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Abstract

We compute the two-point correlator between left-handed flavour charges, and the three-point

correlator between two left-handed charges and one strangeness violating ∆I = 3/2 weak

operator, at next-to-leading order in finite volume SU(3)L×SU(3)R chiral perturbation theory,

in the so-called ǫ-regime. Matching these results with the corresponding lattice measurements

would in principle allow to extract the pion decay constant F , and the effective chiral theory

parameter g27, which determines the ∆I = 3/2 amplitude of the weak decays K → ππ as

well as the kaon mixing parameter B̂K in the chiral limit. We repeat the calculations in the

replica formulation of quenched chiral perturbation theory, finding only mild modifications.

In particular, a properly chosen ratio of the three-point and two-point functions is shown to

be identical in the full and quenched theories at this order.
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http://arxiv.org/abs/hep-lat/0212014v3


1. Introduction

The study of the weak matrix elements involved in kaon physics is a long-standing topic of

lattice QCD [1, 2]. It is however a very difficult problem for all lattice formulations which

break the chiral symmetry explicitly, such as Wilson fermions. We expect that significant

progress can be achieved with the new Ginsparg-Wilson formulations of lattice fermions [3]–

[10], which possess an exact chiral symmetry in the limit of vanishing quark masses, resulting

in an enormous simplification in weak operator mixing and renormalization [8], [11]–[13].

One advantage of approaching the regime of vanishing quark masses is obviously that the

uncertainty induced by chiral extrapolations is avoided. On the other hand, since the chiral

limit implies that light mesons become massless, it necessarily brings with it large finite

volume effects. This apparent difficulty can, however, be turned into a useful tool: if the

finite volume effects can be resolved analytically in terms of the infinite volume properties of

the theory, then the infinite volume properties can be extracted by monitoring the volume

dependence. The first proposal to apply finite-size scaling techniques to the weak K → ππ

amplitudes was presented in [14].

A practical realisation for the finite-volume philosophy mentioned is offered by Chiral

Perturbation Theory (χPT). As the quark masses get smaller, the chiral expansion becomes

more and more accurate in describing the dynamics of the low momentum modes of QCD

(below a few hundred MeV). The chiral expansion in this regime is slightly more complicated

than in infinite volume, because it requires the resummation of pion zero mode contributions.

Gasser and Leutwyler [15] have presented a systematic procedure for doing this, the so-called

ǫ-expansion (see also [16]). Several observables, such as the quark condensate and the scalar

and vector two-point functions, have already been computed at next-to-leading order in

the ǫ-expansion [15]–[18]. These quantities depend on the (infinite volume) chiral theory

parameters, the volume, and the quark masses, in a way that a comparison with lattice data

for different volumes and quark masses, allows in principle the extraction of the corresponding

infinite volume low-energy couplings of χPT.

Obviously the chiral model can be extended to include the |∆S| = 1 weak Hamiltonian [19].

This introduces a new set of low-energy constants, from which the physical amplitudes in

kaon decays can be extracted, by working up to some desired order in the chiral expansion.

The determination of these low-energy constants by matching the matrix elements of weak

operators computed in lattice QCD to the same observables computed in SU(3)L×SU(3)R
χPT was proposed a long time ago [2]. Calculations along these lines (for a recent review,

see [20]) have shown that if the matching is performed at relative large quark masses, there

are large uncertainties induced by the chiral extrapolations [21], due to the fact that next-to-

leading order corrections involve a large number of new unknown couplings [22]. Although

strategies have been proposed [23] to measure the relevant new couplings, together with the

leading order ones, by matching the matrix elements at several kinematical conditions, this

is clearly a very challenging procedure, particularly for the ∆I = 1/2 kaon decays [23, 24].
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The approach that we consider here is instead to perform the matching in a finite volume

but close to the chiral limit, in the ǫ-regime. The predictions of χPT for the weak matrix

elements in terms of the low-energy couplings are then not the same as in infinite volume. We

compute the correlators of two left-handed flavour currents, as well as the matrix elements

of the |∆S| = 1 (or |∆S| = 2) weak Hamiltonian with two such currents, at next-to-leading

order in the ǫ-expansion. Some motivations for this approach have been discussed in [13].

The simplification brought in by approaching the chiral limit is manifest in the fact that at

next-to-leading order none of the unknown couplings present in the usual p-expansion [22]

contributes. We expect therefore that the determination of the leading order couplings should

in principle be more straightforward. Only the 27-plet low-energy coupling contributing to

∆I = 3/2 kaon decays is considered here, due to a number of subtleties with the octet

operator [23, 24], which will be considered elsewhere.

The structure of the paper is as follows. In Sec. 2, we discuss the chiral model representation

of the weak Hamiltonian at low energies in the SU(3)L×SU(3)R symmetric case. In Sec. 3,

we review the ǫ-expansion of Gasser and Leutwyler for this model, and in Sec. 4 present

the results of our next-to-leading order calculations. Finally, in Sec. 5, we present the same

results in the quenched theory. We conclude in Sec. 6.

2. Weak operators in the SU(3) chiral theory

Ignoring weak interactions, the QCD chiral Lagrangian possesses an SU(3)L×SU(3)R sym-

metry, broken “softly” by the mass terms. The Euclidean Lagrangian can to leading order

in a momentum expansion be written as

LE =
F 2

4
Tr

[
∂µU∂µU

†
]
− Σ

2
Tr

[
UMeiθ/Nf +M †U †e−iθ/Nf

]
. (2.1)

Here U ∈ SU(3), θ is the vacuum angle, Nf = 3, M is the quark mass matrix and, to leading

order in the chiral expansion, F, Σ, equal the pseudoscalar decay constant and the chiral

condensate, respectively. We shall for convenience take M to be real and diagonal.

Weak interactions break explicitly the SU(3)L×SU(3)R symmetry of Eq. (2.1). In the

fundamental theory, the strangeness violating interactions responsible for kaon decays can be

accurately described through an operator product expansion in the inverse W-boson mass.

In the CP conserving case of two generations, the effective weak Hamiltonian to leading order

in the QCD coupling constant is then (see, e.g., [25, 26])

Hw = 2
√

2GFVudV
∗
us

[
(s̄γµP−u)(ūγµP−d) − (s̄γµP−c)(c̄γµP−d)

]
+ H.c. , (2.2)

where GF is the Fermi constant, Vij are elements of the CKM-matrix, and P± = (1 ± γ5)/2.

Taking into account QCD radiative corrections, the coefficients get modified, but Hw can still
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be written as [27, 12]

Hw = 2
√

2GFVudV
∗
us

{ ∑

σ=±1

hσ
w

(
[Ow]σsuud − [Ow]σsccd

)
+ hm[Om]sd

}
+ H.c. , (2.3)

where h±w , hm are regularisation dependent dimensionless Wilson coefficients, and we have

introduced the notation

[Ow]σrsuv ≡ 1

2

(
[Ow]rsuv + σ[Ow]rsvu

)
, (2.4)

[Ow]rsuv ≡ (ψ̄rγµP−ψu)(ψ̄sγµP−ψv) , (2.5)

[Om]sd ≡ (m2
c −m2

u){[ψ̄M ]sP−ψd + ψ̄sP+[M †ψ]d} . (2.6)

Here r, s, u, v are generic flavour indices, while u, d, s, c denote the physical flavours. The

Wilson coefficients have been computed also for Ginsparg-Wilson “overlap” fermions [12],

apart from hm, which remains undetermined. According to Eq. (2.2), the leading order

values are h±w = 1, hm = 0.

In order to match the Hamiltonian of Eq. (2.3) to the one in the SU(3) chiral theory, the

first step is to decompose it into irreducible representations of the SU(3)L×SU(3)R flavour

group, present at low energies. For completeness, we review the general formulae for the

decomposition in Appendix A. The weak operators are singlets under SU(3)R, and denoting

projected operators transforming under representations of SU(3)L with dimensions 27, 8 by

[Ôw]+rsuv, [Rw]σru, respectively, the weak Hamiltonian can be rewritten as

Hw = 2
√

2GFVudV
∗
us

{
h+

w [Ôw]+suud +
1

5
h+

w [Rw]+sd − h−w [Rw]−sd

− 1

2
(h+

w + h−w)[Ow]sccd −
1

2
(h+

w − h−w)[Ow]scdc + hm[Om]sd

}
+ H.c. , (2.7)

where

[Ôw]+suud ≡ 1

2

{
[Ow]suud + [Ow]sudu − 1

5

∑

k=u,d,s

(
[Ow]skdk + [Ow]skkd

)}
, (2.8)

[Rw]±sd ≡ 1

2

∑

k=u,d,s

(
[Ow]skdk ± [Ow]skkd

)
. (2.9)

The first operator in Eq. (2.7) transforms under the 27-plet of the SU(3)L subgroup: it is

symmetric under the interchange of quark or antiquark indices, and traceless. The remaining

ones, transforming as 3∗ ⊗ 3 and being traceless, belong to irreducible representations of

dimension 8.

The next step is to find the chiral analogue for this weak Hamiltonian, as well as for the

left-handed flavour currents, which we will use as external probes. In a convention for fermion

fields where the Euclidean Lagrangian reads (γ†µ = γµ, {γµ, γν} = 2δµν)

LE = ψ̄(γµDµ +MP− +M †P+)ψ, (2.10)
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we may define a left-handed current as

(
Ja

µ

)

QCD
≡ iψ̄rT

a
ruγµP−ψu, (2.11)

where the T a are Hermitean generators of the flavour SU(3)2. As usual, it is convenient to

introduce an external left-handed flavour gauge field source, Aa
µ, such that

(
Ja

µ

)

QCD
=
∂LE

∂Aa
µ

. (2.12)

Observables including (Ja
µ)QCD can then be addressed within the chiral theory by coupling

also the pion field covariantly to Aa
µ, and taking functional derivatives with respect to it.

More concretely, the partial derivatives of Eq. (2.1) are promoted to covariant ones,

∂µU → DµU ≡ [∂µ + iAa
µT

a]U, (2.13)

and the left-handed current is defined as

(
Ja

µ

)

χPT
≡ J a

µ ≡
(∂LE

∂Aa
µ

)∣∣∣∣∣
Aa

µ=0

= −iF
2

2
T a

ru

(
∂µUU

†
)

ur
, (2.14)

up to higher order corrections.

We can now find the chiral analogues for the building blocks in Eqs. (2.4)–(2.6). By a

comparison of Eqs. (2.5), (2.11), the analogue of the operator in Eq. (2.5), denoted in the

chiral case by [Ow]rsuv, can be written as

[Ow]rsuv =
1

4
F 4

(
∂µUU

†
)

ur

(
∂µUU

†
)

vs
. (2.15)

The operator of Eq. (2.15) is the only one with the same symmetry properties as its counter-

part in the fundamental theory, at the leading order in the chiral expansion. Correspondingly,

we can also find the chiral counterpart for the operator Om, by employing scalar and pseu-

doscalar external sources Sa, P a, defined with the substitution M →M+SaT a− iP aT a, and

taking derivatives with respect to the sources:

[Om]sd = −(m2
c −m2

u)
Σ

2
(UMeiθ/Nf +M †U †e−iθ/Nf )ds . (2.16)

Given these building blocks, we can determine all the operators (at the leading order in the

chiral expansion) transforming under the 27-plet and octet of SU(3)L, which allows then to

translate the weak Hamiltonian of Eq. (2.7) to the chiral theory. Because some contractions

are traceless, cf. Eqs. (A.8), (A.9), there are only three such operators [2]. For the physical

2In fact, the only property of T a we need to assume is their tracelessness.
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choice of indices, we write these as

O27 ≡ [Ôw]
+

suud =
3

5

(
[Ow]sudu +

2

3
[Ow]suud

)
, (2.17)

O8 ≡ [Rw]+sd =
1

2

∑

k=u,d,s

[Ow]skkd, (2.18)

O′
8 ≡ 1

2
F 2Σ(UMeiθ/Nf +M †U †e−iθ/Nf )ds , (2.19)

where we have made use of Eqs. (A.8), (A.9) to simplify the chiral versions of Eqs. (2.8), (2.9).

Note that in the definition of O′
8 here we have left out the explicit mass combination (m2

c−m2
u),

which can then appear in the coefficient of this operator; the coefficient can, however, also

receive other contributions, due to mixings with operators of the same symmetries.

We can now write down the analogue of Hw in Eq. (2.7) in the chiral theory. We denote it

by Hw. To again define dimensionless coefficients, we write Hw in the form

Hw ≡ 2
√

2GFVudV
∗
us

{
5

3
g27O27 + 2g8O8 + 2g′8O′

8

}
+ H.c. , (2.20)

where g27, g8 and g′8 are the low-energy constants we are interested in [28].

Now, it is easy to see that the amplitude for ∆I = 3/2 decays, such as K± → π±π0, is

directly proportional to g27, while the much faster ∆I = 1/2 decays of K0
S get a comparable

contribution both from g8 and g27. (The parameter g′8, on the other hand, does not contribute

to physical kaon decays [27, 2, 29].) More quantitatively, a leading order analysis in infinite

volume [28], supplemented by phenomenologically determined large phase shifts [30] in the

amplitudes, suggests the well-known values

|g27| ≈ 0.29 , (2.21)

|g8| ≈ 5.1 . (2.22)

It has been argued that 1-loop corrections in the chiral perturbation theory are large [22,

31, 32], and one can therefore get agreement with experimental data on partial decay widths

even with somewhat less differing values of g8 and g27, but a hierarchy still remains.

In the limit Nc → ∞, on the other hand, one obtains [28] the “tree-level” values deducible

from the naive conversion of Eq. (2.7), with h±w as in Eq. (2.2), to the corresponding chiral

operators of Eqs. (2.17), (2.18):

g27 = g8 =
3

5
. (2.23)

Clearly a large non-perturbative enhancement of g8 with respect to the tree-level value, and

some reduction of g27, is needed to fit the experiment. The final goal is to improve on the naive

estimates in Eq. (2.23), by determining g27 and g8 non-perturbatively in the SU(3)L×SU(3)R
symmetric theory. As mentioned in the introduction, we will in this paper discuss only g27,

due to various subtleties in the determination of g8 (particularly in the quenched case).
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Let us finally recall that another physical observable determined by g27 is the B̂K , charac-

terising the mixing of K0, K̄0, and hence determining the mass difference of KS ,KL [33]. It

is defined by3

〈 K̄0 |h∆S=2 [Ow]ssdd |K0 〉 ≡ 4

3
(mKFK)2B̂K , (2.24)

where h∆S=2 is the Wilson coefficient (see, e.g., [34] and references therein) related to the

operator [Ow]ssdd, normalised to unity at tree-level. Since [Ow]ssdd is symmetric and traceless,

it belongs to the 27-plet. Therefore, if h∆S=2 is replaced by h+
w in Eq. (2.24), the matrix

element is in the chiral limit (where mK = mπ = 0, FK = Fπ = F ) proportional to g27:

4

3
B̂K =

h∆S=2

h+
w

· 5

3
g27 . (2.25)

The tree-level value is then B̂K = 3/4, but going to next-to-leading order in the large-Nc

approach one finds a suppression down to B̂K ≃ 0.3...0.4 [35]. This suppression factor is very

close to what would be needed for g27 to go from Eq. (2.23) to Eq. (2.21). We may thus

consider it a further motivation for the lattice study to corroborate this prediction of the

large-Nc approach. Note that near the physical point (mK > 0) a considerably larger value

is found (for recent reviews, see [36]).

3. Chiral perturbation theory in a finite volume

In order to determine g27, we will consider the lattice measurement of left-current two-point

correlation functions in the fundamental theory at low enough momenta [13]. In this regime

we assume that the effective theory gives a good description, and thus require, to first order

in the weak Hamiltonian,

δ2

δAa
µ(x)δAb

ν(y)

〈∫

z
Hw(z)

〉

QCD
=

δ2

δAa
µ(x)δAb

ν(y)

〈∫

z
Hw(z)

〉

χPT
, (3.1)

where Aa
µ is set to zero after the differentiations. The measurement of the left-hand-side in

lattice QCD allows to tune the effective couplings in the weak Hamiltonian appearing on

the right-hand-side. In general, it is convenient even to remove the integral
∫
z(...) appearing

in Eq. (3.1), since matching can also be achieved before this averaging, as long as the currents

brought down by the functional derivatives are far enough from each other, and Hw(z). In

this way we avoid complications with “contact terms”, arising from operators overlapping

at the same spacetime location. It is also convenient to consider space-averaged charges

positioned at different times, x0, y0, rather than local currents.

We thus discuss the product of two left-handed charges separated from the weak Hamilto-

nian sitting at the origin, z ≡ 0. To keep the discussion as general as possible, we consider

3The parameter BK is defined identically to B̂K but without the Wilson coefficient h∆S=2, whereby it is

scheme and scale dependent.
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matrix elements of the “unprojected” operator [Ow]rsuv in Eq. (2.15); a projection to the

actual 27-plet [Ôw]+rsuv is then carried out by the operations in Appendix A. Thus, writing

the expressions in a form where their QCD analogues are obvious4, we will be concerned with

Cab(x0) ≡
∫

x

〈J a
0 (x)J b

0 (0)〉, (3.2)

[Cw]ab
rsuv(x0, y0) ≡

∫

x

∫

y

〈J a
0 (x)[Ow]rsuv(0)J b

0 (y)〉, (3.3)

where
∫
x

=
∫

d3x. The computations are carried out with a finite phase θ as in Eq. (2.1),

allowing to make predictions for the case of a fixed topology, as well (see Sec. 4.3).

Due to the vicinity of the chiral limit, we take the volume to be a finite periodic box, of

size V = L0L1L2L3. Momenta are then quantised,

pµ =
2π

Lµ
nµ, nµ ∈ Z. (3.4)

Since we want to be close to the chiral limit in the finite volume, the computation is organised

according to the rules of the ǫ-expansion [15]. In the ǫ-expansion one writes

U = exp
(
i
2ξ

F

)
U0, (3.5)

where ξ has non-zero momentum modes only, while U0 is a constant SU(3) matrix collecting

the zero modes. The integration over U0 has to be carried out exactly when mΣV <∼O(1),

where m is a quark mass, while the integration over the non-zero modes can be carried out

perturbatively as long as FL≫ 1. The power counting rules for the ǫ-expansion are

F ∼ O(1), ∂µ ∼ O(ǫ), Lµ ∼ O(1/ǫ), ξ ∼ O(ǫ), m ∼ O(ǫ4). (3.6)

Note that the quark mass counts as four powers of the momenta, rather than two as in the

standard chiral expansion in infinite volume, wherem ∼M2
π ∼ ∂2

µ. The perturbative integrals

for the non-zero momentum modes are computed with the measure

∫

p′
≡ 1

V

∑

{nµ}

(
1 − δ

(4)
n,0

)
. (3.7)

We will compute at next-to-leading order in the ǫ-expansion, including corrections of rela-

tive order O(ǫ2). It turns out that the physical pion decay constant and mass, Fπ,Mπ, differ

from their leading order values, F, 2mΣ/F 2 (for M = diag(m,m,m)), only by terms of rela-

tive order O(ǫ4) [18], an effect which may thus be ignored. This is a result of the fact that no

higher order operators in the action (i.e., none of the Li’s of Gasser and Leutwyler) contribute

at O(ǫ2). Similarly, there are no higher order operators of O(ǫ2) in the chiral representation

4At the present order, these forms differ from those obtained by taking functional derivatives with respect to

a flavoured gauge field, as in Eq. (3.1), only regarding unimportant “contact terms” ∼ δ(x0), δ(y0), δ(x0 − y0).
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T/L β1 k00

32/32 0.14046 0.07023 = β1/2

32/28 0.13872 0.07826

32/24 0.13215 0.08186

32/20 0.11689 0.08307

32/16 0.08360 0.08331

Table 1: Some numerical values for β1, k00, defined in Eqs. (3.10), (3.11), for geometries of

the type L0 ≡ T,L1 = L2 = L3 ≡ L.

of [Ow]rsuv in Eq. (2.15). This is also in contrast with the usual chiral expansion in infinite

volume, where a plethora of new operators contribute at next-to-leading order [22]. The fact

that the contamination from higher order operators is small, is simply a consequence of being

closer to the chiral limit.

The propagator for the non-zero momentum modes ξ follows by expanding the parametri-

sation in Eq. (3.5) in ǫ, and inserting into Eq. (2.1):

〈
ξur(x) ξvs(y)

〉
=

1

2

[
δusδvrG(x− y) − δurδvsE(x− y)

]
, (3.8)

where

G(x) =

∫

p′

eip·x

p2
. (3.9)

In the chiral case, E(x) = G(x)/Nf , but we keep everywhere E(x) completely general. The

reason is that then the form of Eq. (3.8) is general enough to contain also the propagator

of the replica formulation of quenched chiral perturbation theory [37, 38], and thus we can

already include the main ingredients needed in Sec. 5.

Where encountered, ultraviolet divergences are treated with dimensional regularization.

For later reference let us define [39, 17], in particular, the two integrals appearing in the

computation (see also [40]):

∫

p′

1

p2
≡ − β1

V 1/2
, (3.10)

∫

p′

(
2p2

0

(p2)2
− 1

p2

)
= L0

d

dL0

∫

p′

1

p2
≡ L0

L1L2L3
k00. (3.11)

Here β1, k00 are finite dimensionless numerical coefficients depending on the geometry of the

box. Some values for them are listed in Table 1.
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Figure 1: The O(ǫ2) graphs computed in Sec. 4.1. An open box denotes a current (Eq. (2.14)),

a cross a “measure term” (cf. ref. [15]), and a filled circle a mass insertion.

4. Results

4.1. Charge – charge expectation value

We now proceed to apply the rules of the ǫ-expansion to the correlator Cab(x0), defined

in Eq. (3.2). The result can in fact also be inferred from [17], by summing together the

expressions for the axial and vector flavour currents.

The graphs contributing to Cab(x0) are shown in Fig. 1. Apart from the graph including the

mass insertion, current conservation guarantees that the result is independent of x0. Indeed,

we obtain

Cab(x0) =
(
−TrT aT b

) F 2

2L0

×
{

1 +
Nf

F 2

[
β1

V 1/2
− L2

0k00

V

]
+

2ΣL2
0

NfF 2

〈
Re Tr [MU0e

iθ/Nf ]
〉

θ,U0

h1

(x0

L0

)}
, (4.1)

where β1, k00 are from Eqs. (3.10), (3.11); and [39]

h1(τ) =
1

2

[(
|τ | − 1

2

)2
− 1

12

]
. (4.2)

Finally, 〈...〉θ,U0
denotes an average over the zero-mode Goldstone manifold,

〈...〉θ,U0
≡

∫
U0

(...) exp(V Σ ReTr [MU0e
iθ/Nf ])

∫
U0

exp(V Σ Re Tr [MU0eiθ/Nf ])
, (4.3)

where
∫
U0

is an integration over SU(Nf ) according to the Haar measure.

As a simple explicit example, let us assume a box with L0 = L1 = L2 = L3, a mass matrix

M = diag(m,m,m), and a phase θ = 0. Taking furthermore into account that at the present

order O(ǫ2), Fπ = F, M2
π = 2mΣ/F 2, the full result may be expressed as

Cab(x0) =
(
−TrT aT b

) F 2
π

2L0

{
1 +

1

F 2
πL

2
0

[
3

2
β1 + u Σθ=0(u/2)h1

(x0

L0

)]}
, (4.4)

where [15, 17, 18]

u = M2
πF

2
πL

4
0, (4.5)
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Figure 2: Left: The expression inside the curly brackets in Eq. (4.1), for L0 = T , V = TL3,

a−1 = 2 GeV, and m = 0 MeV (dashed), m = 5 MeV (dotted). We have assumed θ = 0,

F = 93 MeV, Σ = (250 MeV)3. The solid line is the tree-level result. Right: The same

observable, in an ensemble with a fixed topological charge ν = 0, 1 (cf. Sec. 4.3), for L = 24a.

Σθ(u/2) =
1

Nf

〈
ReTrU0e

iθ/Nf

〉

θ,U0

=
2

Nf

∂

∂u
ln

∫

U0

e(u/2) ReTr U0 exp(iθ/Nf ) , (4.6)

Σθ=0(u/2) ≈
{
u/(4Nf ), u≪ 1

1, u≫ 1
. (4.7)

Note that in the notation of [18], uΣθ=0(u/2) = u2I1(u)/(4Nf ).

For Nf = 3, a numerical determination of I1(u) has been given in [18]. Using this result, we

show in Fig. 2 examples for two asymmetric lattices, 32× 243, 32× 203, and a lattice spacing

a−1 = 2 GeV. The function in Eq. (4.1) has been normalised to its (constant) tree-level value.

The next-to-leading order correction is observed to become dangerously large for L/a<∼ 20

(i.e., L<∼ 2 fm).

4.2. Charge – charge – weak operator Ow

We then move to [Cw]ab
rsuv(x0, y0), defined in Eq. (3.3). To this end we evaluate the graphs

in Fig. 3. Let us mention that we are ignoring disconnected diagrams, since they only lead

to trace parts, ∼ δabδurδvs, δ
abδusδvr, which would vanish in any case after the projection to

[Ôw]+rsuv. The non-trivial flavour structures arising from Fig. 3 always appear in one of the

two combinations,

[∆(1)]ab
rsuv ≡ T a

urT
b
vs + T a

vsT
b
ur ≡ T {a

ur T
b}
vs , (4.8)
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Figure 3: The O(ǫ2) graphs computed in Sec. 4.2. An open circle denotes the weak operator

in Eq. (2.15), otherwise the notation is as in Fig. 1.

[∆(2)]ab
rsuv ≡ [∆(1)]ab

rsvu − 1

2

(
δus{T a, T b}vr + δvr{T a, T b}us

)
. (4.9)

After lengthy but straightforward algebra, we obtain5

[Cw]ab
rsuv(x0, y0) = − F 4

4L2
0

{
∆(1) +

(
Nf∆(1) + ∆(2)

) 2

F 2

[
β1

V 1/2
− L2

0k00

V

]

+∆(1) 2ΣL2
0

NfF 2

〈
Re Tr [MU0e

iθ/Nf ]
〉

θ,U0

[
h1

(x0

L0

)
+ h1

( y0

L0

)]}
, (4.10)

where we have for clarity omitted the indices from [∆(1)]ab
rsuv, [∆

(2)]ab
rsuv. Apart from the

graph including the mass insertion, current conservation guarantees again that the result is

independent of x0, y0.

Once the flavour structure is projected onto the 27-plet according to Appendix A, we get

our final result,

[C27]
ab
rsuv(x0, y0) ≡

∫

x

∫

y

〈J a
0 (x)[Ôw]+rsuv(0)J b

0 (y)〉 . (4.11)

It is directly obtained from Eq. (4.10), by simply making the replacements

[∆(i)]ab
rsuv → ∆̂ab

rsuv , i = 1, 2 , (4.12)

where

∆̂ab
rsuv ≡ 1

2

(
T {a

us T
b}
vr + T {a

ur T
b}
vs

)
+

1

20

(
δusδvr + δurδvs

)
TrT aT b (4.13)

− 1

10

(
δus{T a, T b}vr + δvr{T a, T b}us + δur{T a, T b}vs + δvs{T a, T b}ur

)
.

As a simple explicit example, we again assume a box with L0 = L1 = L2 = L3, a mass

matrix M = diag(m,m,m), a phase θ = 0, Nf = 3, and choose generators such that

T a
ij ≡ δiuδjs, T b

ij ≡ δidδju. (4.14)
5The full expression before the volume average

∫
x

(...) can also be obtained from the authors on request.
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Figure 4: Left: The result of Eq. (4.10) for the index choice in Eqs. (4.14), (4.15), normalised

to the tree-level value (solid line), for the same parameters as in Fig. 2. The upper set is for

L = 24a, the lower for L = 20a. The dashed and dotted lines correspond to m = 0 MeV and

m = 5 MeV, respectively. Right: The same observable, in an ensemble with a fixed topological

charge ν = 0, 1 (cf. Sec. 4.3), for L = 24a.

We also choose the physical indices for [Ôw]+rsuv, according to Eq. (2.17). Then ∆̂ab
suud = 2/5,

and the full result is

[C27]
ab
suud(x0, y0) = − F 4

π

4L2
0

2

5

{
1+

1

F 2
πL

2
0

[
4β1+uΣθ=0(u/2)

[
h1

(x0

L0

)
+h1

( y0

L0

)]]}
, (4.15)

where the notation is as in Eq. (4.4).

In Fig. 4 we show the predictions of Eq. (4.10) for this index choice, normalised to the tree-

level value, for two asymmetric volumes. Since there is only one 27-plet operator in Eq. (2.7),

a measurement of g27 can then be obtained through the matching of the chiral three-point

function with the corresponding lattice QCD measurement:

5

3
g27[C27]

ab
suud(x0, y0) = h+

w

∫

x

∫

y

〈Ja
0 (x)[Ôw]+suud(0)J

b
0(y)〉 . (4.16)

4.3. Fixed topology

The results above were obtained in a fixed θ-vacuum. We can also perform a Fourier transform

in θ to obtain averages in sectors of “fixed topology” ν [41]. This is interesting because in

the quenched theory we expect to find poles in m in fermion propagators, which become

dominant in the ǫ-regime when mΣV ≪ 1. In the θ-vacuum there are no such poles in

12



the full theory, because topological configurations are strongly suppressed by the fermion

determinant. However, when considering averages in sectors of non-zero fixed topology, the

same poles are expected to appear in the quenched and the full theories. It is quite remarkable

that these poles appear also in the corresponding effective chiral theories! Even though their

presence does not affect the counting rules of the ǫ-expansion, because mΣV is formally

counted as a quantity of O(1), they obviously modify the chiral limit. The question we want

to address here is whether there are such poles in the observables of Eqs. (3.2), (3.3).

An observable in the sector of topological charge ν, fν , can be obtained from the observable

in a θ-vacuum, fθ, by

fν =
1

2π

∫ 2π

0
dθe−iνθfθ. (4.17)

In particular, assuming again M = diag(m,m,m) and defining

Zθ(u/2) =

∫

U0

e(u/2) ReTr [U0 exp(iθ/Nf )], Zν(u/2) =
1

2π

∫ 2π

0
dθe−iνθZθ(u/2), (4.18)

the combination appearing in Eqs. (4.1), (4.10) gets replaced as

Σθ(u/2) =
2

Nf

∂

∂u
lnZθ(u/2) −→ 2

Nf

∂

∂u
lnZν(u/2) ≡ Σν(u/2). (4.19)

The function Zν is known [42, 41] to be

Zν(u/2) = det[Iν+j−i(u/2)], (4.20)

where the determinant is taken over an Nf × Nf matrix, whose matrix element (i, j) is the

modified Bessel function Iν+j−i.

Thus, at fixed topology the results corresponding to Eqs. (4.4), (4.15) are obtained by the

substitution Σθ(u/2) → Σν(u/2). For small and large u we have (independent of Nf ),

Σν(u/2) ≈
{

2|ν|/u, u≪ 1

1, u≫ 1
. (4.21)

As expected the low mass behaviour (u ≪ 1) is drastically modified with respect to that

in Eq. (4.7). This implies that even though the correlators remain finite for m → 0 (i.e.,

there are no poles, because Σν(u/2) is multiplied by u), their time dependence does not

vanish. This is illustrated for Cab(x0) in Fig. 2 and for [C27]
ab
suud(x0, y0) in Fig. 4.

4.4. Normalised correlators

The predictions of the previous sections depend at leading order on the chiral theory parame-

ter F, show rather bad convergence at small volumes, L<∼ 2 fm, and have (for a non-vanishing

mass, as well as for a non-zero topological charge) a non-trivial dependence on x0, y0. All

these dependences are a nuisance for the determination of g27. Fortunately, there seems to be
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Figure 5: The result of Eq. (4.22), for the same parameters as in Fig. 2. At this order, the

outcome is independent of x0, y0.

a large cancellation if we normalise the three-point function [C27]
ab
suud by two charge – charge

correlators, at least at the present order in the ǫ-expansion.

More precisely, let us again choose the indices in Eqs. (4.14), (4.15), and denote by Caa†
(x0)

a charge – charge correlator obtained by using the generators T a, (T a)† in the currents.

Expanding the denominators, we then obtain that to relative order O(ǫ2),

[C27]norm(x0, y0) ≡ −5

2

[C27]
ab
suud(x0, y0)

Caa†(x0)Cbb†(y0)
= 1 +

2

F 2

[
β1

V 1/2
− L2

0k00

V

]
. (4.22)

The same result holds at fixed topology, as defined in Sec. 4.3.

Thus, the time, quark mass, and topology dependences cancel completely in the ratio

of Eq. (4.22)! The next-to-leading order correction is also numerically smaller than the corre-

sponding corrections in the numerator and denominator separately. This result is illustrated

in Fig. 5 as a function of the spatial volume, for a fixed time-like extent T = 3.2 fm.

To summarise, the optimal method for determining g27 would appear to be from the equal-

ity

g27 =
3

5
h+

w

[C27]norm(x0, y0)

[C27]norm(x0, y0)
, (4.23)

where [C27]norm is the QCD-correspondent for the expectation value in Eq. (4.22). The

independence of the outcome on the volume, quark masses, x0, y0, and topological charge,

serves as a test of whether the regime of applicability of Eq. (4.23) has been reached.
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5. The quenched case

5.1. The basic setup

Due to the numerical cost of dynamical Ginsparg-Wilson fermions, practical lattice simula-

tions will, for a while still, have to resort to the quenched approximation. It is therefore

of interest to study how the results of the previous sections are expected to be affected by

quenching. The tool for this is quenched chiral perturbation theory, applied to the ǫ-regime.

Previous results in this setup exist for the quark condensate [43], and the scalar and pseu-

doscalar [38] as well as flavoured vector and axial-vector [44] two-point functions.

There are two approaches to quenched QCD, believed to be equivalent: the so-called

supersymmetric (SUSY) formulation [45, 46] and the so-called replica method [37, 38]. In

the former, bosonic “ghost” quarks are introduced in order to cancel the effects of the physical

quarks; in the latter, the computation is carried out by keeping separately track of the Nv

“valence” quarks appearing in the external sources, and the Nf dynamical quarks, and the

quenched limit is obtained by taking Nf → 0 for a fixed Nv 6= 0.

The two methods are formally equivalent at the quark level, however their low-energy

effective theories appear to be quite different. Assuming that the naive chiral symmetries of

these models, U(Nf )L×U(Nf )R in the replica case and the graded U(Nv|Nv)L×U(Nv|Nv)R
in the SUSY formulation, are broken spontaneously by the formation of a quark condensate

to the corresponding vector subgroups, the low-energy degrees of freedom are the resulting

Goldstone bosons, whose dynamics can be described by chiral Lagrangians, at energies below

the typical confinement scale. The field variables of the chiral Lagrangians are matrices

parametrising the Goldstone manifolds.

There is one important difference with respect to full QCD, though: the field associated

with the singlet axial rotation (∼ η′) does not decouple from the low-energy dynamics. This

is true both in the SUSY method [45, 46], as well as in the replica: in order to have a sensible

Nf → 0 limit, the Goldstone manifold needs to be enlarged from SU(Nf ) to U(Nf ). It is then

easy to see that the decoupling of the singlet field and the limit Nf → 0 do not commute [37].

As a result, the chiral Lagrangian may contain all possible interactions involving the singlet,

and to lowest order, the replica method has

LχPT =
F 2

4
Tr

[
∂µU∂µU

−1
]
− Σ

2
Tr

[
UθUM +M †U−1U−1

θ

]
+
m2

0

2Nc
Φ2

0 +
α

2Nc
(∂µΦ0)

2, (5.1)

where Φ0 ≡ (F/2)Tr [−i ln(U)] and Uθ ≡ exp(iθINv/Nv). Here, INv is the identity matrix in

the valence subspace and zero elsewhere. Obviously the couplings F and Σ need not be the

same as in full QCD. In addition, new parameters related to axial singlet field, m2
0, α, have

been introduced. In the SUSY formulation the first order chiral Lagrangian is the same, with

the substitution Tr → Str and U ∈ U(Nv|Nv) (or, more precisely, U ∈ Ĝl(Nv|Nv) [47]).

Since Φ0 is a singlet, there could in principle also be additional operators constructed with

it in Eq. (5.1). They have, however, been shown to be suppressed by additional powers of
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1/Nc [48], so we will neglect them in the following.

Even though the low-energy Lagrangians of the replica and SUSY theories have quite

different dynamical degrees of freedom, it is believed that in perturbation theory all com-

putations concerning physical observables are equivalent [37]. In the ǫ-regime, however, a

non-perturbative definition is needed for the zero-momentum integration. Traditionally this

could only be achieved with the SUSY formulation, but there have been recent developments

whereby it is argued that replica integrations can also be performed non-perturbatively, and

agree with SUSY integrations [49]. Here we carry out the perturbative part of the computa-

tion with the replica method, and return to the zero-mode integrations later on.

Provided that only sectors of fixed topology are considered, the rules of the ǫ-expansion

are as in Eq. (3.6). The massless non-zero mode Goldstone propagator is also needed. In the

replica case, it is given by Eq. (3.8), with

E(x) = lim
Nf→0

∫

p′

eip·x

p4

(αp2 +m2
0)/(2Nc)

1 + (Nf/p2)(αp2 +m2
0)/(2Nc)

≡ α

2Nc
G(x) +

m2
0

2Nc
F (x) , F (x) ≡

∫

p′

eip·x

p4
. (5.2)

However, as mentioned, our previous results were obtained with a completely general E(x),

and therefore we know that Eqs. (4.1), (4.10) are independent of its form.

5.2. Currents and weak operators

Let us then consider the left-handed currents, in the replica formulation. Since the current

follows from the Lagrangian, cf. Eq. (2.14), and the additional degree of freedom Φ0 is a

flavour singlet, nothing changes with respect to the unquenched case at the present order:

J a,quenched
µ = −iF

2

2
T a

rs

(
∂µUU

−1
)

sr
, (5.3)

where the matrices T a are traceless and take non-zero values only in the valence sector.

For the weak operators which do not directly follow from the Lagrangian, we have to be

more careful. The general issue is whether there are more operators once the larger symmetry

group of the quenched theory is considered. Clearly, for instance, one could attach the singlet

field Φ0 to any operator. As mentioned, we assume such terms to be suppressed by 1/Nc

and ignore them. Another trivial issue is that trace parts of (∂µUU
−1)ru vanish in the full

theory but not in the quenched theory. However, there could in principle also be more drastic

effects [24].

To be systematic about the operators appearing, let us recall the symmetries that are

relevant. The weak operators we consider have indices corresponding to left-handed valence

flavours only. Therefore they are singlets under the full right-handed symmetry group6, while
6This excludes the problematic operators considered in ref. [24], ∼ [U diag(INv

,−INv
)U−1], written here

in the SUSY formulation.
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they should have the correct symmetry properties under the left-handed valence subgroup.

These requirements are sufficient to guarantee that the leading order 27-plet operator in the

quenched theory is of the same type as in the unquenched case.

Indeed, to get right-handed singlets under the full symmetry group, we are lead to the

building blocks

∂µUU
−1, U∂µU

−1 ∼ O(ǫ2); UM, M †U−1 ∼ O(ǫ4) , (5.4)

which transform as fundamental ⊗ anti-fundamental under the valence subgroup SU(Nv)L,

or SU(Nv|Nv)L. We have also indicated the scalings of these operators in the ǫ-regime.

The operators can be trivially decomposed into a sum of 3 ⊗ 3∗, 1⊗ 3∗, 3 ⊗ 1 and 1⊗ 1

irreducible representations of the valence subgroup. To get a Lorentz invariant object with

four flavour indices leads, as in the unquenched case, to a unique possibility up to and

including O(ǫ6):

[Ow]rsuv =
1

4
F 4

(
∂µUU

−1
)

ur

(
∂µUU

−1
)

vs
. (5.5)

The reduction to irreducible representations follows from Appendix A. Only the 3 ⊗ 3∗

components of ∂µUU
−1 contribute to the 27-plet, because the 27-plet cannot appear in the

tensor product of less than four fundamentals/anti-fundamentals. In other words, the oper-

ator [Ôw]+rsuv is symmetric in r ↔ s and u ↔ v and traceless in the SU(3)L subgroup, and

zero if any of the indices lies outside of this subgroup. The weak Hamiltonian reads then

Hw = 2
√

2GFVudV
∗
us

{
5

3
gquenched
27 [Ôw]+suud + ...

}
+ H.c. , (5.6)

where we have indicated that the quenched coupling, gquenched
27 , does not need to be the same

as the analogous one in the unquenched theory.

In the case of the octets, on the other hand, the classification according to the valence

group leads to ambiguities as discussed in [24].

Given that the currents have the same form as in the full theory, the quenched two-point

function Cab,quenched can now be obtained by setting Nf → 0 in the fixed-topology version

of Eq. (4.1), as this result is independent of the part E(x) of the propagator. Alternatively,

the result can be read from [44], by adding up the vector and axial-vector correlators and

dividing by four:

Cab,quenched(x0) =
(
−TrT aT b

) F 2

2L0
×

{
1 +

2ΣL2
0

F 2

1

Nv

〈
ReTrv [MU0]

〉

ν,U0

h1

(x0

L0

)}
, (5.7)

where Trv denotes the trace over the valence subgroup, with Nv = 3. Let us stress that the

absence of E(x) guarantees that there is no dependence on the singlet couplings m2
0 and α,

which appear in the non-zero mode propagator of Eq. (5.2). Another interesting point to

note is that the terms proportional to Nf of the unquenched result were largely responsible

for the large corrections in realistic volumes, while they are absent now. This seems to imply

that the ǫ-expansion converges better in the quenched case.

17



Similarly, the result for the three-point function can be directly extracted from the fixed-

topology version of Eq. (4.10):

[Cw]ab,quenched
rsuv (x0, y0) = − F 4

4L2
0

{
∆(1) + ∆(2) 2

F 2

[
β1

V 1/2
− L2

0k00

V

]

+∆(1) 2ΣL
2
0

F 2

1

Nv

〈
Re Trv [MU0]

〉

ν,U0

[
h1

(x0

L0

)
+ h1

( y0

L0

)]}
, (5.8)

where we have omitted the indices from [∆(1)]ab
rsuv, [∆

(2)]ab
rsuv, given in Eqs. (4.8), (4.9). Again,

the unphysical axial singlet couplings m2
0, α do not appear at this order.

An important point to stress is that the zero-mode integrals appearing in Eqs. (5.7), (5.8)

are identical. Therefore, if we make the index choice of Eqs. (4.14), (4.15) and consider the

ratio of Eq. (4.22), the results are the same in the unquenched and quenched cases:

[C27]
quenched
norm (x0, y0) ≡ −5

2

[C27]
ab,quenched
suud (x0, y0)

Caa†,quenched(x0)Cbb†,quenched(y0)

= 1 +
2

F 2

[
β1

V 1/2
− L2

0k00

V

]
+ O(ǫ4) . (5.9)

5.3. The quenched chiral condensate

We end by discussing the actual value of the zero-mode integral in Eqs. (5.7), (5.8) for

degenerate masses M = diag(m,m,m):

Σquenched
ν ≡ 1

2Nv

〈
Trv [U0 + U−1

0 ]
〉

ν,U0

. (5.10)

This is just the quark condensate, and the value is well known, for Nv = 1 [43]. It is usually

assumed that the outcome should not depend on Nv ≥ 1. What we wish to do here is to

check this explicitly for Nv = 2, 3, by using the recent results from [49]:

Zν,Nv [J ] ≡ lim
Nf→0

∫

U0 ∈ U(Nf )
detνU0e

ΣV ReTr[MJU0] ∼
det [Iν,ij(µi)]i,j=1,...,2Nv∏Nv

j>i=1(µ
2
j − µ2

i )
, (5.11)

where the Nf ×Nf matrix MJ is MJ ≡ diag(m+J1, ...,m+JNv ,m, ...), and µi = (m+Ji)ΣV ,

µ = mΣV , together with

Iν,ij(µi) ≡
{
µj−1

i Iν+j−1(µi), i = 1, ..., Nv ,

(−1)j−i+Nνµj−1Kν+j−i+Nν (µ), i = Nv + 1, ..., 2Nv .
(5.12)

The derivative of the logarithm of this partition function with respect to J1, evaluated at

Ji = 0, gives the required integral in Eq. (5.10) for any Nv. The result indeed agrees for

Nv = 2, 3 with the SUSY result obtained with U(1|1) [43]:

Σquenched
ν = µ

[
Iν(µ)Kν(µ) + Iν+1(µ)Kν−1(µ)

]
+
ν

µ
. (5.13)
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For ν 6= 0, the leading behaviour of this function at small and large mass is the same as in

the unquenched case at fixed topology, Eq. (4.21):

Σquenched
ν (µ) ≈

{
|ν|/µ, µ≪ 1

1, µ≫ 1
. (5.14)

6. Conclusions

We have computed the two-point correlator of left-handed chiral charges, as well as the three-

point correlator of two left-handed charges and one strangeness violating weak operator [13],

in SU(3) chiral perturbation theory in a finite volume and close to the chiral limit, at next-

to-leading order in the ǫ-expansion. The comparison of these observables with lattice data

would in principle permit the extraction of the pion decay constant F , as well as the low-

energy constant g27, involved in the ∆I = 3/2 kaon decays and in the kaon mixing parameter

B̂K , with a minimal contamination from higher order corrections. Whether this will be

numerically feasible is still an open question.

We have also performed the same calculations in the quenched theory, using its replica

formulation, and shown that these observables are only moderately affected. In particular,

the ratio defined in Eq. (4.22) is not only independent of the quark masses sufficiently close

to the chiral limit, but also unaffected by quenching at this order. Obviously the low-energy

constants obtained with the quenched theory nevertheless differ from those in full QCD.
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Appendix A. SU(3) classification

For completeness, we reiterate in this Appendix some essential aspects of the SU(3) classifi-

cation of four quark operators. We follow the tensor method discussed, e.g., in [50].

The tensors we need to consider are of the form Orsuv, symmetric under (r ↔ s, u ↔ v),

and transforming under 3∗ ⊗ 3∗ ⊗ 3 ⊗ 3 of SU(3). We then define the projected operators

Oσ
rsuv ≡ (P σ

1 )rsuv;r̃s̃ũṽ Or̃s̃ũṽ, (A.1)

Ôσ
rsuv ≡ (P σ

2 )rsuv;r̃s̃ũṽ O
σ
r̃s̃ũṽ, (A.2)

where σ = ±1. Here, with some redundancy in the symmetries of P σ
1 ,

(P σ
1 )rsuv;r̃s̃ũṽ ≡ 1

4
(δrr̃δss̃ + σδrs̃δsr̃)(δuũδvṽ + σδuṽδvũ), (A.3)

(P σ
2 )rsuv;r̃s̃ũṽ ≡ δrr̃δss̃δuũδvṽ +

1

(Nf + 2σ)(Nf + σ)
(δruδsv + σδrvδsu)δr̃ũδs̃ṽ

− 1

Nf + 2σ
(δruδss̃δvṽδr̃ũ + δsvδrr̃δuũδs̃ṽ + σδrvδss̃δuṽδr̃ũ + σδsuδrr̃δvũδs̃ṽ), (A.4)

where Nf = 3.

It is easy to see that the antisymmetric tensor Ô
−
rsuv vanishes identically. The reason

is that (as can be understood for instance by contracting with ǫkrsǫluv) it corresponds to a

representation with dimension 8 just like R−
lk defined in Eq. (A.7), but all such representations

have already been subtracted by the projection operator in Eq. (A.4).

Consequently, the reduction of a general operator Orsuv proceeds as

Orsuv = Ô
+
rsuv +

∑

σ=±1

[
1

3(3 + σ)
(δruδsv + σδrvδsu)Sσ

+
1

3 + 2σ
(δruR

σ
sv + δsvR

σ
ru + σδrvR

σ
su + σδsuR

σ
rv)

]
, (A.5)

where Ô
+
rsuv transforms under the representation with dimension 27, and

Sσ ≡ Oσ
klkl, (A.6)

Rσ
ru ≡ Oσ

rkuk −
1

3
δruS

σ. (A.7)

Here R±
ru’s have the dimension 8, while Sσ are singlets.

Finally, let us note that in the chiral theory, i.e. if we replace Orsuv → [Ow]rsuv,

[Ow]rkuk = [Ow]kskv = 0, (A.8)

so that

[Ow]σrkuk =
σ

2
[Ow]rkku, [Sw]σ =

σ

2
[Ow]lkkl, [Rw]+ru = −[Rw]−ru. (A.9)
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