations [2]. It is natural to anal-
yse the data in the context of the most general mixing pattern of three neutrinos, since
that is their known number. Three generations are necessary if oscillations are to explain
the atmospheric and solar [3] anomalies: a scheme with only two neutrinos cannot account
for both effects.

Let Ū , with (νe, νµ, ντ )
T = Ū ·(ν1, ν2, ν3)

T , be the Cabibbo-Kobayashi-Maskawa (CKM)
matrix in its most conventional parametrization, reviewed by the Particle Data Group [4]:

Ū ≡ Ū23Ū13Ū12 ≡




1 0 0
0 c̄23 s̄23

0 −s̄23 c̄23









c̄13 0 s̄13 eiδ

0 1 0
−s̄13 e−iδ 0 c̄13









c̄12 s̄12 0
−s̄12 c̄12 0

0 0 1



 (1)

with s̄12 ≡ sin θ̄12, and similarly for the other sines and cosines. Several groups have
performed analyses of atmospheric and solar data in terms of three-neutrino mixing [5],
as described by Eq. (1), or including sterile neutrinos [6]. It is common to these studies
to restrict to a “minimal scheme”, in which the mass square difference relevant to atmo-
spheric oscillations dominates over the one relevant to solar neutrinos: ∆m̄2

23≫∆m̄2
12. In

this scenario, the number of parameters describing oscillations at terrestrial distances is
reduced to three: s̄13, s̄23 and ∆m̄2

23, while those most relevant to solar neutrinos are: s̄12,
s̄13 and ∆m̄2

12. The best fit of the atmospheric data [7] is:

∆m̄2
23 ∼ 2.8 × 10−3 eV2, sin2(2θ̄23) ∼ 1, s̄2

13 ∼ 2 × 10−2. (2)

The angle θ̄23 ≃ π/4 is close to maximal, to explain the dearth of muons in SK.

The situation for solar neutrino oscillations is less definite [8]. The combined solar
experiments allow for three different regions of parameter space. The solar deficit can be
interpreted either as MSW (matter enhanced) oscillations [9] with an angle θ̄12 that can be
large or small, or as nearly-maximal vacuum oscillations, θ̄12 ≃ π/4. The corresponding
mass differences –∆m̄2

12 = 10−6 to 10−4 eV2, or some 10−10 eV2– are significantly below
the range deduced from atmospheric observations, giving support to the minimal scheme.
If ∆m̄2

12∼O(10−3) eV2, it can have non-negligible effects on atmospheric data that have
been recently studied [10].

As is well-known, the field of neutrino oscillations is permeated by a tally of implausible
facts and coincidences. Oscillations over a distance L occur if ∆m2L/Eν ∼ 1. In the
various data samples used by the SK collaboration, the average neutrino energies are
roughly 1, 10 and 100 GeV, so that for the value of ∆m2

23 in Eq. (2), the “right” distances
to measure an effect are 280, 2800 and 28000 km: the size of our planet and the energies
in the cosmic ray spectrum have been chosen snugly. Something entirely similar can be
said about the low-mass or “just-so” solution to the solar neutrino problem. Moreover, the
solar and atmospheric neutrino “anomalies” could have been observed only if the effects are
large. This requires surprisingly large mixing angles, except for the “small-angle” MSW
solution to the solar neutrino problem, for which the ambient matter elegantly enhances
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the effect of a small vacuum mixing. Considerable theoretical effort has been invested in
arguing that large neutrino mixings are natural, as small quark mixings are believed to
be.

A final peculiarity of the observed atmospheric neutrino oscillations involves the matter
contribution to the effective squared mass of electron neutrinos:

A ≡ 2
√

2 GF Eν ne , (3)

where ne is the electron number density in the Earth. For a typical average terrestrial
density of 5 g/cm3 and Eν = 10 GeV, A ∼ 3.7×10−3 eV2, again in the ballpark of Eq. (2).
This last coincidence suggests the existence of a “small-angle solution” to the atmospheric
neutrino problem.

In the “small-angle” scheme we study, the large observed νµ disappearance is gen-
erated in the following way. Let ν2 and ν3 be almost degenerate, and heavier than ν1.
When neutrinos traverse the Earth, the degeneracy is lifted by matter effects, enhancing
νµ–ντ oscillations. The consequent transitions are maximal if the electron neutrino has
comparable vacuum admixtures of the degenerate mass eigenstates, Ū(e2) ≃ Ū(e3), even
if these quantities are not large.

We find that an explanation of the atmospheric neutrino anomaly not involving nearly-
maximal neutrino mixing indeed exists, but is disfavoured by the complementary informa-
tion from reactor neutrinos. For the current experimental situation, large neutrino mixing
angles seem to be unavoidable.

The titles of the chapters and appendices specify the structure of this paper.

2 Apparent large mixings induced by matter effects

2.1 From small to large angles

In a three-family scenario, let one neutrino mass eigenstate be much lighter than the other
nearly-degenerate two. Their squared mass matrix can be written as:

Mvac
K ≃ Diag

[

µ2
1; m2 + µ2

2; m2 + µ2
3

]

, (4)

where K stands for the “kinetic” eigenbasis (as opposed to the flavour basis), vac is for
vacuum, and µ2

i ≪m2. The degree of degeneracy assumed for the two heavier neutrinos
embodies three conditions: their mass difference ∆m2

23 ≡ µ2
3 − µ2

2 is much smaller than
their common mass scale m2; it is also small enough not to induce observable oscillations
over terrestrial distances (∆m2

23L/Eν ≪1 for the relevant energies and lengths of travel);
and it is smaller than the effective mass excess induced on electron neutrinos by matter
effects, ∆m2

23 ≪ A, with A as in Eq. (3). De facto, these conditions simply amount to
∆m2

23 ≪ 10−4 eV2. In practice we can set µ2
i = 0 in the analysis of oscillations over

terrestrial baselines.

For the mass pattern of Eq. (4), one of the three neutrino mixing angles and the
CP-violating phase of the CKM matrix U are unobservable. This is readily checked.
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Parametrize the CKM matrix in the unconventional order U ≡ U12U13U23, as follows:

U ≡ U12U13U23 ≡




c12 s12 0
−s12 c12 0

0 0 1









c13 0 s13

0 1 0
−s13 0 c13









1 0 0
0 c23 s23 eiδ

0 −s23 e−iδ c23



 (5)

with s12 = sin(θ12), etc. The vacuum mass matrix in flavour space Mvac
F ≡ UMvac

K U † does
not depend on s23, or on δ. The mixing matrix is effectively reduced to U ≡ U12U13.

In the approximation we are discussing, m2 is the only relevant mass-scale difference
and the vacuum transition probabilities between different neutrino flavours are:

P (νe → νµ) = 4 s2
12 c2

12 c4
13 sin2

(

m2 L

4Eν

)

P (νe → ντ ) = 4 s2
13 c2

13 c2
12 sin2

(

m2 L

4Eν

)

P (νµ → ντ ) = 4 s2
13 c2

13 s2
12 sin2

(

m2 L

4Eν

)

. (6)

The probabilities P (νe → νµ) and P (νe → ντ ) are quadratically suppressed for small s12

and s13, while P (νµ → ντ ) is quartically suppressed. The situation in matter, however, is
drastically different.

It is convenient to work in the “kinetic” basis wherein Mvac
K is diagonal. The effect of

matter is fully encrypted in a modification of the squared mass matrix:

Mmat
K ≡ Mvac

K + U †





A + B 0 0
0 B 0
0 0 B



U, (7)

where, as is well known, B arises from flavour-universal forward-scattering neutral current
interactions while A, given by Eq. (3), arises from the charged-current contribution specific
to ν̄e e and νe e scattering.

To illustrate how matter effects lift the vacuum degeneracy between two mass eigen-
states, we diagonalize Mmat

K to first order in A/m2, temporarily assumed to be small (the
exact formulae, used in the numerical results, are presented in Appendix A). To order zero
in this expansion there are two equal eigenvalues, so that we must follow the usual rules
of degenerate perturbation theory. Write Mmat

K = M [0] + M [1] with:

M [0] =





0 0 0
0 m2 + As2

12 Ac12s12s13

0 Ac12s12s13 m2 + Ac2
12s

2
13





M [1] =





Ac2
12c

2
13 Ac12c13s12 Ac13c

2
12s13

Ac12c13s12 0 0
Ac13c

2
12s13 0 0



 (8)

where we have subtracted the common entry B, which plays no role in neutrino mixing.
We must diagonalize M [0] exactly to lift the degeneracy in Mvac, then the second term
can be consistently treated in perturbation theory.
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To order A/m2, the flavour and kinetic mass matrices, Mmat
F and Mmat

K , are:

Mmat
F = U12U13Umat Mmat

K U †
matU

†
13U

†
12 ; (9)

Mmat
K = Diag

[

Ac2
12c

2
13; m2; m2 + A (s2

12 + c2
12s

2
13)
]

(10)

where

Umat ≡




1 0 0
0 cmat

23 smat
23

0 −smat
23 cmat

23



 , (11)

and the sine of the mixing angle in matter is:

smat
23 = s12/

√

s2
12 + c2

12s
2
13 . (12)

There are two important points to notice. First, instead of one mass difference as in
vacuum, we have two:

∆m2
12 ∼ m2

∆m2
23 = A (s2

12 + c2
12s

2
13) , (13)

one of O(m2), the other of O(A), the matter-induced mass. Secondly, the matrix Umat

plays the same role as the mixing matrix U23 in the generic mixing scenario of three
neutrinos. The effect of matter is simply to split the degenerate eigenvalues and induce
the effective angle smat

23 of Eq. (12). The crucial point is that this angle can be large
even if s12 and s13 are small. To this order in A/m2, the condition for maximal mixing
is s13 = s12/c12; in a parametrization-independent language, this is equivalent to the
requirement that the mixing between the second and third eigenstates with the electron
flavour state be the same: U(e2) = U(e3).

2.2 Oscillation probabilities

For the Earth’s electron density appearing in A, Eq. (3), it is a good approximation [11]
to consider a piecewise-constant density profile: a negligible density for neutrinos travers-
ing the atmosphere, ρm = 5 g/cm3 for the mantle, and ρc = 11 g/cm3 for a core of
3500 km radius. The matter-induced squared “mass” can then be expressed as A =
2
√

2GF Eν〈ne(cν)〉, where the electron density is averaged over the neutrino trajectory,
and cν is the cosine of its zenith angle. The oscillation probabilities depend on the two
mass differences of Eq. (13) and have the same form as the CP-conserving part of the
general three-flavour vacuum-transition probabilities:

Pνανβ
(Eν , cν) = − 4

∑

k>j

Re[W jk
αβ] sin2

(

∆m2
jk L(cν)

4Eν

)

, (14)

with W jk
αβ ≡ [UαjU

∗
βjU

∗
αkUβk], and U ≡ U12U13Umat. The distance L(cν) is:

L(cν) = R⊗(
√

(1 + l/R⊗)2 − s2
ν − cν), (15)
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where R⊗ is the radius of the Earth and l ∼ 15 km is the typical height at which primary
cosmic rays interact in the atmosphere.

Consider the νµ ↔ ντ entry of Eqs. (14):

Pνµντ (Eν , cν) = sin2(2 θmat
23 ) sin2

(

∆m2
23 L(cν)

4Eν

)

+ O(s2
12, s

2
13). (16)

Even if s12 and s13 are small, Pνµντ can be maximal, since θmat
23 ≃ π/4 for s12 ≃ s13.

In the limit s12, s13 → 0, ∆m2
23 → 0 and the oscillation probability vanishes: there cannot

be oscillations if all CKM angles are zero.

Large νµ → ντ oscillations take place for s12, s13 small, but bounded from below by the
condition ∆m2

23 R⊗/Eν ∼ O(1). For this parameter range one should still check the size
of νe → νµ, ντ transitions, which are not observed. This turns out not to be a problem for
the atmospheric anomaly, because the νµ/νe flux ratio is close to 2, and in the region of
maximal mixing and small vacuum angles P (νe → νµ) ∼ P (νe → ντ ). Consequently, the
number of disappearing νe can be compensated by the number of νµs that oscillate into
νes [12]. But a large νe disappearance probability can lead to a violation of the stringent
bounds imposed by the Chooz experiment [13] [14]. We shall see that Chooz, but not
SK, disfavours our small angle scenario.

2.3 Relation to the conventional scenario

The degenerate-neutrino scenario involves only one vacuum mass difference in the de-
scription of terrestrial experiments. This is also the case in the scenarios considered in
most previous analyses of atmospheric data, even with three families [5], but with a single
dominant mass difference.

As it turns out, the degenerate scenario is exactly equivalent to the conventional one
of [5] with ∆̄m2

23 = −m2 (in vacuum oscillations the sign of this difference would be
unobservable). To see this equivalence explicitly, it suffices to consider their vacuum
CKM matrix, which is written in the customary order Ū ≡ Ū23(s̄23) Ū13(s̄13), and to
obtain from it the matrix of Eq. (5) via the substitutions:

s̄2
23 =

s2
12c

2
13

s2
12 + s2

13c
2
12

,

s̄2
13 = c2

12c
2
13. (17)

Note that small mixing angles in the degenerate parametrization may correspond to
large mixings in the conventional one. In particular, a region of arbitrarily small mix-
ing angles s2

12, s
2
13 of our mass-degenerate scenario is mapped to a domain around the

values s̄2
23 ∼ 1/2 and s̄2

13 ∼ 1 of the conventional parametrization. The most “natural”
parametrizations are the ones in which the rotation matrices Uij act on the mass eigen-
states in order of decreasing degeneracy. The conventional parametrization, used in the
Particle Data Book [4], is natural for the quark sector with its hierarchical mass splitting,
but not necessarily for the lepton sector. The parametrization we use, Eq. (5), is natural
for the partially-degenerate mass pattern that we are considering [15].
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As we saw in the previous subsection, the presence of degenerate eigenstates in vacuum
can lead to large transition probabilities in matter. The enhacement of transition proba-
bilities in matter in the context of three-family mixing with two degenerate neutrinos has
been discussed before in [16] and, in the context of the three-maximal mixing model, in
[12]. The parametrization we use here clarifies the origin and generality of the effect.

3 Zenith angle and energy distribution of the SK events

The data of the SK collaboration, as well as their Monte Carlo expectations for the case in
which there are no neutrino oscillations, are binned in the azimuthal angle of the observed
electrons and muons, and in their energy (in the case of muons the level of containment
within the detector also distinguishes different data samples). To reproduce these results
one must convolute neutrino fluxes and survival probabilities with charged-current differ-
ential cross sections and implement various efficiencies and cuts. This being an elaborate
procedure, in Appendix D we check our results by reproducing the no-oscillation Monte
Carlo results of SK, as well as the neutrino “parent energy” spectrum: the azimuthally
averaged neutrino flux weighted with the integrated neutrino cross section and with the
efficiencies of the various data samples.

In the rest of this section we review how the data are binned, we specify our procedure,
and we analyze the fits to the conventional oscillation scenario, as well as to our mass-
degenerate alternative.

3.1 The data samples

The SK collaboration chooses to bin the observed charged-lepton energies in a few samples.
The electron candidates are subdivided into sub-GeV (sgev) and multi-GeV (mgev). The
muon candidates are distinguished as sgev and mgev, partially and fully contained (PC,
FC), and through-going (thru). To set apart these categories, we introduce selection
functions Ths,l(El, cl), with s = sgev, mgev and l = e, µ, that depend on the energy, El,
and on the cosine, cl, of the azimuthal angle of the outgoing lepton (cl = 1 is vertically
down-going). In computing the number of events, these selection functions will weight the
product of neutrino flux and cross-section. For the sgev events,

Thsgev,l(El) ≡ Θ[Eth,l − El] Θ[El − Emin,l], (18)

with Eth,e(µ) = 1.33 (1.4) GeV, Emin,e(µ) = 100 (200) MeV for e(µ) respectively. For the
mgev electron events, Thmgev,e(El) ≡ Θ[El − Eth,e].

For the mgev muons, we must distinguish between partially and fully contained events:

Thmgev−PC,µ(Eµ, cµ) ≡ Θ[Eµ − Eth,µ] PC(Eµ, cµ) ,

Thmgev−FC,µ(Eµ, cµ) ≡ Θ[Eµ − Eth,µ] FC(Eµ, cµ) , (19)

where the functions FC(Eµ, cµ), PC(Eµ, cµ) measure the fraction of the total fiducial
volume in which a neutrino interaction could produce a µ with energy Eµ and zenith
direction cµ that either stops before exiting the detector (FC) or escapes (PC). We have
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explicitly constructed FC(Eµ, cµ) and PC(Eµ, cµ) using the shape and size of the detector
and the µ range in water, Rw(Eµ), as a function of energy, and describe this in Appendix
C.

We have also devised a through-going muon selection function Ththru,µ(Eµ, cµ). The
effective target mass of the rock surrounding SK depends on energy via the muon range
in water and in rock, Rr(Eµ). The observed muon energy is required to be greater than
E′

min = 1.6 GeV, implying that its trajectory must be longer than 7 m. The function
Ththru,µ must account for the detector’s effective area for such tracks, A(Eµ, cµ), which
depends, via the muon range, on the muon energy as it enters the detector, and on its
zenith angle. Furthermore, the selection function for through-going muons must take into
account that their flux, as given by SK, is defined as the number of events divided by the
effective area for a muon of energy E′

min [17]. All in all:

Ththru,µ(Eµ, cµ) ≡ [Rr(Eµ) − Rr(E
′
min)]

A(Eµ, cµ)

A(E′
min, cµ)

. (20)

This effective area is given in Appendix C.

3.2 Number of events

Let dΦν(Eν , cν)/dEν dcν and dΦ̄ν(Eν , cν)/dEν dcν be the atmospheric neutrino fluxes of
ν = νe, νµ and their antiparticles, with Eν the neutrino energy and cν its zenith angle
(we use the Bartol code [18] of atmospheric neutrino fluxes at the Kamiokande site).
Let dσ(Eν , El, cβ)/dEl dcβ and dσ̄(Eν , El, cβ)/dEl dcβ be the neutrino and antineutrino
charged-current cross sections, which depend on Eν , on the outgoing lepton energy El,
and on the cosine of the scattering angle between the two particles, cβ . In Appendix B, we
discuss in detail the cross sections used in our analysis. The zenith angle of the outgoing
lepton cl, which is the measured quantity, is a function of cν , cβ , and of the azimuthal
angle, φ, of the outcoming lepton in the target rest frame.

Let N0
s,l(c), N

osc
s,l (c) be the expected number of charged-current events in the sample s

(s = sgev, mgev-pc, mgev-fc, thru) for l = e, µ and in the bin in zenith cosine with central
value c, for the no-oscillation (0) and oscillation (osc) hypotheses. For the sgev and mgev
samples, the theoretical prediction is given by:

Nosc
s,l (c) = Ks,l

∫

dEν dcν dEl dcβ dφ Ths(El, cl) (Θ[cl − c + δ] − Θ[cl − c − δ])

∑

ν′=νe,νµ

[

σ(Eν , El, cβ)
dΦν′

dEνdcν
Pν′ν(Eν , cν) + σ̄(Eν , El, cβ)

dΦ̄ν′

dEνdcν
P̄ν′ν(Eν , cν)

]

(21)

for the oscillation hypothesis, with Pν′ν(Eν , cν) and P̄ν′ν(Eν , cν) the oscillation probabil-
ities from flavour ν ′ to flavour ν for neutrinos and antineutrinos respectively. To obtain
N0, take Pν′ν = P̄ν′ν = δν′ν . The Θ functions in Eq. (21) express the constraint that cl

be in the bin with central value c and width 2δ = 0.4, the binning used in SK for the
sgev and mgev samples. Finally, Ks,l are normalization constants, which ensure that the
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total number of events in each sample is the same as in the SK Monte Carlo data for the
non-oscillation hypothesis. By choosing these factors by hand, we skirt the question of
efficiencies for electron or muon detection and for single- or multiple-ring events: all we
need to assume is that they are roughly constant within a given data sample, which we
believe to be the case. We neglect the cross-talk between different samples.

For the flux of through-going muons, we have:

Φosc
thru(c) = Kthru

∫

dφ dcβ dEµdcν dEν Ththru,µ(Eµ, cµ) (Θ[cµ − c + δ] − Θ[cµ − c − δ])

∑

ν′=νe,νµ

[

σ(Eν , Eµ, cβ)
dΦν′

dEνdcν
Pν′νµ

(Eν , cν) + σ̄(Eν , Eµ, cβ)
dΦ̄ν′

dEνdcν
P̄ν′νµ

(Eν , cν)

]

(22)

for the case with oscillations. The width of the zenith angle bins in this sample is 2δ = 0.1.

3.3 Results of the analysis of the SK data

We have performed a χ2 analysis of the oscillation hypothesis in our mass-degenerate
scenario, for both signs of m2, using the full 52 kiloton-year data sample gathered by the
Super-Kamiokande collaboration in 848 days of exposure [19]. The case of negative m2 is
exactly equivalent to the conventional scenario considered in [7], as shown in Section 2.
The measured quantities are the 30 zenith angle bins measured by SK in the five types
of data samples. The choice of an error correlation matrix is non-trivial, as there are
large theoretical uncertainties in the input neutrino flux, which induce large correlations
between the errors in the different measured quantities. We have constructed the error
correlation matrix in the same way as the authors of [7], to whom we refer for details. To
gauge the incidence of these “systematic” errors on the results, we have also performed
the analysis with only statistical uncertainties.

In Fig. 1 we show, in the plane s12–s13 and for several positive values of m2, the
contour lines delimiting the allowed regions at 68.5 and 99% confidence. In Fig. 2 the same
information is displayed for negative m2. The region of maximal mixing in the conventional
parametrization corresponds to values s12 ∼ 1 and s13 ∼ 1/

√
2 of our parametrization.

This region is favoured for the smaller allowed values of m2: the top two rows of Fig. 1. At
the larger values of m2, however, the contours extend largely to a region with significantly
smaller vacuum angles, the oscillation probabilities being enhanced by matter effects.
We draw for comparison the line corresponding to maximal mixing in the perturbative
approximation of Eq. (12), valid for the larger m2 values. The allowed regions at small
angles are close to this line, as expected. At values of m2 smaller than those shown in the
figure, the allowed regions shrink around the conventional maximal-mixing solution.

The minimum χ2 is obtained for |m2| ∼ 3.5 × 10−3 eV2, independently of whether
the errors are taken to be purely statistical, or estimates of flux uncertainties are also
included. This result is in good agreement with that found by the SK collaboration
in a two-family mixing context. We do not find such an agreement on the optimized
mixing angles. The best-fit angles in our parametrization are s2

12 ∼ 0.42 (0.45) and
s2
13 ∼ 0.31 (0.33) for positive (negative) m2, which in the conventional parametrization
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correspond to s̄2
23 = 0.48 (0.48) and s̄2

13 = 0.4 (0.37), not so far from the so-called tri-
maximal mixing model (s2

12 = 1/2, s2
13 = 1/3) [12]. The Chooz data, however, disfavour

these relatively large-m2 and small-angle solutions.

4 Chooz Constraints

The reactor experiment Chooz provides tight upper limits on the ν̄e disappearance prob-
ability in a domain with ∆m2 ≥ 10−3 eV2 [13][14]. This entails very strong strictures on
Pν̄eν̄µ and Pν̄eν̄τ at atmospheric distances.

We have constrained our analysis of atmospheric data to comply with the Chooz results
on the ratio R of observed e+ events to the number expected in the absence of oscillations:

R =

∫

dEν Φ(Eν) σ(Eν) Pν̄eν̄e(Eν)
∫

dEν Φ(Eν) σ(Eν)
, (23)

where Φ(Eν) is the spectrum of neutrinos, obtained by combining, in the appropriate
proportions [14], the decay spectra of the different isotopes in the Chooz reactors [20].
In writing Eq. (23) we have approximated the efficiency as a constant, for lack of better
information. The cross section, σ(Eν), including the threshold effects, has been obtained
from [21]. For the transition probabilities we can use Eq. (6), since matter effects are
completely negligible.

The results of this combined SK–Chooz analysis are shown in Fig. 3 for positive m2.
The results for negative m2 shown in Fig. 4 are very similar. Clearly the Chooz data
favour the conventional maximal-mixing solution as the only acceptable one.

In Fig. 5, we show the minimum χ2 as a function of mass, for positive m2. On the left
we include theoretical flux errors as in [7], while on the right only statistical uncertainties
are taken into account. Reassuringly, the theoretical errors have a small incidence on
the results. In Fig. 6, we show the results for negative m2. For both signs of the mass
difference, the minimum of the χ2 occurs at |m2| = 2–2.5 × 10−3 eV2, which is slightly
smaller than the value obtained in the combined analysis of [7] (|m2| ∼ 2.8 × 10−3 eV2).
Concerning the mixing amplitudes, we find as the best fit for the important [22] [15] angle
θ̄13 –in the conventional parametrization– at θ̄13 = 6o, to be compared to 8o found in [7].
However, the χ2 curve is flat enough for θ̄13 = 0 to be perfectly compatible with the data.

In Figs. 7 and 8 we show the impressive agreement between the SK zenith angle distri-
butions and our best-fit oscillation hypothesis, obtained including the Chooz constraint.

Incidentally, for the trimaximal mixing model we get χ2 = 42 (44) (for 30 degrees of
freedom: 31 data minus one free parameter m2) for positive (negative) m2 at |m2| = 10−3

eV2, a mass value for which the Chooz constraint is inoperative. The χ2 rises rapidly for
larger |m2|. The probability that this model is correct is below 10%.
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5 Conclusions

The neutrino squared mass difference used to explain the atmospheric neutrino anomaly
in terms of oscillations is of the same order of magnitude as that induced by Earth matter
effects, for a typical atmospheric neutrino energy. Triggered by this coincidence, we set
out to study –in a scheme with three neutrinos and in minute detail– whether or not
the large depletion of muon neutrinos observed by SK could be due, not to ab initio

large mixing angles, but to matter-enhanced smaller-angle mixings. Our suspicion turned
out to be correct: the SK data can be very satisfactorily explained with mixing angles
that are far from maximal. But the constraints from Chooz on the survival of electron
antineutrinos disfavour our non-maximal solution. The conclusion that vacuum νµ ↔ ντ

neutrino transition probabilities are nearly maximal may be surprising, but it is here to
stay.
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Appendix A: Oscillation parameters

The exact diagonalization of the mixing matrix in Eq. (7) results in the effective eigen-
mass differences:

∆m2
12 =

1

2

(

m2 − A +
√

(m2 + A)2 − 4 A m2 c2
13 c2

12

)

,

∆m2
23 =

1

2

(

−m2 + A +
√

(m2 + A)2 − 4A m2 c2
13 c2

12

)

, (24)

and in a mixing matrix:

Umat =









−(c12c13 − a+)/b+ 0 (c12c13 − a−)/b−

−s12/b+ s13c12/
√

s2
12 + s2

13c
2
12 s12/b−

−s13c12/b+ −s12/
√

s2
12 + s2

13c
2
12 s13c12/b−









, (25)

where

a± ≡
(

A + m2 ±
√

(m2 + A)2 − 4 A m2 c2
13 c2

12

)

/(2 A c12 c13),

b± ≡
√

1 + a2
± − 2 a± c13 c12 . (26)
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Appendix B: Neutrino cross sections

The proper treatment of neutrino cross sections in water and rock, at energies rang-
ing from 100 MeV to hundreds of GeV, is an arduous art. We do not attempt an
elegant and complete analysis. Instead, we use a treatment that –notwithsanding its
oversimplifications– is capable of reproducing to an adequate level the observed total
cross sections and scattering angle distributions, which are the ingredients needed for the
data analysis.

We simplify the neutrino cross sections in water by considering only oxygen as a target,
an isoscalar nucleus for which we ignore shadowing, but not Fermi-motion effects, which
we treat as in [23]. We also neglect the muon mass. As the SK experimenters do, we build
a cross section out of three dominant contributions: quasi-elastic (νlN → lN ′), resonant
one-pion production, and “deep” inelastic. In so doing we ignore the small contribution
of the “diffractive” domain of relatively high energy, low Q2.

For the quasi-elastic cross section we use the standard expression reviewed in [23], with
MA = 1.0 GeV for the mass describing the axial form factor. For one-pion production
we use Eq. (22) of [24] for the excitation of the N∗(1236) resonance of spin and isospin
3/2. We assume that these contributions saturate the cross section for an invariant mass
of the final hadrons W ≤ 1.4 GeV. Above that value we use a deep-inelastic cross section
with an exact Callan-Treiman constraint F2 = 2xF1. For the structure functions F2 and
F3 we use the compilation of [25]. As an excuse to extend this deep inelastic cross section
to values of Q2 as low as 0.4 GeV2, we use ξ-scaling. This is known to deal correctly with
the higher-twist target-mass corrections [26] and to interpolate the resonant contributions
in the sense of local duality [27]. Alas, the structure functions are not extracted from
the data using ξ-scaling. But the authors of [28] have shown that, at least in the case of
electroproduction, a blind a posteriori use of ξ-scaling improves the fit to the lower Q2 data
(their prescription consists in using the Bjorken-scaling cross-section expressions [4] and
the structure functions extracted at higher Q2, with the simple and not fully consistent a
posteriori substitution x → ξ in the argument of the structure functions).

In Fig. 9, we plot σ
TOT

(Eν) as a function of Eν for neutrinos and antineutrinos. The
curves are a bit below the available data at low energies, no doubt reflecting the absence of
a calculated diffractive contribution. The SK collaborators, as well as many other authors,
extend the structure functions down to Q2 = 0, thereby obtaining a slightly better “fit”
to the σ

TOT
data. Rather than indulging in this inconsistent use of the deep inelastic

structure functions, we have checked that our results on neutrino-mixing parameters are
insensitive to this kind of variations of the input.

An important quantity in the zenith angle analysis is the average scattering angle
between the lepton and the parent neutrino. In Fig. 10, we show the average angle for
quasi-elastic events as a function of the lepton energy. This curve is in perfect agreement
with that obtained by the SK collaboration [29, 30].

Appendix C: Geometrical acceptances

The SuperKamiokande detector is a cylinder of height H = 36.2 m and radius R = 16.9
m, of fiducial volume V = π (R − 2 m)(H − 4 m). Let a point within the detector be
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labelled by y, the height from the bottom plane; z, the distance from the axis; and x, a
third cartesian coordinate. Let d(x, y, z) be the minimum distance from a point in the
detector to its wall, let sµ, cµ, tµ be the sine, cosine and tangent of the muon’s azimuthal
angle and let Emin = 0.7 GeV be the energy of a muon giving a 2.6 m track in water.

We find:

FC(Eµ, cµ) =
2

V

∫ R

0
dz

∫ 2
√

R2−z2

0
dx

∫ H

0
dy Θ[d(x, y, z) − 2m]

{

Θ
[

2
√

R2 − z2 − x − y |tµ|
]

Θ [y − Rw(Eµ) |cµ|]

+ Θ
[

2
√

R2 − z2 − x − Rw(Eµ) |sµ|
]

Θ
[

y |tµ| + x − 2
√

R2 − z2|
]

}

(27)

PC(Eµ, cµ) =
2

V
Θ[Rw(Eµ) − Rw(Emin)]

∫ R

0
dz

∫ 2
√

R2−z2

0
dx

∫ H

0
dy

Θ[d(x, y, z) − 2m]

{

Θ
[

2
√

R2 − z2 − x − y |tµ|
]

Θ [Rw(Eµ) |cµ| − y]

+ Θ
[

Rw(Eµ) |sµ| − 2
√

R2 − z2 + x
]

Θ
[

y |tµ| + x − 2
√

R2 − z2|
]

}

(28)

where the range of muons in water that we use, Rw(Eµ), can be obtained from the ex-
pressions in [4].

A muon produced with energy Eµ, after travelling a distance l in rock material, has
an energy E′

µ = R−1
r [Rr(Eµ)− l]; its remaining range in water is lw(Eµ, l) = Rw(E′

µ). The
effective area for through-going muons of Eq. (20) is then given by

A(Eµ, cµ) =
2

Rr(Eµ) − Rr(E′
min)

∫ Rr(Eµ)−Rr(E′

min
)

0
dl

∫ R

0
dz

{

|sµ|
∫ H

0
dy Θ

[

lw(Eµ, l) − Min

(

2
√

R2 − z2

|sµ|
,
[H − y]

|cµ|

)]

Θ

[

Min

(

2
√

R2 − z2

|sµ|
,
[H − y]

|cµ|

)

− 7m

]

+ |cµ|
∫ 2

√
R2−z2

0
dx Θ

[

lw(Eµ, l) − Min

(

2
√

R2 − z2 − x

|sµ|
,

H

|cµ|

)]

Θ

[

Min

(

2
√

R2 − z2 − x

|sµ|
,

H

|cµ|

)

− 7m

]}

, (29)

where for the range of muons in rock Rr(Eµ), we have used the results in [17].

All of the above expressions can be integrated explicitly, but the analytical results are
not brief, or useful.
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Appendix D: Comparison with the SK Monte Carlo

We have not included in this analysis any non-geometrical detection efficiencies, as
discussed in Section 3. We have normalized the number of events in each data sample
to the corresponding number in the SK Monte Carlo for the non-oscillation hypothesis.
This is tantamount to the use of an efficiency function which is not a function of energy
within each sample. A non-trivial check that this is indeed a sensible approximation is to
compare the parent neutrino energy distributions in the different data samples with those
worked out by the SK team. These distributions are defined as the azimuthally averaged
neutrino flux weighted with the integrated neutrino cross section and with the selection
function for the various sgev and mgev data samples:

Ps,l(Eν) ∝
∫

dcν dEl dcβ dφ Ths,l(El, cl)

[

σ(Eν , El, cβ)
dΦν

dEνdcν
+ σ̄(Eν , El, cβ)

dΦ̄ν

dEνdcν

]

.

All of the symbols in this expression have already been defined. Our results, shown in
Figs. 11 and 12, are in good agreement with those obtained by SK [31].

In Figs. 13 and 14 we compare the zenith angle dependence obtained in our calculation
for the non-oscillation hypothesis with the predictions of the SK Monte Carlo [30]. The
agreement is again rather good.
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Figure 1: 68.5, 99% CL intervals allowed by SK data alone, for different values of m2.

Figure 2: The same as Fig. 1, but for negative m2.
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Figure 3: 68.5, 99% CL intervals allowed by SK and Chooz data for different values of m2.

Figure 4: The same as Fig. 3 but for negative m2.
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Figure 5: Minimum χ2 as a function of m2. The solid line corresponds to SK+Chooz
data, while the dashed line includes only SK data. The curves on the left plot include
theoretical uncertainties as in [7], while the one on the right includes only statistical errors.
The horizontal lines correspond to 99% CL intervals for three degrees of freedom.

Figure 6: The same as Fig. 5 but for negative m2.
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Figure 7: Zenith angle distributions of e and µ SuperKamiokande samples (squares) com-
pared with the best-fit oscillation hypothesis: m2 = 2 × 10−3 eV2 and close to maximal
mixing. The errors shown are only statistical.

Figure 8: Zenith angle distribution of through-going muons (squares) compared with the
best fit oscillation hypothesis: m2 = 2 × 10−3 eV2 and close to maximal mixing.
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Figure 9: Total cross section over neutrino energy for ν and ν̄ charged-current scattering
on an isoscalar target.

Figure 10: Average scattering angle between the parent neutrino and the lepton for quasi-
elastic events.
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Figure 11: Parent ν energies for µ-like (sgev, FC-mgev, PC-mgev) and e-like (sgev and
mgev) events.

Figure 12: Parent ν energies for through-going muons.
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Figure 13: Zenith-angle distributions of e, µ sgev and mgev samples. The squares are the
SK Monte Carlo results and the circles are our predictions, both for the no-oscillation
hypothesis. The total areas under the curves are normalized to be the same.

Figure 14: Zenith-angle distributions of through-going muons for the non-oscillation hy-
pothesis. The squares are SK Monte Carlo results and the circles are our predictions.
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