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Abstract

We present the results of a numerical calculation of semi-leptonic form
factors relevant for heavy flavour meson decays into light mesons. The
results have been obtained by studying two- and three-point correlation
functions at β = 6.4 on a 243 × 60 lattice, using the Wilson action in the
quenched approximation.
From the study of the matrix element < K−|Jµ|D0 > we obtain f+

K(0) =
0.65 ± 0.18. From the matrix element < K̄∗0|Jµ|D+ > we obtain V (0) =
0.95 ± 0.34, A1(0) = 0.63 ± 0.14 and A2(0) = 0.45 ± 0.33. We also obtain
A1(q

2
max) = 0.62 ± 0.09, V (0)/A1(0) = 1.5 ± 0.28 and A2(0)/A1(0) =

0.7 ± 0.4. The results for f+

K(0), V (0) and A1(0) are consistent with the
experimental data and with previous lattice determinations with larger
lattice spacings. In the case of A2(0) the errors are too large to draw any
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firm conclusion. We also show, with the help of the heavy quark effective
theory (HQET), that it is possible to extrapolate the form factors to the
B meson. Our calculations show that the form factors follow a behaviour
compatible with the predictions from HQET. Within large uncertainties,
our results suggest that A2/A1 increases with the heavy quark mass. For B
mesons A2/A1 can be as large as 1.5-2.0. We also get very rough estimates
for the partial decay widths Γ(B → πlνl) = |Vub|2(12 ± 8) × 1012s−1 and
Γ(B → ρlνl) = |Vub|2(13± 12)× 1012s−1, which can be used to give upper
bounds on the rates.



1 Introduction

Semi-leptonic decays of heavy-light mesons have attracted considerable interest
in the past years as they play a crucial role in the determination of the Cabibbo-
Kobayashi-Maskawa mixing matrix and in the understanding of weak decays.
Moreover, the study of the dependence of the form factors on the heavy quark
mass checks the validity of the scaling laws, predicted by the heavy quark effective
theory, in the range of masses corresponding to D and B mesons.

There is increasing evidence, that lattice QCD allows ab initio quantitative
predictions of weak decay matrix elements[1]. Exclusive semi-leptonic decay chan-
nels of heavy flavour mesons have been studied in a series of papers[2]-[6], at a
lattice resolution of a−1 ∼ 2 − 3 GeV. In order to improve the control over dis-
cretization errors, we present here a study on pseudoscalar-pseudoscalar as well
as pseudoscalar-vector weak form factors, on a lattice 243 ×60, at β = 6.4, which
corresponds to a−1 ≃ 3.6− 3.7 GeV. This is a continuation of our recent work[8]
on the leptonic decay constants.

The main results of the present study are given in the abstract and in tables 9,
10 and 12. These results have been obtained by extrapolating the matrix elements
in momentum transfer, in the light and heavy quark masses. We have included in
tables 1-8 all the numbers obtained from the direct study of the two- and three-
point correlation functions, computed at several values of KW . These tables may
be useful to check our results. We also give the details of the extrapolation, in
order to allow the reader to reproduce the form factors in table 9 from the meson
masses and the form factors of tables 1-8. In section 3.2 we show that it is possible
to extrapolate the form factors to the B meson using the Heavy Quark Effective
Theory (HQET). In this way one can get also informations on the corrections to
the infinite mass limit. Due to large statistical errors, we are only able to give a
rough estimate for the branching ratios of the processes B → π and B → ρ.

2 Description of the Calculation

2.1 Lattice Setup

We work with the standard Wilson action at β = 6.4 for the gauge fields and
the quark propagators[9], in the quenched approximation. We have generated 15
independent gauge field configurations on a 243 × 30 lattice, separated by 500-
1600 sweeps, using the overrelaxed algorithm[10]. The 15 configurations were
produced in groups of 5, with three independent initial conditions. In each of
the three cases the first of the useful configurations was obtained after an initial
thermalization of at least 3000 sweeps ( 500 with the Metropolis algorithm and
2500 with the overrelaxed algorithm ).

On each configuration we have computed the quark propagators for 7 different
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values of the Wilson hopping parameter KW , corresponding to “heavy” quarks,
KH = 0.1275, 0.1325, 0.1375, 0.1425, and “light” quarks, KL = 0.1485, 0.1490
and 0.1495. Periodic boundary conditions on a 243×60 lattice have been imposed
in the calculation of the quark propagators, by using appropriate combinations of
periodic and antiperiodic (in the time direction) quark propagators calculated on
a 243×30 lattice[11]. Further details on the lattice calibration, fitting procedures,
mass spectrum, extraction of matrix elements of local operators between the
vacuum and meson states, e.g. < MP |Q̄γ5q|0 >, can be found in ref.[8].

2.2 Form Factor Evaluation

From the study of three-point correlation functions [2]-[6], one extracts the weak
current matrix elements for a given momentum transfer:

< K|Jµ|D >=
(

pD + pK − M2
D − M2

K

q2
q
)

µ
f+

K(q2) +
M2

D − M2
K

q2
qµf 0

K(q2) (1)

< K∗
r |Jµ|D > = eβ

r

[ 2V (q2)

MD + MK∗

ǫµγδβpγ
Dpδ

K∗ + i(MD + MK∗)A1(q
2)gµβ

− i
A2(q

2)

MD + MK∗

Pµqβ + i
A(q2)

q2
2MK∗qµPβ

]

, (2)

where q is the momentum transfer, q = pD − pK or q = pD − pK∗, P = pD + pK∗

and eβ
r is the polarization vector of the K∗. f+,0

K , V , A1,2 and A are dimensionless
form factors in the helicity basis, see for example [3]. From the matrix elements
(1) and (2), by varying the Lorentz component of the current, the meson momenta
and the K∗ polarization, one can extract the form factors.

In the following we give those details of the calculation which are specific to
semi-leptonic decays and cannot be found in ref.[8].

The matrix elements have been computed for a D meson at rest using a
pseudoscalar density as source, at a time distance (tD − tK,K∗)/a = 28. The
position of the light meson source is fixed in the origin and we have varied the
time position (in the interval tJ/a = 12 − 16) and the momentum of the weak
current. For the K-source we have also used the pseudoscalar density and for
the K∗ the local vector current. For the weak axial current we have chosen the
local operator ZAQ̄(x)γµγ5q(x), while for the weak vector current we have used
both the local (ZV Q̄(x)γµq(x)) and the “conserved ” currents3. ZA and ZV are
the renormalization constants of the axial and vector current respectively[12, 13].
The values quoted for the form factors are based on the choice ZA = 0.88 and
ZV = 0.84[14]-[16] which will be justified below.

The two- and three-point correlation functions have been computed for differ-
ent spatial momenta which are allowed by the lattice discretization and volume.

3 The latter would be conserved on the lattice in the limit of degenerate quark masses[12, 13].
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K1 = K2 momentum E5 Ē5 Z5 × 103

0, 0, 0 0.27(1) 0.27(1) 3.9(0.3)
0.1485 1, 0, 0 0.39(2) 0.38(1) 5.7(1.6)

1, 1, 0 0.41(4) 0.46(1) 2.5(1.6)
0, 0, 0 0.23(1) 0.23(1) 3.3(0.3)

0.1490 1, 0, 0 0.37(3) 0.35(1) 5.4(2.5)
1, 1, 0 0.37(5) 0.44(1) 1.7(1.3)
0, 0, 0 0.19(1) 0.19(1) 2.9(0.4)

0.1495 1, 0, 0 0.36(5) 0.33(1) 5.3(5.2)
1, 1, 0 0.32(5) 0.42(1) 1.1(0.9)

Table 1: Pseudoscalar meson masses and energies in lattice units and Z5 from a
fit to two-point correlations at different momenta and quark masses. The mesons
are composed of two degenerate light quarks, and the Wilson parameter is given
in the first column.

By defining ~pK,K∗ = 2π/(La) × (nx, ny, nz), with L = 24, we have used for ~pK,K∗

the following assignments (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), ...,
(2, 0, 0), ..., and (1, 1, 1). We have combined different correlation functions which
can be related by the spatial orthogonal group and parity. In all we have five
independent momenta which in the following we will denote by (0, 0, 0), (1, 0, 0),
(2, 0, 0), (1, 1, 0) and (1, 1, 1).

Large momenta in lattice units imply large systematic errors. In order to
monitor lattice artefacts at large momenta, we have fitted the light pseudoscalar
meson two-point functions to the asymptotic form (at large time distances):

G5(t, ~p) =
∑

~x

ei~p·~x < P5(~x, t)P †
5 (~0, 0) >

→ Z5

e−E5T/2

E5

cosh
(

E5(t − T/2)
)

, (3)

where P5 = q̄(x)γ5q
′(x), T is the time lattice length and E5 the meson energy.

The corresponding formula for the vector meson can be easily derived:

Gij(t, ~p) =
∑

~x

ei~p·~x < Vi(~x, t)V †
j (~0, 0) >→

(

−gij +
pipj

M2
V

)

ZV V
e−EV T/2

EV
cosh

(

EV (t − T/2)
)

, (4)

where Vi = q̄(x)γiq
′(x).

An estimate of the lattice effects is obtained from a comparison of E5, obtained

from eq.(3), with Ē5 =
√

M2
5 + ~p2, where M5 is the value of E5 found from
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K1 = K2 momentum EV ĒV ZV V × 103

0, 0, 0 0.33(1) 0.33(1) 1.5(2)
0.1485 1, 0, 0 0.42(1) 0.42(1) 1.6(2)

1, 1, 0 0.51(1) 0.49(1) 2.1(5)
0, 0, 0 0.30(1) 0.30(1) 1.2(1)

0.1490 1, 0, 0 0.40(1) 0.40(1) 1.3(2)
1, 1, 0 0.50(2) 0.48(1) 2.0(6)
0, 0, 0 0.27(1) 0.27(1) 0.9(1)

0.1495 1, 0, 0 0.38(1) 0.38(1) 1.1(2)
1, 1, 0 0.51(2) 0.46(1) 2.3(8)

Table 2: Vector meson masses and energies in lattice units and ZV V from a fit
to two-point correlations at different momenta and quark masses. The mesons
are composed of two degenerate light quarks, and the Wilson parameter is given
in the first column.

a fit at ~p = 0. Moreover the values of Z5 obtained by fitting the two-point
functions at different momenta should be consistent (similarly for vector mesons).
In analyzing the two-point correlation functions, we found that for (1, 1, 1) and
(2, 0, 0) the results are too noisy with the present statistics and therefore they
have not been used. In tables 1 and 2 we report, for different light quark masses,
E5 (EV ) and Z5 (ZV V ) as obtained using the fit in eq.(3) (eq.(4)), as well as Ē5

(ĒV ). The results reported in tables 1 and 2 have been obtained by fitting the
two-point functions in the interval 12 ≤ t/a ≤ 20 Tables 1 and 2 show that for
the momenta (1, 0, 0) and (1, 1, 0) the continuum energy-momentum relation is
satisfied within large statistical fluctuations. The statistical error increases as
one approaches to the chiral limit and the agreement appears to be better for the
vector meson than for the pseudoscalar one. We believe that this is due to our
limited statistics.

In order to extract the current matrix elements from the three-point functions
several approaches may be followed. We have used two different methods denoted
in the following by “analytic” and “ratio”. To be specific, we only explain these
methods in the case of < K|Jµ|D >. The three-point correlation function is given
by:

Cµ(tx, ty) =
∑

~x,~y

< 0|T
[

P K
5 (~0, 0)Jµ(~x, tx)P

†D
5 (~y, ty)

]

|0 > ei~q·~x+i~pD·~y

→
√

ZK
5 ZD

5

4EK
5 ED

5

< K(~pD + ~q)|Jµ|D(~pD) > e−EK
5
|tx|−ED

5
|ty−tx| (5)

at large time distances. In eq.(5), P K
5 (P †D

5 ) is the pseudoscalar density used to
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annihilate (create) a K meson (D meson) and EK,D
5 the corresponding energies4.

The matrix element can be isolated from the ratio:

R =
Cµ(tx, ty)

GK
5 (tx, ~q + ~pD)GD

5 (ty − tx, ~pD)
×

√

ZK
5 ZD

5 →< K|Jµ|D > (6)

where GK,D
5 are the analog of G5 defined in eq.(3).

The two methods to extract the matrix elements are as follows:

• “analytic”: in the denominator of eq.(6), we use the analytic expression
of GK,D

5 given in eq.(3), with Z5 and Ē5 (computed from the meson mass)
taken from the fit to the two-point function at zero momentum.

• “ratio”: we divide the three-point correlation function by the two-point
correlation functions with appropriate momenta averaged over the same

configurations. We then multiply the result by the factor
√

ZK
5 ZD

5 where

ZK
5 and ZD

5 are obtained from the fit at zero momentum to the two-point
functions corresponding to the D and K propagators.

With large time distances and a high statistics the two methods should agree, up
to O(a) effects. Our limited statistics gives fluctuations in the energy-momentum
relations, in addition to these O(a) effects. Therefore the two methods may
yield slighlty different results and we will take into account the differences in the
evaluation of the final error, see below. We report in tables 3 and 4 the form
factors for our set of light and heavy quark masses, from the analytic method
and using the conserved vector current.

We are interested in the form factors at different q2, for quark masses corre-
sponding to the physical D and K (π) mesons. Thus we have to extrapolate the
form factors reported in tables 3 and 4, both in mass and momentum. We have
proceeded as follows:

i) At fixed heavy quark mass and light meson momentum, ~pK,K∗, the generic
form factor F (F = f+, A1 ,...) has been extrapolated linearly in the light quark
mass to values corresponding to the strange (D → K, K∗) or massless (D → π, ρ)
quarks. In ref.[4], it was shown that SU(3) symmetry breaking effects are very
small, i.e. that a linear dependence of the type:

F = α + β(
1

K1

+
1

K2

) (7)

describes well the behaviour of F as a function of the light quark mass (m1,2
q =

1/2 a × (1/K1,2 − 1/Kcr)). In eq.(7) K1 and K2 correspond to the masses of the
final and spectator quarks respectively. Thus the form factors extrapolated to
the strange and light quark masses, F K and F π, read F K = α+β(1/Ks +1/Kcr)

4We recall that all our calculations have been done with ~pD = 0.
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K1, K2 ~p q2a2 f+(q2) f 0(q2)
0.1275 0, 0, 0 0.296(4) − 0.91(8)
0.1485 1, 0, 0 0.123(3) 0.81(8) 0.74(7)

1, 1, 0 -0.010(2) 0.76(17) 0.77(17)
0.1275 0, 0, 0 0.325(5) − 0.90(9)
0.1490 1, 0, 0 0.137(3) 0.82(11) 0.73(9)

1, 1, 0 -0.003(3) 0.82(21) 0.83(21)
0.1275 0, 0, 0 0.361(7) − 0.91(11)
0.1495 1, 0, 0 0.151(4) 0.82(17) 0.71(13)

1, 1, 0 0.005(3) 0.97(26) 0.97(26)
0.1325 0, 0, 0 0.186(3) − 0.93(8)
0.1485 1, 0, 0 0.037(2) 0.79(7) 0.76(7)

1, 1, 0 -0.078(1) 0.74(17) 0.80(16)
0.1325 0, 0, 0 0.208(4) − 0.92(10)
0.1490 1, 0, 0 0.046(2) 0.78(10) 0.74(9)

1, 1, 0 -0.074(2) 0.79(21) 0.87(21)
0.1325 0, 0, 0 0.236(6) − 0.93(11)
0.1495 1, 0, 0 0.056(3) 0.78(15) 0.73(13)

1, 1, 0 -0.069(2) 0.94(26) 1.03(28)
0.1375 0, 0, 0 0.097(2) − 0.95(9)
0.1485 1, 0, 0 -0.027(1) 0.75(7) 0.78(7)

1, 1, 0 -0.122(1) 0.70(17) 0.83(16)
0.1375 0, 0, 0 0.112(3) − 0.95(10)
0.1490 1, 0, 0 -0.021(1) 0.73(9) 0.76(9)

1, 1, 0 -0.120(1) 0.75(21) 0.92(22)
0.1375 0, 0, 0 0.132(4) − 0.95(11)
0.1495 1, 0, 0 -0.015(2) 0.72(13) 0.74(14)

1, 1, 0 -0.118(1) 0.89(26) 1.10(31)
0.1425 0, 0, 0 0.033(1) − 0.97(9)
0.1485 1, 0, 0 -0.063(-) 0.69(7) 0.79(8)

1, 1, 0 -0.137(-) 0.65(17) 0.88(17)
0.1425 0, 0, 0 0.042(1) − 0.96(10)
0.1490 1, 0, 0 -0.061(-) 0.66(8) 0.77(10)

1, 1, 0 -0.137(-) 0.68(21) 0.98(25)
0.1425 0, 0, 0 0.053(2) − 0.96(11)
0.1495 1, 0, 0 -0.059(1) 0.62(11) 0.75(15)

1, 1, 0 -0.137(-) 0.80(27) 1.16(40)

Table 3: Pseudoscalar → pseudoscalar form factors for different momenta and
quark masses using the “analytic” method. The values reported in the table have
been obtained using the “conserved” current. Errors denoted by (-) are smaller
than the figures reported in the table. We also give the squared momentum transfer
in lattice units.
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K1, K2 ~p q2a2 V (q2) A1(q
2) A2(q

2) A(q2)
0.1275, 0, 0, 0 0.237(6) − 0.61(6) − −
0.1485 1, 0, 0 0.088(4) 0.80(7) 0.52(4) 0.43(12) 0.09(3)

1, 1, 0 -0.035(3) 0.61(15) 0.47(15) 0.36(34) -0.04(3)
0.1275, 0, 0, 0 0.254(8) − 0.59(6) − −
0.1490 1, 0, 0 0.096(5) 0.77(10) 0.51(5) 0.45(16) 0.12(5)

1, 1, 0 -0.030(3) 0.59(18) 0.44(20) 0.30(42) -0.03(3)
0.1275, 0, 0, 0 0.272(9) − 0.56(7) − −
0.1495 1, 0, 0 0.105(5) 0.76(16) 0.52(8) 0.51(26) 0.17(8)

1, 1, 0 -0.025(4) 0.56(24) 0.37(28) 0.19(57) -0.03(4)
0.1325, 0, 0, 0 0.139(5) − 0.66(6) − −
0.1485 1, 0, 0 0.011(3) 0.82(7) 0.56(5) 0.43(12) 0.013(7)

1, 1, 0 -0.095(2) 0.62(16) 0.50(16) 0.34(31) -0.12(9)
0.1325, 0, 0, 0 0.152(5) − 0.64(7) − −
0.1490 1, 0, 0 0.016(3) 0.79(10) 0.55(6) 0.44(16) 0.02(1)

1, 1, 0 -0.092(2) 0.58(19) 0.47(21) 0.29(39) -0.12(12)
0.1325, 0, 0, 0 0.165(7) − 0.60(8) − −
0.1495 1, 0, 0 0.022(4) 0.78(17) 0.56(9) 0.48(25) 0.04(2)

1, 1, 0 -0.089(2) 0.55(24) 0.39(31) 0.16(53) -0.11(16)
0.1375, 0, 0, 0 0.064(3) − 0.71(7) − −
0.1485 1, 0, 0 -0.042(1) 0.84(8) 0.59(5) 0.43(10) -0.06(2)

1, 1, 0 -0.130(6) 0.62(17) 0.53(16) 0.32(27) -0.19(14)
0.1375, 0, 0, 0 0.072(4) − 0.69(7) − −
0.1490 1, 0, 0 -0.039(2) 0.81(11) 0.58(7) 0.43(15) -0.07(3)

1, 1, 0 -0.129(1) 0.57(20) 0.50(22) 0.26(35) -0.19(19)
0.1375, 0, 0, 0 0.081(5) − 0.64(8) − −
0.1495 1, 0, 0 -0.036(2) 0.79(17) 0.59(10) 0.43(23) -0.08(4)

1, 1, 0 -0.128(1) 0.51(24) 0.41(32) 0.10(48) -0.18(27)
0.1425, 0, 0, 0 0.015(1) − 0.75(8) − −
0.1485 1, 0, 0 -0.068(2) 0.87(9) 0.62(6) 0.41(8) -0.13(5)

1, 1, 0 -0.135(-) 0.61(18) 0.56(17) 0.27(22) -0.26(18)
0.1425, 0, 0, 0 0.019(2) − 0.72(8) − −
0.1490 1, 0, 0 -0.067(-) 0.81(12) 0.61(8) 0.39(12) -0.15(6)

1, 1, 0 -0.136(-) 0.53(21) 0.52(22) 0.20(28) -0.26(24)
0.1425, 0, 0, 0 0.023(2) − 0.67(9) − −
0.1495 1, 0, 0 -0.066(1) 0.78(18) 0.60(11) 0.36(19) -0.17(10)

1, 1, 0 -0.136(-) 0.43(25) 0.40(33) 0.02(40) -0.21(35)

Table 4: Pseudoscalar → vector form factors for different momenta and quark
masses using the “analytic” method. The values reported in the table have been
obtained using the “conserved” current. We also give the squared momentum
transfer in lattice units.
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K1 K2 aM5 aMV aMA aMS

0.1275 0.1485 0.813(4) 0.822(4) 0.94(2) 0.91(2)
0.1275 0.1490 0.804(4) 0.812(4) 0.93(3) 0.90(3)
0.1275 0.1495 0.794(5) 0.803(5) 0.92(3) 0.90(4)
0.1275 Ks 0.795(6) 0.803(6) 0.92(3) 0.90(4)
0.1275 Kcr 0.773(6) 0.783(5) 0.91(5) 0.88(6)
0.1325 0.1485 0.700(4) 0.712(4) 0.83(2) 0.81(3)
0.1325 0.1490 0.689(4) 0.702(4) 0.83(3) 0.80(3)
0.1325 0.1495 0.679(5) 0.693(5) 0.82(4) 0.79(5)
0.1325 Ks 0.680(6) 0.693(6) 0.82(4) 0.79(5)
0.1325 Kcr 0.657(6) 0.672(6) 0.81(5) 0.77(7)
0.1375 0.1485 0.580(4) 0.598(5) 0.73(3) 0.69(3)
0.1375 0.1490 0.569(4) 0.588(5) 0.72(3) 0.68(4)
0.1375 0.1495 0.558(5) 0.578(5) 0.72(4) 0.67(6)
0.1375 Ks 0.558(6) 0.578(7) 0.72(4) 0.67(5)
0.1375 Kcr 0.533(6) 0.556(6) 0.71(6) 0.65(8)
0.1425 0.1485 0.450(4) 0.479(5) 0.63(3) 0.56(4)
0.1425 0.1490 0.438(4) 0.468(6) 0.62(4) 0.55(5)
0.1425 0.1495 0.425(5) 0.457(6) 0.62(5) 0.54(7)
0.1425 Ks 0.425(6) 0.457(8) 0.62(5) 0.54(7)
0.1425 Kcr 0.396(5) 0.433(7) 0.60(7) 0.51(10)

Table 5: Pseudoscalar (M5), vector (MV ), axial (MA) and scalar (MS) meson
masses for mesons composed of heavy-light quarks (dimensionless units).
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and F π = α+2β/Kcr, where Ks = 0.1495(1) is the value of the Wilson parameter
for the strange quark and Kcr = 0.1506(1) the critical one. The value of Kcharm

corresponding to the charmed quark is 0.1379(11)5.
ii) Next we have extrapolated F K,π in the mass of the heavy quark according

to the expression:

F K,π = A +
B

MP

, (8)

where MP is the mass of the heavy meson. At each value of ~pK,K∗, we have also
extrapolated in 1/MP to the D and B mesons using the dependence expected in
the heavy quark effective theory (HQET)[17], see eq.(11) below. The difference of
the results obtained with the two methods are discussed later on. For D decays,
we have verified that extrapolating in a different order, e.g. first in q2, then in
the light quark mass, and finally in the heavy quark mass, leads to very similar
results, within the statistical errors.

iii) To obtain the form factors at q2 = 0, we have extrapolated the form
factors at ~pK,K∗ = (1, 0, 0) (which in many cases corresponds to the smallest q2,
cf. tables 3 and 4) by assuming meson dominance:

F (q2) =
F (0)

1 − q2/M2
t

, (9)

where F can be f+, V , A1 etc. and Mt is the mass of the lightest meson exchanged
in the t-channel. Thus the vector, scalar and axial scalar meson masses have been
used for the extrapolation of f+ and V , f 0 and A1,2 respectively. Mt is computed
on the lattice, over the same configurations, at the same heavy and light quark
masses used for the three-point functions. In table 5 we report, in lattice units,
the heavy-light pseudoscalar, vector, scalar and axial masses used in the present
analysis, at different values of the Wilson parameters. In table 6 we also report
the physical masses as extrapolated from the values given in table 5. To the
results in table 6 we add MDs

−MDd
= (93±6) MeV and MBs

−MBd
= (75±12)

MeV 6. In doing the extrapolation from small q2’s to q2 = 0, the precise value of
Mt is relatively unimportant. For example we have verified that by using in all
cases the vector meson mass, the results change by about 5%.

In order to show the q2 dependence of the different form factors and to com-
pare it with the meson dominance hypothesis, we display in figs.1 the various form

5The errors given here are slighty different from those on ref.[8] where the time interval 14-24
was used for the fits of the two-point functions. In the present study we find a−1 = 3.6(2) GeV
instead of 3.7(2) as in ref.[8]. For the heavy-light mesons the interval 14− 24 is probably more
appropriate, but we have checked that the difference for the form factors is immaterial given
the statistical errors of the results.

6In ref.[8] were we used a time interval more apropriate to spectroscopy, we found MDs
−

MDd
= (86 ± 5) MeV and MBs

− MBd
= (62 ± 7) MeV. Using a improved action[18] in the

static limit it has been found MBs
− MBd

= (76 ± 10) MeV. These values can be compared to
the experimental results MDs

− MDd
= (99.9 ± 0.7) MeV[19] and MBs

− MBd
∼ (96.3 ± 4.8)

MeV obtained from MBs
= 5374.9± 4.4 MeV[20] and MBd

= 5278.6± 2.0 MeV[19].
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MD∗ MD∗∗ 1++ MD∗∗ 0++ MDs
∗ MDs

∗∗ 1++ MDs
∗∗ 0++

1.95 ± 0.01 2.50 ± 0.22 2.30 ± 0.28 2.04 ± 0.02 2.55 ± 0.16 2.38 ± 0.19

MB∗ MB∗∗ 1++ MB∗∗ 0++ MBs
∗ MBs

∗∗ 1++ MBs
∗∗ 0++

5.27 ± 0.01 5.66 ± 0.15 5.61 ± 0.17 5.31 ± 0.02 5.72 ± 0.10 5.68 ± 0.11

Table 6: Masses in GeV predicted from the lattice for the vector, axial and scalar
excitations of the D and B mesons (remember that the pseudoscalar masses MD

and MB are used as an input). These masses have been used in several occasions,
as mentioned in the text, to extrapolate the form factors at q2 = 0.

factors. They are shown as a function of the dimensionless variable q2/M2
t , for

KH = 0.1375 and KL = 0.1495, which corresponds to the meson masses closest
to the physical ones for D → K, K∗ decays. For any given form factor, Mt is the
lattice meson mass appropriate for that particular channel. In the figures we have
also included the points corresponding to a final meson with momenta (1, 1, 0)
and (2, 0, 0). These points are reported for completeness but, given the extremely
large systematic effects, they have never been used in the analysis. These figures
show that the behaviour is compatible with meson dominance, at least in the
range of masses and q2 explored in our simulation. It is unknown whether the
meson dominance will remain valid when we extrapolate to B decays, since the
range of q2 extends much further away from the pole in that case. Notice that
in ref.[21], using QCD sum rules, it was found that the axial form factors do not
follow the behaviour expected on the basis of the meson dominance.

2.3 Main Systematic Effects

Before we proceed to the physics of B and D meson decays let us summarize and
discuss the main sources of systematic effects, besides “quenching”, present in
our calculation:

a) renormalization constants: the perturbative calculation is not unique in the
sense that one has freedom in choosing the appropriate expansion parameter. It
has been suggested that the bare coupling constant g2

0 = 6/β is not very suitable
and that it should be replaced by an effective coupling g2

eff [22]-[24]. In our case,
using the recipe of ref.[23, 24], g2

eff/g
2
0 turns out to be ∼ 1.59, which leads, using

the formulae of refs.[14]-[16], to ZV = 0.75 and ZA = 0.84. The reliability of these
estimates can be tested by the non-perturbative ratios (see also ref.[25, 26]):

ZV =
< α|V C

µ |β >

< α|V L
µ |β >

, (10)

where V L,C are the local and conserved currents respectively. In our simulation,
we found values of ZV which vary between 0.66 and 0.95 depending on the matrix
element, see table 7. This range of values reflects uncertainties which have been
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Figure 1: We show an example of the q2 behaviour of the form factors. We
have chosen for the light and heavy Wilson parameters K=0.1495 and 0.1375
respectively. In each plot the two points furthest to the left (corresponding to
the momentum assignment (1,1,1) and (2,0,0)) are only shown for the sake of
illustration. We have never used them in the fits due to their large systematic
and statistical errors. The curves correspond to the nearest pole dominance ap-
proximation with the mass Mt of the relevant meson taken from table 5 and the
numerator taken to fit the point closest to q2 = 0 i.e. the momentum assignment
(1,0,0).

interpreted as O(a) effects[27] and shown to be much smaller with the use of
an “improved” action à la Symanzik[26]. In all our estimates we have used the
perturbative values, ZV = 0.84 and ZA = 0.88. With the present systematic
uncertainties this choice is appropriate. The reader can easily replace our numbers
by those corresponding to his preferred value for g2

eff .
b) O(a) effects: from the above discussion we expect a systematic error of

the order of 10-20% coming from O(a) effects in the current matrix elements.
The Fermilab group has suggested that this systematic error may be reduced by
multiplying the propagators of the heavy quark Q by exp(mQa) and redefining
its mass[28]. This prescription, which does not change the results for mQa ≪ 1,
is motivated by the tree-level behaviour of lattice propagators. It is expected to
work for small momenta, pµa ≪ 1, when the quark mass is large, mQa ∼ 1. The
difference between the results obtained using the standard procedure (i.e. multi-

13



~p < V1V1 > < KJ0D > < KJ1D > < K∗
3J1D >

(0, 0, 0) 0.659(3) 0.87(−) − −
(1, 0, 0) 0.652(3) 0.94(1) 0.75(1) 0.66(2)
(1, 1, 0) 0.645(5) 0.95(3) 0.79(3) 0.69(5)

Table 7: Values of ZV calculated by taking the ratio of three-point correlation func-
tions with inserted the “conserved” weak vector current divided by the correspond-
ing correlation function with the local current inserted, cf. eq.(10). The Wilson
parameters used for the three-point functions are KH = 0.1375 and KL = 0.1495.
The results are shown for several momenta of the K, K∗, and for different Lorentz
components of the weak current, Ji, and K∗ source, K∗

i . We also give ZV as de-
rived from the light-light two-point function in the column labelled as < V1V1 >,
computed with KL = 0.1495.

plying the lattice quark propagators only by 2K), and those obtained following
the modified prescription at least represent some measure of the uncertainty due
to discretisation errors.

We observe that the modification proposed by the Fermilab group leads to
a universal change of all the matrix elements of a given current. Consequently,
it cannot repair the fact that one finds very different values of ZV for different
matrix elements as shown in table 7. Furthermore we have checked that ZV from
< V1V1 > is almost independent of the quark mass. Indeed ZV from < V1V1 >
for heavy-light mesons ranges from 0.643(2) to 0.653(3), which is almost identical
to the light-light case reported in table 7. We conclude that in this case the
dependence of ZV on the quark mass does not follow the behaviour predicted in
ref.[28] 7. For this reason we have not followed the suggestion of ref.[28]. We
have instead decided to report here the form factors obtained from the local
and “conserved” vector current and the local axial current. At the end, we will
average the results obtained from the local and conserved vector current and add
(in quadrature) as a systematic error (∼ 10 − 20% for V (0)) their difference. In
the case of the axial current we only have results from the local axial current, for
which we also expect a 10-20% systematic uncertainty coming from O(a) effects.

c) extrapolation to the physical quark masses: the extrapolation in the light
quark mass is quite natural and unlikely to be a source of an important uncer-
tainty within our statistical accuracy. More delicate can be the extrapolation
in the heavy quark mass. There are arguments, based on HQET which allow
the expansion of the form factors at fixed ~pK,K∗, with |~pK,K∗| ≪ MP , in inverse
powers of the heavy meson mass MP [17]. All the relevant formulae are given in
sec.3.2, where we discuss the extrapolation to the B meson. Here we simply state

7This indicates that the vacuum to vector matrix element has a dependence on the quark
mass different from that observed for the forward matrix element of the local current[28].
Similarly one may worry about the use of the recipe of ref.[28] for the pseudoscalar meson
decay constants.

14



f+

K(0) V (0) A1(0) A2(0)
“a”-analytic 0.73(72) ± 0.16(16) 0.85(1.10) ± 0.24(30) 0.63 ± 0.14 0.46 ± 0.33
“b”-analytic 0.74(72) ± 0.16(16) 0.85(1.10) ± 0.24(30) 0.63 ± 0.14 0.46 ± 0.33

“a”-ratio 0.60(59) ± 0.12(12) 0.84(1.09) ± 0.24(30) 0.63 ± 0.14 0.44 ± 0.27
“b”-ratio 0.61(60) ± 0.12(12) 0.85(1.10) ± 0.23(29) 0.63 ± 0.14 0.44 ± 0.27

Table 8: Semi-leptonic form factors at zero momentum transfer for D → K
and K∗ using different extrapolations to the D mesons: eq.(8), labelled as “a”,
and eq.(11), labelled as “b”. The results are reported using the method called
“analytic” or “ratio” to extract the form factors. The number obtained from the
local vector current are reported in parenthesis.

that HQET suggests that f+ scales, at fixed ~pK,K∗, as:

f+ = M
1/2

P γ+ ×
(

1 +
δ+

MP

)

(11)

and similarly for f−, V and A2, while A1 scales like M
−1/2

P . For D mesons, the
results, obtained by extrapolating the values given in tables 3 and 4 by using
eq.(8) (fit “a”) or eq.(11) ( fit “b”) are reported in table 8 8. Although we
have found that the χ2 is slightly better if we fit the form factors according to
eq.(11), we do not have sufficiently good data to distinguish between the two
behaviours. For completeness we also give the results obtained by using the local
vector current (in parenthesis). From this table one sees that for D mesons the
difference between the extrapolation “a” and “b” is rather small, ≤ 3%. There
is more difference in the case of the vector current between the results obtained
using the conserved or the local current, in particular in the case of D → K∗.
As mentioned before we include this difference in the final error. For the axial
current we are not able to estimate the error due to the determination of ZA,
since we do not have the equivalent of the conserved vector current. Besides the
statistical errors reported in the tables, we then expect for the axial form factors
a further error of order 10 − 20%.

3 Physics Results

3.1 D Meson Decays

Given the discussion of the previous section, our best estimates for the form
factors and partial widths are those reported in the abstract and in tables 9
and 10. In this table we report our results together with other calculations
and experimental determinations of the form factors. With respect to other

8 Below we will give the same kind of table also for the B meson.
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Ref. f+

K(0) V (0) A1(0) A2(0)
this work 0.65 ± 0.18 0.95 ± 0.34 0.63 ± 0.14 0.45 ± 0.33

[2]-[4] 0.63 ± 0.08 0.86 ± 0.10 0.53 ± 0.03 0.19 ± 0.21
[5]-[6] 0.90 ± 0.08 ± 0.21 1.43 ± 0.45 ± 0.49 0.83 ± 0.14 ± 0.28 0.59 ± 0.14 ± 0.24
[30] 0.76 1.23 0.88 1.15
[31] 0.76 − 0.82 1.1 0.8 0.8
[21] 0.6+0.15

−0.10 1.1 ± 0.25 0.5 ± 0.15 0.6 ± 0.15
Exp. [33] 0.70 ± 0.08 0.9 ± 0.3 ± 0.1 0.46 ± 0.05 ± 0.05 0.0 ± 0.2 ± 0.1

Ref. A1(q
2
max) V (0)/A1(0) A2(0)/A1(0) f 0(q2

max)
this work 0.62 ± 0.09 1.50 ± 0.28 0.7 ± 0.4 0.93 ± 0.13

[4] 0.77 ± 0.20 1.6 ± 0.2 0.4 ± 0.4 −
[6] 1.27 ± 0.16 ± 0.31 1.99 ± 0.22 ± 0.33 0.7 ± 0.16 ± 0.17 −
[30] − 1.1 1.3 1.15
[31] − 1.4 1.0 −
[21] − 2.2 ± 0.2 1.2 ± 0.2 −

Exp. [33] 0.54 ± 0.06 ± 0.06 − − −
Exp. [34] − 2.00 ± 0.33 ± 0.16 0.82 ± 0.23 ± 0.11 −

Table 9: Semi-leptonic form factors for D → K and K∗. For f+

K and V we have
averaged the results obtained from the conserved and local currents and considered
the difference as an error to add in quadrature to the statistical one.

calculations at a lower value of β, for example refs.[2]-[4] the errors are larger. This
is expected because the statistics is lower and β is higher. It is however reassuring
that, at a value of a−1 almost twice that of refs.[2]-[4], we find compatible results.
Moreover experiments and lattice calculations are in good agreement for f+

K ,
V and A1. On the other hand for A2 the situation is unclear. E691 and ref.[4]
suggest a smaller value of A2 than E653, ref.[5] and the present work, even though
the errors on this quantity are so large that all the results are compatible. Thus
for A2 it is very important to reduce both the experimental and theoretical errors.
The agreement with the other form factors is already remarkable, given the fact
that the lattice calculations have no free parameter.

3.2 Extrapolation to B meson decays

With the present lattice spacing we are unable to study directly the B mesons
in numerical simulations. However indirect information on B physics may be
available using the following strategy. One first studies the scaling behaviour
of a given physical quantity in the region of the charm quark mass. Then one
computes the same quantity in the effective (“static”) theory, i.e. in the limit in
which the heavy quark mass is infinite. By interpolating between the two results
with the help of the expected scaling laws, one can predict that physical quantity
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Ref. Γ(D → K)/1010s−1 Γ(D → K∗)/1010s−1 Γ(D → π)/1010s−1

this work 6.8 ± 3.4 6.0 ± 2.2 0.56 ± 0.36
[4] 5.8 ± 0.15 5.0 ± 0.9 0.5 ± 0.2

exp. [35, 32] 7.0 ± 0.8 4.0 ± 0.7 0.9+0.5
−0.3

Ref. Γ(D → ρ)/1010s−1 Γ(D → K∗)/Γ(D → K) ΓL/ΓT

this work 0.50 ± 0.23 0.92 ± 0.55 1.27 ± 0.29
[4] 0.4 ± 0.09 0.86 ± 0.22 1.51 ± 0.27
[30] − 1.14 0.89
[31] − 1.45 1.11
[21] − 0.5 ± 0.15 0.86 ± 0.06
[36] − 0.63 ± 0.09 −

exp. [35] − 0.57 ± 0.08 1.15 ± 0.17

Table 10: Semi-leptonic partial widths for D → K, K∗, π and ρ, using Vcs =
0.975 and Vcd = 0.222. We also report the ratio of the longitudinal to transverse
polarisation partial widths for D → K∗.

for the B meson. The value in the static limit reduces the uncertainty due to the
extrapolation from the charm region. This strategy has proved to be effective for
the pseudoscalar decay constant, see for example refs.[8, 29].

At our large value of β, the small statistics is not sufficient to compute semi-
leptonic form factors in the static limit. Nevertheless we can study the scaling
behaviour of the form factors and try an extrapolation to the b quark. With
the actual errors, our predictions remain necessarily at a semi-quantitative level.
The study is however interesting in itself. We have found that the expected
dependence of the form factors in 1/MP , see eq.(11), is compatible with our
results. For some of the form factors however the corrections to the static results
in the charm region may be sizeable. In the following we explain the extrapolation
of the form factors, computed at several values of the heavy quark mass, to the
B meson.

On the basis of HQET, up to O(1/M2
P ), up to logarithmic corrections, one

expects the following behaviour for the relevant form factors [17]:

f+

M
1/2

P

= γ+ ×
(

1 +
δ+

MP

) V

M
1/2

P

= γV ×
(

1 +
δV

MP

)

A2

M
1/2

P

= γ2 ×
(

1 +
δ2

MP

)

A1M
1/2

P = γ1 ×
(

1 +
δ1

MP

)

(12)

The expansions given in eqs.(12) become valid in the limit of large mQ, at fixed
momentum ~p of the light meson (in the frame where the heavy meson is at rest)
and when |~p| ≪ mQ ∼ MP . The above conditions are always satisfied for qmax,
when the initial and final mesons are both at rest. Provided we are not too close
to the meson pole in the t-channel, the dependence on the light mass is smooth
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Figure 2: Form factors extrapolated to the chiral limit for the light quark, as a
function of the inverse pseudoscalar mass (1/MP ) for the momentum assignment
(1,0,0). The crosses are the lattice points, the diamonds are the extrapolation to
the D and B meson. Notice that the D is very close to a lattice point. The points
corresponding to the lightest heavy quark mass (furthest to the right) has not been
used in the fits.

and it is well described by eq.(7). We can then extrapolate in the heavy quark
mass according to eqs.(12). The points corresponding to ~p = (1, 0, 0) also satisfy
the above conditions. However, in the range of masses where we compute the
form factors, mQ ∼ mcharm, these points correspond to q2 ∼ 0. This is due to the
fact that the heavy meson masses are not so heavy in comparison with |~p| and
that the light mesons are not really light enough. Thus, while the typical

√
q2 on

our lattice is at most 1.4 GeV, the extrapolation in the heavy quark mass will

bring us to
√

q2 = 4.2 GeV (q2 = M2
B − 2 ∗ MB

√

M2
π + (2 π/24 a)2 + M2

π), and
similarly for B → ρ. The uncertainty involved in such an extreme extrapolation
must be borne in mind. The validity of the extrapolation is partially justified only
because the range in 1/MP is relatively small and most of the form factors have
a smooth behaviour. The case (1, 1, 0) is more complicated because, with the
heavy quark masses at hand, we have |~p| ∼ MP where the expansion of ref.[17] is
questionable. Anyhow the errors are so large that we have not used these points.

In fig.2 we give the form factors, at the value of q2 corresponding to the
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~p γ+ GeV−1/2 γV GeV−1/2 γ1 GeV+1/2 γ2 GeV−1/2

(0, 0, 0) − − 0.96 ± 0.16 −
(1, 0, 0) 0.39 ± 0.25 0.29 ± 0.12 1.05 ± 0.25 0.44 ± 0.25

~p δ+ GeV δV GeV δ1 GeV δ2 GeV
(0, 0, 0) − − −0.33 ± 0.09 −
(1, 0, 0) 0.0 ± 1.1 1.9 ± 1.3 −0.46 ± 0.22 −0.6 ± 0.8

Table 11: The coefficients of the 1/mQ expansion of the form factors defined in
eqs.(12).

momentum assignment (1, 0, 0), extrapolated to the chiral limit in the light quark
mass, as a function of 1/MP (crosses). In the figure we also give the value
extrapolated to the D and B mesons (diamonds). The figure shows that the
points are smoothly extrapolated, even in the case of V since γV is small. This is
encouraging for further studies with higher statistics. In table 11 we report the
values of γ+,V,1,2 and δ+,V,1,2 for ~p = (0, 0, 0) and (1, 0, 0), in physical units. We
tried also (1, 1, 0), but the errors turned out be of order 100% and we have not
reported them in the table. We notice that the first correction in 1/MP is small
in the case A1. This is also the case for f+, at (1, 0, 0), even though, because of
the large error, we cannot exclude a slope ∼ 0.7 GeV. The same can be said for
A2, whose value anyhow is badly determined even before the extrapolation. In
the case of V we find instead a rather large correction. We believe that this is
an interesting and rather unexpected result, which deserves an effort to reduce
the size of the statistical error. Taking our present errors into account we cannot
exclude that the large value of δV is correlated to the small value of γV and that
it will disappear with more accurate results.

From the numbers given in the table we can predict the form factors of the B
mesons. We give all the form factors at q2 = 0. They have been obtained from
the form factors at ~p = (1, 0, 0), by using the meson dominance, with the mass
of the mesons exchanged in the t-channel reported in table 6. These masses have
been obtained by fitting the mass difference ∆M = MP ∗ −MP (vector case) and
∆M = MP ∗∗−MP (axial case) as ∆M = AM +BM/MP . The results are reported
in table 6. They are rather close to the experimental masses when known, and
also to the masses computed in ref.[30], i.e. MB∗ = 5.32 GeV and MB∗∗,1++ = 5.71
GeV, except for the scalar mass which in ref.[30] is very large: MB∗∗,0++ = 5.99
GeV. The differences between the extrapolations using different sets of masses
turn out to be small and may be smaller than the error induced by the assumption
of the meson dominance. The results are reported in table 12, label “b”, together
with the results of refs.[30]-[32] for comparison. In the evaluation of the errors
we have also taken into account of the difference between the results obtained
using the local or the conserved current. To show the stability of the results with
respect to a different extrapolation, we have also reported the values obtained
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Ref. f+(0) V (0) A1(0) A2(0)
this work“a” 0.28 ± 0.14 0.37 ± 0.14 0.24 ± 0.06 0.39 ± 0.24
this work “b” 0.33 ± 0.17 0.40 ± 0.16 0.21 ± 0.05 0.47 ± 0.28

[30] 0.33 0.33 0.28 0.28
[31] 0.09 0.27 0.05 0.02
[32] 0.26 ± 0.02 0.6 ± 0.2 0.5 ± 0.1 0.4 ± 0.2

Ref. − V (0)/A1(0) A2(0)/A1(0) −
this work “a” − 1.4 ± 0.5 1.5 ± 0.8 −
this work “b” − 1.7 ± 0.6 2.3 ± 1.1 −

[30] − 1.0 1.0 −

Table 12: Semi-leptonic form factors for B → π and ρ. For f+ and V we have
averaged the results obtained from the conserved and local currents and considered
the difference as an error to add in quadrature to the statistical one. The label “a”
refers to the naive extrapolation in 1/MP , eq.(8), and label “b” to the extrapolation
given in eqs.(12) respectively. To extrapolate to zero momentum transfer we have
used the masses of table 6.

with the naive scaling given in eq.(8), labelled as “a”.
In the D meson the difference between the HQET scaling laws and naive

scaling was immaterial. The differences remain small in the B case and with
our errors we cannot distinguish the two behaviours. Notice that, because of the
different scaling laws, A2/A1 increases with the mass of the heavy quark and can
be ∼ 2 for B → ρ.

For most of the form factors the predictions of ref.[31] are much lower than
all the others, cf. table 12. These result in a much larger estimate of |Vub|, for
a given experimental branching ratio. Notice however that in ref.[31] the form
factor is computed at q2

max and then a “tempered” exponential dependence on
q2 is assumed. This q2 yields a dramatic suppression at small q2 for B meson
decays, where the range in q2 is very large.

From the numbers reported in table 12, we can give a very rough estimate of
the B → π and B → ρ branching ratios. The branching ratios are obtained from
the form factors in the table, by assuming meson dominance for their dependence
on q2, see eq.(9). To get an estimate of the errors, we have allowed the form factors
to vary in all the possible ways by one σ within the statistical errors and to vary
in all possible ways among the values obtained with different extrapolations in
1/MP , fits “a” and “b”. In this way we can partially account for the uncertainty
coming from the extrapolation and the q2 dependence of the form factors. We
finally get:

Γ(B → πlνl) = |Vub|2(12 ± 8) × 1012s−1 (13)

and
Γ(B → ρlνl) = |Vub|2(13 ± 12) × 1012s−1 (14)
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Thus the errors are still too large to give more than an upper bound. Since
experiment, on its own side, only gives upper bounds for the considered branching
ratios, we cannot with our present accuracy extract any information on Vub. We
mainly want to stress the feasibility of this analysis, provided one disposes of
larger statistics.
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