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in the quenched approximation and comparing them with the corresponding expressions in
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1. Introduction

It is well appreciated that a combination of lattice methods and chiral perturbation theory

(χPT) can be an efficient tool for studying the low-energy properties of QCD close to the chiral

limit. While χPT is the perfect book-keeping device for the non-trivial relations implied by

chiral symmetry, the lattice can be used to determine the low-energy couplings of this theory,

which encode the dynamics of the fundamental Lagrangian.

The study of QCD on the lattice obviously requires a finite volume, and this might ap-

pear problematic close to the chiral limit, since spontaneous chiral symmetry breaking does

not take place in a finite volume. This is not the case, however, because χPT is able to

predict analytically the large finite-size effects expected in this regime, in terms of the same

low-energy constants as appear in an infinite volume, in such a way that infinite-volume

quantities can be obtained unambiguously from the finite-volume ones. The study of χPT

in a finite volume and close to the chiral limit (in the so-called ǫ-regime) was pioneered by

Gasser and Leutwyler [1]–[4] a long time ago, but it is only recently that practical “mea-

surements” of physical observables became feasible in lattice QCD [5]–[8]. This is thanks to

the new formulations of lattice fermions, which preserve an exact chiral symmetry [9]–[16].

In this paper we will employ one of these formulations and invoke the specialized numerical

techniques developed in ref. [17], which are needed for high-precision studies in the ǫ-regime.

It was found in [18] that in the ǫ-regime, gauge field topology may play a very important

role. In a given chiral regularization of QCD, averages can be defined in sectors of fixed

topological index ν [19], and our assumption will be that standard ultraviolet renormalization

also makes sense in such sectors. Although this is a non-trivial assumption in QCD, there is

a well-defined prescription for how to compute analogous averages in χPT.

It then turns out that close to the chiral limit, many observables depend quite strongly

on the topology. In particular, for ν 6= 0, two-point functions of the scalar and pseudoscalar

densities have poles in the quark mass squared, with residues given by correlation functions of

Dirac operator zero-mode eigenfunctions. In the ǫ-regime of χPT the same poles appear, with

residues that are calculable functions of the low-energy constants. Requiring the residues in

the fundamental and effective theories to be the same yields non-trivial relations.

To be more specific, at leading order in χPT the correlators mentioned are constants

depending only on ν and the volume, but at next-to-leading order (NLO) one obtains a space-

time-dependent function, which also involves the pseudoscalar decay constant F . Therefore,

F can be determined by monitoring the amplitude of the time dependence. A nice feature

of this procedure is that it does not require knowledge of renormalization factors since we

employ a regularization that preserves the chiral symmetry.

Given that F 2 appears first at the NLO, O(1/F 2), and that the convergence of χPT at

realistic (not very large) volumes is not a priori guaranteed to be rapid, it is one of the

purposes of this paper to present the results of the calculation up to the next-to-next-to-

leading order (NNLO), O(1/F 4). According to our conventions as detailed in Appendix A,
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these correspond to the relative orders O(ǫ4),O(ǫ8) in the ǫ-expansion, respectively.

We study, furthermore, the feasibility of using this relation to extract F 2 from the zero-

mode wave functions computed on the lattice, in the quenched approximation. Thus, pre-

dictions for the quenched version of χPT (QχPT) (whose theoretical status is unfortunately

rather questionable, see Sec. 3.1 and, e.g., ref. [20]) are also presented, at the same order.

The paper is organized as follows. In Sec. 2 we derive the relation alluded to above and

present the results of the calculation of the pseudoscalar density correlator in full χPT. In

Sec. 3 we obtain the same results in the quenched approximation and compare them with

a numerical determination of the zero-mode eigenfunctions in lattice QCD, using overlap

fermions. We conclude in Sec. 4, and collect various details of the NNLO computations in

three Appendices.

2. Pseudoscalar correlator in QCD and in χPT

2.1. The fundamental theory

In this paper we are concerned with QCD in a finite volume V = T × L3, with periodic

boundary conditions in all directions. Our conventions for the Dirac matrices are such that

γ†µ = γµ, {γµ, γν} = 2δµν , γ5 = γ0γ1γ2γ3, so that the (unquenched) Euclidean continuum

quark Lagrangian formally reads

LE = ψ̄(γµDµ +M)ψ , (2.1)

where M is the mass matrix. For simplicity, we take M to be diagonal and degenerate,

M = diag(m, ...,m). The number of dynamical flavours appearing in ψ is denoted by Nf .

In the following we will restrict our attention to correlation functions of the scalar and

pseudoscalar densities,

SI ≡ ψ̄T Iψ , PI ≡ ψ̄iγ5T
Iψ , (2.2)

involving Nv valence quarks; in the unquenched theory, Nv ≡ Nf . The Nv × Nv valence

flavour basis is generated by

T I ≡ {T 0, T a}, T 0 ≡ INv
, a = 1, ..., N2

v − 1 , (2.3)

where INv
is the Nv ×Nv identity matrix, and the traceless T a are assumed to be normalized

so that

Tr [T aT b] =
1

2
δab . (2.4)

Our analysis is based on the assumption that correlation functions at fixed topology, e.g.

the two-point correlators of pseudoscalar densities,

CIJ
ν (x− y) =

〈
PI(x)PJ (y)

〉

ν
, (2.5)

2



have a well-defined meaning in the continuum limit at non-zero physical distances. Although

plausible, this is a non-trivial dynamical issue and to pose precise questions we must introduce

an ultraviolet regularization.

We here adopt the lattice regularization with a massless Dirac operator D obeying the

Ginsparg–Wilson (GW) relation, since it preserves an exact chiral symmetry. The topological

index assigned to a configuration then is ν = n+ − n−, where n+ (n−) are the numbers of

zero-modes of D with positive (negative) chirality. Correlation functions such as Eq. (2.5)

are now well defined at fixed cutoff [19], and the question is whether, in any given sector

of index ν, they have a continuum limit independent of the particular choice of D 1. Our

working hypothesis is that this is indeed the case; some recent numerical evidence (in the

quenched approximation) consistent with this scenario can be found, e.g. in refs. [8, 21].

By employing the spectral representation of the quark propagator, it is clear that the

correlator in Eq. (2.5) contains a pole in m2, due to the exact zero modes. Its residue is

lim
m→0

(mV )2 CIJ
ν (x) = Tr [T IT J ] Aν(x) + Tr [T I ]Tr [T J ] Ãν(x) , (2.6)

where

Aν(x− y) ≡
〈 ∑

i,j∈K

v†j(x)vi(x)v
†
i (y)vj(y)

〉

ν
, (2.7)

Ãν(x− y) ≡ −
〈∑

i∈K

v†i (x)vi(x)
∑

j∈K

v†j(y)vj(y)
〉

ν
, (2.8)

and the sums are over the set of |ν| zero modes vi of the Dirac operator, Dvi = 0 ∀ i ∈ K,

which have definite chirality and are assumed to be normalized so that
∫
d4x v†i (x)vi(x) =

V . Eq. (2.7) corresponds to a “connected” contraction of the quark lines, Eq. (2.8) to a

“disconnected” one 2.

It is important to note that in writing Eqs. (2.6)–(2.8) we have assumed that poles arise

only from exact zero modes, i.e. that taking the limit m → 0 and performing the average over

the full space of configurations commute. At fixed volume the only potential danger arises

from the average distribution of eigenvalues near zero; our assumption holds if the density of

eigenvalues vanishes at fixed non-zero index. Intuitively one expects that distributions of non-

zero eigenvalues at non-trivial topology are depleted near zero. In χPT, as well as in random

matrix theory ([22] and references therein), the densities behave as ρν(λ) ∼ λ(2|ν|+1+2Nf ), and

no contribution from the non-zero modes is thus expected in the observables we consider.

Since the zero modes are eigenfunctions of γ5, the scalar and the pseudoscalar correlators

contain the same information,

lim
m→0

(mV )2
〈
SI(x)SJ(y)

〉

ν
= − lim

m→0
(mV )2CIJ

ν (x− y) , (2.9)

1Since the space of lattice gauge fields is connected, different choices of D possibly lead to different assign-

ments of index for a given configuration.
2The terms in Eqs. (2.7), (2.8) could also be interpreted as classical scattering amplitudes for pairs of zero

modes.
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and hence we only consider the latter in the following. Finally we note that as a consequence

of the exact chiral symmetry maintained by the GW lattice regularization, the mass does not

require additive renormalization and the products mPI need no renormalization at all.

2.2. Chiral perturbation theory

At large distances, the two-point correlator of the pseudoscalar density can be described by

chiral perturbation theory. The leading order chiral Lagrangian reads

LχPT =
F 2

4
Tr
[
∂µU∂µU

†
]
− mΣ

2
Tr
[
eiθ/NfU + U †e−iθ/Nf

]
, (2.10)

where U ∈ SU(Nf), and θ is the vacuum angle. This Lagrangian contains only two parameters,

the pseudoscalar decay constant F and the chiral condensate Σ, while none of the higher order

Li coefficients of Gasser and Leutwyler appear at the next-to-leading non-trivial order in the

ǫ-regime, mΣV <∼ 1. The chiral theory operator corresponding to PI in Eq. (2.2) reads, at

leading order,

P I = i
Σ

2
Tr
[
T I
(
eiθ/NfU − U †e−iθ/Nf

)]
. (2.11)

The correlators computed in χPT are referred to with the notation

CII
ν (x− y) ≡

〈
P I(x)P I(y)

〉

ν
, (2.12)

where I is not summed over, and the expectation value is taken at the topological index ν.

The correlators CII
ν (x) have been computed by Hansen in the ǫ-regime without fixing the

topology [4], up to relative order O(ǫ8), according to our conventions for the counting rules

of the ǫ-expansion as they are specified in Appendix A. Our goal in this section is to repeat

this calculation but at fixed topology.

Following the notation of [4], the general structure of the correlator is (before volume

averaging),

CII
ν (x) = CI + αIG(x) + βI

[
G(x)

]2
+ γI

∫
d4y G(x− y)G(y) + ǫIδ

(4)(x) , (2.13)

where

G(x) =
1

V

∑

n∈ZZ
4

(
1 − δ

(4)
n,0

)eip·x

p2
, p = 2π

(n0

T
,
n

L

)
. (2.14)

In dimensional regularization, G(0) = −β1/
√
V , with β1 a dimensionless numerical coefficient

depending on the geometry of the box. According to Eq. (2.13), the result factorizes to terms

representing space-time dependence, and to the coefficients CI , αI , βI , γI , ǫI , which turn out

to contain integrals over the zero-mode Goldstone manifold. While all these quantities depend

on the leading-order low-energy couplings F and Σ, the constant CI and the contact term ǫI
also depend on a combination of the Li coefficients of Gasser and Leutwyler at the NNLO at

4



which we are working [4]. To avoid the dependence on these additional couplings we will only

consider the time variation of the correlators at non-zero time separations. For convenience,

we also average the correlators over the spatial volume L3.

The various time dependences remaining after integration over the spatial volume are listed

in Appendix B.1, the emerging zero-momentum mode integrals in Appendix B.2, and the ex-

pressions for the coefficients CI , αI , βI , γI in terms of the zero-mode integrals in Appendix B.3.

For CI the expressions are at NLO only, for the aforementioned reason.

Taking the volume average and considering the time derivatives of the residues of the 1/m2

poles, we define

lim
m→0

(mV )2
d

dt

∫
d3xCaa

ν (x) ≡ 1

2
A′(t) , (2.15)

lim
m→0

(mV )2
d

dt

∫
d3xC00

ν (x) ≡ Nv A
′(t) +N2

v Ã
′(t) . (2.16)

The spectral representation of Eq. (2.6) and the definitions A(t) =
∫
d3xAν(x), Ã(t) =∫

d3x Ãν(x), then imply that at large t,

A′(t) = A′(t), Ã′(t) = Ã′(t) . (2.17)

These constitute our basic relations between the zero-mode amplitudes and the pion decay

constant in the chiral limit, F , once we spell out the right-hand sides. The latter actually

vanish at the lowest order where the undifferentiated quantities A(t) = |ν|L3, Ã(t) = −ν2L3

are constant, matching the sum over volume of the zero-mode expressions in Eqs. (2.7), (2.8)
3. On the other hand, given the expressions in Appendix B, we obtain, at NNLO,

F 2A′(t) =
2|ν|
Nf

{
(1 +Nf |ν|)h′1(τ) +

T 2

NfF 2V
H2(τ)

}
, (2.18)

F 2Ã′(t) = −2|ν|
Nf

{
(Nf + |ν|)h′1(τ) +

T 2

NfF 2V
H̃2(τ)

}
, (2.19)

where τ = t/T , and the functions appearing are given by

H2(τ) = −(1 +Nf |ν|)N2
f

β1

√
V

T 2
h′1(τ) +

[
Nf(6 −N2

f )|ν| + 4 +N2
f (2ν2 − 1)

]
h′2(τ)

+
[
Nf(2 − 1

2
N2

f )|ν| + 1 +
1

2
N2

f

]
g′1(τ) , (2.20)

H̃2(τ) = −(Nf + |ν|)N2
f

β1

√
V

T 2
h′1(τ) +

[
(4 +N2

f )|ν| + 2Nf(2 + ν2) −N3
f

]
h′2(τ)

+
[
(1 +

1

2
N2

f )|ν| + 2Nf −
1

2
N3

f

]
g′1(τ) . (2.21)

The functions h1, h2, g1 are defined in Eqs. (B.5)–(B.7). Note that only the low-energy cou-

pling F appears here. A non-trivial check of these formulae is that, for |ν| = 1, they satisfy
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Figure 1: The NLO (solid, volume-independent) and NNLO (dashed for L = T = 2 fm,

dotted for L = T = 3 fm) predictions for F 2A′(t), F 2Ã′(t) at |ν| = 1, 2 (thick, thin), for

Nf = 2 (top) and Nf = 3 (bottom). We have chosen F = 93 MeV.

A′(t) + Ã′(t) = 0 for any Nf , as must be the case since the sums in Eqs. (2.7) and (2.8) are

identical if there is only one zero mode.

Fig. 1 shows the NLO and NNLO results for F 2A′(t), F 2Ã′(t) as a function of time, for

3Provided that the probability of having zero modes of both chiralities is zero.
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Nf = 2 and Nf = 3 and two volumes. Considering, say, the slope of the curves at around

t/T = 0.5, the NNLO correction is ∼ 50% of the NLO term in the smaller volume shown, if

|ν| is not too large, and then decreases in larger volumes as ∼ 1/
√
V .

3. Quenched lattice determination of the low-energy couplings

In this section, we move on from the full theory, which at present is not easily accessible to

lattice techniques, to consider its quenched approximation. We derive the quenched chiral

perturbation theory [23, 24] predictions for the pseudoscalar correlation functions of zero-

mode eigenfunctions and compare them with numerical results obtained in quenched QCD

with the overlap Dirac operator.

3.1. Correlators in quenched chiral perturbation theory

The predictions obtained with χPT, Eqs. (2.18) and (2.19), diverge in the formal limitNf → 0.

This indicates that the results will be substantially modified in the quenched theory. Our

working hypothesis is that correlators of the form of Eq. (2.12) can nevertheless, at large

distances and in a certain kinematical range, still be described by an effective chiral theory,

called quenched chiral perturbation theory (QχPT).

The most important difference between QχPT and χPT is that the singlet field Φ0 ∼
ln detU cannot be integrated out in QχPT [23, 24]. The corresponding chiral Lagrangian

may then contain all possible couplings of the singlet field and the theory loses much of its

predictive power, unless an additional expansion in 1/Nc is carried out. In this case, the

analysis of the relevant operators follows very closely the analysis of the generalized chiral

theory, including the η′ in full QCD [25]–[27], and is reviewed in Appendix A. The presence

of new couplings implies that ǫ-counting rules have to be defined for them. There are several

possibilities, as we also discuss in Appendix A. We choose one that has not been considered

previously, to our knowledge, for reasons that will presently become clear.

In the so-called supersymmetric formulation, the quenched chiral Lagrangian at the order

we are working reads

LQχPT =
F 2

4
Str

[
∂µU∂µU

−1
]
− mΣ

2
Str
[
UθU + U−1U−1

θ

]

− imKΦ0Str
[
UθU − U−1U−1

θ

]
+
m2

0

2Nc
Φ2

0 +
α

2Nc
(∂µΦ0)

2 , (3.1)

where U ∈ Ĝl(Nv|Nv) [28], Str denotes the supertrace, Φ0 ≡ F
2 Str [−i ln(U)] and the vacuum

angle θ appears as Uθ ≡ exp(iθINv
/Nv), where INv

is now the identity in the physical Nv×Nv

“fermion–fermion” block and zero otherwise. The matrix Uθ commutes with all the flavour

group generators T I , which are also assumed to be extended to become 2Nv × 2Nv matrices,

with only the physical block non-trivial. Besides F,Σ, the quenched Lagrangian in Eq. (3.1)
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contains now three additional parameters: K, m2
0/Nc and α/Nc. At the same order as

Eq. (3.1), the operator corresponding to Eq. (2.2) becomes

P I = i
Σ

2
Str

[
T I
(
UθU − U−1U−1

θ

)]
− KΦ0Str

[
T I
(
UθU + U−1U−1

θ

)]
. (3.2)

In the ǫ-counting we have adopted, the mass parameter related to the singlet field, m2
0/Nc,

will be treated as a small quantity of O(ǫ4), so that only the first order in it needs to be

accounted for. The reason is that this guarantees that the non-zero mode Gaussian integrals

over the graded group, performed according to Zirnbauer’s prescription [28, 29], are formally

well defined. This counting also automatically implies that

1

(4πF )2
≪

√
V ≪ (4π)2Nc

m2
0

, (3.3)

which is the window where QχPT should converge. Indeed, quenched corrections increase in

size with the volume in contrast with the unquenched case where they decrease: contributions

of the form m2
0

√
V /Nc ∼ 〈ν2〉/

√
V F 2 become large if we do not satisfy Eq. (3.3). In the real

world, obviously, 1/Nc is not tunable, and a phenomenological justification for the counting

introduced is simply that it seems to be able to describe our data, as shown in the next

sections.

Correlators of the form of Eq. (2.12) again factorize into two types of pieces, space-time

integrals and zero-mode integrals. In the quenched theory the zero-mode integrals can only

have terms ∝ Nv (from the connected contraction) and ∝ N2
v (from the disconnected one).

The connected contraction then directly determines the result for the non-singlet correlator.

The two parts can be determined as discussed in [30]: the former by using the replica for-

mulation [31] and the U(Nf) integrals that already appeared in the full theory, the latter by

carrying out the full computation of the zero-mode integrals for Nv = 1, and subtracting the

connected part. Therefore, it is enough to consider C00
ν , for a general Nv, and deduce Caa

ν

from the part ∝ Nv in C00
ν .

Generalizing Eq. (2.13), the overall form of the answer now is

C00
ν (x) = C0 + α0G(x) + α′

0E(x) + β0

[
G(x)

]2
+ β′0G(x)E(x) + β′′0

[
E(x)

]2
(3.4)

+

∫
d4y

[
γ0G(x− y)G(y) + γ′0G(x− y)E(y) + γ′′0E(x− y)E(y)

]
+ ǫ0δ

(4)(x) ,

where, instead of E(x) = G(x)/Nf as in the unquenched theory, we now have

E(x) ≡ α

2Nc
G(x) +

m2
0

2Nc
F (x) . (3.5)

Here G(x) is defined in Eq. (2.14), and

F (x) =
1

V

∑

n∈ZZ
4

(
1 − δ

(4)
n,0

)eip·x

p4
, p = 2π

(n0

T
,
n

L

)
. (3.6)
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The additional time-dependent functions appearing in the quenched case, owing to the

function F (x) in Eq. (3.5), are listed in Appendix C.1. The quenched zero-mode integrals

are discussed in Appendix C.2, and the expressions for the coefficients in Eq. (3.4), in terms

of the zero-mode integrals, in Appendix C.3.

Collecting everything together, we obtain for the objects in Eqs. (2.15), (2.16),

F 2A′(t) = 2|ν|
[
|ν|h′1(τ) +

(
α

2Nc
− 2KF

Σ
− β1

F 2
√
V

)
h′1(τ)

+
T 2

F 2V

(
2ν2 +

7

3
− 2〈ν2〉

)
h′2(τ) +

T 2

2F 2V
g′1(τ)

]
, (3.7)

F 2Ã′(t) = −2|ν|
[
h′1(τ) + |ν|

(
α

2Nc
− 2KF

Σ
− β1

F 2
√
V

)
h′1(τ)

+
T 2

F 2V

(
13

3
|ν| − 2|ν|〈ν2〉

)
h′2(τ) + |ν| T 2

2F 2V
g′1(τ)

]
. (3.8)

We have used here the Witten–Veneziano relation m2
0F

2 = 4Nc〈ν2〉/V , which is exact at

this order, where 〈ν2〉/V is the topological susceptibility. It may be noted that for |ν| = 1,

A′(t) + Ã′(t) = 0, as should be the case. We observe that there are three independent low-

energy parameters entering the expressions: 〈ν2〉, the combination α/2Nc − 2KF/Σ, and

F ; we thus set, without loss of generality, K = 0. Obviously a simultaneous determination

of three parameters from the zero-mode eigenfunctions will be more difficult than in the

unquenched case, where only F appears at this order.

In Fig. 2 we show the NLO and NNLO predictions for F 2A′(t) and F 2Ã′(t), Eqs. (3.7) and

(3.8), for L = 1.6 and 2.0 fm. Considering, say, the slope of the curves at around t/T = 0.5,

the NNLO correction grows to ∼ 50% of the NLO term in the larger volume.

3.2. Simulation details

We have performed a lattice simulation in the quenched approximation, using the overlap

Dirac operator for the fermions [13]. The topological index and the zero-mode eigenfunctions

are computed as proposed in [17] on thermalized configurations for two physical volumes

and various lattice spacings. Only sectors with topology |ν| = 1, 2 are considered. Table 1

summarizes the simulation parameters; the same configurations have previously been analysed

in a different context [8].

From the zero-mode eigenfunctions, we compute the volume average of the correlators in

Eqs. (2.7) and (2.8). There is a good signal in all cases, as illustrated in Fig. 3. QχPT

predicts that at non-zero times these correlators should behave like polynomials in time. We

thus consider a Taylor expansion around the mid-point, τ = 1/2. Denoting z ≡ τ − 1/2, we

define the coefficients Dν and Cν as

1

L2
A′(t) ≡ Dν z + Cνz

3 + O(z5) , (3.9)

1

L2
Ã′(t) ≡ D̃ν z + C̃νz

3 + O(z5) . (3.10)
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Figure 2: The NLO (solid, volume-independent) and NNLO (dashed for L = T = 1.6 fm,

dotted for L = T = 2.0 fm) predictions from Eqs. (3.7), (3.8). The QχPT parameters are

α/Nc = 0, F = 115 MeV, 〈ν2〉/V = (200 MeV)4, and |ν| = 1, 2 (thick, thin).

Lattice β L/a r0/a L[fm] Nmeas(|ν| = 1) Nmeas(|ν| = 2)

B0 5.8458 12 4.026 1.49 880 696

B1 6.0 16 5.368 1.49 307 226

B2 6.1366 20 6.710 1.49 326 213

C0 5.8784 16 4.294 1.86 229 186

C1 6.0 20 5.368 1.86 83 78

Table 1: The simulation parameters (cf. ref. [8]). Here a is the lattice spacing, r0 is the

Sommer scale [32], r0 = 0.5 fm, and Nmeas is the number of configurations. All lattices are

symmetric, T = L.

With a simple linear fit we can then extract the parameters Dν and Cν on jackknifed config-

urations. Table 2 shows the results of these fits in the time interval (tmin, T/2). The data are

modelled very well by the fits, and also the dependence on the choice of tmin is insignificant.

It is clear from Table 2 that only the Dν coefficients can be extracted from the data in a

reliable way. The errors on the Cν coefficients are large and their central values vary quite

significantly with the lattice spacing. This is to be expected since the Cν coefficients are

more relevant at short distances and so will also be more sensitive to cutoff effects. For this

10
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Figure 3: The numerical data corresponding to A′(t)/L2, Ã′(t)/L2, from the B lattices.

Where not visible the statistical errors are smaller than the symbols. The left plot is for

|ν| = 1, the right one for |ν| = 2. Comparing the slope at t/T = 0.5 with the χPT predictions

shown in Fig. 2, allows us to estimate (FL)2.

Lattice tmin zmin D1 D2 D̃2 C1 C2 C̃2

B0 3a 0.208 3.7(1) 10.9(2) − 9.1(4) − 7(1) −24(1) 19(3)

B1 4a 0.219 3.9(2) 10.8(4) −11.1(9) − 5(2) −11(3) 26(8)

B2 5a 0.225 3.8(3) 10.7(4) − 9.7(9) − 3(3) −13(4) 8(8)

C0 4a 0.219 3.4(3) 8.9(5) − 9.2(9) 2(3) − 4(5) 16(9)

C1 5a 0.225 3.9(5) 9.4(7) − 9.1(16) −11(5) 7(7) 2(19)

Table 2: The Dν and Cν coefficients from the fit. The numbers in parentheses indicate the

error of the last digit.

reason, we restrict ourselves to the Dν coefficients in the following.

3.3. Analysis of the data

A Taylor expansion of the functions in Eqs. (3.7) and (3.8) and a matching with Eqs. (3.9)

and (3.10) gives

Dν =
2|ν|

(FL)2

{
|ν| + α

2Nc
− 2KF

Σ
− β1

F 2
√
V

11



Lattice dof χ2
min FL(B) α/Nc χ̂

B 6 5.8 (0.84,0.92) (0.3,1.2) (0.04,0.08)

C 3 2.3 (0.76,1.01) (−0.6,2.6) (0.04,0.08)

B+C 12 8.8 (0.83,0.90) (0.3,0.9) (0.05,0.08)

Table 3: Results from the global fits. The intervals are the projections of the 68% confidence

level contours.

+

[(
7

3
+ 2ν2 − 2〈ν2〉

)
ζ2 +

1

2
γ1

]
T 2

F 2V

}
, (3.11)

D̃ν =
2|ν|

(FL)2

{
−1 − |ν|

(
α

2Nc
− 2KF

Σ
− β1

F 2
√
V

)

− |ν|
[(

13

3
− 2〈ν2〉

)
ζ2 +

1

2
γ1

]
T 2

F 2V

}
, (3.12)

where we have written h′2(τ) = ζ2z + O(z3), g′1(τ) = γ1z + O(z3), and

ζ2 = − 1

24
, γ1 = − 1

12
+

1

2

∑

n6=0

1

sinh2 (|p|/2)
≈ −0.0571276522 , for T = L , (3.13)

with |p| = 2πT [
∑3

i=1 n
2
i ]

1/2/L.

The quantity 〈ν2〉 in Eqs. (3.11) and (3.12) has recently been computed with high accu-

racy [8, 21]. In ref. [8] the results obtained at several lattice spacings were consistent with a

well-defined continuum limit [33], giving χ̂ ≡ r40〈ν2〉/V = 0.059(5), where r0 = 0.5 fm [32].

In order to determine the other parameters F,α/Nc, we need to fit for them simultaneously,

but also take into account the error in the determination of χ̂. By comparing the results for

the Dν coefficients on the different lattices, cutoff effects are seen to be negligible within the

statistical uncertainty. For this reason we do not attempt a continuum extrapolation here

and simply consider the data at different lattice spacings as statistically independent. Since,

on the other hand, the value of χ̂ cited above is the result of a continuum extrapolation, we

will assign new error bars to it, large enough to also incorporate the finite lattice spacing

values from [8]: χ̂0 ≡ 0.059(10). We then perform a χ2 minimization in the three-parameter

space (F,α/Nc, χ̂), with χ̂ added to the χ2 function as δχ2 = [(χ̂− χ̂0)/δχ̂0]
2.

We have performed three fits: the B lattices, the C lattices and their combination, taking

into account the ratio of physical volumes, L(B)/L(C) = 16/20. The values of χ2
min and the

projections of the 68% confidence level contours onto the different parameter axes can be

found in Table 3. The quality of the fits is good, with χ2
min/dof<∼ 1.0 in all cases, and the B

and C lattices give rather compatible results.

It is interesting to contrast this situation with what it would be in full QCD, where the

12
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Figure 4: The coefficients D1, D2 and D̃2 as a function of the box size for Nf = 2 (solid),

Nf = 3 (dashed) and quenched (dotted). The quenched parameters are chosen at their best

fit values according to Table 3, while F = 93 MeV for Nf = 2, 3. The symbols denote the

averages of the data points from the B (L(B) = 1.49 fm) and C (L(C) = 1.86 fm) lattices.

Dν coefficients only depend on the decay constant F :

Dν = +
2|ν|

Nf(FL)2

{
(1 + |ν|Nf)

(
1 −Nf

β1

F 2
√
V

)
+

T 2

F 2V

[
γ1

(
2 +N2

f

2Nf
+

4 −N2
f

2
|ν|
)

+ ζ2

(
(6 −N2

f )|ν| + 4

Nf
+Nf(2ν

2 − 1)

)]}
, (3.14)

D̃ν = − 2|ν|
Nf(FL)2

{
(Nf + |ν|)

(
1 −Nf

β1

F 2
√
V

)
+

T 2

F 2V

[
γ1

(
4 −N2

f

2
+

2 +N2
f

2Nf
|ν|
)

+ ζ2

(
4 + 2ν2 −N2

f +
4

Nf
|ν| +Nf |ν|

)]}
. (3.15)

These expressions show reasonable convergence (in the sense that the NNLO correction is less

than 50% of the NLO term) only at L>∼ 2.0 fm for F = 93 MeV, and in order to push the size

of the correction below 30%, one would need to go to L>∼ 2.5 fm. In this case we might expect

a systematic uncertainty in the determination of F of about 5%, and statistical uncertainties

would reach the same level if Dν could be determined using ∼ 100 configurations with |ν| = 1.

The full theory formulae, Eqs. (3.14), (3.15), possess the feature that the NNLO corrections

come with negative relative signs, such that the expressions are almost independent of FL at

13



around FL ∼ 1, and their absolute values have an upper bound at this order. For illustration,

we show the full predictions for F = 93 MeV in Fig. 4, as a function of the box size (for a

symmetric geometry, L = T ). Also shown are the quenched data as well as the quenched

predictions. Because of the mentioned near-cancellation, the full predictions at this order

could not be moved significantly closer to the quenched data points by tuning F . In any

case, as already mentioned, they show reasonable convergence and can thus be considered

self-consistent predictions only for L>∼ 2.0 fm.

4. Conclusions

Approaching the chiral limit has remained a long-standing challenge for lattice QCD for

many reasons, among them that finite-volume effects become large for very light pseudo-

Goldstone bosons, and that the Dirac operator develops very small eigenvalues. It has been

the purpose of this paper to elaborate on the fact that at least these particular problems can

be overcome: for instance, the Dirac operator eigenfunctions associated with the exact zero

modes encountered in gauge field configurations with a non-trivial topology at finite volume,

can be used to extract physical information concerning the chiral limit of the infinite-volume

theory.

More precisely, we have shown that certain classical scattering amplitudes of the zero-

mode eigenfunctions measured at finite volumes, Eqs. (2.7), (2.8), allow the extraction of the

infinite-volume pion decay constant, via the relations in Eq. (2.17). We have worked out these

relations to NNLO, Eqs. (2.18), (2.19), finding that the convergence of chiral perturbation

theory seems reasonable for these observables, provided the volume is above ∼ (2.0 fm)4.

Finally, to estimate the practical feasibility of using such relations, we have carried out

lattice Monte Carlo simulations in the quenched approximation, using overlap fermions. We

find a good signal for the observables in Eqs. (2.7), (2.8), shown in Fig. 3. Matching with

chiral perturbation theory predictions relevant to the quenched approximation (which show

reasonable apparent convergence only in volumes between ∼ (1.0 fm)4 and ∼ (2.0 fm)4,

in marked contrast with the unquenched case), we find that the pion decay constant, to

the extent that it is a well-defined quantity in this case, can be extracted with about 5%

statistical accuracy, utilizing a few hundred configurations with non-trivial topology. The

number we obtain in volumes ∼ (1.5 fm)4 is in the ballpark of 115 MeV.

Our result for the pion decay constant in the chiral limit is larger than what one would

expect in Nature: conventional χPT in infinite volume [26] yields F ≈ 87 MeV, if the

standard phenomenological values for the O(p4) Li coefficients of Gasser and Leutwyler are

inserted [34]. The fact that our quenched calculation seems to overestimate F is consistent

with other recent quenched results for the physical Fπ in the continuum limit, however [35]–

[37]. For instance, the results of [35, 36] imply that the quenched Fπ is 10% larger than

the experimental value, if the scale is set by r0 [32]. On the other hand, these standard

14



approaches (unlike ours) have to rely on quenched chiral extrapolations in the light quark

masses, which introduce significant systematic uncertainties of their own [38].

On the side of our approach, it is conceivable that a smaller value for F could be obtained

by going to larger volumes. As we have discussed, however, the peculiarities of the quenched

approximation imply that the volume cannot be increased too much, since the convergence

of quenched chiral perturbation theory soon deteriorates. Therefore, a systematically im-

provable determination of F by using our method (or any other) lies beyond the quenched

approximation.
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Appendix A. Large-Nc counting in the ǫ-regime

Large-Nc counting in the context of chiral perturbation theory has been analysed in detail in

ref. [27]. The same general discussion goes through in the full and in the quenched theories,

with the replacements in the latter that U † → U−1, eiθ/Nf → Uθ,Tr → Str . For simplicity,

we will mostly use the notation of the unquenched theory here, indicating then the important

point at which differences arise between the two cases.

In general, the chiral theory including the singlet is, at leading order in the momentum

expansion and to all orders in 1/Nc, of the form

LχPT = V0(Φ0) + V1(Φ0) Tr
[
∂µU∂µU

†
]

−
{
V2(Φ0)Tr

[
eiθ/NfUM

]
+ V ∗

2 (Φ0)Tr
[
M †U †e−iθ/Nf

]}
+ V3(Φ0) (∂µΦ0)

2 + ... , (A.1)

where Φ0 ≡ −iF2 Tr lnU and M = diag(m,m, ...).

The Lagrangian in Eq. (A.1) contains an infinite number of parameters, since the potentials

Vi(Φ0) are arbitrary functions, with the only constraint from parity that Vi(−Φ0) = Vi(Φ0),

for i = 0, 1, 3 and V2(−Φ0) = V ∗
2 (Φ0). It can be shown, however, that they involve a specific

power series in 1/Nc ([25]–[27], and references therein). Noting that the field φ0 of [27] is

φ0 = 2Φ0/(F̄
√
Nc) in our notation below, the structures arising are

V0(Φ0) ≡ 1

2

m2
0

Nc
Φ2

0 + O

(
Φ4

0

N4
c

)
, (A.2)

V1(Φ0) ≡ NcF̄
2

4
+ O

(
Φ2

0

N2
c

)
, (A.3)

V2(Φ0) ≡ NcΣ̄

2
+ i

K̄√
Nc

Φ0 + O

(
Φ2

0

N2
c

)
, (A.4)

V3(Φ0) ≡ α

2Nc
+ O

(
Φ2

0

N4
c

)
, (A.5)

where all parameters introduced (m2
0, F̄ , Σ̄, K̄, α) are assumed not to scale with Nc. Inserting

the specific terms shown here into Eq. (A.1), one obtains the theory up to O(1/Nc). In the

following, we denote

F 2 ≡ F̄ 2Nc, Σ ≡ Σ̄Nc, K ≡ K̄√
Nc

. (A.6)

In order to define a formally consistent framework, it is convenient to now combine the

momentum and 1/Nc expansions. Following [27], we may choose

p2 ∼ 1

Nc
∼ ǫ2 . (A.7)

The defining property of the ǫ-regime is that the pions are off-shell since the momenta are

fixed by the size of the box, p ∼ 1/L ∼ O(ǫ), while the quark mass is small, such that

µ ≡ mΣV <∼ 1 . (A.8)
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Given Eqs. (A.6), (A.7), we are thus led to the rule

m ∼ ǫ6 . (A.9)

As usual, the field configurations are factorized into zero-momentum modes U0, Φ̄0 and non-

zero modes ξ, Φ̃0,

U(x) = Uξ(x)U0 , Uξ(x) = exp

[
2iξ(x)

F

]
, Φ0(x) = Φ̃0(x) + Φ̄0 , (A.10)

where
∫
d4x ξ(x) = 0 and Φ̃0 = Tr ξ. The counting rules for the non-zero modes, which are

treated perturbatively, are

ξ ∼ p ∼ ǫ , Φ̃0 ∼ p ∼ ǫ . (A.11)

For the zero mode U0 we have U0 ∼ 1, while the counting of Φ̄0 is to be determined presently.

Indeed, let us consider the terms involving explicitly the flavour singlet zero mode Φ̄0. We

are interested in carrying out the computation up to and including O(ǫ4), and the terms

potentially of this order, after integration over space-time, are

∫
d4xLχPT ∋ +

1

2

m2
0

Nc
V Φ̄2

0 ∼ O(m2
0)O(Φ̄2

0)O(ǫ−2) , (A.12)

−imKV Φ̄0Tr
[
eiθ/NfU0 − U †

0e
−iθ/Nf

]
∼ O(K̄)O(Φ̄0)O(ǫ3) . (A.13)

Moreover, we want to carry out the computation at a fixed topology; performing the integral

over θ with the weight exp(iθν) introduces (after a shift) effectively one more term,

∫
d4xLχPT ∋ 2iν

F
Φ̄0 ∼ O(Φ̄0)O(ǫ) . (A.14)

Once the integral over θ is converted to a Gaussian over Φ̄0, Eqs. (A.12), (A.14) tell that the

saddle point is at leading order in ǫ at Φ̄0 ∼ Ncν/(m
2
0FV ) ∼ O(ǫ3)/O(m2

0). Thus, we have

fixed also the counting of Φ̄0.

We can now collect together the full theory at fixed topology. The factorized part of the

zero-mode partition function becomes

Zν(µ) ∝ e
− ν2

2〈ν2〉

∫

U0 ∈ U(Nf )
detνU0 exp

[ µ
2
Tr (U0 + U †

0) + 2ν
mKNc

m2
0F

Tr (U0 − U †
0)
]
, (A.15)

where
〈ν2〉
V

=
m2

0F
2

4Nc
. (A.16)

The first term in the exponent is O(1), while the latter is, as follows from Eq. (A.13) with the

given estimate of Φ̄0, ∼ O(K̄)O(ǫ6)/O(m2
0). The non-zero momentum modes, on the other
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hand, are described by

∫
d4xLχPT ∋ +

∫
d4x

F 2

4
Tr
[
∂µUξ∂µU

†
ξ

]
∼ O(ǫ0)

[
1 + O(ǫ4)

]
, (A.17)

−
∫

d4x
mΣ

2
Tr
[
UξU0 + U †

0U
†
ξ

]∣∣∣
O(ξ2)

∼ O(ǫ4) , (A.18)

+

∫
d4x

α

2Nc

(
∂µΦ̃0

)2
∼ O(α)O(ǫ2) , (A.19)

+

∫
d4x

m2
0

2Nc
Φ̃2

0 ∼ O(m2
0)O(ǫ0) . (A.20)

To finalize the setup, one has to decide what kind of counting rules are chosen for the

parameters m2
0, α, K̄ . For simplicity, we will assume that O(α) ∼ O(K̄) ∼ 1. The counting

of m2
0 then leads to three distinct possibilities:

1. In the unquenched theory, m2
0 can be taken as “large”, say m2

0 ∼ ǫ−2. Parametrically,

then, m2
0/Nc ≫ p2. In this case the term in Eq. (A.20) dominates the action: the

non-zero modes Φ̃0 (representing the η′) are heavy and can be integrated out, resulting

in the simple usual chiral theory following from Eq. (2.10).

This choice is not available in the quenched limit, however: the field Φ̃0 cannot be

integrated out [23, 24], but has to be treated as a light degree of freedom. Therefore,

it is convenient to assign a different counting to it.

2. In the “standard” version of quenched chiral perturbation theory, one chooses m2
0 ∼

O(1), such that m2
0/Nc ∼ p2 [29]. Then Eq. (A.20) is of the same order as the usual

kinetic terms following from Eq. (A.17). The term with K in Eq. (A.15), on the other

hand, can be neglected, since it is O(ǫ6) with this counting.

This standard counting suffers from some problems, however. First of all, the integrals

over the graded group of the supersymmetric formulation do not appear to be, strictly

speaking, well defined [29], because the masses related to quadratic fluctuations, treated

according to Zirnbauer’s prescription [28], are not positive-definite (cf. Eq. (3.8) in [29]).

Second, QχPT leads to a perturbative expansion parameter ∼ m2
0/(Ncp

2). With the

standard counting this is of order unity, formally spoiling the convergence.

3. Because of the problems of the standard counting, we will consider an “alternative”

counting here. In the alternative counting, m2
0 is treated as a small quantity, say

m2
0 ∼ ǫ2. Then Eq. (A.20) is formally a perturbation and the leading order quadratic

form is well defined. This counting makes also explicit the fact that QχPT should only

work in the window of Eq. (3.3). With the choice m2
0 ∼ ǫ2, contributions from the

coefficient K should be kept in the results.

In the real world, obviously, 1/Nc is not tunable, and not necessarily small. Therefore, the

success or failure of the frameworks described remains ultimately to be judged empirically,
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by comparing them with data. The expressions below are, for generality, for the “standard

counting”, while in the actual text we only showed truncated versions, where terms of higher

order according to the “alternative counting” had been dropped.

Appendix B. Detailed results for full chiral perturbation theory

B.1. Space-time integrals appearing

After integration over the spatial volume, the time dependence of Eq. (2.13) appears in the

forms
∫

d3x = L3 , (B.1)
∫

d3xG(x) = Th1(τ) , (B.2)

∫
d3x

[
G(x)

]2
=

T 2

L3
g1(τ) , (B.3)

∫
d3x

∫
d4y G(x− y)G(y) = −T 3h2(τ) , (B.4)

where

h1(τ) ≡ 1

2

[(
τ − 1

2

)2

− 1

12

]
, (B.5)

h2(τ) ≡ 1

24

[
τ2 (τ − 1)2 − 1

30

]
, (B.6)

g1(τ) ≡ [h1(τ)]
2 +

∑

n6=0

[
cosh (|p|(τ − 1/2))

2|p|sinh (|p|/2)

]2
. (B.7)

Here

|p| = 2π
T

L

[
3∑

i=1

n2
i

]1/2

. (B.8)

B.2. Zero-mode integrals appearing

The zero-momentum mode integrals at fixed topology are related to the partition function

Zν(µ) ≡
∫

U0∈U(Nf )
detνU0 e

µ ReTr U0 , (B.9)

where µ = mΣV . The value of Zν(µ) is known [39, 18] to be

Zν(µ) = det[Iν+j−i(µ)], (B.10)
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where the determinant is taken over an Nf × Nf matrix, whose matrix element (i, j) is the

modified Bessel function Iν+j−i. We will express our results in terms of the derivatives of

this partition function, in particular

σν(µ) ≡ Σν(µ)

Σ
≡ 1

Nf

∂

∂µ
lnZν(µ) . (B.11)

At small µ and non-zero ν,

σν(µ) ≈ |ν|
µ
. (B.12)

Expectation values are denoted by

〈...〉µν ≡
∫
U0∈U(Nf)

(...) detνU0 e
µ ReTr U0

∫
U0∈U(Nf )

detνU0 eµ ReTr U0
; (B.13)

both the superscript and subscript in 〈...〉µν are often left out.

Given these definitions, all the emerging expectation values can be computed analytically,

using the techniques discussed in Appendix B of [29]. The small-µ (small-m) limits are then

obtained by using Eq. (B.12). We give here a complete collection of the integrals appearing,

up to third order in the matrices U0, U
†
0 . The expectation values for complex-conjugated

operators are obtained from those shown simply by ν → −ν. For the small-µ limits we only

show the values of order 1/µn, for n powers of U0, U
†
0 :

〈TrU0〉 = Nf

[
σν − ν

µ

]
(B.14)

≈ Nf

µ
(|ν| − ν) , (B.15)

〈Tr (U2
0 )〉 = Nf

[
1 − 2(Nf + ν)

µ

(
σν − ν

µ

)]
(B.16)

≈ −2Nf

µ2
(Nf + ν)(|ν| − ν) , (B.17)

〈TrU0TrU †
0 〉 = Nf

[
σ′ν +Nfσ

2
ν +

σν

µ
−Nf

ν2

µ2

]
(B.18)

≈ 0 × Nf

µ2
, (B.19)

〈(TrU0)
2〉 = Nf

[
σ′ν +Nfσ

2
ν − (1 + 2Nfν)

σν

µ
+ (2 +Nfν)

ν

µ2

]
(B.20)

≈ −2Nf

µ2
(1 +Nfν)(|ν| − ν) , (B.21)

〈Tr (U3
0 )〉 = Nf

{
−2ν

µ3
(2ν2 + 5Nfν + 2N2

f + 2) − 1

µ
(2Nf + 3ν)

+
[
1 +

2

µ2
(2ν2 + 6Nfν + 2N2

f + 1)
]
σν − 2

µ
(σ′ν +Nfσ

2
ν)

}
(B.22)
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≈ 4Nf

µ3
(1 +N2

f + 3Nfν + ν2)(|ν| − ν) , (B.23)

〈TrU0Tr (U2
0 )〉 = Nf

{
−2ν

µ3

[
(4 +N2

f )ν +Nf(4 + ν2)
]
− 2 +Nfν

µ

+
[
Nf +

2

µ2

(
(3 + 2N2

f )ν +Nf(3 + 2ν2)
)]
σν

−2
Nf + ν

µ
(σ′ν +Nfσ

2
ν)

}
(B.24)

≈ 4Nf

µ3

[
2Nf + (2 +N2

f )ν +Nfν
2
]
(|ν| − ν) , (B.25)

〈TrU †
0Tr (U2

0 )〉 = Nf

{
2Nfν

2

µ3
(Nf + ν) +

2 +Nfν

µ

+
[
Nf −

2

µ2
(Nf + ν)

]
σν − 2(Nf + ν)

µ
(σ′ν +Nfσ

2
ν)

}
(B.26)

≈ 0 × Nf

µ3
, (B.27)

〈(TrU0)
3〉 = Nf

[
− ν

µ3
(8 + 6Nfν +N2

f ν
2) +

3

µ2
(1 + 3Nfν +N2

f ν
2)σν

− 3

µ
(1 +Nfν)(σ

′
ν +Nfσ

2
ν) + σ′′ν + 3Nfσ

′
νσν +N2

f σ
3
ν

]
(B.28)

≈ 4Nf

µ3
(2 + 3Nfν +N2

f ν
2)(|ν| − ν) , (B.29)

〈(TrU †
0)(TrU0)

2〉 = Nf

[
Nf
ν2

µ3
(2 +Nfν) −

1

µ2
(1 +Nfν +N2

f ν
2)σν

+
1 −Nfν

µ
(σ′ν +Nfσ

2
ν) + σ′′ν + 3Nfσ

′
νσν +N2

f σ
3
ν

]
(B.30)

≈ 0 × Nf

µ3
. (B.31)

It may be noted from the small-µ expressions that plenty of degeneracies emerge if we put

Nf → 1: this is simply because taking a trace has then no meaning.

B.3. Results for the coefficients in Eq. (2.13)

Let us define

Σ′ ≡ Σ

[
1 − N2

f − 1

Nf

G(0)

F 2

]
= Σ

[
1 +

N2
f − 1

Nf

β1

F 2
√
V

]
, (B.32)

and

µ′ ≡ mΣ′V . (B.33)

For the coefficient CI defined in Eq. (2.13), we then obtain (at NLO)

CI = −1

4

(
Σ′
)2〈{

Tr
[
T I(U0 − U †

0 )
]}2〉µ′

ν
, (B.34)
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where I is not summed over. For I = 0 (flavour singlet), the result is immediately related to

the expectation values listed in Eqs. (B.14)–(B.31); for I = a, one can make the connection

by using independence of a and the completeness relation

〈T a
ijT

a
klFijkl〉 =

1

N2
f − 1

N2

f
−1∑

a=1

〈T a
ijT

a
klFijkl〉 =

1

2(N2
f − 1)

〈
Fijji −

1

Nf
Fiijj

〉
. (B.35)

We show explicitly only the small-µ limits here:

C0 =
Σ2Nf |ν|
µ2

(1 −Nf |ν|) , (B.36)

Ca =
Σ2|ν|
2µ2

. (B.37)

For αI , we obtain, in a similar way,

αI =
Σ2

2F 2

[
1 − N2

f − 2

Nf

G(0)

F 2

]
×

×
〈

Tr
[
(U0T

I + T IU †
0 )2
]
− 1

Nf

{
Tr
[
T I(U0 + U †

0)
]}2

〉µ′

ν
. (B.38)

For small µ,

α0 =
2Σ2|ν|
F 2µ2

[
1 +Nf

G(0)

F 2

]
(1 −N2

f ) , (B.39)

αa =
Σ2|ν|
F 2µ2Nf

[
1 +Nf

G(0)

F 2

]
(1 +Nf |ν|) . (B.40)

For βI , we obtain

βI = −Σ2

F 4

〈
N2

f + 2

4N2
f

{
Tr
[
T I(U0 − U †

0 )
]}2

+
N2

f − 4

4Nf
Tr
[
(U0T

I − T IU †
0)2
]〉µ

ν
. (B.41)

For small µ,

β0 =
Σ2|ν|
F 4µ2Nf

(N2
f − 1)(N2

f − 2 − 2Nf |ν|) , (B.42)

βa =
Σ2|ν|

2F 4µ2N2
f

[
N2

f + 2 −Nf(N
2
f − 4)|ν|

]
. (B.43)

Finally, γI reads

γI =
Σ2

2F 4V

〈{
Tr
[
T I(U0 + U †

0 )
]}2

−NfTr
[
(U0T

I + T IU †
0)2
]

−µTr
[
(U0 + U †

0 )(U0T
I + T IU †

0)2
]

+
2µ

Nf
Tr
[
(U0 + U †

0)(U0T
I + T IU †

0)
]
Tr
[
T I(U0 + U †

0)
]

− µ

N2
f

Tr (U0 + U †
0)
{
Tr
[
T I(U0 + U †

0)
]}2

〉µ

ν
. (B.44)
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For small µ,

γ0 = − 2Σ2|ν|
F 4V µ2Nf

(N2
f − 1)(N2

f − 4 − 2Nf |ν|) , (B.45)

γa =
Σ2|ν|

F 4V µ2N2
f

[
N2

f (1 − 2ν2) − 4 +Nf(N
2
f − 6)|ν|

]
. (B.46)

Appendix C. Detailed results for quenched chiral perturbation theory

C.1. Additional space-time integrals in the quenched theory

Apart from the integrals in Eqs. (B.1)–(B.4), Eqs. (3.4) and (3.5) imply that in the quenched

case we need, in general, the following further ones:

∫
d3xF (x) = −T 3h2(τ) , (C.1)

∫
d3xG(x)F (x) =

T 4

L3
g2(τ) , (C.2)

∫
d3x

[
F (x)

]2
=

T 6

L3
g3(τ) , (C.3)

∫
d3x

∫
d4y G(x− y)F (y) = T 5h3(τ) , (C.4)

∫
d3x

∫
d4y F (x− y)F (y) = −T 7h4(τ) , (C.5)

where we have defined (following the notation in Eqs. (B.5)–(B.8)),

h3(τ) ≡ 1

720

[
τ2 (τ − 1)2

(
τ(τ − 1) − 1

2

)
+

1

42

]
, (C.6)

h4(τ) ≡ 1

120960

[
τ2 (τ − 1)2

(
3τ4 − 6τ3 − τ2 + 4τ + 2

)
− 1

10

]
, (C.7)

g2(τ) ≡ −h1(τ)h2(τ) −
∑

n6=0

cosh (|p|(τ − 1/2))

2|p|sinh (|p|/2)
1

2|p|
d

d|p|

(
cosh (|p|(τ − 1/2))

2|p|sinh (|p|/2)

)
, (C.8)

g3(τ) ≡ [h2(τ)]
2 +

∑

n6=0

[
1

2|p|
d

d|p|

(
cosh (|p|(τ − 1/2))

2|p|sinh (|p|/2)

)]2
. (C.9)

C.2. Quenched zero-mode integrals for the flavour singlets

As discussed in the main text, in the quenched case, the results for the flavour non-singlet

follow from those for the flavour singlet. Therefore, we only need to address the zero-mode

integrals arising for the flavour singlets, and do not present a similarly exhaustive list as

in Appendix B.2.
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The flavour singlets contain two parts, a connected contraction (∝ Nv) and a disconnected

one (∝ N2
v ). The replica trick (cf. [30]) allows to obtain the result for the connected contrac-

tion from a certain limit of U(Nf) integrals, discussed in Appendix B.2. For the disconnected

contraction, on the other hand, the zero-mode integrals have to be honestly carried out, for

Nv = 1, using the supersymmetric formulation of QχPT. (The non-zero momentum modes

of the Goldstone bosons can still be treated with the replica formulation [31], and only the

remaining zero-momentum mode integrals need to be transformed to the supersymmetric

ones.) We first list the supersymmetric integrals for Nv = 1, and then the generalizations to

any Nv obtained with the replica trick.

Let us start with some notation. We introduce a projection operator Pv,

(Pv)ij ≡
{
δij , for i, j = physical flavours in the valence block,

0, otherwise.
(C.10)

Using again the scaling variable µ ≡ mΣV , all mass dependence of the results can be expressed

in terms the same zero-mode integral as appears in the quark condensate obtained with

Ĝl(1|1) [40]:

1

2Nv
〈Str [Pv(U0 + U−1

0 )]〉 ≡ σν ≡ Σν(µ)

Σ
= µ

[
Iν(µ)Kν(µ) + Iν+1(µ)Kν−1(µ)

]
+
ν

µ
, (C.11)

where Iν ,Kν are modified Bessel functions. We recall that, for ν 6= 0,

σν(µ) ≈ |ν|
µ
, (C.12)

as in Eq. (B.12). Note that, in contrast to Eq. (C.11),

〈Str (U0 + U−1
0 )〉 = 0 , (C.13)

and also that 〈Str (U0 − U−1
0 )〉 = 0.

The zero-mode integrals for Nv = 1 can be derived following the techniques discussed

in [29], particularly the explicit parametrization of Ĝl(1|1). The integrals needed, and their

small-µ limits, read (U ≡ U0 here)

〈
(U11)

2 + (U−1
11 )2

〉
= 2

[
σ′ν − σν

µ
+ 1 +

2ν2

µ2

]
(C.14)

≈ 4|ν|
µ2

(|ν| − 1) , (C.15)

〈
(U11)

2 − (U−1
11 )2

〉
=

4ν

µ

[ 1
µ
− σν

]
(C.16)

≈ 4ν

µ2
(1 − |ν|) , (C.17)

〈
U11U

−1
11

〉
= σ′ν +

σν

µ
+ 1 (C.18)
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≈ 0 × 1

µ2
, (C.19)

〈
(U11)

3 + (U−1
11 )3

〉
= σ′′ν − 7

σ′ν
µ

+ σν

[
2 +

7 + 8ν2

µ2

]
− 6

µ
− 24ν2

µ3
(C.20)

≈ 8|ν|
µ3

(|ν| − 1)(|ν| − 2) , (C.21)

〈
(U11)

2U−1
11 + U11(U

−1
11 )2

〉
= σ′′ν +

σ′ν
µ

+ σν

[
2 − 1

µ2

]
+

2

µ
(C.22)

≈ 0 × 1

µ3
, (C.23)

〈
(U11 + U−1

11 )(U12U21 + U−1
12 U

−1
21 )

〉
= 2

[
−σ′′ν +

σ′ν
µ

− σν

µ2
+

2

µ
+

4ν2

µ3

]
(C.24)

≈ 8|ν|
µ3

(|ν| − 1) , (C.25)

〈[
U11 + U−1

22 − U−1
11 − U22

][
(U11)

2 + (U−1
11 )2

]〉
=

=
16ν

µ2

[
σν − 1

µ

]
(C.26)

≈ 16ν

µ3
(|ν| − 1) . (C.27)

Using these integrals together with the Nf → 0 limits of the corresponding U(Nf) integrals

from Appendix B.2 (obtained, in each case, with the replacements Str → Tr , U−1
0 → U †

0 ,

Pv → 1), we can deduce that

〈
Str

[
(U0Pv + PvU

−1
0 )2

]〉
= 4Nv

[
1 +

ν2

µ2
+
Nv

2

(
σ′ν − σν

µ

)]
(C.28)

≈ 4Nv|ν|
µ2

[
|ν| −Nv

]
, (C.29)

〈
Str

[
(U0Pv − PvU

−1
0 )2

]〉
= 4Nv

[
ν2

µ2
+
Nv

2

(
σ′ν − σν

µ

)]
(C.30)

≈ 4Nv|ν|
µ2

[
|ν| −Nv

]
, (C.31)

〈[
StrPv(U0 + U−1

0 )
]2〉

= 4Nv

[
σ′ν +Nv

(
1 +

ν2

µ2

)]
(C.32)

≈ 4Nv|ν|
µ2

[
−1 +Nv|ν|

]
, (C.33)

〈[
StrPv(U0 − U−1

0 )
]2〉

= 4Nv

[
Nv

ν2

µ2
− σν

µ

]
(C.34)

≈ 4Nv|ν|
µ2

[
−1 +Nv|ν|

]
, (C.35)

〈
Str

[
(U0Pv + PvU

−1
0 )(U0Pv − PvU

−1
0 )

]〉
=
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=
4Nvν

µ

[Nv

µ
− σν

]
(C.36)

≈ 4Nvν

µ2

[
Nv − |ν|

]
, (C.37)

〈[
StrPv(U0 + U−1

0 )
][

StrPv(U0 − U−1
0 )

]〉
=

=
4Nvν

µ

[ 1
µ
−Nvσν

]
(C.38)

≈ 4Nvν

µ2

[
1 −Nv|ν|

]
, (C.39)

〈
Str

{
(U0 + U−1

0 )(U0Pv + PvU
−1
0 )2

}〉
=

= 4Nv

[
−σ

′
ν

µ
+ σν

(
2 +

1 + 2ν2

µ2

)
− Nv

µ

(
1 +

4ν2

µ2

)]
(C.40)

≈ 8Nv|ν|
µ3

[
1 + ν2 − 2Nv|ν|

]
, (C.41)

〈
Str

[
(U0 + U−1

0 )(U0Pv + PvU
−1
0 )

]
Str

[
Pv(U0 + U−1

0 )
]〉

=

= 4Nv

{
−4ν2

µ3
+Nv

[
−σ

′
ν

µ
+ σν

(
2 +

1 + 2ν2

µ2

)]}
(C.42)

≈ 8Nv|ν|
µ3

[
−2|ν| +Nv

(
1 + ν2

)]
, (C.43)

〈
Str (U0 + U−1

0 )
[
StrPv(U0 + U−1

0 )
]2〉

=

= 2
d

dµ

〈[
StrPv(U0 + U−1

0 )
]2〉

(C.44)

≈ 16Nv|ν|
µ3

[
1 −Nv|ν|

]
, (C.45)

〈
Str (U0 − U−1

0 )Str
[
(U0Pv + PvU

−1
0 )2

]〉
=

=
16Nvν

µ2

[
σν − Nv

µ

]
(C.46)

≈ 16Nvν

µ3

[
|ν| −Nv

]
. (C.47)

In Eq. (C.44) we used Eq. (C.13) together with the fact that, in general,

〈[
Str (U0 + U−1

0 )
]
M
〉

=
〈
Str (U0 + U−1

0 )
〉〈
M
〉

+ 2
d

dµ
〈M〉 . (C.48)

C.3. Results for the coefficients in Eq. (3.4)

Given these building blocks, we can collect our results together. In analogy with Eqs. (B.32),

(B.33), we define

Σ′ ≡ Σ

[
1 +

E(0)

F 2

]
= Σ

{
1 +

1

2NcF 2

[
αG(0) +m2

0F (0)
]}

, (C.49)
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and

µ′ ≡ mΣ′V . (C.50)

Then the results for the coefficients in Eq. (3.4), together with the small-µ limits, read:

C0 = −1

4

(
Σ′
)2〈[

StrPv(U0 − U−1
0 )

]2〉µ′

ν
(C.51)

≈ Σ2Nv|ν|
µ2

(1 −Nv|ν|) , (C.52)

α0 =
(Σ′)2

2F 2

〈
Str

[
(U0Pv + PvU

−1
0 )2

]〉µ′

ν
+
[KΣ

F
− Σ2

2F 4
G(0)

]〈[
StrPv(U0 + U−1

0 )
]2〉µ

ν

+
4KNcΣν

m2
0F

3V

{〈
Str

[
(U0Pv + PvU

−1
0 )(U0Pv − PvU

−1
0 )

]〉µ

ν

+
µ

4

〈
Str (U0 − U−1

0 )Str
[
(U0Pv + PvU

−1
0 )2

]〉µ

ν

}
(C.53)

≈ 2Σ2Nv|ν|
F 2µ2

{
|ν| −Nv +

[G(0)

F 2
− 2FK

Σ

]
(1 −Nv|ν|)

}
, (C.54)

α′
0 = −(Σ′)2

2F 2

〈[
StrPv(U0 + U−1

0 )
]2〉µ′

ν

−4KNcΣν

m2
0F

3V

〈[
StrPv(U0 + U−1

0 )
][

StrPv(U0 − U−1
0 )

]〉µ

ν
(C.55)

≈ 2Σ2Nv|ν|
F 2µ2

(
1 −Nv|ν|

)(
1 − 8KNc|ν|

m2
0FΣV

)
, (C.56)

β0 = − Σ2

4F 4

〈[
StrPv(U0 − U−1

0 )
]2〉µ

ν
(C.57)

≈ Σ2Nv|ν|
F 4µ2

(1 −Nv|ν|) , (C.58)

β′0 =
Σ2

F 4

〈
Str

[
(U0Pv − PvU

−1
0 )2

]〉µ

ν
(C.59)

≈ 4Σ2Nv|ν|
F 4µ2

(|ν| −Nv) , (C.60)

β′′0 = − Σ2

2F 4

〈[
StrPv(U0 − U−1

0 )
]2〉µ

ν
(C.61)

≈ 2Σ2Nv|ν|
F 4µ2

(1 −Nv|ν|) , (C.62)

γ0 = − Σ2

2F 4V

〈
−1

3

[
StrPv(U0 + U−1

0 )
]2

+µ Str
{
(U0 + U−1

0 )(U0Pv + PvU
−1
0 )2

}〉µ

ν
(C.63)

≈ −2Σ2Nv|ν|
F 4V µ2

[7
3

+ 2ν2 − 13

3
Nv|ν|

]
, (C.64)

γ′0 =
Σ2

F 4V
µ
〈
Str

[
(U0 + U−1

0 )(U0Pv + PvU
−1
0 )

]
Str

[
Pv(U0 + U−1

0 )
]〉µ

ν
(C.65)
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≈ 8Σ2Nv|ν|
F 4V µ2

[
−2|ν| +Nv

(
1 + ν2

)]
, (C.66)

γ′′0 = − Σ2

F 4V
µ

d

dµ

〈[
StrPv(U0 + U−1

0 )
]2〉µ

ν
(C.67)

≈ −8Σ2Nv|ν|
F 4V µ2

[
1 −Nv|ν|

]
. (C.68)
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