CERN-TH.6272/91

FTUAM 91-31
The Self-Couplings of Vector Bosons:
does LEP-1 obviate LEP-2?
v
‘é:f A. DE RUJULA, M.B. GAVELA, P. HERNANDEZ™ AND E. MASSét

Theory Division, CERN
CH-1211 Geneva 23, Switzerland

ABSTRACT

Theories beyond the standard model (“meta-theories”) are severely constrained by
the current r.ody of data and must necessarily respect, we insist, the standard gauge
symmetry. We analyze the constraints on two generic types of meta-theory, in which
fundamental scalars do or do not exist. The novel low energy effects may be compre-
hensively described by grafting onto the standard Lagrangian new operators that —in
the sense of a Taylor expansion— ought to form a complete set. Completeness calls for
consideration of previously discarded operators, and for a thorough exploitation of the
equations of motion. We illustrate the current strictures by focusing on the allowed
range of departures from the most crucial, untested, precise standard prediction: the
size and structure of the triple gauge-boson vertices. We conclude that their direct

measurement at LEP-2 is, alas, most unlikely to provide new information.
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1. INTRODUCTION

A precise measurement of the electron or muon magnetic moment that happens
to agree with the QED prediction has two redeeming values. First, and to the incom-
prehensible dismay of the experimentalist, it tests the theory. Second, and not to the
delight of the model-builder, it excludes large domains of “new physics” possibilities,
provided their potential contributions to these particular observables do not acciden-
tally cancel. As a consequence of the success of the theory, many conceivable higher-
energy experiments are rendered unlikely to provide surprises. An important question
is the degree to which one can exclude these novel effects in a sufficiently systematic
and rigorous fashion. In this respect, a crucial role is played by certain extremely well-
motivated theoretical assumptions. An example is electromagnetic gauge invariance,
without which not only QED would self-destroy as a predictive theory, but the study of
possible “new physics” would be wildly different. Recall how significantly the analysis
of putative QED modifications (characterized by new dimensional constants in vertices
and propagators) changed with the realization [1] that the original ansatze were not
gauge invariant or current-conserving. The gauge symmetry is a very strong yoke, it
not only makes the theory tenable, but it has the well-known consequence of taming
the conceivable deviations from its predictions.

The present status of the standard model begins to resemble suspiciously that of
QED in yestern years. To a large extent this paper is a paraphrase of the preceding
paragraph, with QED substituted for the standard lore, with the magnetic moments
and other low-energy QED observables traded for our current body of standard tests,
and with the proper extension and discussion of the local gauge invariance. Particular
effort is devoted, admittedly along well-known avenues, to characterizing in compre-
hensive generality the “meta-theories” that may supersede the standard model, rather
than to studying in detail some particularly attractive examples. A complete analysis
along these lines of all possible deviations in all planned experiments would be a Cy-
clopean task. To see the trees in the forest, we focus on a very important issue: the
LEP-2 potential to investigate the couplings of gauge bosons to themselves. Even this
focused effort turns out to be elaborate, and it embodies many of the practical lessons

to be learned in a more general realm.

The standard electroweak theory fixes the couplings between its four vector bosons
(W=, Z° and ). The trilinear gauge vertices Z°W+W= and YyW*W~ (to which we
often refer by their initials: TGV) can be directly measured at LEP-2, and perhaps
even at the Tevatron collider. Consensus has it [2] that the LEP-2 measurements will

constitute a sensitive test of conceivable deviations from the standard lore, and of new
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physics beyond the weak scale. In this paper we challenge this consensus.

Our thesis is based on two facts. First, the standard predictions are favourably
tested at energies up to ~ Mz, at a level that includes one-loop radiative effects. Sec-
ond, the whole edifice of the standard theory would crumble, should its SU(2)QU(1)
gauge invariance not be an exact symmetry above the weak symmetry-breaking scale.
Sensible ados to the standard dynamics, likewise, must respect this local symmetry.
The subtle cancellations in quantum corrections that are necessary to render the theory
renormalizable (i.e. consistent and predictive) require [3] that the algebraic relations
between the various couplings imposed by the theory’s gauge invariance be exactly
satisfled. Deviations from a rigorous compliance to this algebra are deadly, their de-
gree of lethality increasing with the dimensionality of the culprit non-gauge-invariant
coupling(s). It is well known that even the softest possible gauge-breaking addition (a
non-spontaneously induced vector-boson mass term) offsets the predictive power of the

theory.

We take good care to modify the standard dynamics in a manner that, above
its symmetry-breaking scale, fully respects the gauge symmetry. The gauge-invariant
pedigree of these modifications implies relations between the various non-standard de-
viations, both above and below the symmetry-breaking scale. This memory of an in-
escapable ancestral gauge invariance has rather often been overlooked in the literature,
leading to suspect and overly optimistic expectations concerning the “new physics”
sensitivity of future machines. It is easier to discuss how inconceivable a breakdown
of the standard gauge symmetries is after the completion of a full gauge-respecting
analysis; we treat the issue of non-gauge invariance in a later chapter on Quantum

Suicide.

We shall see that the imposition of gauge invariance on putative deviations from
the standard model, and the constraints implied by their obeyance of the existing low-
energy tests, suffice to conclude that the expected statistical precision of LEP-2, but
for particularly contrived circumstances, will be insufficient to fulfil one of the main
perceived duties of the machine: to add significant information on the nature of the
electroweak gauge theory via a direct measurement of the triple-gauge couplings. We

either know too much, or we have understood next to nothing.

Let our definition of the Standard Model (SM) be sharpened to describe its minimal
linear version. “Minimal” refers to the assumed non-gauge particle content: three
complete fermion families and a single scalar doublet ¢. “Linear” refers to the adopted
realization of the gauge-symmetry breakdown and Higgs mechanism: the mass term

and quartic self-coupling in the scalar potential are sufficiently small for the complete
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theory to be perturbatively treatable. The surviving physical scalar is a relatively
narrow “elementary” object not much heavier than the weak symmetry breaking scale
v=<Py>=2Mw sinfd/e ~ 240 GeV, all “as in the books”.

Our limits on “new physics” are sensitive to the unknown standard parameters: m;
and My. We find it useful to devote a chapter to a discussion of the relevant observables
and their status in the standard picture, including one-loop radiative corrections. This
is not much more than yet another rendering of the classic work of Veltman and others
[4] (or the more recent one of Kennedy and Lynn {5]) currently oft-exploited, though less
often properly referenced. Qur conclusions on the {(non)observability of novel effects at
LEP-2 are much more dependent on the planned luminosity of the machine than on the
very precise shape of the various standard cross sections. In reaching our conclusions
one may therefore finesse the drudgery of considering the radiative corrections to the

standard predictions for ete™ — W+W ™ production.
We know of three main avenues for possible non-minimal or non-standard effects:

& The addition of extra repetitive families and/or extra scalars in triplet or higher-
dimensional representations. We consider this possibility “trivial” and disregard
it, except for the assumption that its effects do not unnaturally cancel against

the less trivial ones that we discuss.

# The existence of truly “new physics” (extra particles, supersymmetry, larger
gauge symmetries, compositeness,...) characterized by a mass scale A compa-
rable to, or larger than the physically distinct scale ». The unspecified heavy
objects of this type of meta-theory are assumed not to acquire their masses from
the standard machinery of symmetry breaking {6], though they may well be in-
volved in the mechanisms that trigger it [7].

¢ The possibility that the scalar sector of the SM may be strongly interacting
and the (currently) consequent necessity to treat the vector-boson longitudinal
degrees of freedom in a manner (8, 9] reminiscent of chiral perturbation theory
{10]. In this case the “new physics”, to which we shall often refer as “chiral”, is

that underlying the mechanism of gauge-symmetry breakdown” .

In short, our procedure and conclusions are the following. We describe the low
energy effects of the “meta-theory” that may lie beyond the standard model in terms
of towers of effective interactions constrained only by the standard symmetries [3].

Existing data are then used to limit the coefficients of the relevant terms in these

= For transparent and practically up-to-date discussions, see {11, 12].




towers' . These constraints, barring a pandemic spread of unnatural cancellations
between independent terms in a handful of relevant observables, suffice to limit below
observable levels the potential deviations of the triple vector boson vertices from their
standard form. The exceptions to this general conclusion are few and marginal; they
are discussed in due detail. The limits that we systematically derive are also useful in
constraining specific theories past the standard model, a point we do not elaborate in

detail in this paper.

The low energy effects of a “meta-theory” can be expressed in terms of effective
Lagrangians that are linear combinations of operators constructed with the fields of
the Standard Model. A graft is “a shoot or scion inserted in a slit of another stock,
so as to allow the sap of the latter to circulate through the former”. The addition of
new effective operators to the standard Lagrangian acts in every respect as a graft: not
only do these operators foretell a new growth of novel dynamics, but their effects often
permeate into the pre-existing standard masses and couplings. Thus, we shall often
refer to the effective Lagrangian additions as “GRAFTS” " . A graft is also “a practice
intended to secure the means of making illicit profit”; perhaps this particular meaning

has not always been irrelevant.

The grafts, in the case that the SM is linearly realized (and contains elementary
fields describing narrow and relatively light scalars), are to be organized in a “Taylor”
expansion in their “naive-” or field-dimensionality, d. Their effects on current observ-
ables are expressible as a power series in v?/A%. The dominant terms have d = 6
and their number is finite {13, 14], but runs into the dozens. As we narrow our scope
to possible deviations from the standard predictions for TGVs, we find that only six
d = 6 operators are relevant (four of these operators have been previously discussed in
somewhat different contexts [15, 16], the rest involve fermion fields and must be taken
into account in a comprehensive treatment). The possible complication of the scales v
and A being of comparable magnitude is discussed in a section on “Form Factors”.

.

In the linear realization of the SM, our six operators constitute a “complete basis”
for the analysis of non-standard TGVs, in the sense that all other relevant d = 6 grafts
can be written, via a permissible and advisable use of the equations of motion, as linear
combinations of the elements of the basis. There is an embarrassment of choices in the

ensemble of operators that may be used as a basis; it is wise to select the ones best

t For our purposes it is more illuminating to look straight at the face of these operators, rather
than to take a more oblique look at their possible collective effects on objects such as vector-boson
two-point functions.

+ Our GRAFTS could also be pedantically interpreted as “Gauge-Restricted Anomalous Foretelling
Terms”.
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constrained by current data. Some grafts are “tree-grafts”, they affect well-measured
observables at tree level and are the obvious candidates for a most useful basis. Some
of the operators not BeIonging to our chosen basis are “blind directions”: linear com-
binations of the basic grafts with coefficients such that all tree-level effects on current
observables exactly cancel. There is no known symmetry or dynamical reason why a
meta-theory would be so contrived as to generate a low-energy effective Lagrangian
pointing exclusively in blind directions. Thus, one is not particularly motivated to find
bounds on the coefficients of the corresponding operators. Yet, the existing tests of
the standard model are so accurate that it is possible to derive significant limits on
operators pointing in blind directions (quantum grafts?) from their one-loop effects on
current observables. This we do for a particularly interesting blind direction, just as

an indicative example.

If the mechanism of spontaneous symmetry breakdown is non-linearly realized,
the scale v and the “new physics” scale A are not independent. The low-energy non-
standard effects are in this case describable in terms of the SU(2)®U(1) gauge invariant
effective operators occurring in a Taylor expansion in “chiral” dimensions dy, or equiv-
alently in powers of k/A, with k the momenta of the particles involved. We find that
the relevant d, < 4 chiral-effective interactions fall into pairs of three distinct types.
Two chiral operators are, in our framework, equivalent to two elements of our linear
d = 6 basis, and their coefficients are severely constrained. Two others are equivalent
to blind directions of naive dimensionality d = 6. The last two are equivalent to oper-
ators of naive dimensionality d = 8; one of them describes a blind direction, the other
is a tree graft that we study in detail. Since there is every reason in this case to expect
the coefficients of all six relevant chiral operators to be of comparable magnitude, we

have not fully analyzed the chiral blind-direction operators.

This paper is divided into a multitude of Chapters and Sections, whose titles should
suffice to convey an idea of its organization.

2. THE MINIMAL STANDARD MODEL IN THE Z-SCHEME

In discussions of the use of the standard model, the jejune question of what is the
best renormalization and regularization scheme, has received implausible attention. To
be explicit, we specify what our chosen procedure is. Five parameters of the minimal
model are relevant to our discussion: g, ¢', v, m: and My, in an established notation.
There is no question that the last two parameters must, for the time being, be left free.
There is no doubt that the very well-determined values of a and the Fermi constant
G r ought to be used to constrain the first three parameters (the fine structure constant
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is known to 0.045 parts per million from the low-energy classical limit of Thompson
scattering and the Fermi constant as extracted from the muon decay rate by the removal
[17] [18] of the standard process-dependent box, bremstrahlung and vertex corrections
is known to 17 ppm). The hottest scheme-controversies concerned the “best” definition
of the weak mixing angle 8, extracted in various ways from the data and used as the
remaining known parameter. Should & run with the energy scale? Does it depend
significantly on m:? Do alternatives have smaller errors? With the advent of a very
precise and still fast-improving measurement of Mz (a current 230 ppm) it is becoming
generally admitted {19] that one can answer all of the above questions with a blaring
“no”, by simply defining 6z so that:

(wa/ﬁ@p)”z _ 37.281GeV .
sinfz cosfz  sinfz cosfz

Mz

Numerically,

sin? 87 = 0.21223 & 0.00014. (2)

This parameter is totally equivalent to the input Mz = 91.175 + 0.021 GeV [20], but

is useful as an auxiliary quantity” in terms of which to express further results.

We call a “Z-scheme” a framework in which the values of a, Gr and Mz are kept
as input parameters, fixed at their measured values. We use such a scheme both in the
standard model and beyond it.

In deriving standard predictions beyond tree level, a concrete scheme must be
chosen as an intermediate-stage working tool. The conceptually simplest scheme is the
“on-shell” one [21], in which 8y is a fixed quantity defined by

cos Oy = —Aﬂ% (3)
and
1/2
' 2Gr)"’
My = el v2Gr) @

~ sinfw cos Oy (1- Ar/2)

~ The quantity Ar is a known function of m;, My and the relatively poorly-determined

* 8z is much better determined than any traditional alternative weak angle. If any derived quantity
deserves mention in the data tables, sin? 67 is the weak mixing parameter of choice.

e e
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value of a,. Comparison of (1) and (4) to first-order in Ar results in:

cos? @ sin? 9

. 92 . 2
sin®“ fw ~sin“87 + ————— Ar.
W 2T I "2 sin6

(5)
With the exception of large-m; effects in boson propagators, that are iterated in the
consuetudinary manner, we do not work beyond first order corrections, either radiative
or non-standard. Thus, here and in what follows we drop second-order effects, such
as a distinction between 8y and 8z in the second term of the r.h.s. of the preceding
expression. For fixed m; and Mp, sin® 6 is determined with a precision comparablet

to that of sin? 8z in (2), allowing one to predict other observables with comparable
accuracy. Of all the relevant predictions, only the Z-widths and forward-backward
asymmetries, the W mass and the inclusive neutrino cross sections are measured at the
level of precision of the standard one-loop predictions. Recent results, that we have not
exploited, on parity violation in atomic physics [22] and on r-polarization asymmetries

in Z-decay are reaching a competitive level of accuracy.

In practice, the standard predictions are significantly dependent on the value of
m; in the range 80 to 300 GeV, and marginally dependent on My in the range 40
to 1000 GeV. We choose to keep the m;-dependence of our results explicit and allow
Mg to span the range from 40 GeV to 1 TeV, with this “theoretical uncertainty” (and
that in a,) linearly summed to the experimental ones. It has become usual to combine
theoretical and experimental errors in quadrature. Since we are dealing with bounds
on novel eﬁ;ects, which ought to be pessimized, we adopt the safer route of combining
the two types of uncertainties linearly. As a working kit, we use the programs® of
Bardin et al., [23], that we have checked in an approximation wherein the radiative
corrections are quadratic in m;.

The observables we use to constrain deviations from the standard model are:

¢ The W-mass, determined most precisely in current practice from the ratio
Mw /Mz measured at pp colliders [24] and the LEP value for Mz. The stan-
dard prediction [4] is simply:

Mw = Mz cos 8y, (6)

with 8w determined by eq.(5).

t This is true, it goes without saying, in any scheme, but it is impractical to emphasize an auxiliary
quantity, e.g. the weak mixing angle, when it is defined via a relation such as (3), that does not
correspond to the tightest experimental input.

+ We are indebted to Misha Bilenki for use of his programs and results prior to publication.
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& The ratio of inclusive neutral- to charged-current neutrino cross sections on ap-
proximately isoscalar targets:

_o(yN—ov+-.)
R"_cr(uN—>.u+---) ()

at momentum transfers negligible relative to the intermediate vector boson
masses. The discussion of R, is more elaborate than that of other observables,
given the necessary attention to be paid to the problems of minimizing the correc-
tions away from a naive parton model [25] and of dealing with charm-threshold
effects {26]. Moreover the constraints on standard and novel effects imposed by
this observable, that we have computed with the necessary toil, turn out to be
weaker than those of other observables’ . We therefore omit the detailed expres-

sions [26, 25] concerning R, .

U The leptonic and hadronic widths of the Z, as extracted from a fit to the data
of an ete™ — ff total cross section which, prior to corrections for initial-state
bremstrahlung, reads:

a(q®) =

47 g N, [3I‘crf+rf*&(q2 —i\/f,?;)] 47Q% &’ N, )

(g2 — ML) + %[;i M2 N, Mz /N ¢ 3¢2
Z

with N; = 3 and 1 for quarks and leptons, and & = a(M3%). We shall see that

there are cases in which the standard approximation of energy-independent I'’s is

called into questionh . The radiatively-corrected standard predictions on 'y can

be cast in the form:

Gr M3 2 2
ry=rferi= S n vy (' +[4]) ©

It is useful to introduce the redundant vector and axial couplings

gy~ (H%i) (ck+cF)

(10)
&~y
=A f L b

t This is true for the 2 & level of statistical confidence we shall choose to work with, and less true at
the 1 & level.

§ The Breit-Wigner form of (8) is only a currently sufficient approximation. At a soon to be reached
precision, extra care is needed in relating theory and experiment and it is convenient to insist in
Mgz to denote the real part of the pole of the propagator . We are indebted to Bryan Lynn and
Robin Stuart for discussions on this point.

bt g
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The standard values of the tree-level quantities are:

1 .
ch=s [sh—gh| =-Qsin®0, m
11
v
[gfo + 9}40] = T;+cﬁ, :

It is convenient’ to define 645 so that the coefficient of T:{ in the left-handed
couplings is unchanged by radiative corrections, and

)
T —
12
r_1llv, a4 S\ _pf LR 142
F=3 i +of] (1-3) =T+

The standard one-loop corrections év¢, 8k are known functions of m; and Mpy.

Also useful to our inquiries are the axial Z-couplings to electrons and muons.

These are extracted from I'y and the forward-backward asymmetries 4;. To the

present high accuracy of the experiments, this procedure is elaborate; it is de-
scribed in detail in [28].

The non-standard corrections to Z-widths and asymmetries can also be conve-

niently cast in precisely the same form as the standard corrections. That is, the novel

effects on these observables are described by explicit values of 675 and éxy. For given

values of the latter, the effects on the Z — ff width and axial coupling for a fermion
f are:

CR(CR+CL)

)t ["f]
67 1
2L =2y (14
gt 2

For the interesting cases f = I~ (a given charged lepton) and f = A (the sum over all
quarks but ¢) Eq.(13) corresponds to the numerical results:

o 671 — 0.250 6k (15)
I

flf-"i o fyy — 0.318 bk , (16)
h

where in (16) we have assumed (as we will, in all cases but one, be led to) common

o Our 1+ 6y is often called p or pop’, as in [26). The symbol p has been endowed in this tessitura
with so many not quite equivalent meanings that we refrain from using it.
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values of §+, and éx, for all flavours.

Let Qf-“R denote the left- and right-handed couplings of fermions to photons. The
interference term in (8) is

177 = (@F /PR - QETE) (@f TF - 0F TF). o)

with I‘f’L as in (9), while in the purely photonic term
1 2 2
2 _ = L i R AR
Q=3 [(Q, Q}) + (@Faf) ] (18)

The distinction between Q¥ and Q® need only be made for operators not contributing

at tree level to current observables, as we discuss 1n Section 3.7.

The experimental central values and 1¢ errors we use are:

Mz =91.175 + 0.021GeV [input)] [20]
R, =0.308 +0.002 [29)

My =80.13+0.31 GeV  [24]
I =83.2+0.4 MeV [20]
T, =83.0+0.5MeV [20]
I, =83.8+0.8MeV [20] (19)
T = 1740 + 9 MeV  [20]

(3*)° = .2492 £0.0012 {20]

(2)% = .251 £ 0.003 [30]
_ANZ oy H0-005
(g2 =244_ ' [80]

To the experimental error in R, we have added a theoretical error of 1% to reflect the
theoretical uncertainty associated with the charm threshold in the charged currents,
discussed and estimated in [26]. Once again, we adopt the safe recipe of adding linearly
the theoretical uncertainties to the experimental errors. We shall choose to perform our
analysis at the 2o level, the inputs to our limits on novel effects are twice the quoted

E€ITOLS.

We are concerned with putative modifications of the ete™ — WTW ™ amplitudes,
and of the ZWW and YW W vertices in particular. To recall what these vertices are,

g =

e e, e -
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let W, and W,,,, = §,W, — 3,W, be the potential and the Abelian field strength
of the W field, and let V, and V}, with V = 4,Z be the corresponding entities for
the physical neutral fields. The tree-level trilinear boson couplings in the unmodified
standard Lagrangian £y are:

(V)= —iegy [(W}LW" - prwt“) V¥ + ky WiW, v (20)

with g, = 1 as a consequence of electromagnetic U,(1) gauge invariance, and

gz =cot 8,
(21)
ky =Kz =1,

The gauge non-Abelian form of the interactions in (20) and the values of the couplings
in (21) are the most profound of the very few precise predictions of the standard model
not yet subject to a direct experimental test. For our purposes, we need not consider
O(a) corrections to the SM cross sections for W-pair production as computed with
use of (20) and (21), since the observability or non-observability of the novel effects
we study turns out to be a clear-cut issue, but for a couple of marginal cases. For
these, the marginality is much more affected by the assumed statistics than it is by the

(small) radiative effects.

Not all of the new TGV interactions we shall encounter are describable as modifi-
cations §gz, 6k, and/or éxz of the standard results (21). One must also consider an
additional interaction containing a triple boson coupling of an entirely non-standard

form, custorna.rily para.metrized as:
L( )( ) ) [ i “] 22
w V)= —; egy V! W,,IPW‘ ' ( )

Miy

accompanied by vertices with more than three bosons that the gauge-invariant nature
of our non-standard effects will fully determine. The SU(2) ® U(1) gauge symmetry
also implies

Ay=2dz= A, (23)

and we shall see that disaster strikes when this or other gauge relations are forsaken.
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3. PHYSICS BEYOND A LINEAR STANDARD MODEL
3.1 THE d = 6 OQPERATORS AND THE EQUATIONS OF MOTION

Assume the standard model to be realized in its minimal linear form, with a pertur-
batively treatable scalar sector. Thus ¢ will stand for the doublet scalar field responsi-
ble for the observed W and Z masses, and Hj for the surviving physical scalar (gener-
alizations to more than one doublet are rather straightforward and, in our framework,
totally innocuous). Let Lo denote the complete renormalizable standard Lagrangian
(that includes the undiscovered top qtiark and elementary scalar). Imagine that there
is life beyond this model: awaiting discovery there exists some SU(2)®U(1) gauge in-
variant dynamics (extra particles, higher gauge symmetries, supersymmetry, compos-
iteness,...) characterized by a mass scale A larger than the weak symmetry-breaking
scale v =< &y >~ 240 GeV.

At energies lower than A, it is permissible and advisable to integrate “in” the
heavier degrees of freedom and to embody their effects in effective operators exclusively
constructed with the fields of the standard model. At a scale above v the exact gauge
relations between the operators already existing in the unbroken standard model remain

unscathed. But new operators with dimension d > 6 appear, suppressed by coefficients
of order A+,

At all scales of O(A) or smaller, the most relevant novel operators have d=6 and
the effective action” is constructed by grafting additive pieces to Lo:

Lpp=Lot+ ) L (24)
j

with

L;= % O; + O(1/A%). (25)

Complete lists of the scores of independent d=6 objects, O}, compatible with the
SM symmetries and constructed out of its fields have been reported in [13, 14]. Of
these grafts, the CP-odd ones are particularly intriguing; they have been previously
discussed [31, 32] and will not be dealt with here.

* For our purposes we need not dwell in the fine distinctions [6] between effective action and effective
Lagrangian.
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Not all of the possible d = 6 operators appear in a complete basis, for one is allowed
to trade terms that add up to a total derivative, and to eliminate other terms by use
of the equations of motion that Lo implies, as discussed in [14] for the case at hand, or
in [33, 34] for the case of the chiral description of a strongly interacting longitudinal
gauge sector. '

We shall argue that one can exploit to one’s advantage the freedom to choose a
basis of grafts describing departures from the SM, given that the empirical information
is obviously not of comparable quality for all measured processes. In analyzing the
present strictures on linear meta-theories and the potentiality of future experiments,
it is more than advisable to choose a basis all of whose elements are currently well

constrained.

We are concerned here with those of the CP-even d=6 operators in (24) that are
relevant to the triple gauge vertices accessible at LEP-2 and at hadron colliders. To
introduce them, let W,, be the (complete, non-Abelian) SU(2) gauge-field strength:

Wi =0,W, -0,W; ~g e,,;,cW:"W,f (26)
and By, its U(1) counterpart (with g and ¢’ the respective coupling strengths) and let
D, be the SU{2)QU(1) covariant derivative

Ta

Dpfa‘;‘l'ig 2

W;+id Y B,- (27)
It proves useful to introduce the weak isospin and hypercharge currents, J and J, of
the scalar and matter fields:

!
i 4 iF

Ju@) =2l 5D,2-(D,8) T,

” .G
T (®) = %QTD,(’D - % (D,2)' &,

Jo £) = yg f1.f

with Ly the left-handed fermion isodoublets and y; the fermion hypercharges.

There are various kinds of grafts whose different roles, which we now sketch, should
become increasingly clear as we discuss them in turn and in detail. Not all of the
operators to be presently discussed survive as elements of our complete basis or are
blind directions currently unconstrained at tree-level. For ease of reference, we gather

in a table those operators that, one way or the other, will survive our lengthy discussion:
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Basic bosonic grafts Basic fermion grafts Blind directions ¢ {0;}
Owsp = @18 W,, B |0, = J,(L:) FP(Lu) | Ow = (1/3!) WY x W)H . W

Op = J,($) JP(2) O, = J,(®)J°(L.) | Ope=iB* (D, %) D,®
Opw = [DPW,, |1 [D,W] | 0, = J,(8)J*(L,) | Ows = i W (D,&)' 7 D, @

Table I: Elements of the d = 6 basis {O;}; and blind directions.

The different types of operators to be considered and sieved from the complete
d = 6 ensemble {13, 14] are:

R The obvious, constructed exclusively with vector fields, such as:

CJ'WE-]l

Y, XrA (i
3 W, x W' W, (29)
that describes purely transverse vertices of three or more vector bosons, and has
no tree-level effects on currently measurable observables (but for W~ produc-
tion at hadron colliders, not a process to be soon measured with competitive

precision).

Operators built of scalar and vector fields, such as:

Ows = &1 38 W,,B*, (30)
and
Os = J,(B) J?(®), (31)

which (with the neutral component of ¢ written in a physical gauge as [Hp +
v]/v/2) describe vertices involving two or three gauge bosons. Via its two-boson
components, Owpg has tree-level effects on empirically tested relations, such as
the standard-model liaisons (6) involving Mw and Mz. Even though it contains
no more than two gauge bosons, a non-vanishing Op has “indirect” effects on
LEP-2 observables. The reason is that, in defining the parameters of the stan-
dard Lagrangian, one is advised to input and keep fixed the best known relevant
quantities (o, Gr and Mz) at their measured values. Some of the effects of Og
are moved to the triple-gauge couplings by this finite renormalization.

U
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¢ Innocuous operators, like

Oww = &1 & W, W, (32)
Ops = %1% B, B*, (33)
Ose = 310 (D, )t D*3, (34)
05 = 2'e #TD%, (35)

whose effects not involving external scalar fields can be totally eliminated from
Less by ineffectual field and coupling constant redefinitions™ .

Q Stealthy “fermionic” grafts, constructs that involve fermionic fields, and whose
non-standard effects on the properties of vector bosons occur only indirectly.

Much as the operator Qg previously discussed, fermionic operators such as
Oeu = j;(Le) fp(Lu) (36)

(that affects the u-decay process that defines Gr) have indirect effects on the

triple gauge-boson vertices. Two more operators of this same type are:
Or = J,(2) 7(Ly), (37)

with [ = e,u. We shall see that O.,, O, and O,, that are constructed with
“V — A” currents, are related to non-fermionic operators via the equations of
motion. On a different footing is the “S + P” graft

O;"‘ = {E,e} {,EL”} + he., (38)

whose effects on LEP observables we shall find to be negligible. We have not as-
sumed universality between similar operators constructed with different flavours,
nor listed operators such as O,,, defined in analogy with O,, in {36). This dis-
crimination is justified by a circumstantial nuance. If the 7 — e decay were better
measured than y decay, the former would serve to define G, and be used as one
of the inputs in the most precise standard prediction of the triple gauge boson
couplings. The roles of O,, and O,, would be interchanged.

* Consider L5y = Lo + Lww below the scale v. Let # = awwv?/A%. The substitutions W, —

(1-&W,, g — (1 + &)g, with g the SU(2) coupling, eliminate the quoted effects of Oww. The
fate of Ogp, Oza and Oﬁ is entirely analogous. Similar redefinitions would do away with the

couplings of only vector bosons induced by loops involving also sealars.
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& “Conspiratorial” operators, like
Op5 = J#(2) Jo(f) (39)

and O, and its sibs. These grafts would affect the relation’ between the standard

*e~ — ff cross sections in the Z-pole region and their measured values, from

e
which the comparison to the standard Zff couplings is made. The distinction
between stealthy and conspiratorial operators is, once again, a matter of current
experimental precision: if the Z-widths and asymmetries were better measured
than the Z-mass is, roles would interchange. Conspiratorial grafts could only
be relevant if they happened to accidentally cancel the contributions of the op-
erators previously listed to the observables used to constrain their coefficients.
We assume no systematic accidental cancellations and consequently ignore these
grafts, though bounds on them of the same type and general magnitude as the

ones to be derived for stealthy operators could readily be obtained.

For our specific goal of constraining non-standard deviations in the trilinear gauge
couplings from the available experimental information, the ensemble of d = 6 operators
(29) to (31), (36) to (37), is complete, though not yet optimized. One may even get
the impression that the list we just quoted is unduly over-complete, since fermionic
grafts such as O,, appear to have little to do with gauge bosons. It is tempting to
dispose of these operators by assuming that they are generated by the meta-theory at
some negligible higher order of a perturbative expansion. We do not take the liberty
of making this kind of prejudice-laden assumption, since our main aim is to analyze
in full generality the LEP-2 prospects regarding TGVs. We proceed to show that one
stands to learn something useful by studying the relations that the equations of motion
imply between fermionic and gauge operators, before a decision is made on which ones

to “privilege” as elements of a basis.

Fermionic and pure-gauge operators are mixed by the equations of motion that one
may use to change operator basis. To be specific, introduce a d = 6 graft that we have

not explicitly discussed so far:

Opw = [DPWW]* [Dpﬁ'ﬂ*"] (40)

t Because of their left-right chiralities, electroweak magnetic moment operators, for Ly @t B,,,
and electroweak charge form-factors, f(D,Ly) D’®, only contribute, in the limit of vanishing
fermion masses, to second order in a;/A2.

TR | e iy e 3 T
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and consider the equation of motion

D*W,, =gJ,(®)+g Y Ju(Lg), (41)
f=lq

with J the weak-isospin currents. Recall the definition (29) of Ow and the identity

-

129 Ow = [Jt)f’vi‘q.,,]t [D,,W’""] -2 [D"W,,,]t [D,.W‘“’] = Opw -22J3J" (42)

to learn that Ow is a specific linear combination of the fermionic objects O, and O,
(plus other fermionic™ operators appearing in JJ ¥) and Opw. Single out that part of
Lesrin (24) and (25) that contains the operators related by (42). In an over-abundant
basis:

A2Zﬁk=awow+aDWODW+acyocn+°’eoe+°’.uou+"' (43)
k

with the dots referring to, among others, the rest of the fermionic grafts in JYJ¥. Al
the operators listed above, but Ow (that describes vertices with three or more vector
bosons) have tree-level effects on the relations between contemporarily well measured
observables, and their coefficients can be tightly bound. But the presence of Ow in
the inventory may seem superfluous, since it can be eliminated in favour of the others
by use of (42). One is tempted to conclude that finding limits on the coefficients
of the operators that span a complete basis constitutes the complete job of limiting
the effects of the meta-theory. Not quite so. The equations of motion as reflected in
(42) also mean that a particular “direction” (O ) in the space spanned by the rest
of the operators in (43) cannot at present be bound from tree-level effects. We have
called these “directions” in d = 6 operator space “blind” directions. There is nothing
fundamental in the distinction between blind and other directions, which will only last
for as long the post-LEP-1 and pre-LEP-2 interregnum. Had LEP-2 been run prior to
LEP-1, as it would if the Z-mass were larger than twice the W-mass, the directions we
call blind would have been born sighted.

x For processes not involving real scalars, the operator J.!(®)J*(®) can be eliminated by innocuous
redefinitions.
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The hypercharge sibling of Opw (40), the operator [15]
Osp = [0°By.] [0,B""] (44)
is, in our basis, truly superfluous. The equations of motion result in
Opp =2¢% J}J* (45)

with J the total hypercharge current. The operators of the form J,(f)J?(f') and
Jo(f)JP(®) on the right-hand side of {45) belong to the category that we have defined
as “conspiratorial” and the J,{(®)J#(®) remainder is simply our Og (31).

There is a moral to our lengthy discussion of the equations of motion. It is wiser,
given the current experimental situation, to use a basis containing @ pw and fermionic
operators rather than a basis in which Ow (which cannot now be bound at tree level)
substitutes for Opw. The reason is that it is difficult to imagine a meta-theory in
which aw = O{gapw) is not satisfied. The tree-level limit on apw can be used to
guess a limit on aw. But evil may the Lord be, in which case extra toil is mandatory.
We shall see that the low energy data are restrictive enough to place, via one-loop
quantum corrections, significant limits even on operators pointing in blind directions,

of which Ow is an example.

There are only two other d = 6 blind directions:

Opg =iB*(D,8)'D,%, (46)

Owes =i W* (D, 8)' 7D, ®, (47)

that are intimately related to operators naturally arising in non-linear realizations of
the SM, and to whose discussion we return in Chapter 5. Suffice it to say here that
the equations of motion result in:

4083 =gOwp+4 | Opp~40s-4J°(®)Y L(f)]| , (48)
f
40we =¢ Owp+9 |2055 - 208 —4J"(®))_J(H)] . (49)
f

In computing in subsequent chapters corrections to various observables to first order

in any of the grafts we have discussed, one may insert in the relevant Feynman diagrams
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either the left- or the right-hand side of any of the equations of motion we exploit. As
a check of the algebra, we have performed every calculation in an ambidextrous way.

To conclude, the most useful basis of d = 6 operators is specific to the problem
being solved. In our goal of constraining the possible three-vector-boson couplings, we
are led to introduce a complete basis whose operators affect at tree level the relations
dictated by the minimal standard model between precisely measured observables. One

such basis consists of three “bosonic” and three “fermionic” operators:
{Oi} = {Opw, Ows, Og; O., O,, O.,} (50)

announced in Table I, plus the operator OEI;’ that we shall find to play no significant

role.
3.2 EFFECTS OF Owpg.

We proceed to discuss the theory and phenomenology of the effects induced by the
addition to the standard Lagrangian, as in (24) and (25), of the d = 6 operators in the
basis {O;} of (50) and Table I, augmented by O, All the effects not including real

scalar fields vanish as v?/A?, and it is convenient to introduce the quantities

v

h

6 = o (51)
Since the d = 6 operator with the most fertile set of effects is Owpg, defined in (30), we
use it as a detailed example, while for the remaining operators we simply concentrate
on results. The Owpg graft has been often discussed in a “linear” context [13 to 15]; its
effects in a “chiral” realm have also been studied either explicitly in {8, 9, 11, 33, 35 to
39], or more obliquely in [3, 40 to 43].

The addition of Lwp to Ly induces tree-level departures from the standard re-
lations between couplings and intermediate vector boson masses. To analyze them,
follow custom in shifting the neutral component of & in £ + Lwa to (Hp + v)/ V2,
with Hy the physical scalar doublet(s). Lwpg modifies the relations between the pa-
rameters eg and Mz, in the standard £; and the observable input values of a and
Mz by the amounts Aa/a ~ —2scewp and AMz/Mz ~ scewp, with s = siné,
¢ = cosf for short. Naturally, these finite renormalizations are to be reabsorbed into
the definition of the physical parameters, whereby their effects resurface elsewhere in
the full Lagrangian. We employ the notation A for shifts in parameters in intermediate
stages of a calculation, reserving in what follows the symbol é for deviations from the
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standard results on predicted observables. The diagonalization of the neutral-boson
mass matrix in terms of canonically normalized fields, with a, Gr and M 7z kept fixed

as input empirical parameters, results in a Lagrangian identical to that of the standard
model in all respects, but six:

R) The triple gauge vertices of interest are modified. The coefficients introduced in

(20) and (21) acquire the extra contributions

-1 c 8
bgz ~ Sry &~ = ~— =
92 & ——C eWB Ky &~ €wp dkz ~ EWB, (52)

with the ~ sign referring here (and below) to a result to first order in eg. The
explicit relations in (52) between égz, 6xy and 6xz are a consequence of gauge invari-
ance. Overlooking this kind of constraint makes the theory hard to defend and the
phenomenology more than suspect, a point we shall return to. The TGV deviations in

(52) cannot be arbitrarily large, for this would upset the success of the standard model
concerning the next items.

&) The W mass prediction of eq. (6) acquires a correction

6Mw2—2ﬁ~z-EWBMz, (53)
with
.1 ¢

an ubiquitous factor in the modifications of My by various grafts.

¢) The coefficients potentially modifying the Z partial widths, as in (13), receive
the contributions: '

oy ~0, (55)
Shp o —ms (56)
"= S cos20 WE

O) The leptonic axial couplings to Z’s stay put:

sgf*
— =0, (57)
91

as implied by (14) and (55).

A e i
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#) The ratio of neutrino cross sections of eq.(7) is shifted by:

§R,
7 >~ — Tl EWR, (58)
{4
with
1— 40 82
. ¥ sc
= ~ 1,
n %_32_*_%_234 o520 517 (59)

to occur repeatedly in the modifications of R, by various operators.

<) New interactions of O(ewg) involving one or two Hp fields (and two or three
vector bosons) appear as additional predictions of an effective interaction proportional
to Owpg. Once again, all of their coefficients are determined, as a consequence of gauge

invariance. The form of these interactions:
a8c (F”y F“u -— Z#y Z“p)

2Hy H?
o= -2 [0 2] L 4 conao) £ 2 @
+ 2ig W] W, (cF* — s 2*)

1s suggestive of all kinds of interesting novel decays, and of modifications of some
standard ones.

3.3 CURRENT LIMITS ON THE EFFECTS OF Owp.

The unworldly agreement between experiment and the standard model implies
limits on ewp, the coefficient of a putative novel interaction characterized by Owg. To
illustrate these constraints we assume no accidental cancellation between the effects of
Lwp and the other d = 6 effective interactions relevant to our analysis. The limits
on ewp depend sensitively on my; their weak dependence on My we combined linearly
with the experimental uncertainties. As a result, we can present our constraints on
ewp as an allowed domain in the plane (my, ewp). This is done in Figure [1] wherein
the 2 limits from the individual observables are depicted, as well as the combined
domain (interior to the x? = x?(min) + 4 contour) whose projection on either the ewg
or m; axis is the corresponding single-variable 95.5% (& 2¢) confidence-level interval.

The different limits are obtained by comparing the current experimental values of
(19) with the predictions of the standard model, modified by the O(ewpg) corrections

discussed in the previous section.
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One can deduce from Fig.[1] that, whatever the value of m; turns out to be,
~0.008 < eyg < 0.010 (20). (61)

Given this constraint, can the effects of the non-standard vector boson couplings (52)
induced by Lwp be directly observed in W-pair production at LEP-2? The answer is
a sorrowful “niet”, as we proceed to demonstrate.

3.4 TUNOBSERVABILITY OF Owg AT LEP-2.

The theoretical expression for the e*e~™ — W*W~ cross section implied by £, +
Lwp need not be reproduced here, since it has been computed and reported in the
literature [44] for generic values of, among other quantities, Ky, K2, Mz, Mw, g};’ and
§&, and we have checked the results to be correct. The corresponding total W-pair
production cross section, oT, is well behaved at high energy and deviates little from
the standard one, provided that the non-standard effects are all linked to each other
by gauge invariance, and consequently expressible in terms of a single non-standard
number, ewp, as in (52), (53), (55), and (56). This and/or other consequences of
gauge invariance, in this and/or other closely related contexts, have occasionally been
overlooked in previous work [44 to 47] and have been discussed in [48, 49]. We illustrate
the point by way of a first example in Figure [2], wherein o is plotted for the standard
model and compared with the correct prediction for ewg = 0.04. To demonstrate
the incidence of gauge invariance, we also include results with 6§f artificially set to
zero, but with all other non-standard modifications correctly related to each other, for
ews = 0.04. The exercise is repeated with §57 = 0 substituted for 6« = 0. Notice the
brutal reduction that the constraint of gauge invariance imposes on the novel effects.

A very sensitive direct test of the presence of Lvg concerns the differential cross
section do/d cos 84, with 8, for definiteness, the e¥ W scattering angle. These soft-
wary days, nothing short of Monte-Carlo simulations suffices to convey a message. We
have dutifully generated the rather generous statistics of 10* W-pairs at /s = 200
GeV with various assumed values of eyg. As an example, the cosf, distribution
(normalized to the standard expectation, and denoted R) is plotted in Figure {3] for
ewn = 0.04, 40 bins in the cos 84 variable, and purely statistical error bars. We have
performed x? tests of the significance of deviations from the standard prediction for the
shape of this differential cross-section at various assumed values of eg. The result,
shown in Figure [4], indicates that values of eyp greater than 0.023 or smaller than
-0.027 would be distinguishable from zero at the 95.5% (< 20) level. Also shown in
the figure as a vertical band is the domain (61) of ewp values currently allowed by the
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lower energy data. The moral is that more than a fourfold increase in the assumed
number of W-pairs (10*), as well as negligible systematic errors, would be necessary for
LEP-2 to compete with LEP-1 in detecting an interaction of the Lwp ilk. Yet another
quadrupling of the statistics would be called for in reaching a decent “discovery level”:
that which may produce a result on ey 40-away from zero.

The only hope for LEP-2 to (indirectly) detect a non-vanishing ewp (or reduce
its LEP-1 limits) relies on an improvement of the determination of My . LEP-2 may
[2] measure My to a little less than 0.2% accuracy, reducing the error in Mw /Mz to
a similar level from its current 0.6%. But inspection of Fig.[1] shows that even this
improvement is marginal: the LEP-1 results are indeed very restrictive.

3.5 EFFECTS OF Owpg ON SCALARS.

To complete the tree-level discussion of a non-vanishing Lwg, we comment on
some of the effects implied by the couplings (60) that involve scalars. This is the only
point at which, for the sake of discussion, we commit ourselves to a single isodoublet
Higgs particle. Of the many vertices described by (60) the most interesting are the
three-particle ones that are not present at tree level in the standard model: Z Hypy and
Hyyv. In the corresponding amplitudes a non-vanishing ey g only has to compete with
a standard Ofa) effect.

To discuss the Z Hyy vertex, we choose the case My < Mz. Let A = Ay + Awp be
the amplitude for Z — Hyy decay. The corresponding width is:
E3

= (62)

. - ;' R &
I'(Z — Hoy) = |4} o

The standard Ag is dominated by the triangle graph with intermediate W's and is
numerically equal [50] to:

2
eq My
Ay~ — 4.56 4+ 0.25 | — , 63

0 47 sin’ 8 Mw [ + (MW) ] (63)

practically independent of My for My < Mz. With the same normalization
2
Awp ~ - " cos(28) ewsp.- (64)

The ratio I'(Z — Hoy)/To(Z — Hy7y) varies from ~0 to ~ 3.7 in the interval lewp| <
0.01, indicating a strong sensitivity to the new physics. The trouble is that current
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bounds on the branching ratio B for Z — Hyy are not overly restrictive. From the
L3 result [51] B < 10~ (for 30 < My < 86 GeV) we can only extract from the above
expressions rather weak constraints on epyg. To give a couple of examples, for My = 40
GeV (My = Mw) we obtain |ewp| < 0.3(2.3), neither of which is competitive with (61).

The partial width for Hy — vv is

T(Ho — y7) = |A™?

(65)

with A7 = A]” + A}Jp. The standard triangle graphs with intermediate fermions and
W's result (52) in A]7 ~ 1, while, with the same normalization, Allg ~ +2scmews/a.
The ratio I'( Hy — vv)/To(Ho — ) swings from ~ 5.6 to ~19 in the interval ~0.01 <
ewp < 0.01, vanishing on its way. Again, this fine sensitivity to the new physics is
beneaped by the fact that the Hy — <y channel is not easily accessible. We can
interpret the Opal limit [53] Byyy < 6.6107° on the Z — v+ branching ratio as a
limit on the chain Z — vHy(— v7v), and use the preceding information to obtain
the non-competitive limits |ewg| < 0.18(0.3), again in the examples My = 40 GeV
(Mg = Mw).

Should Hj be found at future proton colliders to have a mass in the interval Mz <
Mpyg <2 Mw, the branching ratios for Hy — Z+, ¥y may be measurable. The resulting
information on ewp would be very precise.

3.6 LIMITS AND OBSERVABILITY OF OPERATORS OTHER THAN Owpg.

All d = 6 operators belonging to the basis of (50) and Table I can be studied in
a manner entirely analogous to the discussion of O g in the previous three sections.
Their effects on the input quantities of our Z-scheme, encountered in intermediate steps
of the calculations, are:

AGp 1
G—F-'zz[e¢+e,,—e,,,],
% ~ —2scewp , (66)

AMz 1 2

My ":scew3+zew+%eow,

with the various ¢’s defined as in (51). The incidence of these grafts on predicted
quantities: the ZWW and yWW couplings defined in (20) to (23), as well as on the
current observables discussed in Section 2 (the W mass, the parameters §y and é«

T e S
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describing the Z partial widths as in (15) and (16) and axial couplings as in (14), and
the ratio R, of neutral to charged current neutrino-scattering cross-sections) can be
gathered in matrix form as:

{ cos 28 6gz \ [ —1 -1 -+ -4 -4 %\
5y 1 0 0o 0 0 0
Sz —t 0 0o 0 0 0
A 0 0 3 0 G 0 ( EWB \
§Mw /7 M3 —2t -2 -t -2 42 les
5‘75,», - 0 =2 1 1 ~1 1 g2 EDW
2 -2 1 -1 1 1 |7 te
67 0 -2 1 -1 -1 1 1e
cos 28 bk, y, %- 2¢2 3? 82 c? —c? \ % €eu )
cos208x,,, 3 2c? 8? c? s —cf
cos 28 6k, 3 2¢? s c? e
\ SR, /7 R, } -1 -2{2+sc] —sc —sc —sc sc/
(67)

where 7 and # are as in (54) and (59), and ¢t = tané.

All results reported in (67) are g*-independent, with the exception of the Opw
contributions to the various §vs and 8k, that are therein given for ¢* = M3. Their
general expression:

2
g
67}' = 9’2 DWW -M_%- ?
68
S (69
cos28 M}

5&}' "_*'grzepw [

reflects the higher-derivative character of the operator Opw. Strictly speaking, the
approximation of constant ['f’s (as in the “most general” expression (8) used to fit
the data) is invalid for the P-wave decays mediated by Opw or a weak magnetic-
moment coupling. One cannot trivially “undo” this approximation, since its effects
are interwoven with those of QED radiative corrections. But the measurements rely on
data for which |¢? — M?%]| is a small fraction of M}, for which the energy dependence is a
correspondingly small correction: while waiting for a less standard analysis of the data
we may simply employ the fixed energy result of (67). As the measurements improve,
it would be interesting to search for a g2-dependence of the “widths” in (8).

Much as for Owpg, we can assume no accidental cancellations between the contri-
butions of the various operators in the basis {Q;} of (50) and Table I to the different
observables and extract from existing experiments the combined allowed domains in
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the (mq, ¢;) planes, whose projections are the 95.5%-confidence (& 20) intervals on
the individual variables. These results are gathered in Figure [5]. The operators O,
and O, are flavour-sensitive and in constraining their coefficients we have used the
experimental inputs I",, T', g4 and §f‘ in (19). For the remaining grafts we use I'; and
3{!, whose values, also in (19), are extracted from the data assuming lepton universal-
ity. The results shown in Fig.[5] are akin to the results on Owg, with one exception,
concerning the operator Og defined in (31). The allowed domain in the (my, eg) plane
extends to an unusually large value” of m; (~ 345 GeV). The upper limit on eg turns
out to be significantly larger than that of the coefficients of the other grafts, but can
only be saturated if m: turns out to be very large, as can be seen in Fig.[5b].

From the various plots in Fig.[5], one can read that whatever the value of m; turns
out to be:

—0.008 < ewp < 0.010
—0.008 < g < 0.033
- 0.024 < epw < 0.014
—0.054 < €., < 0.019
—0.035 < ¢, < 0.018
—0.025 < ¢, < 0.030

(69)

all at the 25 level. Limits on the four-fermion operator O, have been previously
discussed in [16).

We extend in Figure [6] to other operators the exercise of Section 3.4 and Fig.[4]
concerning Owp. That is, we compare the detectability level of various operators in W-
pair production at LEP-2 with the corresponding lower-energy constraints. The figure
indicates that the observability of these non-standard effects at LEP-2 is excluded for all
operators, with the borderline exception of Og. By “borderline” we mean the following:
Fig.[6b] indicates that while the current 2o-limit on the observability of eg at LEP-2
could be improved with the assumed statistics (10* W-pairs), an honest-to-goodness
LEP-2 discovery potential (a measurement 40 away from zero, or x%(40d.o.f.) =~ 90)
lies beyond the present LEP-1 limit.

Perhaps noticeable is the fact that we have not included in the preceding discussion
the operator O, of (38). The coefficient of this operator is limited by the known V — 4
structure of muon decay to the level ¢ o <0.14 (54, 14]. In the limit of negligible fermion

* In our calculations the lowest order vacuurn insertions of loops containing ¢'s have been iterated in
the usual manner, but corrections to them with inner scalars have not been included. At m; = 345
GeV, the top Yukawa coupling is such that y? /4x ~ 0.2, so that these corrections are not expected
to be overwhelming.

—— -

R, e = - = -
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masses, L i contributes only to second order in e;;, to the observables of interest,
given that its “chirality” is opposite to that of the standard currents occurring in the
amplitudes that could interfere with it. Its effects are negligible at the attainable

precision of the relevant experiments.

Current limits on the coeflicients of the operators discussed in this section from the
non-observation of fundamental scalars are, like in the case of Owg, relatively weak;

we do not discuss them.

The individual limits on each ¢; in (69) have been obtained setting all ¢;, j #
¢ to zero, that is assuming no accidental cancellations. In principle we might have
considered the limiting hypersurfaces in the full (¢, m;), I = 1,6 space and projected
then onto the individual (¢;, m) planes. Even harder to visualize would be the exercise
of extending this procedure to the inclusion of other operators, such as O,,, that we
have argued not to deserve the honour of belonging to our complete basis. The result
of the fully general exercise would be disappointing indeed: the limits on the individual
¢; would simply disappear! We would have “experimentally” discovered the existence
of “blind directions”, unnaturally contrived linear combinations of the tree grafts to
which current observables are insensitive at tree level. Even though there is no known
reason why a meta-theory would “point” exclusively in such directions, it is interesting
to explore how the current information can be used to “cut” them, as one considers

quantum effects at the one-loop level.

3.7 DBLIND DIRECTIONS: THE EXAMPLE OF Ow.

Available experimental results are not sensitive at tree level to triple gauge vertices.
We have seen that the operators Ow (29), Ops (46) and Owe (47), that describe
TGVs, can be written as linear combinations (42), (48) and (49) of operators that
are tightly constrained at tree level from current data. As a test of the entries in
(67), we have explicitly checked that these particular “directions” give vanishing tree-
level contributions to all the observables in (67). These linear combinations are “blind
directions” in d = 6 operator space, their coefficients in L.fs can only be bound via
one-loop quantum effects on current observables; the bounds are bound to be weaker
than the tree-level ones. The question arises: are the constraints on the blind-direction
coefficients aw, ags and awe loose enough to allow for a window of opportunity at
LEP-27 We have analyzed this question in full detail for the case of O, and we
proceed to demonstrate that its answer is marginally affirmative.

None of the parameters of the standard £y are modified at tree level by the ap-
pendage of a term Ly proportional to Ow. The only effect is an additional interaction
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of the non-standard form (22), plus the accompanying extra multiple-vector-boson
vertices fully determined by the gauge-invariant nature of eq.(29) (48]. In terms of
ew = aw v2/A?, the coefficients in (22) are

e
Ay =Az =)= .
- z=A Tond W (70)

Lw is a higher-derivative interaction and the vertices it describes vanish as any
of the external boson momenta tend to zero. Consequently, its addition does not
affect, even beyond tree level, many of the standard relations between the standard-
model parameters and low-energy observables. An example of an unmodified relation
concerns the input Fermi constant Gp: all diagrams in Figure [7] vanish for ¢ < M.
To limit the coeflicient of O we must look elsewhere.

Quantum loops involving Lw are gauge-independent. They result in apparent
quadratic divergences that must and do cancel once observables are expressed in terms
of other observables (in a more old-fashioned mood, one could also renormalize these di-
vergences right away with a counterterm, prior to the establishment of contact with the
actual physics). To specify our intermediate results we choose the search for n = 2,4
poles in dimensional regularization, and trade their respective residues, in the usual
way, for the coefficients of A% and In A cut-off dependences, with A set to coincide with
the characteristic scale of the new dynamics. With these substitutions our final results
are meaningful up to (but not including) “constant” terms: for not-very large a value of
In(A?/MZ,), these terms may affect the forthcoming bounds on ey by a factor which,
barring cancellations in all relevant observables, should be of O(1). “Conspiratorial”
grafts such as (39) can also be viewed here as counterterms and also compete with the
constant terms with different coefficients in the different observables. We neglect con-
spiratorial and “constant” contributions on grounds of the assumption of no pervasive
accidental cancellations.

Two of the input quantities of our Z-scheme, Mz and a, are affected by the grafting
of L. The shifts induced by the diagrams of Figure [8] and Figure [9]:

Ac T, Jar [ A? A? )

Seamp 22 A a2, 71

a ¢ lpmo 27 | M t2in M, (71)
Mz = My lpoyy 278 | M} 3 ML)

have the announced apparent quadratic divergences that will disappear as a predicted

A
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quantity is expressed in terms of the physical input parameters™ . We employ again the
symbol A for corrections to parameters occuring at intermediate stages of a calculation,
reserving ¢, as before, to describe the shift away from the standard model of a predicted
quantity.

The diagrams of Fig.[9] also describe the leading effect of Ly in the WW two-point
function. At ¢2 = Mg

Oww 3ad ] A? 5 ( A
—_— ~ — =1 — .
My |popy, ~ 2792 [ M T30\ (73)

The shift on the predicted value of My, expressed in terms of the input parameters a,
Gr and Mz (or equivalently a and the standard values of siné and M) is:

§Mw ~ 47 tan’ 8 Mz Sy, (74)
with 7 as in (54) and
a A?
Sw = -
W= gas B (M&,) : (75)

a result with no quadratic cut-off dependence.

The grafting of Ly onto Ly also modifies at one loop the description of ete~
annihilation in the region of the Z resonance. To first order in ey (or A), the effects
solely arise from the three-boson coupling of (22). To describe the ete™ — ff cross
section we must add to the standard oné-loop result the effects of the diagrams in
Figure [10]. The resulting one-particle irreducible vacuum insertions :IIzz and ill,y
of Fig.[10a] are to be iterated and “put in the denominator” in the usual fashion,
to result in dressed ¥ and Z propagators. The vertex corrections of Fig.[10b,d] and
the Zvy mixing insertion iIlz,, whose non-standard piece is that of Figure [10c], are
most conveniently kept “in the numerator” and interpreted as contributions to the
Z — e*e~ (or f f) amplitude, as in the standard case [55). The imaginary part of ill.,
can be dropped in practice, since it departs from the standard result (which is by itself

negligible) by an O(g A) correction.

The above exercise results in modifications of the predicted Z-widths occurring in
the cross-section of eq.(8) that can, once again, be expressed in the form of eq.(13).

* Even though o is defined at ¢> —0 and the diagrams of Fig.[8a,b] vanish in this limit, the extra
photon propagator in the diagram of Fig.[8¢] cancels the leading ¢? behaviour of the vacuum-
insertion correction IL...
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Let T refer to neutrinos and @ = 2/3 quarks, and | to their iso-partners. The results
are:

5‘71- ’_‘_"0,

571 =~ —85w,

5 2 7 76
KT_—(2+4[cos28_F§])6W’ (76)

N &
Oy = (2-4[30329"@])5“’-

For the interesting cases f = [~ (a given charged lepton) and f = h (the sum over all

quarks but t) the above expressions lead, at ¢* = MZ, to the numerical results:

6T,

T -813 6w, (77)
]

h o _ .85 6w . (78)
Ly

Vertex corrections involving Oy, such as the one depicted in Fig.[10], distinguish upper
and lower flavours, so that (78) is not of the form (16), valid for all the other operators
of the linear basis (50) that we have previously discussed.

The effect of Ow on the axial coupling of Z’s to charged leptons and on the ratio

R, of neutrino cross sections are:

=A
89 o 45y, (79)
9
SRy o 1066 . (80)
R,

Finally, at ¢ # 0, the presence of Ly makes the right- and left-handed couplings
of photons to fermions differ. The right-handed couplings of the photon stay put
(Qj‘-lz = Qfo) but the left-handed “charge” acquires a form-factor g3-dependence:

2

L _ AL q
Qf =Qp + m‘sw- (81)

These expressions are to be used in the Z — « interference (17) and purely photonic
terms (18) of the ete™ — ff cross section (8).
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The results are:
2
Sys o~ —8 Ig/[—z by
e
P (76

cos20 6 Mé

Srpo~— |4 ow ,

For the interesting cases f = [~ (a given charged lepton) and f = & (the sum over all
quarks but t) the above expressions lead, at g% = M%, to the numerical results:

N 513 6, (77)
I
é—l—‘-ﬁ o~ —8.17 dw . (78)
Ly

The effect of Oy on the axial coupling of Z’s to charged leptons and on the ratio

R, of neutrino cross sections are:

6—}1

I 4y, (79)
9

bR,

— ~ 246w .

R, w (80)

Finally, at g2 # 0, the presence of L makes the right- and left-handed couplings
of photons to fermions differ. In the convention in which the right-handed couplings
of the photon stay put (Q? = Qﬁ]), the left-handed “charge” and the fine structure

constant acquire form-factor ¢2-dependences:

2
L ool _ _7
Q_f —QfO 21'73 CZM% 6W7

(81)
da 0, q°
?2’—4:13&11 9'—§(5W

These expressions are to be used in the Z — v interference (17) and purely photonic
terms (18) of the ete™ — ff cross section (8).

We are indebted to Alain Blondel for asking the right question on this point, and
to Andy Cohen for helpful discussions.
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At this point, several comments are in order. With the phase-space factors having
been explicitly taken into account, the widths in the standard interpretation of (8)
are constants. The energy dependence of the widths implied by (76) stems from the
higher-derivative character of L and of the corresponding three vector-boson coupling
(22), a situation we had already encountered in the case of the Opy results in (68).
In the modified form (81) of the 7 coupling to fermions, the new term solely arises
from the vertex correction of Figure [10d). But in the modified couplings of (76) and
the corresponding Z-widths (77) and (78) vertex corrections do not give the complete
answer. The reason is that the imaginary part of the Z propagator gets rescaled as its
real part is renormalized to s — M%, an act that can be interpreted as wave function
renormalization, or as an ingredient in the proper definition of a running coupling.
The authors of a recent paper on this subject [56] overlook the minor point of the
g%-dependence, as well as the effects of propagator rescaling” , triggering the detail of
our discussion.

Much as for other operators, the agreement between experiment and standard
expectations can be cast into an allowed domain in the plane spanned by m; and the
parameter §w of eq.(75), that describes the quantum corrections induced by O . The

results are shown in Figure [11], from which one can read that

—0.0007 < 6w < 0.0022 (20). (82)

The operators O; that we have analyzed in previous sections have tree-level ef-
fects on LEP-2 and on lower energy observables, all linear in ¢ = o;v%/A?, with o;
their coefficients in £.5y. Comparison of present bounds with the LEP-2 potential is
straightforward. The case of a blind direction such as Oy is somewhat different. Its
incidence on W-pair production is linear in e, or the related quantity A of eq.(70),
but its lower-energy effects and bounds arise from quantum corrections linear in the
quantity dw o« a In(A2/MZ,) defined in (75). To extract a limit on A from (82) we
must choose a scale A to specify a value for the logarithm. The very minimum consis-
tent new physics scale is A = v, and it will be our most conservative choice. For no

compelling reason, we also give explicit results for A = 1 TeV:

—0.23 (- 0.10)<A<0.71 (0.32) [A =v (1 TeV)],

(83)
~14(—0.62)<ew <4.2(2.0) [A=0v (1 TeV)]

all at the 2¢ level, and once again independent of m;. Not surprisingly, since they

* On grounds of custodial symmetry [57], that can be imposed on non-gauge models with W-
dominance, the authors of {56] correctly impose A, = Az, a constraint that actually follows from

the deeper and exact principle of gauge invariance.
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spring from a radiative correction, the constraints on éw are much weaker than the
tree-level ones on the coefficients of the operators previously discussed. Looking back
at Fig.[11] one notices that the rather large 20 upper limits on A or ey correspond to
large values of m; ~ 200 GeV, a behaviour not unlike the one we found in the case of
the Op graft. For my ~ 100 GeV, the upper limits on each of the guantities in (82)
and (83) are similar in absolute value to the corresponding lower limits quoted in these

expressions.

Can the effects of the non-standard vector couplings (22) induced by Ly be directly
observed in W-pair production at LEP-2? We proceed to show that if the top quark
happens to be very heavy, and the scale A is not significantly bigger than 1 TeV, the
current limit (83) leaves ajar a rather narrow window of hope.

The theoretical expression for the e¥e™ — W+W ™ angular distribution implied by
Lo + Lw has been reported in the literature [58] for generic values of Ay and Az, but
we disagree with the results. Other calculations, that we have partially checked, have
been published [59] for polarized beams, but they are a little cumbersome to handle.
We do therefore explicitly report on our results, that we would be loath to present
other than in the gauge invariant case of only one A, as in (23) and (70). Upon grafting
Lw, the differential cross section do/d cosé, acquires an additive term:

2 2
2 -A =V -V
édo _A:Jrcnz2 1 4 M3%, (b [(g,) +(g,) ~ 254 +1) 4 (84)
d0089+— L] 8 1 —A -V
+2sin29(b[9‘ +g°]'1) I
where
b= 1 s
" 2sin?é s—M%’
s 8 ut 1 M?
AE——-4+A[ --1+(—-1) (——-—W)], 85)
M7, ryyza M3, 3" 2 (
3 M},
I= -1+ —
2 ME, t

and the notation of Mandelstam variables has been used.

Given the higher-derivative character of Ly, the total W-pair production cross
section ¢.,, is not well behaved at high energy and considerably deviates from the
standard result for A # 0, a behaviour illustrated in Figure [12).

S

g
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The shape of the differential cross section (84) should be less sensitive than gpor
to systematic errors. We have Monte-Carlo-generated 10* W-pairs at /s = 200 GeV
with various assumed values of A. The cos 8, distribution (normalized to the standard
expectation and called R) is plotted in Figure [13] for A = 0.1, and purely statistical
error bars. We have performed x? tests of the significance of deviations from the
standard prediction for the shape of this differential cross-section at various assumed
values of A. The result, shown in Figure [14], indicates that values of |A| greater than
0.08 would be distinguishable from zero at LEP-2 at the 95.5% (& 20) level. Also
shown in the same figure are values currently allowed by the lower energy data for two
fixed values of m;,.

The moral is that even blind directions are relatively well constrained via their
quantum effects. In the O case, Fig.[14] indicates that if the top quark turns out to
be relatively light, there is little hope for LEP-2 to have a sensitivity superior to that of
LEP-1, while if m, is relatively large (O(200) GeV) a window of opportunity appears
to open up. But for this window to materialize, a rather mysterious mechanism must
be at work for the cunning meta-theory not to generate the other grafts of our basis

(50) at a much more accessible level.

3.8 THE QUESTION OF “FORM FACTORS”.

We have extracted from experiment the present limits on the coefficients of the
“bosonic” operators Opw, Owg and Og and of the “fermionic” operators O., O,,
Oe,, an ensemble that constitutes (for our repeatedly stated main purpose) a complete
d = 6 basis. Ditto for the blind-direction graft Ow . It is appropriate to rediscuss at
this point the question of d > 6 gauge-invariant effective operators, starting with the
d = 8 ones.

The observable effects of d = 8 operators below the scale v are of the same nominal
size as the second-order effects of the d = 6 operators we have discussed: v*/A%, in the
worst-case scenario wherein the dimensionless coefficients in front of these corrections
are O(1). The only d = 8 operators that are relevant to the two- and three-point gauge-
boson functions of interest to us are those that have the same number of gauge fields
as the operators we have discussed, but an extra couple of scalar fields or SU(2)@U(1)
covariant derivatives. Such d = 8 operators are of two types: those that do contain
combinations of fields that are allowed by the gauge symmetry at the d = 6 level and
those that do not” . The effects on observables linear in the coefficients of the first type

* We shall face operators of the second ilk, such as L3, in a subsequent chapter on chiral realizations
of physics beyond the SM, wherein they arise naturally.
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of d = 8 operators, or quadratic in those of the d = 6 operators we have discussed, can
be thought of as “form factors” that multiply our leading order results. The question
is the extent to which these form factors may deviate from unity.

In the case of the operators in the d = 6 basis of (50) and Table I, and their look-
alike d = 8 siblings, the situation seems to be entirely clear. The limits on the various
¢; are all significantly smaller than unity, indicating that quadratic effects should be
negligible, unless a fine-tuned cancellation occurred between the first-order corrections
and the nominally smaller second-order ones.

In the case of the blind direction Ow we cannot sport a similar degree of confidence.
A future theory may be so wayward as to generate a non-vanishing L and vanishing or
negligible £; (i # W), not letting us fall into the temptation of expecting ey = O(e;).
Our my-independent limits on e in (83) are of order unity, so that significant form
factors may multiply our O(epw ) results. They might all be considerably smaller than
unity. In the unlikely case that all these factors play in the “right direction”, the search
at LEP-2 for an anomalous coupling of the form (22) may be simpler than we said.
Good luck to the blind directions!

4. GAUGE INVARIANCE VERSUS QUANTUM SUICIDE.

We have assumed throughout the preceeding chapters that the “meta-theory” that
may one day supersede the standard model respects its pristine SU(2) ® U(1) local
symmetry. This is more than aesthetics, for alternatives (44 to 47] face severe problems:
quantum non-decoupling, quantum non-uniformity and quantum suicide.

The “linear new-physics” additions, £,, in the Lagrangian of eqs.(24) and (25)
vanish as A — oo, leaving no trace whatsoever: all non-standard tree-level effects “de-
couple”. Consistency of the effective Lagrangian approach requires that the quantum
corrections involving £; also decouple. An observable effect that at tree level is ~ a;/A®
simply cannot develop at one loop a multiplicative correction [1+ O(A?)], that would
leave a non-decoupling trace of the high energy scale, no matter how high. Such a non-
uniformity of the A—0 and A — oo limits would mean that the effective Lagrangian is

subject to quantum suicide, destroying its own very meaning at the one-loop level® .

We have seen that deviations from the standard TGVs of eqs.(20) and (21) are
subject to constraints imposed by gauge invariance, such as those of (52) in the case of

t Recall that loop effects in Fermi’s weak theory do decouple, while some early attempts to limit
deviations from QED at ete~ colliders did not, till the full implications of U/, (1) gauge invariance

were imposed on their possible forms [1].

- e e am oy,
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Owp modifications, or those embedded in (67) for other operators. New-physics effects
inducing TGVs of entirely non-standard looks, of which (22) is the example concerning
Ow ., are also restricted by the local symmetry, as in (70). We have illustrated in
Fig.[2] the brutal phenomenological impact of a cavalier slight of gauge invariance.
To quote Kroll [1] on the historical QED analogue to such misdemeanors “As long
as one wishes to do no more than parametrize the degree to which the theory has
been experimentally confirmed there is no special penalty associated with ignoring the
general requirements...[but]...one usually pays for violation of the general theorems by
finding that the most striking predictions cannot be believed”.

This detailed Chapter would seem superfluous, were it not that the literature
abounds in estimates of the LEP-2 “new physics reach” and in calculations of one-
loop corrections involving anomalous vector-boson couplings that do not respect the
gauge-symmetry constraints. As an example, the one-loop corrections of {46] regarding
Ow and Owpg diverge as A*, and attempts have been made to tame them to a mere
A? behaviour in subsequent work [60]. Abusus non tollit usum, these calculations have
sometimes been used to establish upper limits on anomalous couplings (that may as
well be read as upper [!] limits on A) and to gauge the physics reach of future machines
[61]. In Section 3.7 we have seen en passant an example of how gauge invariance re-
stores the decoupling nature of the non-standard quantum corrections: the shift in the
predicted W-mass induced by Ow, as in (74) (75), has the promised and expected
decoupling properties, since A o« 1/A?; the quadratic divergences in the intermediate
steps (71), (72) and (73) have cancelled as a consequence of the condition Ay = Az (70)

imposed by gauge invariance.

A devil’s advocate might argue’ along the following line. Optimistically assume
that the quartic divergences can be reduced to quadratic ones {60]. For A\, # Az
the quadratic and logarithmic divergences in a and Mz can be reabsorbed into the
input quantities, resulting, for instance, in an asymptotically constant non-decoupling
O(g*ew A?) shift in the prediction for M{,. The result may happen not to disagree,
within errors, with the current standard tests. Since the SU(2)®U(1) gauge invariance
is not numerically tested, in this sense, beyond a fraction of a per-cent, one has the right
to challenge it below this level of precision. Trouble with this line of thought occurs
as one realizes that the unmodified Gy and the modified quantities a, Mz and M,
into which the “new physics” effects have been reabsorbed are no longer related by
gauge invariance as they would be in the standard model at tree level. The new d < 4
Lagrangian is not predictive, in a manner that can no longer be cured by sending A (or

+ We are indebted to Gordi Kane for discussions on this point.
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yet another regulator) to infinity. As one uses this Lagrangian to correct to one loop
the standard relation between Mz and Mw, or the prediction for a Z partial width, the
results diverge badly enough to make the corrections entirely arbitrary, We consider
the devil’s argument to be phenomenologically iffy and theoretically self-destructive.
The temptation to “assume” gauge invariance, deal with consistent quantum theories,
and skirt all this trouble, is strong indeed.

As an extra check of decoupling in a gauge-symmetry abiding framework, we have
computed the full one-loop contribution to' §Mjy linear in eg. This parallels the
discussion in Section 3.7 concerning QOw, but for the fact that Owp also contributes
at tree level. The quartic (A*) divergencies cancel in unitary gauge and do not occur
in any single diagram in a covariant gauge. Quadratic divergencies are only associated
to vacuum-polarization corrections; e.g., for IIyw, to the diagrams of Fig.[9], with
the heavy dot now representing the Owp insertion. In dimensional regularization
in 't Hooft-Feynman gauge, and up to an overall factor ewp g° Guv (5¢/4)T(e/2), the
V = v,Z loop contributions to §Mw in Fig.[9a] are +3 cos(29), respectively, while
those of Fig.[9b] are F2s2. The cancellations in the total effect clearly stem from
the constraints imposed by gauge invariance. The one-loop effects boil down to a
multiplicative correction to (53) of the form (1 + O([e/16 7%]In A/Myw )], a consistent
and decoupling overall result,

5. STRONGLY INTERACTING LONGITUDINAL VECTOR BOSONS.

We have discussed so far possible extensions of a linearly realized standard model,
whose effects on current observables would vanish as their typical energy scale, A, is
made much larger than the standard scale v. Their impact on “low” energy physics
can be organized as a Taylor series in v2/A?, with the leading term described by the
(mass dimensionality) d = 6 operators we have studied in detail. Hypothetical theories
of the technicolour variety or a standard model with a strongly interacting scalar sector
do not fit into that picture. The acts of obliterating the physical scalar field & or of
sending its mass to infinity do not “commute” with the naive-dimension expansion,
since ® is no longer there to construct gauge-invariant effective operators. Moreover,
the characteristic scale A of these models is of order v, and a power series in v2/A?
is not that useful a tool. In this sense, chiral realizations are the only known sensible
example of “form-factor” effects not to be discarded as in Section 3.8. A systematic
analysis proceeds in this case along the lines of the chiral non-linear o-model and was

first discussed in detail for the standard gauge group in (8, 9, 11].

N
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Following a beaten path, assume the interactions responsible for the generation of
intermediate vector boson masses to be endowed ab initio with an SU(2); ® SU(2)¢
symmetry, with SU{(2)¢ the accidental custodial symmetry [57] of the standard poten-
tial of scalar doublets. Introduce the consuetudinary matrix U describing the longi-
tudinal gauge-boson degrees of freedom, subject to the non-linear unitarity constraint
UtU =UU' =1 and transforming as a (2,2) of SU(2); ® SU(2)¢. The U(1) piece of
the covariant derivative, D on U

—

D,,UEB,‘U+z'gg-W,,U—ig'U%’-B,. (86)

has an extra o3 factor, relative to (27), reflecting the opposite hypercharges of the two
columns of U. Let W, = -‘w&'/2, V, =(D,U)U' and T = Ue3Ut in what follows.

Armed with the above notational artillery, one may proceed to build up a power
series describing the most general Lagrangian compatible with the symmetries of the
theory, along lines akin to those of the extensions of the linear version of the standard
model. The technique is also similar, but for the fact that the U field, unlike the linear
® field, has no mass dimension. The power series in “chiral” dimensions, dy, is a Taylor
expansion in terms of operators constructed with the objects U, D#*/A, W#¥/A? and
B#” /A2, as recently reviewed in [6].

In chiral notation the pure-gauge sector of the standard Lagrangian is:

vl

=S {DUDUN} + %’I& (W W} — %BuuB“” (87)

with dy, = 2 for the first term, dy, = 4 for the others. There is another dy = 2
effective operator and thirteen other d, = 4 ones that respect the standard SU(2) x
U(1) symmetry [9], with inclusion of the custodial-breaking terms that the quantum
corrections inevitably induce. The fourteen extra terms are to be added with not
precisely calculable weights to (87), to obtain an effective Lagrangian that is complete
and unprejudiced up to dy = 4. This unseemingly long list of operators is reduced to
a total of six as we proceed to concentrate on those describing two- and three-point

functions, and to use the equations of motion to eliminate redundant terms.

The equations of motion” emanating from Ly, augmented by the standard cou-

* We are indebted to Luciano Maiani for discussions on this point.
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plings to “external” fermionic currents, are:

. vl G =
Dme’:ngVyﬁ-g-é-J(f),
2 "
0uB" = ~ig T TV} 49 1(f), (88)

D#V” = O(mf/v) 3

where f( f) and J(f) are once again the fermionic isospin and hypercharge currents.
Of the above equations, we need use only the last, whose r.h.s. can be safely neglected
to the precision of the LEP experiments of interest here' .

Of the fourteen operators with dy < 4 to be added to Ly, three describe vertices
of no less than two gauge bosons, and correspond to the effective interactions:

L:I = gglr ﬂl B"WTI' {TWuv} ’ (89)
£ =80 [me{rv,}]" (90)
Ls = g% B [T {TW,, )7, (91)

Yet another threesome relates to interactions of no less than three gauge bosons:

Ly =g B B“”Tr{T[V,., V,,]} , (92)
L3 =ig B3Tr { WH [V, 1'/,,]} : (93)
Lo = ig BoTr {TWH*} T {T[f/,,, V,]} , (94)

while of the remaining eight operators of the complete d, < 4 set of chiral grafts,
five describe vertices of four or more gauge bosons that are irrelevant to the study
of TGVs, and the last three are made redundant by the equations of motion. The
seemingly capricious numbering of the six operators in (89) to (94) follows [9, 11].
A different numbering, rooted in the work of Gasser and Leutwyler {33] has recently
flourished in the literature” . The powers of g and ¢’ in (89) to (94) are those dictated
by chiral perturbation theory, which also indicates that all 8’s are of order 1/16x2. Of
the six dy < 4 effective interactions relevant to our analysis of TGV’s, three (L1, L2
and L3) preserve the custodial symmetry, while the rest (£}, L3, £3) do not.

1 The effects my on T, will be explicitly taken into account.
* For the most often discussed objects, the translation is 8y — Lio(GL) and §; + 283 — —Le(GL).
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The connection between the chiral expansion in terms of the above £; and our
previous field-dimensionality expansion for a linearly-realized SM is transparent in the

realization in which U in expressed in terms of @ as:

V2 [ By &4
U= — .
v (—m, %) (95)

Two chiral operatorsvcorrespond to objects (30), (31) that we have studied in appalling
detail:

299' By
‘ 16 9'2 ﬁi
Ly=- ) 04’|(¢—u) ’

where the rightmost subscripts indicate the substitution of ¢ by the expectation value of
its neutral component. The symbol “=»" for “corresponds to” means that the analysis
in our framework of the effects of the operator on the left-hand side is identical in
} %o that of the (scaled) operator on the right-hand side. We shall call d.zf
the naive dimensionality of the smallest-dimension linear graft to which a given chiral
graft corresponds to. Thus d.ss(Lq, £]) =6

practice

Two other chiral grafts also have d,s5 = 6:

8
Ly = —— g ,32 OB‘bl(@_ﬂ,) ’ (97)

8¢
Ly = —— ﬂ 0W¢|(¢_u)’

and correspond to the blind directions® defined in (46), (47). The equations of motion
relate these operators, as in (48) and (49), to the elements of the d = 6 linear basis of
(50) and Table 1.

The two remaining chiral operators translate into d. sy = 8 newcomers:

2
Ly = M(@*W,,,,@)(@*WW@H i)

(98)
Lo= — 321 $2:i95 ﬁsa

- (@'W* @) (Du®)' D, 8| g, -

of which the second one is a blind direction.

1 A techni-theory is supposed to mock up the regulator role that a heavy standard scalar plays. In
limiting chiral grafts, by comparing their incidence to the radiatively corrected standard results, we
ought to have used an My-uncertainty with My in the few TeV range [40] in which the standard
quartic couplings are strong. The differences with our generous My = 40 GeV to 1 TeV range are
too tiny to be relevant.

i We thank E. de Rafael and D. Espriu for pointing us in n these blind directions.
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To sum up, a dy < 4 chiral basis complete for the purposes of analyzing TGVs is

Graft type | Tree grafts | Blind dirs.

Graft name | £ L) La| L2 L3 L
deff 6 6 816 6 8
dy 4 2 4|14 4 4

Custodial {Yes No No|Yes Yes No

Table II: Elements of the dy < ¢ chiral basis.

Once again, there would be the possible choice of including or not including
fermionic operators as elements of a chiral basis, and to trade the blind-direction grafts
for fermionic operators whose effects are currently measurable at tree-level. In a chiral
realization, however, one may defensibly argue that effective fermionic operators are
generated at negligible orders of perturbation theory (implicitly these operators must
be assumed not to vanish exactly at all momentum scales, lest extra false relations
between the elements of the chiral basis ensue from the equations of motion). The
exclusion of fermion operators and the consequent inclusion of blind directions in the
chiral basis is a fairly natural choice, and not an unnecessarily impractical one, as it

would be in the linear case.

We have already explicitly analized® the current bounds and future detectability
of the effective interactions described by £, and £}. With use of (51) and (96) the
20-bounds in (61) and (69) on ewp and ep translate into:

~36<16728, <29
™ ﬁl ' (99)
-45< 16728} < 0.68.

We have seen that these bounds are very unlikely to be improved by a search for the
effects of Owp or Op at LEP-2.

The effects of the d.;y = 8 chiral graft Ly of (98) are simple to discuss, along the
same lines as those of the other (d = 6) tree-grafts we have investigated. Of the input

© In studying the effects of chiral grafts and comparing them with experiment, one ought to correct
the tree-level standard predictions with use of the dy = 2 term in £, as opposed to using the
standard one-loop corrections. This point of principle is moot in practice [38): differences are
unmeasurably small.
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quantities of a Z-scheme the addition of Ly only affects M3z:

ST

AMz ~
Z = an?d

and of all the observables in (19), only the prediction for My is modified:

Mz Bs (100)

My ~ ~2g c Mz fs . (101)

The 2 ¢ constraints on the (mq, #s) plane are shown in Figure [15a], from which one
can read the m;-independent 2 ¢ limits:

~1.7T< 167?83 < 1.6. (102)

Ly affects the quantities describing TGVs by the amounts:

692’ = 69‘7 ~0,
6Ky = brz ~ —4g%fs, (103)
A~0,

The results of a x? test of the sensitivity at LEP-2 of the angular distribution for W-
pair production to an Ly graft are shown in Fig.[15b]. The current limit on 8s and the
optimistic LEP-2 sensitivity are seen to be comparable.

Need we explicitly and laboriously analyze the current bounds and future de-
tectability of the effective interactions described by L9, £3 and L£9? These operators
are, in precisely the same sense as Ow, blind directions. But the expectation in models
describing a strongly interacting longitudinal vector boson sector is 2,3 ~ 51, B ~ s
for the custodial preserving and violating grafts, respectively. The possibility that 3,
$7 and fs be suppressed by a large factor relative to their blind-direction partners
would be a rather mysterious dynamical accident. If this accident does not occur,
there is meagre hope for currently derivable bounds on the blind directions to compete
with the limits in (99) and (102). Ditto for attempts to measure the effects of £33
at LEP-2. We have therefore skipped the toil of computing the quantum effects of the
chiral blind-direction grafts on current observables® .

To conclude, the current limits on 8y (or ewr), 3} (or €s) and fs are unlikely to
be superseded by any other manifestation of a non-linear standard model accessible
to LEP-1 or LEP-2. The discovery of a strongly interacting longitudinal gauge sector,
should it be the choice of nature, must await for data from higher-energy and/or higher-
luminosity machines.

o This extra effort is made in a forthcoming article [62].




- 42 -
6. RELATED WORK.

The recently gathered very precise body of data has triggered a swift response
from theorists. Not surprisingly, this has resulted in considerable overlap and an orgy
of notations. It may thus be useful to comment briefly on the concomitant literature,
without the untimely pretence of reviewing the subject.

Work in the linear realm, related to ours but concerning two-point functions (as
opposed to these plus their relations to TGVs) is reported in [15].

Considerable effort has been devoted to “general” characterizations of possible de-
viations from the SM, concentrated mainly on what are mystifyingly called “oblique”
[19] corrections: those concerning vector-boson two-point functions. A seminal and ex-
tensive work in this direction is that in [5]. To describe oblique effects, the authors in-
troduce three functions A, 4+ ,3(¢?) that are linear combinations of the above-mentioned
two-point functions.

In studying non-decoupling theories and in particular technimodels, it is pertinent
[40] to concentrate on oblique corrections, to set Az = Ay, to expand only to first
order in ¢? and to reduce the three functions of [5] to two mere numbers (§ and T):

d
Ay =>alS~—4¢ a—q—z [Hao(qz)] !q==0 ?
2 (104)
A, = al~ WTW [T11(0) ~ IT33(0)] -

A third quantity U arises when Az = A, is not imposed:
d
Ay = al ~4é a4 [M11(g?) — Ma3(q?)] |q2-_-o - (105)

These quantities, the completely equivalent ones ¢ 3,3 introduced in [43], and the g2 # 0
ones hy 4z aw of [41] have become part of the current lore on potential departures from
the standard model.

Only a few of the operators we have discussed contribute to the oblique ob-
jects S, T,U. Contributions to S and T start with operators with d.5f = 6 (« § =
4scewp; aT = —(1/2) ep), while those to U start at doyy =8 (a U = —16¢2 f). To
constrain the technimodels that inspired them, these oblique results are adequate. To
give but one example, our m;-independent limit (61) translates into § < 2.24 (20) for
a positive S at T = 0. This result and the analogous one on T (at § = 0) are in fair

e e ey

S e i e
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agreement with the earlier ones of [40] and others. To the current limits on techni-
colour we have nothing to add, but our bounds on U (or ) and our usual warning
that LEP-2 does not offer a greater hope than LEP-1 does.

An important remark, phrased in the language of S and T, is that of [63], where the
role of the very precise atomic parity-violation experiments [22] is studied. To reach
our conclusions on the observability of TGVs at LEP-2, we did not use the further
constraints implied by these measurements.

Contemporaneous with [40] are the related contributions [35 to 37|, in which the
effective field theory language is fully exploited, as in [38]. The advantages of so doing

are emphasized in [6].

Part of the literature subsequent to the introduction of S and T' concerned the
various possibilities to undo the approximations of [40] in attempts to describe a more
ample domain of meta-theories {41 to 64]. In a recent example, the authors of [64]
discuss the possibility of redefining their ¢; parameters [43] as algebraic combinations
of measured quantities, from which the m;, My-dependent electroweak corrections are
not subtracted; and of lifting various hypotheses, such as lepton or flavour universality,
to obtain various sets of ¢;’s. This is certainly a long way towards model independence,
only one step away (undoing the algebraic combinations) from what is indisputably the
most model-independent characterization of the unknown. Its advantage is a system-
atization of the sensitivity to various hypotheses or free inputs, such as m,; and My [65,
38]. The new ¢; [64] differ from the old [43}, and various of the non-oblique operators
we have discussed (O, O, O.,) contribute to the new and not to the old ¢;’s. Our
description of new physics is less general (and more specific) than the most general
one of {64] only inasmuch as we truncate the Taylof expansions in naive or chiral di-
mensions of an effective-Lagrangian description. It is the power of this latter approach
that allows one to establish well controlled connections between current observables at

different momentum scales and with future observables, such as TGVs.

All of the above-mentioned literature concerns the consistency and implications of
low-energy and LEP-1 data, while we have put emphasis on the impact of these data
on the triple gauge-vertices to be studied at LEP-2, and on their general analysis in
the linear and chiral realms. The ete™ — W*W™ cross-section modifications (that
we argued to be unmeasurably small at LEP-2) are studied with focus on a custodial
technicoloured context in [66], and in forthcoming work [67].

We have repeatedly enough expressed our view of considerations wherein the conse-
quences of SU(2)®U(1) gauge invariance are not treated with the respectful veneration
they fully deserve. We do not redo it here.
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7. CONCLUSIONS

The foundations of the standard model are a quarter of a century old. The last
surprise in its realm -the existence of a third generation— occurred no less than three
lustra ago. As the data fatidically narrow down on the standard predictions, it no
longer seems to be a mere accident that the model shares its denomination with the
Bureau of Standards. Under these circumstances, it behooves one to gauge the extent
to which the present success narrows down the space for theoretical and experimen-
tal departures from our current credo. This we have done in the context of what is
undoubtedly the main numerically-precise prediction of the model yet to be directly
tested: the structure and strength of the triple gauge-boson vertices. Though our con-
crete framework concerned the ete™ — W+W = process at LEP-2, it is clear that our
operator analysis can be directly applied to the study of the potential of other ete~
machines or readily extended to that of other colliding particles.

We have distinguished between the two main perceived avenues for plausible depar-
tures from the original (entirely perturbative) version of the standard model. The first
is the possibility that the mechanism of spontaneous symmetry breakdown occur “as
in the book”, with one or various relatively light, “elementary” and weakly-interacting
scalars to be unveiled by experiment in the foreseeable future; the new physics is, in
a sense, an ado. The second avenue is the appealing, though theoretically less well-
architectured, ansatz that the mechanism of mass generation involves some form of
strongly coupled dynamics, wherein the elementary scalars may be an unnecessary or
meaningless ingredient. Clearly, the search for these objects remains the main known
task of current and future machines.

The two non-trivial types of “meta-theories” can be characterized at energies be-
low their own intrinsic scale by effective non-renormalizable interactions between the
standard fields. These are to be systematically organized in a “Taylor” expansion and
grafted onto the original Lagrangian in a search for a comprehensive description of the
“low” energy impact of the putative future dynamics. The procedure —to the extent
that accidental cancellations between terms of the same or different orders appear to
be unlikely- is a complete procedure, provided all the terms relevant to a given order
are duly taken into account. We have improved previous analysis by explicitly consid-
ering all relevant operators and by studying in unprecedented detail the role that the
equations of motion play in this context. We have taken adequate care of experimental
and theoretical uncertainties, in particular those associated with the unknown value
of the top quark mass. In a sense, we have also “depleted” other previous theoretical
efforts by insisting ad nauseam on the impact and inevitability of the “assumption” of
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SU(2) @ U(1) gauge invariance.

In a nut-shell, we find that the current body of low-energy data suffices to place
serious doubt on the possibility of observing at LEP-2 a non-standard strength or
form of the triple gauge vertices. The gauge nature of the theory not only determines
what these couplings ought to be in the standard model, but precludes the existence
of observable deviations in its theoretically sensible extensions.

The previous paragraph is not a “theorem”, for fine-tuned low energy cancella-
tions (in half a dozen grafts and observables!) of wild higher energy behaviours cannot
be ruled out by arguments other than common sense. Moreover, we find that one of
the effective interactions reflecting the “new physics” (Lg) produces tree-level effects
whose bounds from current data (if the ¢ quark mass happens to be in the 300 GeV
ballpark) could be a wee bit improved at LEP-2. But, even in this case, a true (40)
discovery potential is excluded. Finally, there are “blind directions” in the operator
space describing the new physics (L, Lp¢ and Lwg and the chiral graft £g) to which
the current data are only sensitive at the level of quantum corrections, as discussed in
detail for the case of L. Though our phenomenological information on these “direc-
tions” may be improved (just a little) by observations of W-pair production at LEP-2,
it takes an act of faith to foresee that the hypothetical theory beyond the standard
model is perverse enough to generate these effects at observable levels, while skipping
the strictures from all other currently much better constrained “directions”. The win-
dow of opportunity is narrow indeed. This is not saying that LEP-2 is useless, for
an improved determination of Mw would be welcome, and none of our considerations
precludes the existence of, say, a relatively light new heavy lepton or elementary scalar.
But our arguments do indeed advocate in favour of higher-luminosity e*e~ colliders,
both at /s ~ Mz and at larger energies.

The substance of our conclusions is in a sense quite simple: all we are saying is
that the standard theory describes the data so well from low energy up to Mz, and
the possible deviations are so constrained by gauge invariance, that there is very little
hope for a doubling of the energy, in the search for subtle effects, to compensate for the
anticipated decrease in statistics. But there is no substitute for a direct measurement,
and one” may say that a deviation in the W-pair production process that significantly
violates our bounds would constitute a major discovery, suggesting an unfathomable
dynamical accident, or an entirely new type of hidden symmetry. The value of these
apparently trivial assertions increases with the realization that, in substantiating them,

we have rather systematically characterized the low energy effects of possible new

* We are indebted to Lev Okun for his insistence that the bottle may be perceived as being half-full.
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dynamics, and placed useful and defensible limits on the coefficients of all the best-
constrained effective operators characterizing the long-awaited manna’ .
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FIGURE CAPTIONS

. Allowed 2 o limits in the (ewg, m;) plane from the different individual observables.

The symbols specified here for the various constraints will recur in subsequent
figures concerning the coefficients of other operators. The dotted region combines
the limits from all observables and is the interior of the contour whose projections
are the 95.5% confidence-level (& 20) segments for the individual variables ey p

and my.

. The total ete™ — W+W™ cross section as a function of the c.m.s. electron

energy in units of the W mass. A gauge-invariant correction eyg = 0.04 hardly
affects the standard result, while non-gauge-invariant modifications of similar
magnitude, described in the text, would have considerable effects.

. The ratio R of corrected to standard ete~ — WHW— differential cross sections

do/d cos8, for 10* generated W-pairs, ewp = 0.04 and /s = 200 GeV; as a
function of 8., the et W™ scattering angle.

. x? test of the significance of the effect of ejyg # 0 on d o/d cos 8. The horizontal

line shows the LEP-2 95.5% (& 20) sensitivity for 10* produced W-pairs at
Vs = 200 GeV, the projections along the vertical arrows delimit the interval
of ewp inside which a LEP-2 measurement would test the hypothesis eyg # 0
with less than 2o significance. The vertical band encompasses the values of ewp
currently allowed by the lower-energy tests.

. Individual 2 o constraints and allowed combined contours in the (¢;, m;) planes.

The definition of the dotted domains is as in Fig.[1], and so is the notation for
the various experimental inputs, but for the operators O, and Oy in (e,f) that are
not flavour-insensitive. In the corresponding graphs the crossed, dashed-dotted,
open-circled and dashed lines correspond to T, I',, g2 and _ﬁf, respectively.

. x2 tests of the significance of the effects of various modifications of the standard

prediction for the W-pair production differential cross section do/d cosfy, in
terms of the coefficients ¢; of the various grafts in the complete d = 6 basis of
(50) and Table I. The horizontal lines, vertical arrows and dotted domains have
the same meaning as in Fig.[4].

. One-loop corrections to G with one Ow insertion (represented by a heavy dot)

with V = Z,4.

. One-loop corrections to a with one Qy insertion (represented by a heavy dot)

with V = Z,4. (a) Diagrams that do not modify a. (b) Diagrams that do.
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One-loop corrections to vector boson two-point functions with one Oy insertion
(represented by a heavy dot) with V' = Z,+. (b) vanishes identically.

Diagrams relevant to the ete™ cross section around the Z peak, as modified
by an Ow insertion, represented by the heavy dots. The dashed bubble in (a)
defines dressed V' = Z, v propagators, and those in (b+c) and (d) define the
corresponding ff vertices. (e) describes the complete ete~ amplitude. The

four-vector tadpoles have not been drawn: their contribution vanishes.

Individual 2 & constraints and allowed combined contours in the (6w, m:) plane.
The definition of the dotted domain and the notation for the various experimental
constraints are as in Fig.[1].

The total ete™ — W¥W™ cross section as a function of the c.m.s. electron
energy in units of the W mass, for various values of A, defined in (70).

The ratio R of corrected to standard ete~ — WHW— differential cross sections
do/d cos8, for A = 0.1, /s = 200 GeV, and 10* generated W-pairs; as a function
of 8, the e*W+ scattering angle.

x? test of the significance of an Ow insertion, A # 0, on the W pair production
cross section do/d cos 8. The horizontal line shows the estimated LEP-2 95.5%
(& 20) sensitivity, the vertical arrows are also as in Fig.[4], the dotted and
dashed intervals encompass the limits from current data, for A = 1 TeV and
m¢ = 100, 210 GeV, respectively.

(a) Individual 2 ¢ constraints and allowed combined contour in the (my, Bs) plane.
The definition of the dotted domain and the notation for the various experimental
inputs are as in Fig.{1). (b) x? test of the significance of the effect of A # 0 on
do/d cosfy. The horizontal line shows the LEP-2 95.5% (<& 20) sensitivity
for 10* produced W-pairs at /3 = 200 GeV, the vertical arrows are also as in
Fig.[4]. The vertical band encompasses the values of §g currently allowed by the
lower-energy tests.
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