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Chapter 1 

_____________________________________________________________________________________________________________________________________________ 

2  

1.1 High-dose-rate brachytherapy  

 Brachytherapy (BT) is a radiation treatment modality in which a sealed 

radioactive source is placed near, in contact or inside the tumor volume. The 

disintegration of this source produces the emission of energy, which may give place 

to cell death. A very high dose (absorbed dose is defined as energy absorbed per 

unit mass) is delivered in a short time period and a small number of fractions. It 

requires the treatment volume to be accessible and well limited in size and shape. 

BT is commonly used as an effective treatment modality for cancers of cervix, 

prostate, breast, and skin. It has been also shown to be effective to treat tumors of 

the brain, head and neck region (e.g. lip, tongue or floor of mouth), eye, trachea and 

bronchi, the digestive and urinary tract (e.g. bladder, rectum, anus, urethra, penis), 

female reproductive tract (uterus, vagina and vulva), and other soft tissues 

(Gerbaulet et al., 2002). BT plays today a fundamental therapeutic tool. For 

example, for prostate carcinomas the cancer cure rates are either comparable to 

those of external beam radiotherapy (EBRT) and surgery, or even improved when 

used in combination with them (Viswanathan et al., 2007; Pickles et al., 2009; 

Haie-Meder et al., 2009; Pieters et al., 2009).  

 Compared to EBRT, in which collimated photon beams produced by a linear 

accelerator are generated outside the patient, BT has the advantages of a rapid fall 

off of dose around the sources due to the inverse distance square law. This implies 

less adverse side effects, and shorter overall treatment duration, thus reducing the 

risk of tumor repopulation. However, the dose distribution is not homogeneous and 

accuracy in source positioning is critical (Gerbaulet et al., 2002). The use of BT has 

increased substantially since the 1990s and it is expected to grow even more in the 

near future (Guedea, 2014).  

 Depending on the dose rate D of the radioactive BT source employed, either 

high-dose-rate (HDR) (D>12 Gy/h), medium-dose-rate (MDR) (D=2 to 12 Gy/h), 

pulsed-dose-rate (PDR) (short pulses of radiation, usually once an hour) or low-

dose-rate (LDR) (D<2 Gy/h) can be distinguished. In detriment of LDR, HDR is 
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becoming nowadays the most extended BT modality worldwide (Guedea, 2014). 

Advantages of HDR over LDR BT include reduced radiation exposure to personnel, 

reduced overall treatment time, treatment delivery in the outpatient setting, and 

potential cost savings (Bastin et al., 1993). In addition, for the particular case of 

prostate brachytherapy, common problems related to permanent seeds implants 

such as inability to correct seeds position, inability to optimize the dose delivered 

once the seeds are in place, and discrepancy between planned and actual seeds 

distribution are relatively infrequent in HDR brachytherapy (Demanes et al., 2014). 

Nevertheless, with HDR BT an increased risk of late tissue effects has been 

estimated (Dale, 1985), and so more efforts are needed in this field. For these 

reasons, HDR therapy is the BT technique considered in this study.  

 In HDR BT one single source is placed at several dwell positions in order to 

cover the whole extension of the tumor, staying in each position a planned dwell 

time. The delivery of the treatment is performed by an afterloader system controlled 

from outside the treatment room. The overall treatment time is just a few minutes. 

A high specific activity (radioactivity per unit mass) of a radionuclide is necessary 

to produce miniaturized sources of just a few mm as those used in HDR BT. 
60

Co 

and 
192

Ir sources are nowadays the only commercially-available radionuclides for 

HDR BT. The characteristics of these sources are presented in detail in Chapter 2. 

The reasons why 
60

Co is an alternative option to the traditional 
192

Ir sources have 

already been reported (Righter et al., 2008; Strohmaier et al., 2011; Andrássy et al., 

2012; Palmer et al., 2012). Relative dosimetric differences around 
60

Co and 
192

Ir 

sources are less significant than prescription technique and the optimization 

parameters, given that they have a similar radial dose distribution governed by the 

inverse distance square law, 1/r
2
. This results in no clinically significant differences. 

Advantage of 
60

Co over 
192

Ir is the significant cost savings, due to the fact that this 

source has to be replaced every 4 to 5 years, whereas 
192

Ir sources need to be 

changed every 3 to 4 months. Thus, in comparison to 
192

Ir, with 
60

Co equipment 

down-time and physics support time is also reduced by around 40%. However the 

irradiation time is on average a factor 1.7 longer with 
60

Co. The 
60

Co source activity 
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required to produce the same absorbed dose rate in air is a factor 2.8 lower. In 

addition, due to its higher mean energy, 
60

Co needs a higher room shielding.  

 

1.2 Peripheral dose and secondary radiation risks 

 During radiation therapy not only does the tumor volume absorbs dose, but 

also all the remaining tissues of the body, even though they are out of the beam path 

in the case of EBRT or far from a brachytherapy source. The latter is known as 

peripheral dose (PD). This may result in some cases in acute, sub-acute and/or long-

term side-effects, which depend on the location of the target volume, the type of BT 

that is used and also the amount of absorbed dose. Due to improved long term 

survival rates, long-term side-effects are becoming increasingly important. Thus, 

reducing the PD helps to improve the treatment success.  

 The hazard effects of ionizing radiation in the human health can be classified 

in deterministic and stochastic. Deterministic effects are those for which a threshold 

dose exists, below which the hazard effect is not produced. If the dose to healthy 

organs at risk (OAR) is reduced, then the possibility to overcome that threshold 

decreases. On the other hand, stochastic effects are those in which the probability of 

having the effect generally increases with absorbed dose, with no threshold dose. 

The severity of these effects is independent on dose.  

 Among the stochastic effects is the induction of a secondary tumor not 

related to the initial one. The scientific community tries to establish a relationship 

between organ equivalent dose and the probability that a specific tumor is induced. 

If the relationship were known, the secondary cancer induction from a typical 

brachytherapy treatment could be obtained and compared with the probability from 

other radiation therapies. However, this requires the knowledge of both the dose-

response relationship and the peripheral dose. A deep review of the literature is 

necessary to evaluate the knowledge on this dose curve. In addition, the PD is 

necessary. This can be already estimated in EBRT using the software program 
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Peridose (Van der Giessen, 2001). However, according to a summary on second 

cancer induction done by Xu et al. (2008), the American Association of Physicists 

in Medicine (AAPM) Task Group 158 and the National Council on Radiation 

Protection and Measurements (NCRP) Scientific Committee have excluded 

brachytherapy from their studies due to lack of data, which confirms the necessity 

to make a complete study regarding equivalent doses to all organs when applying 

brachytherapy (NCRP, 2001). Furthermore, a major European collaboration 

involving 13 organizations across Europe, the ALLEGRO project 

(http://www.allegroproject.org), whose aim is to address many issues of damage 

produced to normal healthy tissues after treatment with conventional and emerging 

radiotherapy techniques, has not yet considered brachytherapy, which again 

confirms the need for greater knowledge in this treatment technique.  

 

1.3 Review of Monte Carlo methods 

 Most part of the research work of this study is based on the results of Monte 

Carlo (MC) simulation techniques. MC simulations have become an essential tool 

to improve the calculation of absorbed doses in brachytherapy. The basic principle 

of the MC method is the use of random numbers and probability density 

distributions programmed into computers to find the solution to a physical or 

mathematical problem. 

 For BT with its pertinent laws of radiological physics, the MC method 

enables accurate calculation of absorbed doses in regions with a high dose gradient. 

This allows enhancing and complementing the dose calculations obtained 

experimentally since the latter has a large uncertainty due to small errors in the 

position of the detector. In addition, with MC there are no experimental problems 

such as energy and sensitivity dependence of the detectors. Another advantage of 

the MC method compared to experimental measurements is the possibility to 

separate the different components of absorbed dose: the primary radiation, scattered 

http://www.allegroproject.org/
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radiation and multiple scattering components. This is useful in modeling dose 

deposition. Also, the MC method can provide additional information of interest 

such as the energy spectra from radioactive sources at any distance in any medium.  

 In MC simulations, absorbed dose can be calculated directly or from 

collision kerma. In the direct method, the absorbed dose in a given cell is computed 

as the sum of the energies deposited in the cell divided by the cell mass. When there 

is electronic equilibrium, then absorbed dose equals collision kerma, which is given 

by the sum of the initial kinetic energies of charged particles released in the cell by 

non-charged particles. The calculation of absorbed dose from kerma significantly 

reduces the variance (Williamson, 1987), i.e., the simulation time necessary to 

achieve a given statistical noise. This is achieved by using the linear track-length 

estimator, which is based on the equivalence between particle fluence and the total 

length of the photon path per unit volume (Carlsson, 1985). The variance is 

significantly reduced because all the paths of the photons passing through a given 

cell contribute to the calculation of the linear track-length estimator. 

 Currently there are multiple MC codes available for medical physics 

applications. The main ones are: MCNP (X-5 Monte Carlo Team, 2003; Goorley et 

al., 2012), EGS (Nelson et al., 1985), PENELOPE (Salvat et al., 2011), FLUKA 

(Ferrari et al., 2005) and GEANT4 (Agostinelli et al., 2003; Allison et al., 2006). 

 For the development of this study, I specialized in the MC code GEANT4, a 

general purpose code written in C++ that allows simulating the passage of particles 

through matter. GEANT4 allows creating complex geometries using predefined 

shapes or importing CAD geometries and voxelized phantoms. In addition, all kind 

of “particles” (including leptons, hadrons, ions or even new particles created by the 

user) can be initiated. GEANT4 provides the user with a large set of physical 

processes including electromagnetic, hadronic and optical physics. In addition, the 

user can "communicate" with the code by choosing various interfaces and visualize 

the geometry and particle tracking using multiple display systems. The code 

functions are designed in a compact and reusable way such that the user can extend 
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or modify the services provided by these to be used in their own applications. 

GEANT4 has been widely validated for its use in brachytherapy dosimetry (Rivard 

et al., 2010; Granero et al., 2011; Vijande et al., 2012). 

 

1.4 Objectives and outline of this thesis 

 The goal of this thesis was threefold. Firstly, to evaluate the peripheral dose 

in a typical brachytherapy scenario and discern which HDR radioactive source is 

more advantageous from a patient radiation protection point of view, i.e., which 

source deposits less dose to the nearest and the furthest tissues. Secondly, the risk of 

secondary malignancies induced by the BT treatment was reviewed. Because old 

epidemiological studies are needed with higher accuracy in dose calculation, we 

provide a more accurate dosimetry based on the current formalism for old radium 

brachytherapy sources, for which a lot of patient follow-up exists, allowing 

performing retrospective studies. Thirdly, we aimed to reduce the peripheral dose 

received by organs and tissues near the implant using specifically designed implant 

shielding.  

 Chapter 1 has covered the principles behind HDR brachytherapy and 

secondary risks associated with this treatment modality. It also presents the 

objectives and outline of the present thesis. Chapter 2 to Chapter 6 are based on 

papers which have been published in international peer-reviewed journals. Chapter 

2 evaluates through MC simulations the peripheral dose in the treatment of a 

prostate carcinoma when using 
60

Co and 
192

Ir sources. Results of this study are 

compared with the peripheral dose in other radiotherapy modalities such as EBRT 

and proton therapy. Chapter 3 assesses the probability that the radiation doses 

absorbed by the healthy organs can induce a secondary tumor. Following a 

thorough literature review of current knowledge in this field, a critical analysis is 

presented. Chapter 4 aids epidemiologists with accurate dose estimations, which 

can be linked to secondary risks for a BT treatment. For this purpose, a radium 
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(
226

Ra) tube and needle, widely used from 1920s to the 1970s, and for which there 

exists a wide medical record with clinical follow-up, are dosimetrically 

characterized using MC simulations and the formalism employed in clinical 

practice. Chapter 5 is the first chapter aimed to reduce the peripheral dose. The use 

of lead shielding in certain surface treatments is considered, and the optimum 

shielding thickness is evaluated. Because the shield may increase the dose near the 

patient surface that is in contact with the shield, the use of a layer of material 

equivalent to water (bolus) placed between the shield and the patient surface is 

proposed, and its effect is evaluated, as well as the required bolus thickness as a 

function of the radionuclide used. Results of this study are applied in Chapter 6 to 

a case of great interest: dose reduction to the fetus of a pregnant patient having 

breast cancer. For this particular case, a novel breast shield is designed and 

absorbed dose to the fetus is measured, with and without shielding. These data are 

compared to the fetal dose delivered by other radiotherapy techniques. Finally, 

Chapter 7 presents a general discussion of all previous studies. 

  



 

Chapter 2. PERIPHERAL DOSE IN HDR 

BRACHYHTERAPY 

 

 

 

Most of the content of this chapter was published in the original research paper: 

Candela-Juan C, Perez-Calatayud J, Ballester F, Rivard MJ. Calculated organ 

doses using Monte Carlo simulations in a reference male phantom undergoing 

HDR brachytherapy applied to localized prostate carcinoma. Medical Physics. 40: 

033901 (2013). 

Kind permission was granted by the journal to reprint this article as a chapter of this 

dissertation. 
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2.1 Introduction 

 Prostate carcinoma is the second most frequently diagnosed tumor among 

men in economically developed countries (14% of cancer cases in 2008), being the 

sixth leading cause of cancer death (6% of cancer deaths in males in 2008) (Jemal et 

al., 2011), although there are variations amongst countries (IARC, 2001). If 

increasing life expectancy is also considered, an even higher death rate due to 

prostate cancer is expected and it is thus worth directing efforts to improve 

treatment options for this disease. 

 The American Brachytherapy Society (ABS) has shown the success of HDR 

brachytherapy applied to localized prostate cancer (Yamada et al., 2012). In 

addition to low toxicities (<5% for Grade 3 or higher), biochemical control rates of 

85% to 100%, 81% to 100%, and 43% to 93% have been reported for low-, 

intermediate-, and high-risk prostate tumors, respectively. In addition, it has been 

shown that HDR brachytherapy achieves complete prostate target coverage and 

doses to urethra, bladder and rectum below the dose constraints for these OARs 

(White et al., 2013). From a population-based analysis, it is also shown that 

mortality rates are reduced when applying brachytherapy alone or in combination 

with EBRT, even for high-risk cancers. In fact, besides HDR monotherapy being a 

treatment technique for this disease, it also plays a fundamental tool as a boost (9 

Gy or 15 Gy) after 60 Gy or 46 Gy intensity modulated radiation therapy (IMRT), 

respectively. 

 Several manufacturers have traditionally offered HDR 
192

Ir as a 

brachytherapy source. The new Eckert & Ziegler BEBIG GmbH MultiSource 

remote afterloader permits HDR 
60

Co brachytherapy.  

 Tumor control is the main concern in a radiotherapy treatment plan. 

However, production of secondary cancers becomes a criterion that can be used to 

establish the treatment choice when target coverage and dose sparing are 

comparable for different radiotherapy modalities. As stated by Schneider et al. 

(2006), new radiation treatment techniques such as IMRT or hadron therapy may 
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increase cancer cure rates, although it is expected they can also increase secondary 

tumor incidence. This is because of the relatively high equivalent dose deposition in 

OARs that are within the primary beam trajectory. In addition, a considerable 

increase in beam-on time for IMRT gives to organs out of field a higher absorbed 

dose, mainly from leakage radiation, since contribution from scatter is equal or less 

than in 3D-conformal radiotherapy (3D-CRT) if proper collimation is used. In the 

case of proton therapy or radiation therapy with high energy photons, neutrons are 

created in the accelerator which, due to their higher radiobiological effectiveness 

than photons, may also lead to an increase of secondary cancers. 

 Given the successful clinical results when using brachytherapy, IMRT, or 

proton therapy (Schneider et al., 2006; Shen et al., 2012), it is of interest to discern 

the treatment modalities and compare probabilities for secondary cancer 

occurrence. The peripheral dose has been obtained for 3D-CRT, IMRT, and proton 

therapy (Schneider et al., 2006; Stathakis et al., 2007; Fontenot et al., 2009; 

Bednarz et al., 2009; Bednarz et al., 2010). This has also been done for 

brachytherapy applied to the breast, using HDR 
192

Ir and electronic sources (Mille 

et al., 2010). However, it does not appear to have been done for HDR 

brachytherapy with 
60

Co and 
192

Ir sources applied to prostate cancer, nor with 

comparison to EBRT techniques. As previously stated, according to a summary on 

the topic done by Xu et al. (2008), the AAPM Task Group 158 and the NCRP 

Scientific Committee excluded brachytherapy from their studies due to lack of data. 

This exclusion supports the study of equivalent doses in a similar context to include 

brachytherapy. 

 Consequently, the aim of this study was to obtain equivalent doses to a 

variety of organs when applying HDR brachytherapy to the prostate using 
60

Co or 
192

Ir sources, and to provide EBRT comparisons. Given that absorbed doses to the 

bladder and rectum are dependent on patient-specific treatment plans and are 

already estimated during the planning process, the focus is on farther organs. Due to 

the intrinsic difficulties and limitations of absorbed dose measurements to organs, 
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MC simulated radiation transport has been selected as the calculation method to 

estimate the needed data. 

 

2.2 Materials and methods 

2.2.1 Geometry definition 

 In order to reproduce a prostate brachytherapy treatment, a representative 

adult male phantom is needed. Since the 1960s, more than one hundred phantoms 

have been reported in the literature (Caon, 2004; Zaidi et al., 2007; Zhang et al., 

2009; Xu et al., 2010), going from stylized phantoms formed by mathematical 

shapes, to voxelized phantoms, and finally to mesh phantoms, where their postures 

can be adjusted and the body organs deformed. A recent and complete analysis of 

all these body phantoms was presented by Xu et al. (2010). 

 In its Publication 110 (ICRP, 2009), the International Commission on 

Radiological Protection (ICRP), jointly with the International Commission on 

Radiation Units and Measurements (ICRU), defines an official voxelized phantom 

that reproduces reference organ and tissue values given in ICRP Publication 89 

(ICRP, 2002). For design of the ICRP/ICRU 110 phantom, tomographic datasets 

from a real individual with physical characteristics close to those from the reference 

phantom (176 cm tall and 73 kg mass) were selected, and voxel scaling was applied 

to adjust the body height and the skeletal mass. Individual organs were then 

segmented and adjusted to reproduce reference masses within 0.01 g. The final 

phantom consists of over 140 organs and tissues, formed by almost 1.95 million 

voxels (7.16 million voxels if exterior air is considered). For the male phantom, the 

voxel height is 8 mm, whereas the voxel in-plane resolution is 2.137 mm with a 

voxel volume of 36.54 mm
3
. Since the physical posture of a patient with prostate 

carcinoma who is being treated with HDR brachytherapy is not very different from 

the ICRP/ICRU 110 phantom, this voxelized phantom was used in this work. 



Peripheral dose in HDR brachyhterapy 

_____________________________________________________________________________________________________________________________________________ 

 13 

 Some tissues/organs such as lymphatic nodes, blood, and bone marrow, 

among others, could not be perfectly segmented due to the limited voxel resolution 

(ICRP, 2009). Lymphatic nodes were included manually at specific locations, 

whereas a blood portion was incorporated in the elemental tissue composition of 

each organ. In addition, the mass percentage of bone marrow in the spongiosa part 

of skeletal targets is given in ICRP Publication 110 (ICRP, 2009), which allows an 

estimation of absorbed dose to red bone marrow and endosteum tissue (bone 

surface), which are part of the radiosensitive organs needed to obtain effective dose. 

This is, however, an overestimation of absorbed dose in these two tissues given that 

secondary equilibrium between the mineral bone and soft tissue components of the 

spongiosa does not exist (ICRP, 2009). Despite this, the voxelized phantom is 

considered adequate for the purpose of this study given that variation of absorbed 

doses due to exact organs resolutions is expected to be small compared to variations 

between different patients. In addition, dealing with relatively high energy photons, 

this voxel resolution should not be a concern. 

 In order to assess the adequacy of a homogeneous phantom for HDR 

absorbed dose calculations, and to permit model validation against measurements 

by others, simulations were repeated with the entire phantom composition replaced 

as liquid water. In addition, an extra simulation with the heterogeneous voxelized 

phantom immersed in water was later performed in order to explain the behavior of 

organ doses as a function of distance when compared to an ‘infinite’ medium. 

Additional simulations were performed in 1 m radii spheres of water (ρ = 1.00 

g/cm
3
) and muscle (ρ = 1.05 g/cm

3
). 

2.2.2 Brachytherapy sources 

 Energy spectra used in the MC simulations and their probabilities are the 

ones obtained by our group in previous studies (Ballester et al., 2009; Rivard et al., 

2010), which provide spectra exiting real encapsulated HDR 
60

Co and 
192

Ir sources. 

The photons were generated at the prostate center of the voxelized phantom (i.e., 

point sources) emitting photons isotropically. Source capsule effects have been 
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included in the simulations using those spectra. These spectra were also used for 

simulations at the center of the spheres of water and muscle as explained above. 

2.2.3 MC simulation setup and organ equivalent dose 
calculation 

 The simulation toolkit GEANT4 version 9.4 (Agostinelli et al., 2003) was 

used to read ASCII data provided in ICRP/ICRU 110 (ICRP, 2009) and to simulate 

the human phantom and the HDR brachytherapy treatment. The low-energy 

electromagnetic models of the Livermore physics package, which use detailed 

handling, were employed. Standard multiple scattering cross-sections were also 

utilized, with specialized processes for each particle type. Detailed information 

about these models can be found in  the GEANT4 User Documentation webpage 

(http://geant4.cern.ch/supports/userdocuments.shtml). This code has been widely 

validated for its use in brachytherapy dosimetry (Rivard et al., 2010; Granero et al., 

2011; Vijande et al., 2012). Secondary electrons were also tracked. For electrons 

and photons, the cutoff range was set to 0.1 mm, so secondary particles having a 

smaller range were not generated. 

 In order to hasten simulation time without extra memory requirement, the 

G4RegulatorNavigation algorithm was used, as implemented in the DICOM 

example of GEANT4. It is based on removing voxel frontiers when two voxels 

share the same material. An iterative algorithm is later applied to determine 

absorbed dose in each individual voxel of a cluster. More details about this 

technique, which has already been validated, can be found on the cited example of 

GEANT4.  

 A text file with absorbed dose in each voxel was obtained as an output of the 

simulation. In-house developed software was then used to convert this output to 

absorbed dose DT in each organ or tissue T, by summing all voxel absorbed doses in 

an organ and dividing by the number of voxels that form it. This is a mass weighted 

average considering that all voxels of the same tissue have the same mass. DT was 
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then converted to mean absorbed dose per released photon by dividing by the 

number of events per simulation, N. Finally, equivalent dose per photon, HT/N, was 

obtained from absorbed dose through a radiation weighting factor wR: 

,T RT
R

R

DH
w

N N


 

(2-1) 

 According to ICRP Publication 103 (ICRP, 2007), wR equals 1 for photons 

and electrons. Since these are the only particle types in the simulation environment, 

the equivalent dose HT in an organ was numerically equal to absorbed dose in that 

organ. Effective dose E was also obtained through a tissue weighting factor wT: 

T
T

T

HE
w

N N
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(2-2) 

 The point source was located at the prostate center. For each source and 

phantom composition (heterogeneities or water), 10
9
 initial photons were used, 

which provided statistical (Type A) uncertainties < 1% for most of the organs 

considered. As recommended in the joint AAPM Task Group No. 138 report 

(DeWerd et al., 2011), a coverage factor of k=2 (confidence level of 95%) was used 

to express uncertainties in brachytherapy dose. 

 The procedure by Pujades et al. (2011) was used to correlate the MC 

simulations of the source at a single position at the prostate center with a realistic 

therapeutic absorbed dose to the prostate for the source at various locations and 

with different dwell times. They derived the relationship between prostate volume 

V, therapeutic absorbed dose DP, air-kerma strength SK, and total irradiation time t 

for 127 clinical cases. The correlation was presented as a nomogram fitted to a 

linear function and allowed estimation of t for the source at the center of the 

prostate to deliver the required absorbed dose: 
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( )K Pt S D a V b   
 

(2-3) 

where a and b are fitting parameters obtained experimentally (Pujades et al., 2011). 

From previous Monte Carlo studies (Ballester et al., 2009; Rivard et al., 2010; 

Granero et al., 2011; Vijande et al., 2012), the air-kerma strength per Bq, SK/A, was 

derived for both HDR 
60

Co and 
192

Ir sources. From all these clinical data, the 

number of events N1 Gy necessary to provide a therapeutic absorbed dose of DP = 1 

Gy to the prostate, as a function of V was obtained: 

1 Gy ( )

KP
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(2-4) 

 Using N1 Gy with Eq. (2-1), equivalent dose per therapeutic absorbed dose to 

the prostate, HT/DP, was determined. Data correspond to those from a typical 

prostate volume of V=30 cm
3
, although variations with V were also analyzed. 

 

2.3 Results 

2.3.1 Organ equivalent dose 

 N1 Gy = 8.4×10
12

 and N1 Gy = 3.0×10
13

 photon histories for 
60

Co and 
192

Ir, 

respectively, were needed to deliver 1 Gy of therapeutic absorbed dose to a 30 cm
3
 

prostate. If the method by Pujades et al. (2011) had not been used, for that number 

of initial events, absorbed dose in the prostate would be 3.9 Sv/Gy and 4.9 Sv/Gy 

instead of 1 Sv/Gy for 
60

Co and 
192

Ir, respectively. They are larger than 1 Sv/Gy, 

which was expected given that N1 Gy is used to account for a real case where the 

source is located at various points inside the prostate. This source distribution 

reduces overall absorbed dose in the prostate in exchange for uniform dose 

deposition in the target volume. This methodology might underestimate absorbed 
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doses to the nearest organs (mainly the ones which are in contact with the prostate), 

due to proximity of a specific source position. For the rest of the organs, the 

variations were expected to be negligible. 

 Table 2-1 shows mean equivalent doses (per therapeutic absorbed dose to a 

30 cm
3
 prostate), HT/DP, in several radiosensitive organs in the heterogeneous 

phantom, for both the 
60

Co and 
192

Ir sources, all together with the Type A statistical 

uncertainties. Effective dose is also included. In addition, the relative variation of 

organ absorbed doses for the water phantom in comparison to the heterogeneous 

phantom is shown. For completeness, organ masses and distances, r, from their 

center of mass to the center of mass of the prostate are also given. 

 Figure 2-1 shows organ absorbed doses as a function of r. The depth dose 

distribution in the 1 m radius water sphere and fitted curves obtained by Venselaar 

et al. (1996) from measurements of point sources (
60

Co and 
192

Ir) in water are 

plotted (see Figure 2-1a and Figure 2-1b, respectively) for comparison. Similarity 

of the curves validates the simulations and physics package used. 

 There is reasonable agreement between organ data and the fitted curves. 

There are three organs that received an absorbed dose higher than predicted by 

simulations in water: spinal cord, small intestine wall, and the colon. The latter two 

are close to the prostate, and all three subtend volumes over a large range of 

distances from the prostate. For organs with d > 30 cm, organ absorbed dose is 

smaller than expected in water by 50% to 125% for 
192

Ir, and by 17% to 60% for 
60

Co. These discrepancies are also present for organ absorbed doses in the 

homogeneous water phantom. There are two known radiological effects that 

contribute to these differences. First, there is dosimetric difference between water 

and soft tissue for d > 30 cm, as shown later. Second, there is lack of backscatter at 

the phantom skin compared to an infinite medium. This was demonstrated by 

immersing the heterogeneous voxelized phantom in water. With this configuration, 

organ absorbed doses increased up to ~25% with variations between different 

organs. 
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Table 2-1. Organ equivalent dose per therapeutic absorbed dose to the prostate, 

(HT/DP), given to the heterogeneous voxelized phantom by the 
60

Co source and by 

the 
192

Ir source. Distances correspond to those between the prostate and the organ 

center of masses. The statistical uncertainty (Type A) percentage (k=2), ε, is also 

shown (but for those with ε < 0.05%), as well as the effective dose. The last column 

corresponds to the relative variation of absorbed dose between the water and the 

heterogeneous phantom, Δ, being positive if absorbed dose in water is higher than 

in a tissue. 

 

 1 

 HT / DP (Sv/Gy) 
Δ (%) 

Organ name 
Mass 

(g) 

Distance 

(cm) 

60
Co 

192
Ir 

Mean ε (%) Mean
 

ε (%)
 60

Co
 192

Ir
 

Urinary bladder wall 50.0 5.0 1.30x10
-1

 0.1 1.60x10
-1

 0.1 0.6 -0.4 

Rectum wall 30.0 5.3 1.51x10
-1

 0.1 1.83x10
-1

 0.1 0.6 0.5 

Testis, right 17.5 11.2 2.51x10
-2

 0.3 2.94x10
-2

 0.3 -0.1 0.2 

Testis, left 17.5 11.3 2.42x10
-2

 0.2 2.82x10
-2

 0.2 0.2 0.2 

Small intestine wall 650.0 20.3 9.24x10
-3

 0.1 1.05x10
-2

 0.1 1.2 2.7 

Colon 340.0 24.0 6.21x10
-3

 0.1 6.78x10
-3

 0.1 0.9 2.7 

Kidney, right 157.0 29.9 1.75x10
-3

 0.3 1.40x10
-3

 0.3 5.1 11.5 

Kidney, left 153.0 31.1 1.56x10
-3

 0.5 1.20x10
-3

 0.3 4.9 10.8 

Pancreas 140.0 31.2 1.53x10
-3

 0.3 1.21x10
-3

 0.4 4.9 9.5 

Gall bladder wall 13.9 32.9 1.26x10
-3

 1.2 9.33x10
-4

 1.3 4.2 7.5 

Adrenal, right 7.0 33.6 1.11x10
-3

 1.9 7.63x10
-4

 1.4 10.5 19.5 

Adrenal, left 7.0 34.8 9.79x10
-4

 1.7 6.50x10
-4

 2.3 9.4 17.6 

Stomach wall 150.0 35.8 9.50x10
-4

 0.5 6.40x10
-4

 0.4 2.4 6.9 

Liver 1800.0 36.2 8.88x10
-4

 0.1 5.88x10
-4

 0.2 4.2 9.3 

Spleen 150.0 38.1 7.15x10
-4

 0.6 4.32x10
-4

 0.3 6.2 13.1 

Heart contents 510.0 44.3 4.03x10
-4

 0.3 2.09x10
-4

 0.7 9.3 17.9 

Heart wall 330.0 44.7 3.97x10
-4

 0.2 2.08x10
-4

 0.3 9.0 15.1 

Lung, right 471.7 47.3 3.37x10
-4

 0.4 1.60x10
-4

 0.4 1.0 8.8 

Lung, left 376.8 47.9 3.27x10
-4

 0.3 1.56x10
-4

 0.6 0.1 5.7 

Esophagus 40.0 50.0 3.01x10
-4

 1.8 1.55x10
-4

 1.9 14.7 23.3 

Spinal cord 36.6 50.9 4.35x10
-4

 1.3 2.51x10
-4

 1.7 13.1 34.4 

Thymus 25.0 54.6 1.53x10
-4

 2.5 6.16x10
-5

 4.5 13.6 6.3 

Trachea 10.0 57.0 1.28x10
-4

 4.1 4.74x10
-5

 6.1 11.4 18.5 

Thyroid 20.0 59.1 1.04x10
-4

 3.7 3.46x10
-5

 4.6 5.9 6.2 

Tongue (inner part) 42.3 70.0 5.62x10
-5

 1.8 1.50x10
-5

 6.7 0.6 0.8 

Salivary gland, right 42.5 70.3 5.88x10
-5

 2.3 1.45x10
-5

 6.7 -16.7 -14.1 

Salivary gland, left 42.5 70.3 4.71x10
-5

 2.5 1.20x10
-5

 6.3 -0.9 -4.0 

Brain 1450.0 79.5 2.08x10
-5

 1.1 4.17x10
-6

 2.0 2.6 4.3 

Active bone marrow - - 1.26x10
-2

 - 1.62x10
-2

 - 0.4 -6.2 

Skin - - 3.21x10
-3

 - 3.23x10
-3

 0.1 2.5 4.7 

Lymphatic nodes - - 2.69x10
-2

 0.1 3.13x10
-2

 0.1 1.5 1.3 

Effective dose - - 1.11x10
-2

 - 1.32x10
-2

 - - - 
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Figure 2-1. Organ absorbed doses obtained in this work as a function of distance 

to the prostate for: a) 
60

Co source and b) 
192

Ir source. Distances are between the 

prostate and the organ center of masses. Absorbed doses are normalized such that 

D(1 cm)=1 (arbitrary units). The fitting curve obtained from Venselaar et al. (1996) 

is also shown and compared with depth dose distribution in the 1 m radius water 

sphere simulated in this work, with real spectra exiting the source capsules. 
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2.3.2 Influence of prostate size 

 Mean equivalent dose in each organ is proportional to the number of photons 

emitted by the source, N1 Gy. In addition, according to Eq. (2-4), N1 Gy is linear with 

V. Hence, if D0 is the absorbed dose in a specific organ when the prostate volume is 

V0=30 cm
3
, when V=V0 (1+X), i.e., when the volume is X % higher or lower, then 

the relative variation of organ absorbed dose is: 

0 0

0 0

XD D a V
X

D a V b

 


 
 

(2-5) 

 Using real clinical values obtained by Pujades et al. (2011) (a=0.0605 cm
-1

, 

b=1.7 cm
2
), then the relative variation is 0.52 times X. Therefore, if prostate volume 

increases (decreases) 10% respect to the reference volume, equivalent dose in each 

organ increases (decreases) by ~5.2%. 

 

2.3.3 60Co vs. 192Ir 

 Figure 2-2 represents the 
60

Co to 
192

Ir absorbed dose ratio for each organ, for 

the heterogeneous and the water phantom. Presented error bars are statistical (Type 

A) uncertainties from MC simulations. Absorbed doses have been normalized such 

that the prostate receives the same absorbed dose from both sources. It can be 

observed that absorbed doses in those organs near the treated prostate, such as the 

bladder, rectum, testes, small intestine, and colon are roughly 10% smaller when 

using 
60

Co. This can be rationalized considering that in a real treatment, as shown 

above, to give the same absorbed dose at 1 cm from the source, the required activity 

of 
60

Co is smaller and so is the number of emitted photons. This is not the case for 

distant organs. As the distance between the prostate and the organ increases, so does 

the relative contribution of 
60

Co absorbed dose in comparison to 
192

Ir. This can be 

understood from the mean energy of emitted photons for each radionuclide, which 

is higher for 
60

Co and has greater penetration within the body. This trend can be 
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also observed in Figure 2-3, where it is plotted the dose distribution in a coronal 

plane containing the sources.  

 Given that the same therapeutic absorbed dose is prescribed with both 

radionuclides, and that estimated effective doses were 11.1 mSv/Gy for 
60

Co and 

13.2 mSv/Gy for 
192

Ir, an overall advantage of 
60

Co seems to exist when organ 

doses are considered. 

 

2.3.4 Heterogeneous vs. water phantom 

 Currently, brachytherapy treatment planning systems consider the body to be 

composed of water. In this section, validity of this assumption when obtaining 

organ absorbed dose in the whole body is analyzed. Figure 2-4 shows the organ 

absorbed dose ratio of heterogeneous media to water for the two sources. For the 

closest organs considered, absorbed dose was the same for all organs having near-

unity mass density. 

 

Figure 2-2 .
60

Co to 
192

Ir absorbed dose ratio for different body organs, using a 

heterogeneous and a water phantom. 
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Figure 2-3. Equivalent dose per therapeutic absorbed dose in a coronal plane 

containing the 
60

Co source (left) and the 
192

Ir source (right). 

 

  However, as the distance increases the absorbed dose ratio decreases, 

reaching differences of almost 25% (but for the spinal cord, which is surrounded by 

bone and so the absorbed dose ratio is even lower), being lower for 
192

Ir than for 
60

Co (but for the thymus and the left salivary gland, where uncertainties are 

relatively high and so no conclusions can be extracted). The reason for the absorbed 

dose rate reduction is in the material composition. In order to prove this, absorbed 

dose as a function of distance was obtained in water and muscle spheres with the 

sources placed at the centers. The absorbed dose ratios when using both 
60

Co and 
192

Ir, with their real spectra exiting the sources, are shown in Figure 2-5. 



Peripheral dose in HDR brachyhterapy 

_____________________________________________________________________________________________________________________________________________ 

 23 

 

 

Figure 2-5. Muscle to water absorbed dose ratio for 
60

Co and 
192

Ir encapsulated 

sources at the center of 1 m radius spheres. Absorbed doses are averaged over 

shells of 5 mm width. 

 

Figure 2-4. Heterogeneous to water absorbed dose ratio, using 
60

Co and 
192

Ir 

sources. 
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 As an example, at 30 cm from the source, the muscle to water absorbed dose 

ratio for 
192

Ir is 0.92, being the difference between the kidneys and its 

corresponding water volume of around 10%, in agreement. Hence, the general 

decrease of the heterogeneous to water absorbed dose ratio can be explained 

considering the differences between real tissue and water, which are negligible for 

distances below 10 cm, but not after that. With 
60

Co, which has higher mean photon 

energy, photoelectric effect is not dominant and so the difference between water 

and soft tissue is smaller than for 
192

Ir. The other factor which influences the curve 

from Figure 2-4 is the presence of different materials like air inside some organs, 

bone, or the lungs. An interesting case is the salivary glands, where the 

heterogeneous to water absorbed dose ratio between the left and the right gland 

might seem consistent for the 
192

Ir source considering their uncertainties, but not for 

the 
60

Co source. This difference can be explained taking into account that the 

prostate center of mass of the voxelized phantom is almost 1 cm at right from our 

geometrical center, and so it traverses more lung to reach the right salivary gland 

than to reach the left one. In addition, the right lung is more superior than the left 

one due to the presence of the heart, and so the effect is even larger. 

 

2.4 Discussion 

 It is interesting to compare organ equivalent doses that result from different 

radiation modalities (brachytherapy, 3D-conformal radiotherapy, IMRT, and proton 

therapy). There are some studies regarding organ equivalent doses from proton 

therapy applied to prostate. Fontenot et al. (2008) estimated equivalent doses from 

stray radiation, i.e., neutrons and photons generated (either inside or outside the 

body) in a passively scattered proton treatment to radiosensitive organs. The 

prescribed equivalent dose was 75.6 CGE (Cobalt Gray Equivalent), i.e., 68.7 

Gy×1.1 RBE (radiobiological effectiveness of protons), to the clinical treatment 

volume. Simulations were run in the MCNPX code, using an anatomically realistic 

male phantom developed by Billings and Yucker (1973). In their first work, they 
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did not consider absorbed dose from the therapeutic beam, which mainly concerns 

additional absorbed dose to the bladder and rectum. In a follow-up paper (Fontenot 

et al., 2010) they considered primary absorbed dose calculated using a commercial 

treatment planning system applied to three patients. Summing the contributions 

from secondary particles, they obtained total equivalent dose and estimated the 

probability of secondary tumor induction using recommendations by the Biological 

Effects of Ionising Radiation (BEIR) committee (BEIR, 2006). Given that some 

data were not explicitly written in the paper (Fontenot et al., 2010), the authors 

were contacted and kindly provided the needed details. The three patients were of 

different sizes (small, medium, and large). Their medium sized data are compared 

in the current study. In their work, equivalent dose to the colon was obtained as a 

mass-weighted average of the equivalent doses to the colon and rectum: 

total colon colon colon rectum rectumD w D w D  
 

(2-6) 

where the colon wcolon and rectum wrectum mass weights were 20% and 80%, 

respectively, according to ICRP 89 (2002).  

 On the other hand, Bednarz et al. (2009, 2010) estimated organ equivalent 

doses and risk probabilities from two 3D-CRT (a 4-field box and a 4-field box + 6-

field boost), and a 7-field IMRT treatment applied to the prostate. Absorbed doses 

were estimated through MCNPX using a voxelized male phantom also in agreement 

with the male reference phantom from ICRP Publication 89, and a previously 

validated Varian Clinac 2100C linear accelerator (Bednarz et al., 2009). Their 

results are within an order of magnitude of those obtained by Kry et al. (2005) and 

Howell et al. (2006). Study discrepancies are due in part to the different organ 

locations and methods used to obtain absorbed doses. Organs within the therapeutic 

beam (testes, bladder, skin, and prostate) were not yet considered in those papers 

(Bednarz et al., 2009; Bednarz et al., 2010). However, this was evaluated by 

Fontenot et al. (2009), who considered primary radiation for IMRT to colon, 
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bladder, and testes. Eq. (2-6) was also used to obtain equivalent dose to colon from 

the IMRT treatment. 

 Figure 2-6 shows organ equivalent doses per therapeutic absorbed dose for 

three radiation modalities: brachytherapy, IMRT, and proton therapy, whereas 

numerical data in Table 2-2 also include 3D-CRT. First, HT/DP in organs near the 

prostate (e.g. testes, urinary bladder, and colon) are about a factor of two larger 

when using IMRT than when using proton therapy. A higher amount of beam time 

is needed for IMRT to conform absorbed dose to the prostate. In fact, besides 

results from Fontenot et al. for protons, which are based on a passive scanning 

system, there are other studies by Schneider et al. (2006, 2007) that have shown that 

the probability of secondary cancers could be decreased by a factor of two when 

using spot-scanned proton therapy instead of IMRT. A spot-scanned system 

requires fewer beam conformal elements and results in a lower secondary neutron 

flux than in a passive system. 

 

Figure 2-6. Organ equivalent dose per therapeutic absorbed dose for different 

radiation treatments applied to the prostate: brachytherapy (from this work, with 
60

Co and 
192

Ir), IMRT (Bednarz et al., 2009; Fontenot et al., 2008), and proton 

therapy (Fontenot et al., 2008; Fontenot et al., 2009).  
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Table 2-2. Equivalent dose per therapeutic absorbed dose (HT/DP) for some body 

organs, comparing brachytherapy results from this work in a heterogeneous 

phantom and previously reported data for 3D-CRT (ref. (Bednarz et al., 2009; 

Bednarz et al., 2010)), IMRT (ref. (Fontenot et al., 2008; Bednarz et al., 2009)) and 

protontherapy (Fontenot et al., 2008; Fontenot et al., 2009). Relative uncertainties ε 

(type A for brachytherapy (but for those with ε < 0.05%) and the ones published for 

EBRT) are given in brackets (%) with one decimal unit. 

 

 

 When considering HDR brachytherapy with 
60

Co and 
192

Ir, equivalent doses 

(per prescribed absorbed dose) to organs up to the stomach (around 35 cm from the 

prostate) are the same within an order of magnitude when compared to IMRT and 

proton therapy. This is consistent with results published more recently by Georg et 

al. (2014), who considered the dose distribution in OARs near the prostate for ten 

patients planned with: volumetric modulated arc therapy, intensity-modulated 

proton therapy, intensity-modulated carbon-ion therapy, and LDR and HDR 

brachytherapy. This study showed that, despite the different EBRT prescription and 

 1 

 Organ HT/DP 

(Sv/Gy) 

 Organ name 
60

Co 
192

Ir Box+boost IMRT Protons 

 Bladder 1.30x10
-1

 (0.1) 1.60x10
-1

 (0.1) -  2.57x10
-1

  1.87x10
-1

 (14.5) 

 Rectum 1.51x10
-1

 (0.1) 1.83x10
-1

 (0.1) -  3.65x10
-1

  2.75x10
-1

 (3.4) 

 Testes 2.51x10
-2

 (0.3) 2.94x10
-2

 (0.3) -  1.26x10
-2

  7.60x10
-3

  

 Small intestine 9.24x10
-3

 (0.1) 1.05x10
-2

 (0.1) 2.36x10
-2

 (0.4) 1.16x10
-2

 (0.8) -  

 Colon 6.21x10
-3

 (0.1) 6.78x10
-3

 (0.1) 9.07x10
-3

 (1.4) 6.01x10
-3

 (3.2) 7.80x10
-3

  

 Kidneys 1.75x10
-3

 (0.3) 1.40x10
-3

 (0.3) 5.88x10
-3

 (2.3) 3.14x10
-3

 (3.7) -  

 Pancreas 1.53x10
-3

 (0.3) 1.21x10
-3

 (0.4) 3.43x10
-3

 (3.8) 2.27x10
-3

 (3.5) -  

 Gall bladder 1.26x10
-3

 (1.0) 9.33x10
-4

 (1.3) 3.02x10
-3

 (3.4) 2.55x10
-3

 (2.5)  -  

 Stomach 9.50x10
-4

 (0.5) 6.40x10
-4

 (0.4) 3.50x10
-3

 (1.5) 2.87x10
-3

 (2.9) 3.40x10
-3

  

 Liver 8.88x10
-4

 (0.1) 5.88x10
-4

 (0.2) 3.68x10
-3

 (1.1) 2.65x10
-3

 (2.0) 3.40x10
-3

  

 Spleen 7.15x10
-4

 (0.6) 4.32x10
-4

 (0.3) 4.15x10
-3

 (2.3) 2.33x10
-3

 (3.6)  -  

 Heart 3.97x10
-4

 (0.2) 2.08x10
-4

 (0.3) 2.14x10
-3

 (2.0) 1.95x10
-3

 (3.6)  -  

 Lungs 3.37x10
-4

 (0.4) 1.60x10
-4

 (0.4) 2.76x10
-3

 (1.5) 1.57x10
-3

 (2.0) 2.50x10
-3

  

 Oesophagus 3.01x10
-4

 (1.8) 1.55x10
-4

 (1.9) 1.60x10
-3

 (10.4) 9.75x10
-4

 (3.2) 1.90x10
-3

  

 Thyroid 1.04x10
-4

 (3.7) 3.46x10
-5

 (4.6) 2.12x10
-3

 (17.5) 8.67x10
-4

 (10.8) 1.90x10
-3

  

 Brain 2.08x10
-5

 (1.1) 4.17x10
-6

 (2.0) 1.21x10
-3

 (2.4) 6.50x10
-4

 (3.6)  -  

 Active bone marrow 1.26x10
-2

 - 1.62x10
-2

 - 2.28x10
-3

 (1.9) 2.00x10
-3

 (4.3) 6.40x10
-3

  

 Skin 3.21x10
-3

 - 3.23x10
-3

 (0.1)  -  -   6.40x10
-3

  

 2 
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fractionation schemes, the high-dose regions of bladder wall and rectal wall were on 

the same order of magnitude for all radiation modalities, and that BT were clearly 

superior in terms of bladder wall, rectal wall, and normal tissue sparing, with better 

values for HDR-BT. 

 The high doses to organs near the prostate dominate in the calculation of 

effective doses from the different radiation modalities. Results from Table 2-2 

provide an effective dose of 12 mSv/CGE for proton therapy and 13 mSv/Gy for 

IMRT, similar to 11.1 mSv/Gy and 13.2 mSv/Gy obtained for both brachytherapy 

sources. Nevertheless, in the previous figure, only stray radiation is considered for 

the testes when using IMRT, and so real equivalent dose there is expected to be 

higher. For all these near organs, there might be variations between patients within 

an order of magnitude. As an example, Fontenot et al. (2009) estimates an 

HT/DP=0.07 Sv/Gy for the colon when using IMRT, a factor ten higher from what it 

is shown here. In addition, estimation done by Fontenot et al. of equivalent doses to 

skin and bone marrow, which contributes considerably to effective dose, are 

average values from equivalent dose in the other organs they considered. 

Furthermore, in our study equivalent dose to bone marrow was overestimated, as 

explained above, although equivalent doses to rectum and bladder might be under 

estimated. As a result, effective doses per therapeutic absorbed dose might be 

similar between all radiation modalities considered in this comparison. These 

results are estimations for the considered cases and exact conclusions for the nearest 

organs are patient and equipment dependent.  

 For the furthest organs, this study has shown that equivalent doses were 

approximately the same (within an order of magnitude) throughout the whole body 

(see Figure 2-6) for 3D-CRT, proton therapy, and IMRT. For these three 

modalities, although equivalent doses were smaller for larger distances, given a 

smaller contribution from scattering radiation, they were within the same order of 

magnitude. This was not the case when using brachytherapy. As the distance 

increased, equivalent dose decreased rapidly, going from approximately 1 mSv/Gy 

in the stomach to 10 μSv/Gy in the brain. For the furthest organs, equivalent doses 
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given by brachytherapy are between one and two orders of magnitude smaller to 

those delivered by other radiation modalities. This gives brachytherapy a clear 

advantage if, for a given prostate absorbed dose, equivalent dose for distant organs 

needs to be minimized. 

 HDR monotherapy has been shown to be an excellent treatment modality for 

prostate carcinoma, although there seems to be no consensus on the optimal dose 

and fractionation schedule for this radiation technique (Demanes et al., 2014). The 

longest follow-up for outcomes is with moderate-hypofractionation (4 to 9 

fractions), although excellent results are also being reported with ultra-

hypofractionation (1 to 3 fractions). Based on a recent literature review performed 

by Demanes and Ghilezan (2014), one of the most extended protocols for HDR 

monotherapy is based on 4 fractions, with 9.5 Gy per fraction, thus totaling 38 Gy. 

Considering this prescribed dose, beyond roughly 25 cm, i.e., beyond the colon, all 

organs absorb doses below 100 mSv after the complete BT treatment. Therefore, 

most of the organs of the patients are exposed to low radiation doses. 

 In this work, probabilities for secondary cancer induction have not been 

estimated given the low equivalent doses received by organs far from the prostate 

and given the dose-risk model uncertainties in this dose range (Hall et al., 2004; 

Candela-Juan et al., 2014). This will be discussed in more detail in Chapter 3.  

 Although this work provides results concerning radiation protection 

applications in radiotherapy, the presented conclusions are based on certain 

assumptions. First, the point source was placed in the prostate center. Although it 

was corrected from empirical clinical data (nomogram) to account for a clinical 

source with varying dwell positions within the prostate, the source would be closer 

to an OAR at some positions and would cause some discrepancies with results 

presented herein for the nearest organs. This variation, however, is lower than an 

order of magnitude and would only apply to the nearest organs, being negligible for 

the rest, beyond roughly 10 cm. The aim of this work was to provide a general 

organ equivalent dose database for this particular treatment, comparing 
60

Co and 
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192
Ir sources in the same circumstances, bearing in mind that equivalent dose to the 

closest organs is patient and facility dependent, and so general values for these 

tissues cannot be established. Hence, the first assumption was not a limitation of the 

proposed aim. Second, the different radiation treatments have been compared 

according to equivalent dose per therapeutic absorbed dose. It has not been taken 

into account that the therapeutic course is generally given in several fractions to 

take advantage of biological effects like cell repair. The hypothesis made is that cell 

damage is proportional to overall absorbed dose, without considering some 

biological effects which are dependent on parameters that could be modality 

dependent. If this hypothesis is correct, then this work shows an advantage of 

brachytherapy in comparison to IMRT and proton therapy when considering 

equivalent doses to the farthest organs. If not, a biological model should be 

included. However, given that several possible fractionating plans can be applied 

for the different radiation treatments, with different total prostate absorbed dose in 

each case, no general conclusions can be extracted. As stated above, comparison 

herein between the different radiation modalities cannot be considered as 

representative of all particular cases. Next, when comparing 
60

Co and 
192

Ir sources, 

the same amount of absorbed dose was assumed in both cases to produce the same 

biological effects, i.e., dependence of biological effects was assumed to be 

independent of source energy. A more precise estimation would account for 

radiobiological effectiveness (it was considered as unity in this work) as a function 

of energy (Reniers et al., 2008). However, this is expected to be a proportionately 

small correction for these high energy sources that would not change the overall 

findings. Therefore, after all these considerations, data presented in Table 2-1 can 

be considered as representative equivalent doses received by a patient with a body 

height similar to the reference male phantom, considering however a 30 cm
3
 

prostate instead of 16.5 cm
3
, the latter corresponding to the prostate size of the 

reference male phantom, which has many variations among people and age. 
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2.5 Conclusions 

 A database of organ equivalent doses when applying HDR brachytherapy to 

the prostate with either 
60

Co or 
192

Ir is provided. Making only physical 

considerations, 
192

Ir seems to be a better choice than 
60

Co when considering damage 

to distant organs, which have to be also considered because of their radiosensitivity, 

but not to the farthest ones, which are the ones which receive a considerably higher 

equivalent dose.  

 Up to around 30 cm, organ variations due to differences between water and 

soft tissue are negligible. However, for larger distances this is not the case. More 

variations with an infinite water medium are due to the lack of back-scattering after 

the skin, which depends on organ positions. Both effects together make that an 

infinite water volume can be used to obtain organ absorbed doses all over the body 

considering, however, a higher uncertainty. The latter will be discussed in more 

detail in Chapter 4. Finally, the radiation treatment (considering HDR 

brachytherapy, IMRT, and proton therapy) to be used if considering organ 

equivalent doses are patient, treatment, and facility dependent. In any case, as the 

distance increases, brachytherapy shows a radiation protection advantage over all 

EBRT techniques. 



 

Chapter 3. TUMOR INDUCTION BY 

RADIATION DOSES 

 

 

 

Most of the content of this chapter was published in the review paper: 

Candela-Juan C, Montoro A, Ruiz-Martínez E, Villaescusa JI, Martí-Bonmatí L. 

Current knowledge on tumour induction by Computed Tomography should be used 

carefully. European Radiology. 24: 649-656 (2014).  

Kind permission was granted by the journal to reprint this article as a chapter of this 

dissertation. 
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3.1 Introduction 

 Data on population radiation exposure and advances in the field of 

radiobiology showed that ionizing radiation could be associated to secondary risks 

for an individual subject (ICRP, 2007). In particular, cell damage may give place to 

genetic mutations and even the induction of a tumor.  

 The dose–effect curve represents the likelihood of inducing a tumor as a 

function of organ-equivalent dose or effective dose. Graphically, three main areas 

can be identified in this dose–effect curve (Hall et al., 2004). In the central zone 

(between around 0.1 Sv and 2.5 Sv) there seems to be a clear linear relationship in 

which, as the effective dose increases so does the probability of tumor induction, 

which has been confirmed by numerous studies (Xu et al., 2008). In particular, the 

Life Span Study of the Japanese atomic bomb survivors of Hiroshima and Nagasaki 

was the first large enough group used to conduct an epidemiological dose 

relationship, being the clearest evidence of the linear relationship at intermediate 

doses. Part of the Japanese population was exposed to this dose range, generally 

uniform throughout the body and involving different types of radiation particles 

such as neutrons, alpha particles, and gamma rays.  

 However, uncertainties in the dose–effect curve do exist at the high and low 

extreme doses. At high organ equivalent doses (>2.5 Sv), radiation induced cell 

sterilization, cell repopulation, and proliferation may cause a deviation from a linear 

dose response (Nguyen et al., 2015). Several studies show that the higher 

probability of cell death decreases the possibility of inducing a tumor in comparison 

with the linear extrapolation, although the rate of decline appears to vary between 

different published data (Hall et al., 2004). Most of the second cancers from 

radiation therapy appear within the volume irradiated by the primary radiation field 

(Nguyen et al., 2015), i.e., at high radiation doses. While Boice et al. (1985) 

estimated that 43% of second cancers are developed near the primary field, Dorr 

and Herrmann (2002) increased this percentage to between 60% and 90%. This 
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chapter reviews recent estimates of cancer induction from high radiation doses, and 

their associated uncertainties. 

 On the other part, at low radiation doses (less than 0.1 Sv) different models 

have been proposed and observed, as summarized in Figure 3-1. One of them is the 

adaptive response (curve a), in which there is a threshold dose below which no extra 

risk exists (NCRP, 2001; UNSCEAR, 1994). Uncertainties in past epidemiological 

data of irradiation exposures within the diagnostic dose range did not rule out a 

possible threshold dose, which might be within the range of 10 to 60 mSv (Pierce et 

al., 2000; Hall et al., 2004; Pauwels et al., 2011). Even more, some researchers 

have indicated that very low doses may produce hormesis (Cuttler et al., 2009), i.e. 

they stimulate our immunological system such that they inhibit effects of higher 

doses later received (curve b). This effect has also been questioned (Wall et al., 

2006). Other experiments have shown the so-called bystander effect, in which not 

only the irradiated cells are affected but also others near them, hence increasing the 

probability of cancer induction (curve c). Based on theoretical studies, the bystander 

effect is also predicted to be present at higher doses (Nikjoo et al., 2003; 

Rzeszowska-Wolny et al., 2009). Finally, because of its simplicity, reasonability, 

and conservative approach, international committees such as the ICRP and the 

NCRP, among others, recommended extrapolating the linear relationship to the 

lowest dose range (curve d in Figure 3-1). The latter term is known as the linear no-

threshold (LNT) model and its assumption implies that even the least amount of 

absorbed dose can lead to an induced tumor or, put in another way, a radiation-

induced tumor may develop from a single hit to a single cell (microdosimetric 

argument (Rossi et al., 1972; Brenner et al., 2006). Brenner and Sachs (2006) 

argued that, if the action in a single cell dominates over intercellular effects, then 

the linear model is appropriate. However, the microdosimetric argument has also 

been criticized (Tubiana, 2005; Tubiana et al., 2006). 
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Figure 3-1. Schematic representation of different possible models of radiation-

induced cancers at low radiation doses: a) adaptive response with threshold dose, 

b) hormesis, c) bystander effect and d) linear-no threshold. The horizontal line 

expresses no over or under risk. Data points and their 95% confidence intervals 

correspond to the relative risks of brain tumour induction as a function of brain 

dose, taken from recent epidemiological studies with paediatric CTs performed in 

the UK (Pearce et al., 2012) (in blue) and Australia (Mathews et al., 2013) (in red), 

considering a 5-year exclusion period. 

 

 Chapter 2 has shown that most of the organs exposed during a 

brachytherapy treatment receive low radiation doses (< 0.1 Sv). For this reason, and 

because diagnostic medical exposures, which contribute significantly to the overall 

collective dose, give doses to patients within this low dose range, we will focus a 

notable part of this chapter to risks due to radiation exposures which imply less than 

0.1 Sv. Current knowledge on the probability that such absorbed doses can induce 

tumor is under discussion among the scientific community. This chapter reviews the 

methods used in the literature to estimate the likelihood that low radiation doses 

induce cancer and summarizes the current quantitative estimates. It is also intended 

to highlight their main sources of uncertainty. Based on all information reported, it 

is discussed whether the linear model that relates probability of cancer induction 
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and dose can be considered to be validated. Finally, some recommendations about 

the appropriate use of current knowledge on this topic are stated.  

  

3.2 Factors that affect the probability of cancer induction 

 Although the probability that ionizing radiation may induce a tumor has been 

shown to be dose-dependent (see Figure 3-1), there are some other factors that also 

affect the “intensity” of the dose–effect curve:   

1) Different biological effects appear when the same amount of energy is either 

deposited in several fractions or continuously during a long or short period of time. 

In order to take this into account, the dose and dose–rate reduction factor (DDREF) 

were defined. International committees recommended extrapolation of known data 

at intermediate doses (and with a high-dose-rate irradiation) to the low-dose range 

by dividing the linear estimations by a DDREF within the range of 1.1–2.3 (BEIR, 

2006).  

2) Different organs/tissues have different sensitivity to ionizing radiation. Hence, 

the probability of inducing a tumor is dependent on the organs that are irradiated. 

As a quantitative example, for a male patient receiving a single dose of 0.1 Sv to the 

colon and the liver, the lifetime attributable risk (LAR) of cancer incidence 

(probability that an individual develops a cancer because of the exposure) is 0.125% 

and 0.022%, respectively (BEIR, 2006). It is reasonable to think that this organ-

dependency can be extrapolated to an even lower dose. 

3) The gender of the irradiated person has also been observed to influence the 

“intensity” of the dose–effect curve. The male to female LAR ratio depends on each 

specific organ and ranges between around 0.2 (female more sensitive in the case of 

the thyroid) and 2.2 (male more sensitive in the case of the liver) (BEIR, 2006).  

4) Significant variations are also associated with age at exposure. Particularly, 

children have been a group considered to be of greatest concern. First, they are 



Tumor induction by radiation doses 

_____________________________________________________________________________________________________________________________________________ 

 37 

more radiosensitive than adults (Pierce et al., 1996; Brenner, 2002) as they have a 

higher fraction of cells in full division processes where genetic changes may lead to 

tumor induction. Second, they will have more time to express any stochastic effect 

in relation to older persons. The excess relative risk (ERR) of cancer incidence (rate 

of disease in an exposed population divided by the rate of disease in an unexposed 

population minus 1) after 40 years of a 1 Sv exposure is around a factor of 3 higher 

when the age at exposure is 10 compared with a person older than 30 years-old 

(BEIR, 2006). The ERR ratio progressively increases as the age at exposure 

decreases. A variation of cancer induction with age at exposure is also expected in 

the low dose range used in medical imaging.  

5) As in a brachytherapy treatment, medical imaging examinations involve a 

heterogeneous dose distribution. Differences of a factor of 2 between the mean and 

maximum dose received by the lung in chest computed tomography (CT) 

examination have been reported using Monte Carlo methods (Samei et al., 2013). 

This underscores the need for a systematic study with a risk model that takes into 

account dose heterogeneities in the excess relative risk and whether the mean or 

maximum dose value should be used. 

6) Finally, given that many cancers have different baseline risks in different 

countries, it might be possible that the ERR is also dependent on environmental or 

sociological factors, and so data from the Japanese population cannot be 

extrapolated worldwide (BEIR, 2006). 

 

3.3 Estimation of cancer risk at high radiation doses 

 In general, two different procedures are being used nowadays to estimate the 

probability that a given radiation exposure in excess of 2.5 Gy may induce a tumor: 

phenomenological risk models and epidemiological studies.  

 Phenomenological risk models based on fitting parameters have been applied 

to estimate the risk of inducing a tumor in organs inside the primary radiation field, 



Chapter 3 

_____________________________________________________________________________________________________________________________________________ 

38  

i.e., at doses in excess of 2.5 Gy. Recent studies have applied a model developed by 

Schneider (2009), which is based on the linear-quadratic formula, to estimate the 

outcome of different treatment modalities (Nguyen et al., 2015). Linear, linear-

exponential and plateau models have been also used (Abo-Madyan et al., 2014). As 

an example, Paganetti et al. (2012) evaluated the dose distribution to OARs located 

inside the primary radiation field, for pediatric phantoms planned to be irradiated 

with IMRT and proton therapy. LARs were then evaluated using risk models, and it 

was found to be up to 2.7% for a 4 year old optic glioma patient treated with IMRT, 

decreasing a factor of 2 for a 14 year old patient. In all cases considered in that 

study, the estimated risk from proton therapy was up to a factor of 10 lower. Similar 

results have been published in other studies (Moteabbed et al., 2014). A review 

study by Xu et al. (2008) showed that the cumulative risk for the development of 

second cancers has been estimated as ranging from 5% to 12% over a 25 year 

follow-up interval, although there exists a high dispersion of data. 

 The model parameters have been determined with limited data and, therefore, 

uncertainties will limit the model predictions. Nguyen et al. (2015) have recently 

estimated that the uncertainties associated with model predictions are higher than 

100%. This is a lower limit to the overall uncertainty because the uncertainty 

introduced by different fractionations was not considered, neither the uncertainty in 

dose delivered to OAR. As concluded in this uncertainty study, the large magnitude 

of the uncertainty implies that, currently, it might not be feasible to reliably predict 

cancer risks based on treatment plan information and phenomenological risk 

models. 

 On the other hand, many epidemiological studies have been also performed 

on second cancer induction after radiation therapy. However, they focused on a 

typically narrow dose range, making the transfer of the reported risk to other doses 

difficult (Nguyen et al., 2015). 

 In relation with Chapter 2, Murray et al. (2014) have recently performed a 

literature review on second primary cancers after radiation for prostate cancer. It 
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was concluded that the risk was below 0.5% over all durations of follow-up when 

considering older radiation techniques. About more modern RT techniques such as 

HDR BT, it was faced that there are not enough clinical data to extract firm 

conclusions. Limited evidence is encouraging as no excess risks have been found, 

although it may be likely that long follow-up might show a small increase. 

 

3.4 Estimation of cancer risk at low radiation doses 

 Two methodological procedures are being used nowadays to estimate the 

probability that a given radiation exposure may induce a tumor: a) risk coefficients 

that linearly relate equivalent dose to probability of tumor induction, and b) 

epidemiological data assessing the ratio of tumor incidence between population 

exposed and unexposed to ionizing radiation.  

3.4.1 Risk coefficients 

 Radiation risk models have been developed in the last decade by 

international bodies such as the BEIR VII committee (BEIR, 2006). They are 

extrapolations of the LNT model for all doses lower than 2.5 Sv, based on data from 

the atomic bomb survivors and other medical studies in animals and in vitro. This 

committee provides for several organs the risk coefficients for estimating lifetime 

risks of cancer incidence and mortality, which depend on the dose rate, gender and 

age of the exposed person. If multiplied by the organ-equivalent dose, these 

coefficients provide the probability of cancer induction. Of relevance, risk 

estimations based on effective doses are clearly obsolete (Brenner et al., 2008; 

HPA, 2011; Calandrino et al., 2012; Ivanov et al., 2012; Ivanov et al., 2013). 

Effective dose is the sum of organ equivalent doses weighted by tissue-specific 

factors (ICRP, 2007). These age-independent factors are based on a subjective mix 

of different endpoints of cancer mortality and incidence, life shortening, and 

hereditary risk. In addition, those endpoints have different significant age 
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dependencies not considered by the weighting factors and, thus, effective dose has 

high associated uncertainties when applied to a specific patient different than the 

reference male or female phantoms (Martin, 2007).  

 Other international organizations that review radiation risks are the United 

Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the 

NCRP, and the ICRP (ICRP, 2007). Risks from CTs were already estimated in 

children through risk coefficients more than a decade ago (Brenner et al., 2001), 

and are still used nowadays with the same aim (Berrington et al., 2012; Perisinakis 

et al., 2012; Miglioretti et al., 2013). The BEIR VII model has been also applied to 

estimate cancer risks from radiotherapy. Bednarz et al. (2010) used the linear 

relationship to estimate the risk of second primary cancer in out-of-field organs 

receiving less than 0.1 Sv after 3D-CRT and IMRT applied to the prostate. They 

concluded that the probabilities for secondary cancer induction for the considered 

organs were about an order of magnitude lower than the baseline risks for those 

organs. On another study, Mazonaquis et al. (2014) evaluated through MC 

simulations the radiation dose to all organs that were out of the primary beam of a 

testicular seminoma treatment, and used gender- and organ-specific risk coefficients 

to estimate the risk of second primary cancer induction. It was concluded that the 

lifetime intrinsic risk of developing thyroid, lung, bladder, prostate, and esophageal 

cancer was increased by (0.1-1.4)%, (0.4-1.1)%, (2.5-5.4)%, (0.2-0.4)%, and (6.4-

9.2)%, respectively, depending upon the patient age at exposure and the field size 

employed. For the other organs considered the increased risk was nearly negligible. 

Similar studies were performed by Berris et al. (2014) and by Kourinou et al. 

(2013) considering the treatment of heterotopic ossification and head and neck 

lesions, respectively.  

 As noted by Fletcher et al. (2013), it can be concluded from the BEIR VII 

report that the available evidence for the use of the LNT model at low radiation 

doses has not been statistically significantly better for predicting cancer than other 

methods based on a threshold dose owing to high background incidence cases 

(ICRP, 2007; Wall et al., 2006). Even international committees were critical with 
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their own coefficients and pointed out several sources of uncertainty related to: 

limitations in the epidemiological data; extrapolating the data to low doses and dose 

rates (appropriate choice of DDREF); and transporting results from Japanese 

survivors to any other country (BEIR, 2006). Of importance, there are large and 

clear differences between atomic bomb survivors and people exposed to 

radiotherapy treatments. The first ones were exposed to a uniform radiation dosage 

throughout the whole body, with several types of radiation particles (including 

neutrons), whereas patients exposed to brachytherapy receive a heterogeneous and 

lower dose throughout most of his body. Thus, current methods used to estimate 

probabilities within the low dose range may be scientifically questionable (Pauwels 

et al., 2011). This is why the Health Physics Society recommended that, below 

effective doses of 50 mSv, no quantitative estimations of health risks should be 

made with risk coefficients (HPS, 2004; Fletcher et al., 2013). 

3.4.2 Recent epidemiological data 

 Computed tomography (CT), which was invented in 1972, makes nowadays 

the biggest contribution to the collective dose (being from 46% up to 80% (Aroua et 

al., 2013)) of a population exposed to x-rays imaging techniques. Typical median 

effective doses from CT examinations are 1.2 mSv for a head CT, 4.1 mSv for a 

chest CT and 7.7 mSv for an abdominal CT (Teeuwisse et al., 2007), although 

variations within the same order of magnitude might be found between different x-

ray acquisition techniques and equipment models. Thus, CT exposure provides the 

most complete database that can be used to relate cancer induction and organ 

equivalent dose at low radiation doses, and so it was been analyzed in detail in this 

chapter. 

 Two independent epidemiological studies that used data from a large sample 

of children exposed to CT have recently been published. The first one was 

conducted in the United Kingdom by Pearce and colleagues (Pearce et al., 2012; 

Kim et al., 2012), taking data from nearly 180,000 teenagers under age 22 at the 

time of the examination (between 1985 and 2002). Doses to brain and red bone 
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marrow were roughly estimated with typical x-ray acquisition techniques combined 

with MC simulations. In addition, given that up to 2001 protocols used for children 

were usually the same than for adults, the authors of the study considered that 

before that year the dose children received was approximately 2–3 times higher. 

Exclusion periods of 2 years for leukemia and 5 years for brain tumor were 

considered, meaning that cancers diagnosed up to that exclusion period since the 

CT was undertaken were considered not to be due to the CT. Results suggest a LNT 

relationship between the absorbed dose in the brain (see Figure 3-1) or bone 

marrow, and the probability of inducing a brain tumor or leukemia, respectively. 

These are the two types of tumors that are expected to appear earlier in irradiated 

children, given the higher sensitivity of bone marrow and brain (UNSCEAR, 2010).  

 From the previous epidemiological study, it was concluded that for children 

in their first decade of life one brain tumor and one case of leukemia would be 

induced every 10,000 CTs with a dose close to 10 mSv per CT in the first decade 

after the study (Pearce et al., 2012). Even more, 10 years after the CT exposure, 

30% and 90% of final cases of leukemia and brain tumor, respectively, have yet not 

appeared (Ron et al., 1988; Preston et al., 1994). Therefore, the risk of inducing 

leukemia over a lifetime is 1 in every 7500 CTs in children explored in their first 

decade of life, and to infer a brain tumor is 1 per 1,000 CTs (Brenner et al., 2012b). 

These values, from epidemiological studies, are roughly similar in magnitude to 

those inferred (Brenner et al., 2001) from a linear extrapolation of the LNT model. 

 On the other hand, the most recent and massive study conducted in Australia 

by Mathews and colleagues (Mathews et al., 2013) evaluated the cancer incidence 

in over 680,000 young people (0 to 19 years) exposed to CT and compared with the 

baseline risk for the same age range of a cohort of over 10 million unexposed 

persons. Radiation exposures were carried out between 1985 and 2005, and exposed 

children were followed for at least 10 years, up to 2007. In this case, not only 

leukemia and brain tumors were considered, but also all other solid tumors. 

Average effective doses and average organ absorbed doses were estimated for each 

CT category, each site and year of CT, and each age. As in the previous study by 
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Pearce et al, doses before 2001 were rescaled. The Australian epidemiological study 

detected an increase in cancer incidence of 24% in young people exposed to a 

single CT, considering a 1-year exclusion period. If the exclusion period is 

considered to be 5 years, the increase would be 21%. Average effective doses of 

around 4.5 mSv were considered. If, instead, 2 mSv are given (as usually happens 

with current equipment and imaging techniques), 1 excess cancer per 4000 head 

CTs would be radiation-induced (Sodickson, 2013). This study “generally” supports 

the linear-no-threshold dose-response model, and roughly matches attributable risks 

predicted by the BEIR report (BEIR, 2006) and by the epidemiological study by 

Pearce et al. (2012) (see Figure 3-1).  

 

3.4.3 Analysis of the situation 

 Epidemiological data taken by Pearce and colleagues in the United Kingdom 

and, more recently, by Mathews and colleagues in Australia, constitute important 

steps in the difficult path of modeling the development of radiation-induced tumors 

at low doses. It is important to note that results from cancer risk coefficients (with 

high uncertainties already discussed earlier) and from both studies roughly agree for 

pediatric patients. Can we then consider the linear model at low radiation doses to 

be validated with no threshold dose? Some authors have answered yes (Brenner et 

al., 2012b), but precautions should be taken given the following arguments:  

1) Acquisition protocols and, consequently, doses assigned to individual 

exposures were estimations based on national surveys, but did not consider the 

exact techniques used in different hospitals from which data were taken, neither 

physical constitution of each patient. The Smith–Bindman group (2009) found a 

mean 13-fold variation between the highest and lowest dose given by different 

hospitals that performed the same study. In addition, no registries of repeated 

exposures exist for the people considered in the recent epidemiological studies 

(Mathews et al., 2013), which also increase uncertainty in dose estimation. The low 
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magnitude of cancer induction makes necessary a more accurate evaluation of organ 

doses, which is still lacked. Guidance for developing a harmonized system that 

allows intercomparability has been provided (ECRP, 2008) and the capture of 

patient-specific dosimetry in future epidemiological studies will surely improve the 

validation of the model (Sodickson, 2013; Smith-Bindman et al., 2009). With this 

aim, the IAEA launched in 2006 a Smart Card project, which would allow personal 

recording of all expositions to ionizing radiation in medical imaging (Rehani et al., 

2009; 2011). 

2) It is difficult to know whether a tumor has been radiation-induced or, on the 

contrary, the CT was performed because there already was a suspicion of its 

presence. If the second option applies, at least partially, risk estimations from 

epidemiological studies would be reduced (Pearce et al., 2012; Mathews et al., 

2013), although reverse causation cannot explain all the cancer excess observed 

(Sodickson, 2013). The appropriate choice of the exclusion period might be 

considered as an intrinsic uncertainty of epidemiological studies on this difficult 

task. 

3) Relative uncertainties in the risks derived from the epidemiological studies 

are still large (statistical uncertainty) (see Figure 3-1), making feasible other 

adjustments of the values aside from the linear fitting (AAPM, 2013).  

 Thus, there are several biases that make us to be cautious before definitely 

accepting the LNT model within the CT dose-range. Independently of the last two 

arguments, the linear fit has been shown to be preferable according to a statistical 

analysis of the epidemiological data (Mathews et al., 2013). However, as far as we 

know, it has not been studied how the high dose uncertainty in each individual 

patient may influence this analysis. 

 Also, a deep literature review of studies concerning radiation therapy and 

cancer risks for organs receiving low radiation doses was published by Xu et al. 

(2008). It was concluded that many of the past dosimetry studies were based on 

inconsistent and sometimes confusing dose quantities. Thus, a systematic dosimetry 
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methodology for quantifying secondary organ absorbed doses needs to be 

developed in the future based on MC simulations.  

 If current estimations of radiation-induced tumors by medical imaging 

exposures are correct, should they really be a concern? The probability of inducing 

a brain tumor after a single 10 mSv exposure has been estimated to be ~0.1%, 

which is clearly within the background level produced by environmental and 

physiological aspects (Fletcher et al., 2013). As an example, in some situations the 

increase in cancer risk due to a higher concentration of radioactive radon is 

estimated to be 0.3%. If all cancer types and CT protocols were considered, a single 

CT in children would increase their baseline risk probability (~0.2% in children up 

to 14 years old (Stiller, 2007)) by around 20% according to the latest 

epidemiological study. This relative number may seem large, but it has to be noted 

that the baseline incidence of cancer in children and teenagers is very small, and so 

this increase just makes it slightly less small (Sodickson, 2013). In addition, doses 

are continuously reduced and they can now be up to 2–5 times lower than those 

considered in the epidemiological studies (AAPM, 2012). In adults, who represent 

the largest proportion of patients with CT examinations, the probability of inducing 

a tumor is even smaller. Thus, data provided in this work corresponds to the worst 

scenario in medical imaging. 

 Based on the reviewed information of this work, some recommendations 

may be useful for CT examinations (some of these may be applied to brachytherapy 

treatments as well), as stated by different authors: 

1) Prediction of the absolute number of tumors that will be induced in a large 

amount of the population exposed to ionizing radiation should be avoided as it 

would have a great and unknown absolute uncertainty (UNSCEAR, 2012). In 

addition, it has been estimated that about 10% of the total effective dose given in 

medical imaging is received by cancer patients (Brix et al., 2009), who have a 

reduced life expectancy. Therefore, a considerable fraction of the dose is ineffective 

from a radiobiological point of view (Eschner et al., 2010). 
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2) Always reemphasize the great benefits that a CT examination or a brachytherapy 

treatment may provide to an individual patient in personalized medicine (AAPM, 

2012). In a quite timely fashion, the International Organization for Medical Physics 

states that predictions of radiation-induced cancers should be accompanied by 

estimates of reductions in mortality and patient morbidity (Hendee, 2013). 

3) For CTs, because the estimated cancer risks are near the background level, no 

attempts at reducing the radiation dose should be made if image quality is likely to 

be reduced to a point where accurate diagnosis is compromised or not performing a 

CT examination if its information may be relevant for the patient’s condition 

(Eisenberg et al., 2012).  

4) The scientific and popular press has to avoid exploiting the sensational nature of 

this topic without a critical analysis (Hendee et al., 2012), and medical specialists 

should be careful and not worry patients at the time of the exposure. Appropriate 

information should be given to patients to improve autonomy (Recchia et al., 2013).  

5) Despite the extremely low magnitude of the risk, the increased incidence could 

be real according to the latest epidemiological studies. Pediatric CT protocols 

should be always standardized and acquired with dose reduction algorithms. The As 

Low As Reasonably Achievable (ALARA) principle must be considered when 

performing a CT examination and radiologists should understand dosimetric 

magnitudes (Durand et al., 2012) and be consistent when approving a CT 

examination (Pandharipande et al., 2013). It has been shown that around 30% of all 

CT examinations conducted on patients younger than 35 years were not properly 

justified, being unnecessary or replaceable by other imaging procedures like 

magnetic resonance imaging (Oikarinen et al., 2009). In another study of Brenner, it 

was estimated that 20 to 40% of CT scans could have been avoided if decision 

guidelines for mild traumatic brain injury were followed (Brenner et al., 2012a).  
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3.5 Conclusions 

 Several estimations of the probability that high and low radiation doses 

induce cancer have been made in the past, either through risk models and fitting 

parameters or through epidemiological studies. The uncertainties associated with 

model predictions at radiation doses above 2.5 Sv are higher than 100%, and it 

might not be feasible to reliably predict cancer risks based on treatment plan 

information. For the low dose range (<0.1 Sv), recent epidemiological studies 

undergone in United Kingdom and Australia are roughly consistent with each other 

and with risk coefficients. Some authors have considered this to be the ultimate 

prove of the validity of the LNT model at low radiation doses. However, because of 

some dosimetric uncertainties and the proximity of the risk estimates to the 

background level, we should still be cautious and wait for possible incoming new 

results, with even higher and more accurate data. The latter is addressed in more 

detail in Chapter 4. Estimated risks of a low radiation exposure, if existent, are 

very low even for pediatric patients.  

 Therefore, based on many reviewed papers on this topic, several 

recommendations may be synthesized. Prediction of the number of tumors that will 

be induced in population exposed to ionizing radiation should be avoided or, if 

given, it should be accompanied by a realistic evaluation of its uncertainty and of 

the advantages of the medical exposures. Otherwise they may be used 

inappropriately and have a negative impact. For the particular case of CTs, it is not 

justified that society panics, neither the medical or scientific community has to 

obsess on reducing doses even more if that compromises clinical image quality, as 

long as we are all consistent with ALARA’s principle. 
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4.1 Introduction 

 From the discovery of radium in the late 19th century and well into the 20th 

century, 
226

Ra was the most used radionuclide for brachytherapy (Gerbaulet et al., 

1998; Williamson, 2006). Radium pioneers investigated the therapeutic use of this 

radionuclide in numerous diseases, with various clinical outcomes and sometimes 

leading to tissue necrosis or infections due to overdosage (Dutreix et al., 1998). The 

source filtration with gold or platinum improved radium therapy by effectively 

stopping the β-rays and low-energy photons, preventing tissue complications 

(Aronowitz, 2002). When radium became more accessible, methodologies were 

developed that propagated the spread of radium therapy. Radium sources for 

brachytherapy have been reported in many different models, often as tubes or 

needles, containing 0.5 to 20 mg of radium and filtrated with 0.5 to 2.0 mm of Pt 

(with possible addition of silver or gold) (Fitzwilliams, 1930; Smocovitis, 1966). In 

general, the tubes were wider and longer than needles.  

 The use of radium was associated with radiation protection problems due to 

the relative high-energy photons emitted (mean energy approximately 800 keV). In 

addition, helium and 
222

Rn produced by α-decay increased the pressure in the sealed 

sources, eventually leading to gaseous 
222

Rn-leaks (Villforth, 1964; Hilaris, 1975), 

causing a wide contamination. These drawbacks made the use of radium to 

gradually be replaced with artificially produced radionuclides, such as 
60

Co and 
137

Cs (Myers, 1948; Brucer, 1952). 
226

Ra remained the most used radionuclide for 

brachytherapy into the late 20th century (Hilaris, 1975; Boice et al., 1988). 

Experiences from radium therapy have left a legacy which has effectively 

influenced methods of modern brachytherapy.  

 Radium was used extensively in intracavitary, gynecological applications 

and was also commonly applied to treat many other types of cancer. Other fields of 

application include treatment of skin hemangioma in early childhood, using tubes 

and needles of 
226

Ra, which was performed between 1920 and 1959 at 

Radiumhemmet (Stockholm, Sweden) (Lundell et al., 1994; 1995; 1999), between 
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1930 and 1965 at Sahlgrenska University Hospital (Gothenburg, Sweden) 

(Lindberg et al., 1995) and between 1940 and 1973 at Institut Gustave-Roussy 

(Paris, France) (Dondon et al., 2004). As recently noted by the UNSCEAR (2013) 

committee, the hemangioma cohort is of current interest in the search for improved 

knowledge on dose-response relationships for cancer induction and other late 

effects due to exposure to ionizing radiation in early childhood. Sweden has long 

held a complete registry on cancer incidence coupled to unique citizen ID numbers. 

Together with detailed knowledge about the children that underwent 
226

Ra 

treatment, these data are of interest to use in research on late effects due to radiation 

exposure in early childhood.  

 Retrospective risk assessments of ionizing radiation demand, among other 

information, high-quality dosimetry data. Previous dose estimations for the 

hemangioma cohort at Karolinska University Hospital were based on measurements 

with thermoluminescent dosimeters (TLD) in an anthropomorphic phantom using 

the original sources, and by Sidos (Operating Instructions 

SIDOS/EVADOS/SOMADOS, SIDOS-BRACHY, Siemens, 1984) (Visser, 1989; 

Feroldi et al., 1992), an early computerized dose planning system (Lundell et al., 

1990; 1994). Today, the original sources have been decommissioned, leaving only 

drawings and specifications of the sources. Having the dosimetry data in a modern 

format would enable its use with modern planning systems and open up for further 

individualization of patient doses and improved uncertainty estimations.  

 The aim of this study was to facilitate and investigate ways to allow flexible 

and as accurate as possible recalculation of absorbed doses from old, 

decommissioned radiation sources for retrospective studies. Having data in the 

format recommended by AAPM Task group 43 (TG-43) (Nath et al., 1995; Rivard 

et al., 2004) opens for implementation in modern planning systems and hence for 

effective recalculation and further individualization of absorbed doses for various 

scenarios of interest. The absorbed dose distribution around two of the most used 

radium sources at Radiumhemmet was characterized using MC simulations. The 

accuracy of TG-43 dosimetry parameters for surface brachytherapy with several 
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needles is evaluated, as well as compared with previously reported dose 

measurements with TLDs. Finally, because absorbed doses to organs far from the 

treatment volume are also required by epidemiologists, and because TG-43 

parameters are calculated up to about 15 cm from the implant, the fitting parameters 

of an analytical function valid up to about 60 cm, which was previously used for 
60

Co, 
192

Ir and 
137

Cs sources (Venselaar et al., 1996), are provided here for a 
226

Ra 

source.   

 

4.2 Materials and methods 

4.2.1 Description of sources  

 The radium sources used at the Radiumhemmet were constructed in 1925. 

The sources were of two types, the tube and the needle, containing 8 mg and 10 mg 

of 
226

Ra, respectively. Both source types consisted of an active volume of radium 

sulphate and barium sulphate, surrounded by an internal capsule of gold and an 

external capsule of platinum. The radioactivity is assumed to have been 

homogeneously distributed in the radium compound. Both sources were 

cylindrically symmetric and the needle had a conical tip. Cross-sectional drawings 

of the radium tube and the needle are shown in Figure 4-1. Values for the elemental 

compositions denoted in this figure are presented in Table 4-1. Geometries and 

material compositions were based on preserved drawings and commissioning 

protocols of the sources from 1925. For liquid water and air, elemental 

compositions were taken from the updated recommendations by the AAPM Task 

Group 43 (Rivard et al., 2004). 
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Figure 4-1. Cross-sectional drawing of the 8 mg radium tube and the 10 mg 

radium needle. The white circle at the right side of both sources is a cylindrical 

air cavity. All distances are given in mm. 

 

Table 4-1. Elemental compositions and mass densities for the materials used. 
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4.2.2 Decay scheme of the radioactive source 

 The sources contain 
226

Ra and its radioactive daughter nuclides, as observed 

in the decay scheme shown in Figure 4-2. 
226

Ra is the sixth member of the uranium 

series. With its decay, a chain of daughter radionuclides will follow to the stable 
206

Pb. In total, the decay chain comprises emission of α-, β- and γ-rays, internal 

conversion electrons, Auger electrons and characteristic x-rays. 

 

 

Figure 4-2. Decay scheme of a 
226

Ra source, adapted from a document by 

Laboratoire National Henri Becquerel, Le radium 226 et ses descendents: Tables et 

commentaries. The crossed radionuclides can be neglected due to their low yield (< 

0.1%). Only the half-lives of those transitions considered in this study are included 

in the figure. 

 

 The contribution of 
218

At, 
218

Rn, 
210

Tl, 
206

Hg and 
206

Tl to the overall absorbed 

dose can be neglected due to their very low yield (< 0.1%). Thus, the considered 

decay scheme includes nine radionuclides, with their half-lives differing in orders 

of magnitude. In order to determine the overall absorbed dose, it is necessary to 
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know the activity of each radionuclide at the treatment time. Bateman equations 

(Bateman, 1910) provide the solution to this problem. These were programmed in 

MATLAB 7.10.0 (R2010a) (The MathWorks Inc., Massachusetts, US) such that the 

number of radionuclides present in the source and the activity of each one was 

known as a function of elapsed time.  

 

4.2.3 AAPM Task group 43 dosimetry formalism 

 The absorbed dose calculation formalism recommended in the updated report 

of AAPM Task Group 43 (TG-43U1) (Rivard et al., 2004) is based on the 

parameters air-kerma strength SK, dose-rate constant Λ, radial dose function gL(r), 

geometry function GL(r,θ) and anisotropy function F(r,θ). In the general 2D TG-43 

formalism, using the line source approximation, the absorbed dose rate in a point at 

the radial distance r and polar angle θ relative to the longitudinal axis of the source, 

can be expressed as: 

 
 
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(4-1) 

where the reference distance is r0 = 1 cm and reference polar angle is θ0 = π/2. The 

TG-43 formalism models the dose distribution in water around a single source. 

Further discussion on the formalism can be found in the reports of AAPM Task 

Group 43 (Nath et al., 1995; Rivard et al., 2004). 

 

4.2.4 Monte Carlo methodology for the derivation of TG-43 
parameters 

 The tube and the needle were modeled with GEANT4 (Agostinelli et al., 

2003) and MCNP5 (Briesmeister et al., 2004). This study adheres to the latest 
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recommendations from the High Energy Brachytherapy Source Dosimetry (HEBD) 

working group (Perez-Calatayud et al., 2012). The relatively high mean energy of 

photons involved in the decay scheme of 
226

Ra made it necessary to consider in 

detail the secondary electrons that exit the source (Ballester et al., 2009).  

 Absorbed dose in water was obtained with the sources immersed in the 

center of a water sphere R=50 cm in radius, with the origin of coordinates at the 

center of the radioactive pellet, with the z-axis being the longitudinal axis of the 

source and the y-axis the transversal one (see Figure 4-1). It was scored in D(y,z) 

and D(r,) coordinates, 0   corresponding to the needle tip. This scoring 

allowed obtaining the radial dose and the anisotropy functions, as required in TG-43 

formalism. Doses were scored in histograms, with a bin width of 0.5 mm for 

coordinates y, z, and r, and 1° for . 

 The air-kerma strength per unit activity, /K KS A s , was estimated with 

the sources positioned in vacuum scoring collisional kerma over a cylindrical cell 

filled with air of height and thickness 0.10 cm at a distance of  r=10 cm in a plane 

perpendicular to the source axis passing by the origin of coordinates. The 

recommended air composition for dry air from the HEBD report was used (Perez-

Calatayud et al., 2012).  

 The default cutoff energy of 1 keV was used for both photons and electrons 

in all simulations except for SK estimation, where the cutoff was 10 keV for both of 

them (Perez-Calatayud et al., 2012). 

 

4.2.4.1 GEANT4 

 The low energy package PENELOPE included in GEANT4 v.9.4.p02 was 

used to track electromagnetic processes. All radioactive ions can be simulated in 

GEANT4 using the G4Physics package G4RadioactiveDecay v.0.b.4. By default, 

once a 
226

Ra nuclide is released, it decays until 
206

Pb. Hence, for each 
226

Ra atom, 
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approximately one radioactive daughter of each of the considered types would be 

created. However, given the different half-lives, each daughter product has a 

different number of disintegrations per unit of time, at different time periods. 

Therefore, each radioactive nuclide was decided to be simulated separately. For 

example, when a 
226

Ra nuclide was created, it automatically disintegrated via alpha 

emission to 
222

Rn. When the daughter nuclide (in this example, the 
222

Rn) had zero 

excitation energy, it was halted. Then, another independent simulation starting with 
222

Rn was performed, saving the results in a different file. This was done for each of 

the nine radionuclides considered in the decay chain of 
226

Ra, and after that, results 

were weighted and summed according to the activities given by Bateman equations, 

which are time dependent, i.e.:  

   
9

1

, , ( ) ,i i

i

D r t A t D r 



 

(4-2) 

where 1i   corresponds to 
226

Ra, 2i   to 
222

Rn, 3i   to 
218

Po, 4i   to 
214

Pb, 5i   

to 
214

Bi, 6i   to 
214

Po, 7i   to 
210

Pb, 8i   to 
210

Bi, and 9i   to 
210

Po. This enabled 

that dosimetric data could be obtained either in secular equilibrium or at any 

previous state. 

 All secondary particles generated by the G4RadioactiveDecay package 

(recoil nuclei, gammas, electrons, and alphas) were tracked, except neutrinos 

coming from beta decays, which were removed at their generating point. Energy 

spectra of generated alphas, betas, and gammas were saved, as well as spectra of 

particles leaving the platinum shield. 

 Given the photon energies involved in the decay scheme, a build-up region 

of a few mm in water around the source was expected. Thus, absorbed dose was 

scored as energy deposited per unit mass and disintegration. For each radioactive 

nuclide of the decay chain, 95 10  initial radioactive atoms were released and their 

disintegration was simulated until the next daughter product. Collision kerma was 
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also scored. Since collision kerma equals absorbed dose where electronic 

equilibrium exists, data from absorbed dose was used where there is not such 

equilibrium, whereas data from collision kerma was used in the rest of the space. 

810  atoms of each radioactive nuclide of the decay chain were released to estimate 

SK/A. Track-length kerma estimator was used in both water and air. 

 

4.2.4.2 MCNP5 

 To validate results from GEANT4, independent simulations were performed 

with “Monte Carlo N-particle transport code, version 5” (MCNP5 v.1.51) 

(Briesmeister et al., 2004), to derive SK/A, Λ and gL(r). The daughter nuclei were 

considered to be in secular equilibrium with 
226

Ra. Default MCNP5 photon cross-

section library MCPLIB04 was used, based upon “Evaluated Nuclear Data File/B 

Version VI” (ENDF/B-VI) release 8, which in turn is derived from “Evaluated 

Photon Data Library ’97” (EPDL97). In this case, decay data were taken from ICRP 

Publication 107 (Cullen et al., 1997) to validate energy spectra generated by 

GEANT4.  

 Since MCNP5 does not allow photons and electrons to be started in the same 

run, two separate runs were needed to estimate each parameter. First, the 

contribution from primary photons were scored and then the contribution from β-

particles, internal conversion electrons and Auger electrons (including 

bremsstrahlung). Simulations of absorbed dose to water were run using tally *F8, 

starting 2×10
9 

 particles in each run and detailed electron transport (mode PE). SK 

was estimated with the track length collision kerma estimator tally F6, starting 

5×10
8
 particles in each run. 

 



Chapter 4 

_____________________________________________________________________________________________________________________________________________ 

58  

4.2.5 Monte Carlo simulation of a superficial mould mesh 

 One of the limitations in accuracy of the TG-43 formalism arises when 

scattering properties are altered from that of an extended phantom, such as when 

sources are positioned close to patient surfaces and at low photon energies (<50 

keV) where differences between water and soft tissues are large due to high 

influence of photoelectric effect (Beaulieu et al., 2012). In the presence of several 

sources, source-to-source attenuation may also produce dose variations.  

 In order to test the influence of these effects in surface treatments with 
226

Ra 

sources, a typical clinical case consisting of a superficial mould mesh with 5 radium 

needles of 10 mg·Ra each was studied. During treatment, each needle was inside a 

rectangular glass casing that held the sources. Each glass casing was 4.5 mm wide, 

9 mm in height and 17 mm in length, with a glass density of 2.23 g·cm
-3

 (see 

composition in Table 4-1). Each needle fitted perfectly the inner hole of the glass 

casing. Each casing was next to each other, with the longitudinal axes of the sources 

(z-axis) in parallel. This clinical setup was used to prevent the sources to be in 

direct contact with the skin, which resulted in severe skin damage. In addition, the 

glass kept a fixed geometry, which allowed determining treatment times from 

tabulated curves valid for this particular configuration (Strandqvist, 1939a; 1939b).  

 The superficial mould was placed on top of a 20 cm cubic liquid water 

phantom that mimics the patient. The centers of the needles were at the mid-plane 

of the casing, i.e. 4.5 mm above the water surface (along the y-axis). Center-to-

center distance between the needles was 4.5 mm (along the x-axis). The geometrical 

setup described in this section is illustrated in the results section. With GEANT4, 

absorbed dose was scored in the water phantom and results were compared with 

those of the TG-43 formalism applying the principle of dose superposition. 

Independent simulations were performed for each radionuclide, totaling an 

equivalent of 92 10  radium atoms per needle. 
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4.2.6 Absorbed dose at large distances 

 Another set of simulations was run with GEANT4 in order to evaluate the 

absorbed dose at large distances (>10 cm) from a 
226

Ra source. Due to the reduced 

dimensions of the sources, beyond 10 cm these can be considered to be point 

sources. Thus, a point-like source emitting photons with the energy spectrum of the 

photons exiting the needle previously simulated was placed in the center of a 100 

cm radius water sphere. 92.4 10  photons were released and absorbed dose was 

scored in spherical shells of 1 mm thickness.  

 Absorbed dose rate D [cGy·h
-1

] as a function of radial distance r [cm] was 

then fitted using the following expression: 
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   
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where the average mass energy absorption coefficient  / 1.112
w

en a
    was 

used (Venselaar et al., 1996).
 
The coefficients a, b and μ are the fitting parameters 

to be obtained. The activity of radium sources A was generally given in terms of the 

quantity mg·Ra. The SK [U] value of the source can be calculated from A [mg·Ra] 

and the air-kerma strength per unit activity SK/A [U·Bq
-1

] calculated in this study, 

considering that 1 mg·Ra equals 37 MBq, i.e.: 

73.7 10 K
K

S
S A

A
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(4-4) 

 Expression (4-3) was used by Kornelsen and Young (1981) for 
226

Ra sources 

in the range up to 18 cm. Venselaar et al. (1996) showed that the same expression 

could be used with 
60

Co, 
192

Ir and 
137

Cs sources for distances up to 60 cm, so this 

study aims to provide the required fitting parameters needed to use expression (4-3) 

between 10 cm and 60 cm for a 
226

Ra source. 
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4.3 Results 

4.3.1 Contribution from each radionuclide to the overall 
absorbed dose 

 Figure 4-3 shows collision kerma along the transversal axis of the 
226

Ra 

needle immersed in water. Contribution from the decay of each radionuclide to the 

overall collision kerma is plotted. 
218

Po, 
210

Pb and 
210

Po have not been included in 

Figure 4-3 because of their negligible contribution (< 0.001%) and high statistical 

noise in the curves. As observed, only the decay of 
214

Pb and, mainly, 
214

Bi 

contribute; the collision kerma contribution by the others is < 0.2%. 

 

Figure 4-3. Collision kerma along 90º   and normalized at 
0 1r   cm for the 

226
Ra needle in secular equilibrium and immersed in water. The contribution to the 

collision kerma from the decay of each radionuclide is plotted, neglecting energy 

released by 
218

Po, 
210

Pb and 
210

Po. 
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 Simulations with GEANT4 were performed to assess the influence of high-

energetic α- and β-rays emitted in the decay chain to absorbed dose and collision 

kerma. It was found that α-rays were completely stopped in the source 

encapsulation. However, some high energetic β-rays and mono energetic electrons, 

with associated bremsstrahlung, contributed to approximately 1% of absorbed dose 

to water. Therefore, the electrons generated during the decay should be also 

considered for any MC simulation with 
226

Ra sources.  

 

4.3.2 Time dependence of absorbed dose 

 Figure 4-4 shows the activity of each daughter product considered in the 

decay chain of 
226

Ra as a function of elapsed time, normalized by the activity of 
226

Ra. These curves are given by the Bateman equations.  

 Some of the radionuclides reached secular equilibrium after about 50 days. 

However, 
210

Pb, with a half-life higher than 22 years, and its daughter products 
210

Bi and 
210

Po reached transient equilibrium after about 200 years since the 
226

Ra 

source was sealed. Therefore, this is the time required for the source to be 

considered in secular equilibrium. 

 Given that calculations with GEANT4 provided the independent contribution 

of each radionuclide to the overall absorbed dose (as a function of the activity of the 

radionuclides), the absorbed dose at each point around the source was known as a 

function of time. For the reference point given by r0 = 1 cm and θ0 = π/2, the 

variation in absorbed dose (in comparison with the complete equilibrium) was 

undetectable (variation < 0.01%) after 120 years. However, after 55 days the dose 

variation was below 0.2%, and after 27 days it was below 1%, which is considered 

to be negligible. Therefore, even though secular equilibrium was not reached until 

200 years after the source was made, after 1 month the absorbed dose around the 

source could be considered to decrease only due to the radioactive decay of 
226

Ra. If 

the sources were used before one month, some corrections to the overall absorbed 
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dose should be done. For example, if the source was used after 11 days, the dose 

was 14% smaller than in the secular equilibrium, whereas after 7 days it was 27% 

smaller.  

 From now on, all results presented correspond to the secular equilibrium 

state, which from a practical point of view, was considered to be reached after 1 

month since the source was sealed. 

 

 

Figure 4-4. Ratio of the activity of the daughter product with symbol X (and atomic 

number Z) and the activity of the parent 
226

Ra, as a function of time, according to 

Bateman equations (Bateman, 1910).  
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4.3.3 Absorbed dose distributions 

 Absorbed dose and collision kerma distributions in water were obtained in 

(y,z) and (r,) coordinates. The left part of Figure 4-5 shows the absorbed dose to 

collision kerma ratio around the 
226

Ra tube, which illustrates the area around the 

source where there is not electronic equilibrium (ratio different than 1). In the right 

part, the absorbed dose distribution is plotted, showing a build-up region of 2 to 3 

mm. For this reason D(y,z) and D(r,) were derived taking collision kerma results 

for distances where there is electronic equilibrium (beyond 1.1 cm from the source 

approximately) and absorbed dose results (i.e. tracking electrons) for shorter 

distances. The procedure to choose the limit between collision kerma and absorbed 

dose was as follows: a table was calculated with the ratio of absorbed dose and 

collision kerma, and collision kerma was used when ratios became smaller than 

1.01 (see the left part of Figure 4-5). 

 

Figure 4-5. Absorbed dose to collision kerma ratio (left-half part of the figure), 

and normalized dose distribution (right-half part of the figure) around the 226Ra 

tube. The tube location is also represented.  



Chapter 4 

_____________________________________________________________________________________________________________________________________________ 

64  

 

 Differences between GEANT4 and MCNP5 results beyond 5 mm were 

below 1% along the transversal axis ( 90º  ) of the source. Roughly 1 to 2% 

differences exist for other   values, except at the longitudinal axis, where there 

exist differences up to 4%. Furthermore, the energy spectra of photons and 

electrons generated within the source with both MC codes were compared. Relative 

differences in intensity were at most 3% for a few energy lines, but below 1% for 

most of them. Higher discrepancies appear for very low energies (<10 keV). 

However, those low energy photons are stopped in the source shielding and so they 

do not contribute to the absorbed dose.  

 

4.3.4 TG-43U1 parameters 

 The absorbed dose rate distributions D(r,) derived with GEANT4 were used 

to derive the TG-43 dosimetry parameters for both, the tube and the needle. For 

each source being in secular equilibrium, the radial dose function, the anisotropy 

function, the air-kerma strength per unit activity, the dose rate constant and an 

along-and-away table for QA purposes (extracted from D(y,z)) were obtained. All 

these data have been uploaded in an Excel spreadsheet as additional material 

together with published paper. 

 gL(r) and F(r,θ) were obtained using collision kerma for 1.1r   cm 

approximately (except for angles θ near the longitudinal axis of the source, where a 

higher r value was used), whereas absorbed dose was used for shorter distances (see 

section 3.C.).  

 GEANT4 yielded an air-kerma strength per unit activity SK/A value of 

1.892×10
-7

 U Bq
-1

 for the tube, and 1.948×10
-7

 U Bq
-1

 for the needle. Results from 

both MC codes for SK/A agreed within 0.2%. For comparison purposes, the 

exposure rate constant stated in previous works for a 
226

Ra source filtrated by 0.5 
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mm Pt was Γ( 
226

Ra) = 8.25 R cm
2
 h

-1
 mCi

-1
 (Attix et al., 1957; Williamson et al., 

1983; ICRP, 2008), which corresponds to 1.955×10
-7

 U Bq
-1

 in dry air.  

 The dose rate constant, Λ, obtained with GEANT4 was 0.952 cGy h
-1

 U
-1

 for 

the tube and 1.062 cGy h
-1

 U
-1

 for the needle. Both values have roughly 1.7% 

uncertainty with k=1 coverage factor (see uncertainty analysis in section 3.G.). The 

relative deviations of these values compared to those of MCNP5 were 0.7% and 

0.08% for the tube and the needle, respectively. 

 

4.3.5 Superficial mould mesh 

 The validity of the TG-43 parameters for surface treatments was evaluated 

by comparing the dose distribution obtained from TG-43 tables and the principle of 

dose superposition, with results from a MC simulation with 5 needles immersed in 

glass casing, and placed over a water phantom. Figure 4-6a shows geometry of the 

mould mesh described in section 2.E., whereas Figure 4-6b shows the ratio of these 

two dose distributions in a coronal plane that crosses the active center of the 

radioactive needles (left) and a tangential plane parallel to the mould, corresponding 

to a depth in water of 2 mm (right). Because of the symmetry of the dose ratio (the 

central needle is placed at x=0, whereas the others are placed at x=±4.5 mm and 

±9.0 mm), only the right part of the plane has been shown. Results agree within 5% 

inside the volume covered by the implant, and within 10% up to at least 6 cm from 

the implant center, except within y=1 cm from the surface, where large differences 

appear mainly due to the higher attenuation in the glass casing and the lack of 

backscattering. These results are consistent with those obtained by Granero et al. 

(2014) for 
60

Co, 
192

Ir and 
169

Yb sources.  
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Figure 4-6. a) Superficial mould mesh consisting of 5 needles inside a glass 

casing. In the MC simulations, this was placed over a 20 cm cubic water phantom. 

The origin of coordinates is placed at the interface between glass and water, just 

below the center of the central needle. b) Relative differences between absorbed 

doses to water calculated with TG-43 formalism and with a realistic MC 

simulation, in a coronal plane (plane perpendicular to the mould, at z = 0 cm) 

(left) and in a tangential plane (plane parallel to the mould, at y = -0.2 cm depth) 

(right).  
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4.3.6 Absorbed dose at large distances 

 The absorbed dose rate at large distances can be determined using 

expressions (4-3) and (4-4). The coefficients obtained from the fitting of the MC 

results are: 0.968a  , 1.205b   and 0.0641   cm
-1

. When these values 

are used together with expression (4-3), the dose rate thus calculated differs from 

the MC calculation by less than 1.5% in the range 10 cm to 60 cm. Between 60 cm 

and 90 cm differences increase continuously up to 10%. The dose rates obtained 

from MC simulations and from expression (4-3) are shown in Figure 4-7, together 

with the relative difference between both data sets. Beyond roughly 95 cm the 

relative difference becomes quickly negative due to the lack of backscattering in the 

MC simulation beyond 100 cm.  

 

Figure 4-7. Absorbed dose rate as a function of the radial distance from a 10 mg 

226Ra point-like source. In red it is shown the relative difference between the dose 

rate calculated with GEANT4 and with expression (4-3) with the fitting 

parameters obtained in this study.    
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4.3.7 Uncertainty analysis 

 As recommended by AAPM TG-138 (DeWerd et al., 2011) and HEBD 

(Perez-Calatayud et al., 2012) reports, an uncertainty analysis should be performed 

for the dosimetric data provided in this study. This was computed based on the 

method used by Rivard et al. (2004) and Granero et al. (2011). The type A 

statistical uncertainty of the absorbed dose rate calculated with GEANT4 was 

around 0.3%, increasing up to almost 1% near the longitudinal axis of the sources. 

On the other hand, the type B uncertainty components are roughly similar to the 

ones calculated by Granero et al. (2011). The overall uncertainty thus estimated 

(with coverage factor 1k  ) is roughly 1.2% for the absorbed dose rates at 1 and 5 

cm, as well as for SK. The Λ uncertainty is about 1.1% ( 1)k  . These are the 

uncertainties that may be attributed to the MC calculations, since they include the 

influence of the uncertainties due to: 
226

Ra spectrum, MC physics, phantom 

composition, phantom cross-sections, tally volume averaging and tally statistics. 

However, these uncertainties are negligible in comparison with the uncertainty that 

should be assigned to the dose estimates made retrospectively. The reason is that 

any dose estimate requires the activity of the radium sources. Nevertheless, one of 

the drawbacks of old dosimetry is the lack of a measurable source strength; in fact, 

the uncertainty in source strength specified in terms of quantities like mg·Ra can be 

considered one of the largest sources of dosimetric uncertainty before measureable 

quantities were established (see, e.g., Ref. (Visser, 1989; ICWG, 1990; Williamson, 

2006)). Because the old sources are no longer available, the quantity mg·Ra needs 

to be used also with the data provided in this study, and so this drawback is present 

for both, the old and the new dosimetry. As reported in the literature reviewed, the 

size of the radium mass enclosed in the sources had an uncertainty of 10% to 15% 

(Dutreix et al., 1982). Therefore, this can be the uncertainty assigned to each dose 

estimation at a given point, for the radium tube and the radium needle studied here.   
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4.4 Discussion 

4.4.1 Comparison with older dosimetry data 

 The dosimetric formalisms used to calculate absorbed doses around radium 

sources changed considerably throughout the last century. The very first ones only 

considered primary radiation and the inverse square law for air (Mould, 2007). 

Later on, the dosimetric calculations based on the Sievert Integral became widely 

used. This model partitioned the line source into point sources, considering also the 

inverse square law and filtration corrections. In 1970, Goodwin et al. (1970) 

published tables of dose rate in tissue as a function of the platinum filtration 

thickness, source active length and the distances along-and-away. Tabulated data 

existed as a function of area or volume to be treated. Computerized treatment 

planning based on Sievert integration became available after that, and the Siemens 

Sidos system used at Radiumhemmet in Sweden was one of these (Feroldi et al., 

1992). A comparison of such systems showed differences among them in particular 

along the source long axis (Visser, 1989).  

 In order to test the accuracy of existing dose tables based on the Sievert 

Integral, the along-and-away table calculated by Young and Batho (1962) with an 

electronic computer for a needle similar to the one considered in this study is 

compared with data evaluated with the TG-43 formalism. Table 4-2 shows the 

relative difference between both data sets. It is shown that at large distances (y >1 

cm) and in the regions not bounded by the ends of the active source (z >0.77 cm), 

the difference increases, i.e. the dose calculated with TG-43 data is smaller. This is 

due to the fact that the other data set did not consider absorption and scattering in 

tissue. This result is consistent with the findings by Williamson et al., who showed 

that the calculations based on the Sievert Integral overestimated the exposure rate 

per unit activity (Williamson et al., 1983).  
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Table 4-2. Relative differences between dose rates around a 
226

Ra needle calculated 

with the Sievert integral (as provided by Young and Batho (1962)) for a needle with 

0.56 mm overall filtration (the platinum filter was 0.5 mm) and the TG-43 

formalism. 

 

 

 In a previous study by Lundell (1994), absorbed dose rates were measured 

with TLDs in an anthropomorphic child phantom and calculated using the Sidos 

treatment planning system with simplified input regarding source filtration. In 

conjunction with that study, a radial dose profile was measured close to the 10 mg 

radium needle considered in this work with lithium fluoride TL dosimeters in full 

scatter conditions in PMMA (up to r=1 cm) and polystyrene (for r 1 cm). Figure 

4-8 shows those data in comparison with MC results from the current study in 

water. For the TLD measurements, distances in PMMA were expressed in 

equivalent distances in liquid water (Lundell, 1994). For distances greater than r=1 
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cm, experimental and calculated results for the same 
226

Ra needle agree within 13% 

and -10%. At distances shorter than r=1 cm, differences are between 4% and -13%. 

These differences are reasonable considering the experimental uncertainties in this 

steep dose-gradient area, but limit the accuracy of experimental dosimetric values 

near the sources, which have a high dose uncertainty even without considering the 

uncertainty in the mass of radium. 

 

 

Figure 4-8. Absorbed dose rate on the transverse axis of the radium needle and 

radium tube calculated in this study, in comparison with experimental data from 

TLD measurements for the same radium needle. For comparison purposes, the dose 

rate shown by Johns and Cunnigham (1983) (J&C in the legend) for a given 

filtration thickness d and source active length L has been plotted.  
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4.4.2 Applicability and limitations of this study 

 Retrospective risk assessments of ionizing radiation require dosimetric data 

as reliable as possible, as well as an estimate of its uncertainty. The dosimetric data 

provided in this study is important particularly in following up the large cohort of 

children treated for hemangioma through the Swedish cancer registry (Eidemüller et 

al., 2009). Like survivors of the atomic bombs, those children data may be very 

helpful to determine the relationship between a specific late hazard effect and the 

absorbed dose (UNSCEAR, 2013), especially it will contribute to provide 

information on radiation sensitivity in early childhood, a topic of current interest 

(Candela-Juan et al., 2014a). Earlier dosimetric data was restricted, e.g., regards the 

number of source configurations and difficult to use when further individualization 

of absorbed doses was desired. Data provided here are the most accurate available 

for these sources and may be easily incorporated into current planning systems or 

home-made spreadsheets in order to perform retrospective studies of any source 

configuration.  

 In addition, for those epidemiologic studies in which absorbed doses to 

distant sensitive organs such as breasts, thyroid, brain or gonads are needed, the 

fitting parameters of a mathematical expression have been determined and 

provided. Candela-Juan et al. (2013) calculated organ equivalent doses in a 

voxelized phantom using 
60

Co and 
192

Ir sources applied to the prostate. Differences 

up to 20% were found between the simulations when the phantom was 

heterogeneous and when it is made just of water. Because the 
226

Ra source has a 

mean photon energy spectrum between that of 
60

Co and that of 
192

Ir, those results 

are of reasonable applicability in this case. This 20% uncertainty, together in 

quadrature with the 10 to 15% uncertainty previously stated due to the generally 

unknown exact mass of radium, is assumed to give the best dose range estimation of 

absorbed doses. It is out of the scope of this study to evaluate if that uncertainty is 

acceptable for epidemiological studies since that may depend on each particular 

case and the amount of data available. It is surely important for the epidemiologic 

studies to be aware of this uncertainty before extracting their conclusions. 
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 The sources considered in this study were a radium tube and a radium needle 

commonly used in Sweden and requested for ongoing epidemiologic studies. The 

TG-43 formalism has been shown to provide consistent results in comparison with 

MC simulations of a superficial mould implant within the regions bounded by the 

ends of the sources and a few cm extra margin, i.e., these results are well suited to 

determine the absorbed dose in the treatment area. However, it is possible to 

estimate the influence of the source design on these results. Figure 4-8 shows, 

besides the dose rate along the transversal axis of these Swedish sources, the dose 

rate along the transversal axis of two radium sources of the same active length than 

the needle and the tube, but with different platinum thicknesses. These data were 

obtained from the book by Johns and Cunningham (1983), and were evaluated 

through the Sievert Integral. Beyond 3 cm approximately, the dose rate becomes 

nearly independent of the active length of the source, an expected result. In 

addition, the difference due to the different platinum shielding used in each case is 

roughly 11%. The two platinum thicknesses considered (0.5 mm Pt and 1.0 mm Pt) 

represent the platinum range used by most of the radium sources. Thus, it is 

reasonable to consider that the TG-43 data and the dose rate at large distances that 

have been provided in this work may be applied to other sources similar in active 

length with an increased dose uncertainty of at most 11%.  

 

4.5 Conclusions 

 Two independent Monte Carlo investigations have been performed to derive 

TG-43 parameters for a 8 mg 
226

Ra tube and a 10 mg 
226

Ra needle, previously used 

for brachytherapy at Radiumhemmet (Karolinska University Hospital, Stockholm, 

Sweden). The radial dose function, the 2D anisotropy function, the air-kerma 

strength per unit activity and dose rate constant are provided and can be used for 

these and similarly designed sources. Results from the TG-43 formalism have been 

shown to be accurate in cases with surface treatments and several sources inside 

glass casing. Thus, all these parameters can be put into a modern brachytherapy 
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treatment planning system in order to derive high quality dose estimations for 

retrospective dosimetry. In addition, the fitting parameters of a mathematical curve 

have been calculated in order to assess the absorbed dose to organs placed between 

10 cm and 60 cm from the radium implant. This will allow improving the current 

knowledge that relates absorbed dose with long term radiation effects. Throughout a 

critical analysis of uncertainties it was estimates that absorbed doses assigned to 

organs in retrospective studies have an uncertainty of 20% to 25%.  



 

Chapter 5. LEAD SHIELD FOR SURFACE 

HDR BRACHYTHERAPY 

 

 

 

Most of the content of this chapter was published in the original research paper: 

Candela-Juan C, Granero D, Vijande J, Ballester F, Perez-Calatayud J, Rivard MJ. 

Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate 

brachytherapy. Journal of Radiological Protection. 34: 297 – 311 (2014). 

Kind permission was granted by the journal to reprint this article as a chapter of this 

dissertation. 
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5.1 Introduction 

 Skin brachytherapy with HDR sources is widely used. Based on tumor depth, 

superficial or interstitial modalities may be applied (Gerbaulet et al., 2002). In order 

to attenuate radiation that can reach radiosensitive organs in the patient, lead shields 

could be used to cover the implants on the body surface. For example, shields might 

be placed on the nose surface to attenuate radiation to the eye lens from a nasal 

implant, or around the breast to protect the thyroid from direct radiation coming 

from a breast treatment or even to protect the fetus in a hypothetical pregnant 

patient. This approach has two main dosimetric consequences. 

1)  Backscattering produces a dose enhancement in the patient in the vicinity of 

the shielding (Das et al., 1989; Das et al., 1995; Li et al., 1999; Nath et al., 

1999; Das et al., 2001; Das et al., 2002; Lliso et al., 2011). This overdose 

could be minimized by placing bolus with an appropriate thickness 

between lead and tissue. The backscatter dose enhancement has been 

reported for both kilovoltage and megavoltage photon beams, as well as for 
60

Co equipment (Das et al., 1989) and the Valencia applicators with HDR 
192

Ir brachytherapy sources (Lliso et al., 2011). Some reported data are 

based on experimental measurements with limitations related to the 

chamber size (e.g. volume averaging, effective measurement point, signal 

to noise ratio or chamber window for electrons), and so the need for 

additional Monte Carlo (MC) simulated radiation transport has been 

requested (Das et al., 1995). This is even more important when 

discrepancies between experimental results and MC simulations have been 

reported (Das et al., 2002). In addition, dose enhancement has not been 

evaluated in surface or interstitial BT with their corresponding boundary 

conditions. 

2)  Photon absorption reduces dose above the shield, downstream from the 

distal surface of the barrier. Radiation transmission data for radionuclides 

and materials relevant to BT facility shielding have been investigated for a 

point-like source placed in air, in broad-beam conditions typical of 
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radiation protection transmission studies (Papagiannis et al., 2008). 

However, radiation transmission has not been evaluated in surface or 

interstitial BT for a typical clinical scenario. 

 Consequently, this work aims to study the dosimetric perturbations produced 

by the use of a lead shield in surface or interstitial BT using 
60

Co, 
192

Ir, or 
169

Yb, 

and to provide the required bolus thicknesses that avoid overdose in the human 

tissue. This is examined for several shield thicknesses and for different source 

depths from the surface. 

 

5.2 Methods and materials 

 Three different HDR radionuclides were considered: 
60

Co (T1/2=5.27 yr, 

Eγ,mean=1253 keV), 
192

Ir (T1/2=73.8 days, Eγ,mean=350 keV), and 
169

Yb (T1/2=32.0 

days, Eγ,mean=93 keV). Both 
60

Co and 
192

Ir are commercially available for HDR BT, 

whereas 
169

Yb has potential (MacPherson et al., 1998) and might be available in the 

future. The corresponding source models were the Multisource HDR 
60

Co model 

GK60M21 (Eckert & Ziegler BEBIG GmbH) and the HDR 
192

Ir microSelectron 

mHDR-v2 (Nucletron BV, The Netherlands) source (Granero et al., 2007; 2011). 

For HDR 
169

Yb, since no commercial model is available and given that for the 

purpose of this work the exact geometry of the source has negligible effects, the 

source design has the same geometry as the microSelectron mHDR-v2. Results 

obtained herein for the studied source models should be generalizable to other 

commercially available models for the same radionuclides because energy spectra 

of photons that exit the different existent capsules are similar due to the energies 

involved. 

 Due to the intrinsic difficulties and limitations of absorbed dose 

measurements in very small depth intervals, MC simulated radiation transport has 

been used. The sources were radiologically characterized using the GEANT4 v.9.4 

MC code (Agostinelli et al., 2003), which has been used and validated extensively 

http://www.ezag.de/index_e.html
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in previous works in BT radiation transport simulations (Papagiannis et al., 2008; 

Granero et al., 2011; Vijande et al., 2012). This code has been benchmarked in 

dosimetric evaluations of internal shielding in HDR BT with experimental 

measurements using radiochromic films (Lliso et al., 2011). Instead of giving the 

energy spectra of emitted photons as an input to the MC code (Rivard et al., 2010), 

in this work either 
60

Co, 
192

Ir, or 
169

Yb radionuclides were placed inside the 

simulated sources, activating the GEANT4 radioactive decay module. This module 

generates all particles, including photons, electrons, recoil nucleus, and neutrinos 

(the latter are killed). Both photons and electrons were tracked, including secondary 

electrons generated by photons. The PENELOPE physics package included in the 

library of GEANT4 was used, although extra simulations were performed using the 

Livermore physics package of GEANT4, with no significant differences 

considering the statistical uncertainty of results shown in this work. Furthermore, 

results from GEANT4 were validated with the Monte Carlo code PENELOPE 

(Salvat et al., 2008), which was used for a single case, providing consistent results 

with those shown in this work. The cutoff range for both types of particles 

simulated was set to 10 μm in all materials (Ballester et al., 2009), considerably 

lower than the highest spatial resolution used in this work (100 μm). For photons, 

this range cutoff is roughly equivalent to an energy cutoff of 1 keV in air and water, 

and 6 keV in lead. For electrons, it is equivalent to 1 keV cutoff in air, 14 keV in 

water, and 58 keV in lead. 

 The geometry used in the simulations is shown in Figure 5-1. It mimics a 

typical clinical setup, although without catheters since the geometry reproduced 

here was considered to be the worst possible scenario from a radiation protection 

point of view. However, the catheter influence will be discussed later. The 

considered geometry is based on a 25×25×25 cm
3
 cubic water phantom (Granero et 

al., 2008) with a lead shield placed on its surface. While a large (25×25 cm
2
) lead 

shield was considered, it can be smaller under clinical circumstances as long as it 

covers the full implant. The lead thickness tPb {0, 3, 6, and 10 mm} was changed 

between simulations. Depending on the source depth ds, two cases were considered: 
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- Surface BT, with a single source placed on the surface  0sd  , i.e., 

between the water cube that represents the patient and the lead shield 

(Figure 5-1a). 

- Interstitial BT, with the single source placed at a depth ds {5, 10 mm} in the 

water cube (Figure 5-1b). A common width of the clinical target volume is 

10 mm, and ds = 5 mm is consequently a realistic value, which is the one 

used in these simulations. In order to further generalize these findings, 

simulations were repeated using ds = 10 mm. 

 Therefore, three different geometry setups were considered in this work and, 

for each of them, four different lead thicknesses and three different BT 

radionuclides. This resulted in 36 independent simulations. The number of 

disintegrations simulated (i.e. number of radioactive atoms in the sources) was 

9×10
8
 for 

60
Co, and 1.2×10

9
 for 

192
Ir and 

169
Yb. Three independent simulations 

were performed for each geometry setup and the statistical (type A) uncertainty of 

the results was calculated as the standard deviation of the three data sets. 

  

(a) (b) 

Figure 5-1. Scheme of the longitudinal section of the simulation setup, indicating 

some relevant parameters and the coordinate system used for a) surface 

brachytherapy, and b) interstitial brachytherapy. The figure is not to scale. 
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  For each considered simulation, total absorbed dose throughout the entire 

phantom volume was scored in 2D-histograms ( , )D z  , being 
2 2x y   . 

Overdose at water phantom surface due to radiation backscatter in the lead shield 

was then evaluated comparing water absorbed dose with and without the shield, as a 

function of z. In order to quantitatively evaluate which radiation particles are 

responsible for the overdose at water phantom surface, absorbed dose due to 

photons and electrons coming from the lead shield were assessed. In order to 

separate the fraction of dose deposited by both types of radiation particles, the 

following process was followed. When a photon interacted with the lead shield and 

came back to the water phantom, all energy deposited by this photon and/or by all 

its secondary particles (including electrons) was scored in the histogram of dose 

deposited by photons. The same was done for electrons interacting with the lead 

shield and coming back to the water phantom. For all these histograms, bin 

thicknesses of 0.1 mm and 0.5 mm were used for z and ρ, respectively. The small 

scoring thickness in the z-axis was selected to avoid volume averaging due to the 

high dose gradient. 

 On the other hand, the dose reduction above the shield was evaluated by 

comparing air absorbed dose with and without shield. For absorbed dose in air, the 

histogram has a bin width of 1 mm in both, z and ρ. A forward overdose up to a few 

millimeters in air was expected due to contribution from particles created within the 

lead shield (Li et al., 1999; Das et al., 2001; Lliso et al., 2011; Das, 1997). 

However, that overdose information is not relevant for the scope of this work due to 

their low range (Das, 1997) and given that no human tissue is expected to be 

located there. Hence, only attenuation in the above air volume is reported.  

 The geometry setup considered in the simulations represents a single source 

position. However, in a real clinical case the source has multiple dwell positions, 

remaining a specific time interval in each of them. In order to take this into account, 

the source configuration that allows irradiating uniformly a 50 50  mm
2
 area 

located at a depth 5z    mm and centered at 0x y   was obtained. This was 
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achieved by considering 4 catheters with 8 dwell positions each. The distance 

between consecutive catheters was 10 mm, with the catheters axes parallel to the y-

axis. Moving the source along the y-axis was done at 5 mm spatial intervals. For 

each particular dwell position, the required treatment time was calculated. Then, 

simulation results for a single source position were spatially displaced, weighted 

according to the dwell times, and superimposed, thus obtaining the dose 

distributions for a realistic clinical case with the phantom being water. This 

phantom material was chosen because planning systems in HDR brachytherapy 

make use of it and because our main aim was to obtain the required bolus thickness, 

being the bolus material equivalent to water. Despite these two reasons, the range of 

the dose perturbation was also evaluated in skin (density of 1.09 g/cm
3
), comparing 

it with the range obtained in water (density of 1.00 g/cm
3
). 

 In order to analyze and evaluate results, energy spectra of the simulated 

sources, of the back-scattered photons and electrons, and of the photons and 

electrons that cross the lead shield were assessed. Spectra correspond to those of 

photons and electrons emitted in all directions of the space, and not just in the 

transversal axis at a particular distance. All energy spectra were saved with a 1 keV 

bin width. 

 

5.3 Results 

5.3.1 Energy spectra 

 The GEANT4 radioactive decay module has been benchmarked comparing 

energy spectra of photons emitted by the simulated radionuclides with 

recommended data (Rivard et al., 2010; Perez-Calatayud et al., 2012) provided at  

http://www.nndc.bnl.gov/nudat2/indx_dec.jsp by the National Nuclear Data Center 

(NNDC). For 
60

Co, differences between both spectra are 1% for mean energy and 

overall intensity when considering photons > 15 keV. If lower energy photon 
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emissions are considered, there are higher differences (up to 16%). For 
192

Ir, 

differences are lower than 0.1% for both intensity and mean energy, whereas for 
169

Yb differences are 1.5% and 0.7%. Again, higher discrepancies are found for 

energies below 15 keV. Those low energy lines hardly exit the source capsule and 

so their influence in absorbed dose is neglected. As shown by Rivard et al. (2010), 

differences between various reported energy spectra result in a negligible effect 

when obtaining absorbed dose ratios, which is the case of this work. Furthermore, 

as previously reported, the physics models used in GEANT4 have already been 

validated in dosimetric evaluations of internal shielding in HDR BT with 

experimental measurements (Lliso et al., 2011). Therefore, the GEANT4 code used 

in this work can be considered to be validated for the scope of this study. 

 Figure 5-2 shows energy spectra of photons and electrons that go back from 

the lead shield to the water phantom, including backscattered photons and electrons, 

characteristic x-rays, and Auger electrons. The predominant energy lines in the 

backscattered photon spectra (Figure 5-2a) are those corresponding to 

characteristic x-rays coming from the deexcitation of lead atoms, with energies 

between 74 and 90 keV, in agreement with data reported by the Laboratoire 

National Henri Becquerel (LNHB) (http://www.nucleide.org/DDEP_WG/ 

/DDEPdata.htm). Figure 5-2 also shows energy spectra of photons and electrons 

that traverse the lead shield or are emitted by it, for the specific case tPb = 3 mm and 

ds = 5 mm. Characteristic x-rays from lead atoms are also observed in this case, 

although the predominant lines are still the ones associated with nuclear 

disintegration. 

 Table 5-1 shows, for all three HDR sources considered, mean energy of 

photons and electrons backscattered and that traverse the lead shield, as a function 

of source depth and lead thickness. The statistical uncertainty of the mean energy of 

both photons and electrons is generally lower than 2 keV. It is noted that: 

 

 

http://www.nucleide.org/DDEP_WG


Lead shield for surface HDR brachytherapy 

_____________________________________________________________________________________________________________________________________________ 

 83 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 5-2. Energy spectra of a) photons and b) electrons that are backscattered from 

the lead shield to the water phantom, and energy spectra of c) photons and d) electrons 

that traverse the lead shield. Spectra correspond to the simulations with dPb = 5 mm and 

ts = 3 mm, for all three HDR sources considered. 
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Table 5-1. Mean energy of source photons and electrons that go back from the lead 

shield to the water phantom, and that traverse the lead shield, as a function of 

source depth ds and lead thickness tPb. 

 

 

1) Mean energy of photons and electrons emitted in the backward direction 

(defined as the direction from shield to source) was lower than from the 

forward direction. 

2)  For a given lead thickness with 
60

Co and 
192

Ir, the mean energy of photons 

and electrons backscattered decreased when the source depth increases. For 
169

Yb, the same was valid for the mean energy of backscattered electrons, 

whereas for photons there was no variation within 1 keV. 

3)  For a given lead thickness with 
60

Co and 
192

Ir, the mean energy of photons 

and electrons that traverse the lead shield slightly decreased when the 
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source depth increased. For 
169

Yb, there was no variation within the 

relative uncertainty of these data. 

4)  For a given source depth and all three radionuclides, the mean energy of 

photons and electrons backscattered was independent of shield thickness 

(within the thickness range here considered), except for photons from 
60

Co, 

whose mean energy slightly increased with lead thickness. 

5)  For a given source depth, lower energy photons were attenuated more than 

higher energy photons as the lead thickness increased. Consequently, the 

mean energy of photons and electrons that traversed the lead shield 

increased with tPb for 
192

Ir. However for 
60

Co, given that the predominant 

lines are almost exclusively 1,173 keV and 1,332 keV, the beam hardening 

effect was not observed given the negligible influence of the more 

attenuated lower energy lines. For 
169

Yb, the mean energy of photons 

traversing the shield was also almost constant with tPb within the relative 

uncertainty of these data. 

 

5.3.2 Backscattered dose perturbation 

 Figure 5-3 shows the shielded to unshielded absorbed dose ratio in the water 

phantom (along the z-axis, for 0  ) for the 
60

Co, 
192

Ir, and 
169

Yb single dwell 

sources. For each z value, the statistical uncertainty was < 1.5% for 
60

Co and < 3% 

for 
192

Ir and 
169

Yb. The dose enhancement profile was the same if the phantom was 

made of skin or water. For each source, all three geometrical configurations 

(surface BT and interstitial BT with ds = 5 and ds = 10 mm) are shown for tPb = 6 

mm. For surface BT, the relative importance of backscattered dose in the z-axis is 

nearly negligible for all three HDR sources considered. This is due to the proximity 

of the source to the surface and to its high dose gradient. This is not the case with 

interstitial BT, where the backward dose perturbation reaches up to roughly 3 mm 

depth for 
60

Co and 1 mm depth for both 
192

Ir and 
169

Yb, with the perturbation being 

higher in magnitude as the mean energy of gammas emitted by the radionuclide 
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decreases. The depth of the perturbation and the perturbation ratio at 0.1z    mm 

(with 0  ) is independent of the lead thicknesses here considered (differences of 

perturbation ratios below 2% for all three sources). 

 For other ρ values, the dose enhancements due to the presence of the 

shielding are different than those reported in Figure 5-3: the dose enhancement 

generally increases with ρ for a single source position, although the range of the 

high dose perturbation remains nearly the same. The variation of the dose 

enhancement with ρ for a single dwell position is not considered to be relevant 

given that it is different than in a clinical case with multiple dwell positions. Figure 

5-4 shows the percentage excess dose (shielded to unshielded absorbed dose ratio 

minus 1, i.e.  0100% 1
Pb Pbt tD D   ) throughout the water phantom (in the x-z 

plane) for a real clinical configuration with 
192

Ir. The excess dose plots for 
60

Co and 
169

Yb are equivalent to the ones shown in Figure 5-4, although with different 

excess dose values and ranges of the perturbations. The following is noted within t 

the 50 50  mm
2
 target region: 

- For 
60

Co, the range of the high dose enhancement reaches 3z    mm. For 

greater depths, there is an excess dose of 2 3%  and 0 1%  for surface and 

interstitial BT cases, respectively. This nearly constant excess dose reaches a depth 

of, at least, 30z    mm. 

- For 
192

Ir, the range of the high dose enhancement reaches 1z    mm. For 

greater depths, there is an excess dose of 2 3.5%  and 1 2%  for surface and 

interstitial BT cases, respectively. This nearly constant excess dose reaches a depth 

of, at least, 30z    mm. 
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(a) 

 

(b) 

 

(c) 

Figure 5-3. Shielded to unshielded absorbed dose ratio in the z-axis (radial 

distance 0  ) for all sources and for the three configurations used according to 

source location: surface BT, and interstitial BT with ds=5 mm and 10 mm. 
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- For 
169

Yb, the range of the high dose enhancement reaches almost 1z    mm. 

For greater depths, there is an excess dose of 4 5.5%  for surface BT, although 

variations up to 9%  are observed in planes without a dwell source position. For 

interstitial BT, the difference is 4 5%  up to 2z    mm and 3 4%  for 

greater depths. 

- For all three radionuclides, the excess dose in interstitial BT is negligible (<1%) at 

distances less than around 2 mm from the source (see grooves in Figure 5-4b). 

 Not only are the magnitude and depth of the backward dose perturbation 

important, but also is the type of ionizing radiation that produces it. Figure 5-5 

shows, for ds = 5 mm and tPb = 6 mm, the shielded to unshielded absorbed dose 

ratio in the z-axis for each considered source, showing contribution of photons and 

electrons that backscatter from the lead shield to the water phantom, which have the 

spectra shown in Figure 5-1. Contamination from backscattered photons is nearly 

constant with z, for the depths close to the phantom surface. This is not the case for 

electrons, which are the main source of contamination near the surface, as 

previously suggested in works about backscatter dose perturbations by kilovoltage 

and megavoltage photon beams (Das et al., 1989; Li et al., 1999). However, their 

influence decreases quickly with depth: their dose curves can be fitted by an 

exponential function, as previously proposed (Klevenhagen et al., 1982; Lambert et 

al., 1982; Perez-Calatayud et al., 2000). The current study confirms this behavior 

and quantifies it for the three HDR BT sources. 
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(a) 

 

(b) 

Figure 5-4. Percentage excess dose (%) in the water phantom (y = 0) due to the 

lead shielding for a) surface (ds = 0) and b) interstitial (ds = 5 mm) HDR 

brachytherapy with 192Ir. This corresponds to a real configuration with the source 

having multiple dwell positions. Grooves appear at the different dwell positions. 

The bin widths are 0.2 mm and 0.5 mm for z and x, respectively. 
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(a) 

 

(b) 

 

(c) 

Figure 5-5. Shielded to unshielded absorbed dose ratio in the z-axis for all three 

sources, using ds=5 mm and tPb=6 mm, with contribution from backscattered 

photons and electrons.  
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5.3.3 Transmission 

 Figure 5-6 shows the shielded to unshielded absorbed dose ratio above the 

lead shield for a 
60

Co source placed at 5 mm depth and with lead shield of 6 mm 

thickness, considering a clinical case with multiple dwell positions. Similar figures 

were obtained for 
192

Ir and 
169

Yb, as well as for the other source depths and lead 

thicknesses considered. Given the multiple and limited source positions, the dose 

reduction is not constant throughout the whole space, and so giving a single 

transmission value in a real case with multiple dwell positions seems not 

appropriate. Instead, a transmission range for each considered case is provided 

(Table 5-2). The forward dose enhancement near the surface is not considered, as 

previously argued. In addition, the treatment area has 50 mm thickness and is 

centered at 0x   mm. Thus, the transmission range is for the limits 

20 100z   mm and 25 25x    mm. Furthermore, an arbitrary reference 

point has been established at ( 0, 0, 50)x y z    mm, for which the 

transmission is also provided in Table 5-2. 

 

Figure 5-6. Shielded to unshielded absorbed dose ratio in the X-Z plane of the air 

volume due to the tPb=6 mm lead shielding for interstitial (ds=5 mm) HDR 

brachytherapy with multiple dwell positions of a 
60

Co source. 
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Table 5-2. Transmission through the lead shield for 
60

Co, 
192

Ir, and 
169

Yb, as a 

function of lead thickness tPb and source depth ds. Transmission is evaluated in the 

x-z plane, in the range 20 100z   mm and 25 25x    mm. The reference 

point is ( 0, 0, 50)P x y z    mm. 

 

 

  The statistical uncertainties of the transmission values reported are generally 

~10% for 
60

Co and 
192

Ir, and ~50% for 
192

Yb. Although these relative uncertainties 

may seem large, they are smaller or similar than the broad transmission range 
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shown in Table 5-2 for each configuration. As expected, the transmission decreases 

as the lead thickness increases. For 
60

Co, transmission data seem not sensitive to 

source depth, whereas for 
192

Ir and 
169

Yb, transmission is lower in surface BT than 

in interstitial BT, although with a large dose range. 

 

5.4 Discussion 

5.4.1 Backscattered dose perturbation 

 The range of the backscatter dose perturbation obtained in this work (along 

the z-axis) for 
60

Co (3 mm) is similar to experimental data by Das et al. (1989) and 

MC simulations by Li et al. (1999) (3 to 4 mm), both for an external collimated 

beam and a lead shield immersed in water equivalent tissue. 

 Results of this work for the single dwell position are also consistent with 

those published for the particular case of the Valencia applicator with 
192

Ir sources 

(Lliso et al., 2011), in which the backward perturbation was reported to be around 

0.5 mm (0.7 mm in this work, near 1 mm). The dose enhancement at the surface 

(within 0.1 mm depth) for the Valencia applicator configuration was a factor of 2. 

As shown in this work, this dose enhancement in the transversal axis depends on the 

distance between the source and the shielding, ranging between 2.7 for ds=10 mm 

and 1.1 for ds=0 (see Figure 5-3b). In addition, in the Valencia applicator 

configuration, the lead shield was immersed in water whereas it was only in contact 

with the upper surface in the current study. Due to backscattering in the water 

phantom, immersion in water increased absorbed dose when no shielding was 

placed. Scattered radiation is of lower energy and is more attenuated when the lead 

shield is used. This contributes to the fact that the ratio between the dose with and 

without the shield decreases in comparison to a shield placed between water and air. 

 The backscatter dose enhancements in water obtained in this work, observed 

to be equivalent to those for tissue, may be used to choose an appropriate bolus 
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thickness to be placed between the surface and the lead shield. As shown previously 

for a realistic clinical case, the high dose perturbation reaches 3 mm depth for 
60

Co 

and 1 mm for 
192

Ir and 
169

Yb, and equivalent or larger bolus thicknesses are needed 

for each radionuclide source. 

 Nowadays, plastic is used to flatten the surface and keep rigid the catheter 

geometry (Nag et al., 2001; Yang et al., 2009) and so it seems adequate to 

investigate whether its thickness is enough to negate backscatter overdose. With 

this aim, the backscatter dose perturbation was also obtained in polyethylene (

0.94   g/cm
3
) and the range of the perturbation was found to be equal to the 

range in water (within 0.1 mm) for 
192

Ir and 
169

Yb, whereas for 
60

Co the range in 

plastic was 0.4  0.1 mm larger, also negligibly different than water. Hence, 

polyethylene is equally valid to avoid surface overdose if it has the appropriate 

thickness previously obtained for water. 

 Bolus thicknesses determined in this work are required to avoid high 

overdoses produced by electrons, but there still remains a nearly constant 

contamination from photons which reaches at least a few centimeters depth. That 

contamination might be small taking into account that treatment planning systems 

currently used in HDR brachytherapy consider the source to be placed within an 

infinite water medium, thus not considering that there is air above the patient 

surface. Due to the negligible contribution of backscattering in air in comparison to 

backscattering in water, the calculated surface dose might be currently 

overestimated. The presence of the bolus and the lead shield could partly 

compensate this. 

 

5.4.2 Transmission 

 For all three radionuclides considered, Figure 5-7 plots the transmission at 

the reference point for the surface BT case, with error bars showing the range of 

transmissions given in Table 5-2. For comparison purposes, the transmission curve 
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fitted by Papagiannis et al. (2008) for brachytherapy facility shielding is also 

plotted. Discrepancies between both datasets appear as the energy of gammas 

emitted by the radionuclide increases. This is mainly due to the fact that in the work 

by Papagiannis et al. (2008) the source was placed in air and at a distance of 1 m of 

the lead shield, which covered the whole wall, and only photons emitted in the 

shield direction were considered. However, in this case the source was placed in 

contact with or near the lead shield and the water phantom, and there were several 

dwell positions. The water phantom in this work increased absorbed dose when no 

shield was used in comparison to an air phantom due to backscattering by air being 

negligible in comparison to water. Therefore, the shielded to unshielded absorbed 

dose ratio in the surface BT configuration is necessarily lower than that given by 

Papagiannis and colleagues. Since incoherent scattering is increasingly important as 

photon energies increase, the discrepancy is highest for 
60

Co and almost negligible 

for 
160

Yb. In addition, the transmission evaluated by Papagiannis et al. is the 

maximum one as it was obtained in the transversal axis of the wall and the source. 

When the source is displaced, its contribution along that axis is lower since their 

photons traverse a higher lead thickness. 

 Thus, the geometrical configuration can greatly influence the transmission 

values. It should be carefully evaluated for each particular case if a precise 

estimation of dose reduction is desired. For instance, data provided in this work can 

be used to estimate organ equivalent dose saving in a treatment with HDR surface 

or interstitial BT with lead shields. In addition, the dose reductions shown in this 

work justify the use of lead shields (with an appropriate bolus thickness) in some 

particular radiation treatments since they clearly compensate the small backscatter 

overdose. 
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Figure 5-7. Transmission dose through the lead shield calculated in this work at 

the reference point, for 
60

Co, 
192

Ir, and 
169

Yb sources in the surface brachytherapy 

case. Error bars show the range of transmissions given in Table 5-2. Data are 

compared with the fitting curve by Papagiannis et al. (2008) (solid lines). 

 

5.5 Conclusions 

 In surface and interstitial BT, the high backscatter dose enhancement in the 

body surface due to use of a lead shield can be avoided by using a bolus thickness   

3 mm for 
60

Co, and   1 mm for 
192

Ir and 
169

Yb. It is due mainly to backscattered 

electrons and characteristic x-rays to a lesser extent. 

 Transmission data as a function of lead thickness have been provided for the 

three radioactive sources. These have been shown to differ with radiation 

transmission data for facility shielding with high energy sources due to the 

environment geometry (presence of water and multiple dwell positions). These data 

can be used to estimate organ equivalent dose saving in a real treatment with HDR 

surface or interstitial BT with lead shields. 



 

Chapter 6. FETAL DOSE REDUCTION IN 

PREGNANT PATIENT WITH BREAST 

CANCER 

 

 

 

Most of the content of this chapter is included in the original research paper: 

Candela-Juan C, Gimeno-Olmos J, Pujades MC, Rivard MJ, Carmona V, Lliso F, 

Celada F, Ramírez-Coves JL, Ballester F, Tormo A, Pérez-Calatayud J. Fetal dose 

measurements and shielding efficiency assessment in a custom setup of 
192

Ir 

brachytherapy for a pregnant woman with breast cancer. Physica Medica. (2015) 

doi: 10.1016/j.ejmp.2015.01.010. 

Kind permission was granted by the journal to reprint this article as a chapter of this 

dissertation. 
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6.1 Introduction 

 Even though the incidence rate of cancer during pregnancy is low (roughly 

0.1% of pregnant women have cancer (ASCO, 2014; Filipov et al., 2013)), the 

magnitude of patients needing treatment is appreciable. In particular, many 

pregnant women are treated with radiation therapy. Given that ionizing radiation 

can also cause damage to the fetal cells, the possible risks to the developing baby 

should be carefully evaluated. 

 The effect of ionizing radiation to the fetus depends on the gestational age, 

equivalent dose and fractionation (Stovall et al., 1995; ICRP, 2000; Nuyttens et al., 

2002; NCRP, 2013). A summary of these radiation effects, classified by gestational 

age, can be found in reports by the AAPM (Stovall et al., 1995), the ICRP (2000) 

and, more recently, the NCRP (2013). Based on epidemiological data from atomic 

bomb survivors, from patients exposed to diagnostic X-rays, and from experiments 

with animals, it may be concluded that doses below 10 cGy do not produce 

observable deterministic effects in the fetus, although this dose threshold is reduced 

to 5 cGy in other studies (Kal et al., 2005). In addition, the possibility that such low 

doses may produce a radiation-induced tumor is under debate (Candela-Juan et al., 

2014a). A large uncertainty exists for this dose threshold, and so the main aim of 

any radiation treatment should be tumor control with absorbed doses to the fetus 

made as low as possible, trying not to exceed the stated dose constraint. It may be 

helpful to clarify at this point that even though the original data used to determine 

the existent dose constraints was expressed in mSv, the units of absorbed dose (i.e., 

cGy) are adopted in the current study for consistency with the reports by the AAPM 

(Stovall et al., 1995), ICRP (2000) and NCRP (2013). 

 Radiation therapy in pregnant patients has been widely reported for 

Hodgkin’s disease (Woo et al., 1992; Cygler et al., 1997; Antypas et al., 1998; 

Nuyttens et al., 2002; Mazonaquis et al., 2003), as well as for head and neck tumors 

or brain carcinomas (Wong et al., 1986; Sneed et al., 1995; Podgorsak et al., 1999; 

Haba et al., 2004; Lliso et al., 2004; Josipovic et al., 2009). There are also 
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publications on radiotherapy for pregnant patients with breast cancer (Ngu et al., 

1992; Van Der Giessen et al., 1997; Antypas et al., 1998; Fenig et al., 2001; Martín 

Rincón et al., 2002; Filipov et al., 2013; Kourinou et al., 2015). However, to the 

best of our knowledge, all previously reported radiation treatments applied to a 

pregnant patient were based on EBRT. No prior study has examined fetal doses for 

women receiving breast BT, although Venselaar et al. (1996) evaluated the 

absorbed dose at large distances from BT sources and proposed the application of 

his evaluations to estimate fetal doses. 

 In EBRT, the peripheral dose depends mainly on the distance from the field 

edge (it approximately falls exponentially with the distance (Stovall et al., 1995; 

Mutic et al., 1999; Podgorsak et al., 1999; ICRP, 2000; Josipovic et al., 2009)), but 

also on the field size and, in a minor contribution, on the depth in tissue (Antypas et 

al., 1998). The main sources of radiation outside the treatment area are head 

leakage radiation, radiation scattered in the collimators and the rest of the head of 

the accelerator, transmission through the collimators, and radiation scattered inside 

the patient (Antypas et al., 1998; Mutic et al., 1999). The use of physical wedges is 

ill-advised because of the higher amount of monitor units (MU) needed and the 

higher scatter component (Josipovic et al., 2009; Filipov et al., 2013). The use of 

high-energy photon beams (> 10 MV) should also be avoided as it leads to a higher 

proportion of the transmission and collimator scatter, as well as to generation of 

photoneutrons (Antypas et al., 1998). In order to reduce peripheral dose, a tertiary 

multileaf collimator (MLC) may be used, which reduces collimator scatter and 

transmission through the primary and secondary collimators (Mutic et al., 1999). 

Furthermore, shielding devices around the patient’s abdomen or the gantry are 

highly recommended to minimize exposure to the fetus from leakage and collimator 

radiation scatter (Ngu et al., 1992; Woo et al., 1992; Stovall et al., 1995; Nuyttens 

et al., 2002; Lliso et al., 2004; Josipovic et al., 2009; Filipov et al., 2013). The 

proposed lead thickness for EBRT is about 5 cm to 7 cm (Josipovic et al., 2009), 

which results in a massive custom device. 
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 Opposed to the traditional whole breast irradiation (WBI), accelerated partial 

breast irradiation (APBI) techniques have emerged in recent decades, either by 

interstitial or intracavitary BT, EBRT, or intraoperative radiation therapy (IORT). 

The American Society for Radiation Oncology (ASTRO) (Smith et al., 2009), the 

Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology 

and Oncology (GEC-ESTRO) (Polgar et al., 2010), and the American 

Brachytherapy Society (ABS) (Shah et al., 2013) have presented consensus 

statements for APBI. The rationale for APBI is that most of local relapses occur in 

proximity to the tumor bed (Polgar et al., 2005; Vicini et al., 2005). Thus, APBI 

may be another option to treat breast cancer in pregnant patients. 

 On the basis of the rapid dose fall off with distance (as a result of the inverse 

distance square law) from a BT implant, it is expected that this radiation technique 

reduces the dosage to organs at risk and the integral dose when compared to EBRT. 

This has been quantified for organs as the heart or lung (Patel et al., 2007; Weed et 

al., 2005). Also, in Chapter 2, based on MC simulations and patients with prostate 

cancer, a radiation protection advantage of BT over EBRT at large distances from 

the treatment volume was shown (Candela-Juan et al., 2013). This advantage could 

be applied to fetal dose reduction. Although there are no data to determine the 

optimal technique for APBI, interstitial BT has the highest follow up and is the 

technique of choice at our center for breast BT. This technique uses a HDR 
192

Ir 

source and an array of catheters inserted within the breast around the excision 

cavity. 

 The aim of the current study is to assess the radiation dose to the fetus when 

using interstitial breast HDR 
192

Ir BT. In addition, a new patient setup and lead 

shielding technique placed around the breast was designed to reduce the fetal dose. 

Absorbed doses were evaluated without and with this shielding. The variation of 

dose with distance to the implant as well as dose homogeneity within a 

representative slice of the fetal position were measured experimentally. A case 

report is also presented. 
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6.2 Materials and methods 

6.2.1 Case report 

 A 29-year-old woman in the 12
th
 week of gestation (see Figure 6-1) was 

submitted for postoperative irradiation of the right breast. An interstitial HDR 
192

Ir 

BT breast treatment was planned as described in section 6.2.2 because the fetal dose 

was estimated to be lower than the delivered by external radiotherapy (a 

comparison between both techniques can be found in the Discussion section of this 

chapter). Interstitial HDR 
192

Ir breast BT was also recommended because the 

patient satisfied the recommendations of ASTRO (Smith et al., 2009), GEC-

ESTRO (Polgar et al., 2010), and ABS (Shah et al., 2013), except for the age 

restriction, which is discussed later. From ultrasound measurements, it was 

estimated that the distance from the lower edge of the breast to the uterine fundus 

(the most proximal position of the uterus) 1 week before treatment was 20 cm, 

whereas the pubis was located an additional 10 cm caudally. The methodology 

described below was used to evaluate dose to the fetus. 

 According to the NCRP Report 174 (2013), the minimum acute lethal dose is 

estimated to be > 100 cGy for the fetus between the 8
th
 and the 15

th
 week of 

gestation. However, this is the most vulnerable period for irreversible whole-body 

growth retardation, with no-adverse effects observed between 25 cGy and 50 cGy. 

Nevertheless, given that a dose threshold of 5 cGy has been suggested in other 

studies (Kal et al., 2005), this conservative constraint was used in the current study 

to compare the treatment options. 

 

6.2.2 Treatment planning 

 The patient was seated in a chair with her right breast positioned over a table 

in such a way that the fetus was located beneath the table (see Figure 6-1). The 
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radiation dose to the fetus can then be reduced when the breast is shielded (see 

section 6.2.3). 

 An interstitial breast HDR 
192

Ir BT treatment was planned using Oncentra 

Brachy TPS v.4.3 (Elekta AB, Stockholm, Sweden). A total of 36 Gy in 8 fractions 

was prescribed at the 90% of the basal points, with two treatment fractions per day 

given in four consecutive days. Seven catheters were used, each of them having the 

HDR 
192

Ir source dwell positions for 9 cm of active length. The catheters were 

positioned in two coronal, parallel planes (three catheters in one plane and four 

catheters in the deeper-seated plane, both parallel to the thoracic wall, and defining 

equilateral triangles of side 1.6 cm) using a template (see Figure 6-2a). The 

minimum distance between the closest catheter and the thoracic wall was about 2 

cm. 

 

Figure 6-1. Simulation of the proposed patient set-up in the HDR brachytherapy 

treatment room. The patient is seated in a chair, placing the breast to be treated 

over the lead shielding, which has a hole in the lateral wall to allow connecting the 

transfer tubes to the catheters. With this position, the fetus is maximally located 

beneath the shielded table. 
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6.2.3 Shielding design 

 Absorbed dose to the fetus is due to primary radiation from the 
192

Ir source 

and scattered radiation within the patient. The latter cannot be removed; however, 

the breast may be shielded to minimize dose contribution to the fetus from the 

primary component. 

 The shielding design consisted of a 3.5 cm thick layer of lead placed between 

the breast and the table. Thus, during the treatment, the breast rests over this lead 

shield. In addition, two lateral pieces of lead (3 cm thick each) were added (see 

Figure 6-2). The rationale for the use of this thickness was to attenuate most (over a 

factor of one-thousand, considering a tenth-value layer of 11 mm (Candela-Juan et 

al., 2014b)) of the primary radiation component of the absorbed dose to the fetus 

such that it just receives the scattered radiation from inside the mother. The lateral 

blocks allowed placing an extra piece of lead (2.5 cm thick) above the breast, 

parallel to the first layer (see Figure 6-2b). The aim of this last layer was to shield 

primary radiation to the thyroids and eye lenses given the seated position of the 

patient. Its thickness was chosen as a compromise between providing radiation 

attenuation and patient setup feasibility given its weight. 

 One of the lateral layers had a hole through which the transfer tubes were 

connected to the catheters (see Figure 6-1 and Figure 6-2b). In order to minimize 

the transit dose when the 
192

Ir source exits and returns to the remote afterloader, a 

hollow lead tube (0.4 cm thick) was made, which covered the transfer tubes (see 

Figure 6-2b). 

 It is important to note that lead shielding placed in contact with patient skin 

can considerably increase the surface dose due to backscattering and electron 

contamination. This problem was in Chapter 5 for surface and interstitial HDR 
192

Ir BT. From that study, it was concluded that the surface overdose may be 

removed in the current study by placing a 0.1 cm thick layer of water-equivalent 

material between the lead shielding and the patient skin. 
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a) b) 

Figure 6-2. Representation of the HDR 
192

Ir brachytherapy treatment set-up, 

showing a) the implant within the breast phantom, and b) the assembled lead 

shielding arrangement. 

 

6.2.4 Fetal dose evaluation 

6.2.4.1  Phantom measurements 

 Measurements of absorbed dose were made in a Rando phantom (Alderson 

Research Laboratories, Inc., Stanford, CT), which is sectioned into slices and is 

made of materials to radiologically mimic body tissues (see Figure 6-2). As a 

female-designed phantom was not available, the missing breast tissue was made of 

Roma Plastilina
TM

 (JOVI S.A., Rubí, Spain). While this material is denser than a 

female human breast, the differences in attenuation at the photon energies examined 

in the current study (originating from 
192

Ir) are expected to be negligible. 

 Because the patient was seated, her spine was oriented approximately 

vertically during treatment. Thus, it was decided to center the dosimeters at a 

position approximately representative of the center of the fetus, measuring the 

distance from the back of the patient. In this study, using data from Osei and 
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Faulkner (1999), it was estimated that the shortest distance between the fetus and 

the patient’s back was about 10 cm for a median pregnant woman, whereas the 

largest distance might be about 20 cm. Then, the position representing the fetus 

center was estimated to be at about 15 cm from the phantom’s back. Absorbed dose 

was measured at this central region, in several planes of the phantom, covering a 

distance dz between 5 cm and 35 cm from the lower edge of the treated breast (or 

the upper surface of the lead shield) (see Figure 6-3a). This way, dose was 

estimated as a function of distance from the breast, hence allowing the application 

of the results to a wide range of gestational ages. Furthermore, four extra 

measurements were made at distances of 10 cm and 20 cm from the lower edge of 

the breast in order to evaluate the uniformity of the dose distribution. The location 

of the dosimeters in these three planes is depicted in Figure 6-3b. 

 Additionally, measurements were made at the eye lenses and thyroid of the 

phantom. All dose measurements were made without and with the previously 

described shielding design. 

 

6.2.4.2 Radiochromic film dosimetry 

 The energy spectrum of radiation impinging the fetus is unknown, which 

may introduce a significant uncertainty in dosimeters with energy-dependent 

response. For this reason, in the current study, Gafchromic
TM

 EBT3 films (ISP, 

Wayne, NJ, USA) were used, whose energy response to monochromatic beams of 

35 keV has been shown to differ by at most 3% when compared to calibration with 

4 MV beams (Brown et al., 2012). This energy dependence was considered as an 

additional term of the uncertainty for derivation of dose.  



Chapter 6 

_____________________________________________________________________________________________________________________________________________ 

106  

  

a) b) 

Figure 6-3. a) Lateral view of the Rando phantom showing vertical distances dz 

from the caudal edge of the breast. b) Axial plane of the Rando phantom showing 

the location of the dosimeters and the distance between them. The location of each 

film is identified according to the notation: central C, anterior A, posterior P, right 

R and left L. 

 

 In order to obtain readings above a few cGy even for the farthest dosimeters, 

five complete treatments (with 8 fractions each) were irradiated consecutively when 

shielding was used. When shielding was not used, the films were subjected to 

irradiation from a single treatment (8 fractions). 

 The films were cut into 3.2 cm × 3.2 cm pieces. Additionally, a set of films 

belonging to the same lot were irradiated at known doses of 0, 10, 20, 50 and 200 

cGy, using a TrueBeam
TM

 linear accelerator (Varian Medical Systems, Palo Alto, 

CA, USA) with 6 MV beams. Together with the calibration films, the irradiated 

films were scanned 4 days after irradiation using a model 11000XL scanner (Epson 

Canada, Ltd., Markham, Ontario, Canada), employing a resolution of 100 dpi and 

16-bits per color. Scanned images were then analyzed using the Film QA Pro
TM
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software (Ashland Inc., Wayne, NJ, USA) with the multichannel film calibration 

method and protocol recommended in the literature by the film and software 

manufacturers (Micke et al., 2011; Lewis et al., 2012). The dose-response data was 

fitted by a rational function, as shown in Figure 6-4. The quality of the fitting curve 

indicates the adequacy of these films even in the low dose range. Regions of interest 

subtending 1.3 cm × 1.3 cm were defined at the center of the irradiated films and 

the average dose and its standard deviation were determined. 

 

Figure 6-4. Calibration data and calibration function for all three channels (R, G, 

B) of the Gafchromic EBT3 films used in this study to convert pixel values to 

absorbed dose. 
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6.3 Results 

6.3.1 Dose distribution in the central region 

 Table 6-1 shows absorbed doses measured with radiochromic film at central 

region C (see Figure 6-3b). The uncertainty of the measurements was obtained 

considering the standard deviation of the selected ROI, which increases with 

distance dz. Roughly, this uncertainty component is 3% at 5 cm and 45% at 25 cm. 

In addition, the uncertainty of the calibration curve at these low absorbed doses 

(roughly 3% according to the analysis software) was also considered as well as the 

uncertainties due to the variation of film sensitivity as a function of photon energy 

(3% according to Ref. (Brown et al., 2012)). Results are reported without and with 

shielding. Table 6-1 also shows the dose ratio for unshielded to shielded HDR-BT. 

The proposed shielding reduced the radiation exposure by a factor of two near the 

breast and more than an order of magnitude beyond 20 cm. The effect of shielding 

increased with increasing distance from the inferior edge of the breast. This was 

reasonable considering that at the closest axial planes there were still contributions 

from primary radiation that did not traverse the shielding to reach those regions 

within the patient. At farther distances, primary radiation was mostly attenuated and 

dose was mainly comprised of scattered radiation. For the experimental conditions, 

nearly constant attenuation factors of 15%/cm and 26%/cm (per unit dz) were 

observed without and with shielding, respectively. 

 Absorbed dose was also evaluated without and with shielding at positions in 

the phantom to estimate dose to the thyroid and the right eye lens. The upper lead 

shield had no effect on thyroid dose (40 cGy in both cases) as in this case it was not 

close enough to the thoracic wall to shield primary radiation. However, it shielded 

the ocular lenses and reduced absorbed dose by a factor of 20 (from 72.8 to 3.6 

cGy). 
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Table 6-1. Absorbed dose after a complete (36 Gy) brachytherapy treatment, 

measured with EBT3 radiochromic films placed between slices of the phantom, at 

15 cm from the phantom’s back. Distance dz was measured from the axial slice at 

the lower edge of the breast. Estimated uncertainties (with coverage factor 1k  ) 

are given in parentheses. 

 

 

Table 6-2. Relative difference between absorbed dose at a given point on the axial 

plane (see Figure 6-3b) and absorbed dose DC at the center C of the same axial 

plane (from Table 6-1), after a complete (36 Gy) brachytherapy treatment. 
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6.3.2 Dose homogeneity on an axial plane 

 Table 6-2 shows the measured relative difference between the dose at a 

given position (A (anterior), P (posterior), R (right) or L (left), as seen in Figure 

6-3b) of an axial plane and the dose in the center C of that same plane, for axial 

planes given by 10.0zd  cm and 20.0zd  cm. 

 The dose heterogeneity observed for HDR 
192

Ir interstitial breast BT (Table 

6-2) can be explained considering the inverse-distance square law and the 

contribution from primary and scattered radiation. The implant was in the right 

breast and in the anterior part of the phantom. When shielding is used, primary 

radiation to the anterior part of the abdomen is attenuated and there are 

contributions only from scattered radiation, which traveled a larger distance to 

reach the anterior part than the central part. Thus, shielding reduced dose to the 

anterior part of the phantom. The same argument applied to the left region of the 

patient abdomen. However, the distance that the scattered radiation has to traverse 

to reach the posterior part of the phantom is shorter than to the central region. When 

also accounting for contributions from primary radiation, dose to the posterior part 

commensurately increases. On the right side of the phantom, the dose variation is 

nearly negligible when compared to the dose at the center. Without shielding, the 

inverse-distance square law dominates and regions that are nearer the implant 

receive a higher dose. 

 

6.3.3 Case report 

 According to ultrasound measurements, the most proximal part of the fetus 

was 20 cm below the caudal edge of the breast one week before the planned 

treatment, with the pubis located at 30 cm. Considering a cranially growth of the 

fetus of 1 cm per week (Podgorsak et al., 1999) and that the fetus was still mainly in 

the central region, the highest absorbed dose to be received by the example fetus in 

this case report was estimated to be 2 cGy, whereas the estimated pubis dose was 
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less than 0.1 cGy. These values are notably below the 5 cGy constraint that was 

established for the current study. 

 

6.4 Discussion 

6.4.1 Clinical considerations 

 ASTRO, GEC-ESTRO and ABS have published recommendations for 

patient selection criteria for APBI (Smith et al., 2009; Polgar et al., 2010; Shah et 

al., 2013), and identify a high-risk group that should not be treated with APBI 

outside of clinical trials. This group, among other factors, includes patients younger 

than 40 to 50 years. These recommendations are based on the fact that young age 

has been documented to be a dominant adverse prognostic factor for local failure, 

and that the majority of studies with successful results for APBI included an age 

restriction for patient selection. However, the association of youth and local failure 

is based on data after WBI. There are retrospective analyses that do not find 

differences between the different ASTRO risk groups using APBI (Wilkinson et al., 

2013). Sensitive decisions, such as radiation therapy in a pregnant woman, should 

be made on an individual basis, and always assessing techniques that adequately 

reduce the fetal dose. 

 

6.4.2 Analysis of the dose as a function of depth 

 Based on the measured rate of dose falloff as a function of dz, for HDR 
192

Ir 

BT without and with shielding, for the experimental conditions of this study an 

uncertainty of 1 cm in measuring dz would result in a dose measurement uncertainty 

of 15% and 26%, respectively. For the measured values shown in Table 6-1, the 

magnitude of the measurement uncertainties without and with shielding exceeded 

the rate of dose falloff as a function of dz at approximately 24 cm. In retrospect, 
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perhaps the uncertainties at larger distances could have been diminished if extended 

detector irradiation times were utilized. 

 However, differences up to 50% compared with the central region are present 

for a given axial plane with HDR 
192

Ir BT, as examined in the current study. The 

exact location of the uterine fundus within a given axial plane is thus the largest 

contributor to the uncertainty of the evaluated fetal dose. Given the patient setup 

geometry and practical desire to minimize imaging of the fetus, a robust means of 

measuring the distance from the fetus to the implant, and the position of the uterine 

fundus is elusive to satisfy the dose constraint. Radiochromic films seem 

appropriate to provide quantitative, patient-specific dose measurements as long as 

adequate signal is generated (through delivery of multiple treatment fractions). 

 Based on this analysis, it seems reasonable to state that the estimated 

maximum fetal dose may be evaluated in HDR 
192

Ir BT with roughly a maximum 

conservative uncertainty of 50%. This magnitude is considered acceptable for 

radiation protection applications. If the measured doses with shielding were 

increased by this factor of 1.5, the maximum fetal dose would still be lower than the 

5 cGy constraint considered in this study for distances dz larger than about 17 cm. 

 

6.4.3 HDR 192Ir BT vs. EBRT 

 Other published studies on radiotherapy during pregnancy used EBRT 

techniques. In the current study, interstitial HDR 
192

Ir BT is proposed as a 

therapeutic option to treat breast cancer in pregnant patients, as previously argued. 

From an exposure perspective, differences exist between both radiotherapy 

techniques when applied to this malignancy. BT offers over EBRT the advantages 

of a smaller prescribed dose, a smaller number of treatment fractions, and a smaller 

overall treatment time, which facilitates maintaining the distance between the breast 

and the fetus as large as possible. However, BT delivers higher doses per fraction, 

which can increase the fetal toxicity, even though this has not been proven at low 
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radiation doses (< 10 cGy). On the other hand, peripheral dose in a given axial 

plane is nearly homogeneous in EBRT, whereas large dose heterogeneities have 

been observed in this study for the HDR-BT case. 

 It may be also interesting to compare accumulated fetal doses reported in 

other studies using EBRT with results obtained in the current study. Figure 6-5 

shows data from the current study (without and with shielding) in the central region 

(see Table 6-1) compared with peripheral doses measured by Martín Rincón et al. 

(2002) when using EBRT without wedges. The latter used tangential 6 MV photon 

beams, prescribing 50 Gy to the right breast. Figure 6-5 shows that peripheral dose 

decreases nearly exponentially in all cases (with an exponential fit provided for the 

different datasets). The slope of the depth-dose curve is steeper for the case of BT 

with shielding. When comparing this case with ‘EBRT – 6 MV’ (from Martín 

Rincón et al. (2002)), it is observed that shielded BT is advantageous from a 

radiation protection point of view beyond 10 cm from the caudal edge of the breast. 

It was the only examined treatment modality able to deliver less than 5 cGy as 

identified as the threshold for fetal toxicity. Differences with reported data by 

Martín Rincón et al. increase up to almost a factor of ten at 25 cm. 

 The treatment planning system only allows dose calculations near the source 

(up to roughly 10 cm) and so it cannot be used to validate results obtained in this 

study. MC simulations could have been performed to evaluate the photon energy 

spectrum at large distance, thus allowing the use of other detectors such as TLDs. 

Nevertheless, Venselaar et al. (1996) evaluated the peripheral dose rate at large 

distances from a 
192

Ir radioactive source, and adjusted the data to a fitting curve. For 

comparison purposes, this curve has been also represented in Figure 6-5 after 

converting the radial distances to dz distances, as used in the current study. The 

agreement between the dose values measured in the current study without shielding 

and those data by Venselaar et al. is good considering the uncertainties and the 

different geometrical conditions in both cases, which validates the results obtained 

in this study with radiochromic films.  
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Figure 6-5. Comparison of accumulated absorbed doses in the central region of a 

phantom after 50 Gy whole breast treatment using external-beam radiotherapy 

(EBRT) 6 MV X-rays without any wedges or shielding (from Martín Rincón et al. 

(2002)), and 36 Gy interstitial brachytherapy (BT) without and with shielding (from 

the current study). Dose values have been fitted by exponential curves. The curve by 

Venselaar et al. (1996) has also been plotted. The 5 cGy constraint presumed in this 

study is depicted with a red horizontal line. 

 

 Other authors have also reported the estimated fetal doses in pregnant 

patients with breast cancer using EBRT. Ngu et al. (1992) treated a woman in the 

late fetal stage using 6 MV photons and tangential wedged fields, covering the 

patient’s abdomen with 0.9 cm of lead shielding and using an additional lead block 

below the breast. A prescription dose of 50 Gy was prescribed and the maximum 

estimated fetal dose was estimated to be 14 cGy to 18 cGy. Van der Giessen (1997) 

evaluated the peripheral dose as a function of distance in breast radiotherapy for 

both, open and wedged beams, from photon energies covering 
60

Co gamma 

radiation and 6 to 25 MV X-rays. Fetal dose as a function of pregnancy stage was 
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reported from those measurements for a target dose of 50 Gy. The estimated 

maximum fetal doses were a factor 5 to 7 and 2 to 4 times higher than in the study 

by Martín Rincón et al. (2002) for the 
60

Co and 6 MV photon beams, respectively. 

Antypas et al. (1998) treated a 45-year-old woman at the second gestation week, 

using 6 MV X-ray beams and two opposing tangential fields, prescribing an overall 

absorbed dose of 46 Gy in 20 fractions. The distance between uterine fundus and 

the lower limit of the radiation fields was 29 cm, where the estimated absorbed dose 

was almost 4 cGy, a dose ten times higher than with the method proposed herein for 

the same distance. On the other hand, Filipov et al. (2013) evaluated fetal doses 

using a “pregnant” humanoid phantom irradiated with 6 MV photon beams and 

wedges. Measurements were done without and with a combination of 1.5 cm and 4 

cm-thick lead blocks, placed around the abdominal region. The minimum fetal 

doses were achieved when using the dynamic wedge and the lead shielding. In that 

case, the estimated dose to the uterine fundus was 13.8 cGy, whereas the pubis 

received 1.8 cGy, which is higher than obtained in the shielded BT approach 

proposed herein. Also, Kourinou et al. (2015) have recently evaluated the fetal dose 

for a breast treatment with 6 MV tangential beams, without wedges or shielding, 

performing measurements with an anthropomorphic phantom. The measured fetal 

doses ranged from 3.9 cGy at 60 cm from the isocenter to 24.8 cGy at 17.5 cm 

distance, also higher than in the shielded BT case. 

 While the use of abdominal shielding in EBRT has decreased the peripheral 

dose, delivery of absorbed dose is dependent on each particular case where dose 

reductions up to 60% have been achieved (Islam et al., 2001; Filipov et al., 2013). 

If this dose reduction is applied to the data in Figure 6-5, shielded BT would still be 

advantageous for dz > 12 cm. Therefore, interstitial breast HDR 
192

Ir BT with 

shielding has been demonstrated to be more advantageous for pregnant patients than 

EBRT, as long as the distance to the uterine fundus is more than 12 cm. 

 The prescription doses and radiobiological equivalence of the EBRT doses 

could be adjusted to match the HDR-BT circumstances. However, these alterations 

would not produce a more fair comparison since the documented prescription doses 
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represent those that are practically prescribed, and the magnitude of any 

radiobiological corrections at these low doses are governed by the uncertainties in 

their methodological assumptions. 

 Dose thresholds given in the literature do not specify if they should be 

related to a certain fetal volume, or if they should be considered as a maximum dose 

or a mean value. From a radiation protection perspective, the maximum dose value 

is typically used. If the maximum value would not be as important, but rather the 

mean or a certain dose volume, given the higher gradient of the BT peripheral dose, 

this BT shielding technique would be even more advantageous (recall that the 

estimated fetal dose at a distance of 30 cm from the caudal edge of the breast was 

below 0.1 cGy). 

 Besides the stated dosimetric advantage of HDR-BT over EBRT, there is 

another factor to consider, the shielding. The shielding mass proposed herein (over 

40 kg) is notably lower than needed for EBRT (over 200 kg (Stovall et al., 1995; 

Josipovic et al., 2009)) where the abdomen, larger than the breast needs to be 

shielded. This makes the BT shielding more manageable, with a lower likelihood of 

accident or couch damage. 

 The shielding described in the current study also allows protection of the 

ocular lenses and the healthy contralateral breast, as opposed to those generally 

used in EBRT, which only cover the abdomen region. The threshold dose above 

which the cataract formation could occur has been recently reduced to 50 cGy 

(Bouffler et al., 2012), although a linear relationship with no-threshold dose 

between probability of cataract formation and lens absorbed dose has not been 

discarded. 

 

6.4.4 Comparison of 192Ir with other HDR-BT sources 

 The technique described herein is based on an 
192

Ir source, the most popular 

radionuclide for HDR-BT. However, breast BT may be also performed nowadays 
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with 
60

Co sources or the 50 kV electronic brachytherapy (eBT) source (Xoft, Inc., 

Sunnyvale, CA, USA) (Rivard et al., 2006; Mille et al., 2010). Even though 

photons emitted by 
60

Co are more energetic than those emitted by 
192

Ir, up to a 

distance of about 25 cm from the source, the energy deposited by both 

radionuclides is nearly the same (
60

Co deposits a few percent smaller dose than 
192

Ir 

(Candela-Juan et al., 2013) in this depth range). Hence, 
60

Co sources may be also 

appropriate for this application, although a wider breast shielding might be required. 

 On the other hand, the eBT source emits photons of a considerably lower 

energy than 
192

Ir, and has been shown to give a smaller dose beyond a few 

centimeters. Through MC simulations, Mille et al. (2010) evaluated the absorbed 

dose to the normal uterus for a reference female phantom being treated to 34 Gy 

with balloon breast BT. Accumulated dose to the uterus was (11.20±0.03) cGy 

when using 
192

Ir and (0.153±0.002) cGy with the eBT sources, with a mean distance 

of 31.5 cm between the balloon center and uterus. Adjusting results of the current 

study to match the lower prescription dose and differing implant distances, HDR-

BT for the breast without and with shielding at the 34 Gy prescription dose and 

distance dz =25 cm provides 6.5 and 0.5 cGy, respectively. Consequently, eBT 

sources appear more favorable for breast BT than 
192

Ir for pregnant patients, even 

without addition of external shielding. 

 

6.4.5 Applicability of the current study to other setups 

 The treatment modality, patient setup geometry, and shielding proposed in 

the current study may be an important treatment method to consider, especially at 

the early gestational ages when the fetus is more sensitive to ionizing radiation and 

there is a higher probability to fetal death, malformations or mental retardations 

(NCRP, 2013). However, results presented herein are valid for the specific 

conditions reported in section 6.2.2 and for the shielding described in section 6.2.3, 

and so they should be carefully extrapolated to other conditions or systems. 
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 Considering treatment delivery, the geometrical setup used in the current 

study is based on a patient seated in a chair with the breast over a table and lead 

shielding surrounding the breast. An alternative setup could be the patient lying in 

the prone position, placing the breast to be treated inside a leaded box. This could 

distance the implant from the thoracic wall, thus achieving a higher attenuation of 

primary radiation. A lateral decubitus setup could be also considered, which may be 

more comfortable than the prone position, with the treated breast positioned closest 

to the shielding. Both of these two setup options should be evaluated from a 

dosimetric perspective before clinical use. 

 Finally, the treatment method described herein could also be applied to skin 

lesions of the extremities in which similar shielding could protect the fetus from 

primary radiation, thus achieving similar or even better dose reductions than in the 

current study. 

 

6.5 Conclusions 

 The optimized delivery of radiation therapy to pregnant patients with breast 

cancer is a demanding task in which the main aim should be tumor control while 

constraining dose delivered to the fetus beneath a fixed value. Previous studies 

evaluated the fetal dose delivered by EBRT. In the current study, HDR 
192

Ir BT has 

been proposed as an alternative method to reduce the fetal exposure. A specific 

patient setup and shielding design has been suggested. The peripheral dose has been 

evaluated as a function of the distance to the lower edge of the breast. Comparison 

with previously reported fetal doses from EBRT techniques showed a dosimetric 

advantage of shielded HDR-BT over EBRT beyond 10 cm. This option is thus an 

alternative method to be considered as long as the pathologic factors included in 

societal recommendations are satisfied, especially at the early gestational ages when 

the fetus is most sensitive to ionizing radiation and deterministic effects. 



 

Chapter 7. GENERAL DISCUSSION 
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 From Chapter 2 to Chapter 6 we have presented five different studies 

related to the radiation protection of patients undergoing HDR brachytherapy. Each 

of these chapters has a specific discussion section and so the reader is referred to 

those sections for a deeper debate on each of the previous topics considered. In this 

section, a general discussion is presented relating the different studies of this 

dissertation. 

 Chapter 2 was the first study performed, and it was of relevance for the 

others. This chapter evaluated the peripheral dose for a patient undergoing HDR 

BT, either with 
60

Co or 
192

Ir sources. Because relative dosimetric differences around 
60

Co and 
192

Ir sources are less significant than prescription technique and the 

optimization parameters, no clinically significant differences exist between them. 

This means that, from a practical point of view where the goal is dose coverage of 

the lesion and dose minimization to healthy tissue, performing an HDR BT 

treatment with a 
60

Co source is equivalent to performing a treatment with a 
192

Ir 

source as long as their specific air-kerma strength or activity is considered. In other 

words, the same BT treatment plan (the same number of catheters and dwell 

positions) can be used for both sources with equivalent clinical results. Biological 

differences between them have been also stated to be negligible (Richter et al., 

2008; Strohmaier et al., 2011). This makes the comparison between these two 

sources independent on the technician and optimization parameters, which allows 

us to make a fair comparison between them, as presented in Chapter 2. MC 

simulations performed in this study showed that, from a patient radiation protection 

point of view, there is an advantage of 
60

Co over 
192

Ir up to ~25 cm, whereas 
192

Ir is 

increasingly advantageous beyond that distance. From the literature review 

performed in Chapter 3 it was found that most of the induced tumors appear within 

the high dose region. Thus, it might be expected from a theoretical point of view a 

slight increase of tumor induction with 
192

Ir than with 
60

Co, although the relative 

dose difference between these two sources is below 10% within this high dose 

region to healthy tissues and so in a practical point of view, this difference might 

result in negligible differences in the rate of cancer induction. Between 30 cm and 
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80 cm from the implant, organ equivalent doses are well below 0.1 Sv for common 

prescription doses, for which the probability to induce a tumor has been shown to 

be near the background level and with high uncertainties. Thus, even though at 

these large distances differences between the two sources for organ equivalent 

doses can be up to a factor of five, this is expected to result in negligible differences 

when considering the probability of cancer induction. 

 The second important point of discussion from Chapter 2 is the difference 

between different radiation techniques in terms of doses to healthy tissues. 

Equivalent doses here obtained were also compared with estimations made from 

EBRT with 3D-CRT, IMRT or proton therapy. As recently stated by a group of the 

GEC-ESTRO, second primary cancer risks must be also considered when deciding 

which patients should be irradiated and which techniques should be used (Murray et 

al., 2014). A recent study by Georg et al. (2014) has evaluated the dose to the 

nearest organs (bladder wall, rectal wall, femoral heads, urethra and pelvic tissue) 

of a prostate treatment, considering different treatment options: volumetric 

modulated arc therapy, intensity-modulated proton therapy, intensity-modulated 

carbon-ion therapy, LDR brachytherapy (with 
125

I sources) and HDR brachytherapy 

(with a 
192

Ir source). It was concluded that BT techniques were clearly superior in 

terms of rectal wall, bladder wall, and normal tissue sparing, with even lower values 

for HDR-BT. This study considered ten patients and it might not be generalizable 

since large differences exist among the literature and between different patients. In 

our study, similar organ doses were found between these different techniques for 

the nearest organs. Thus, it can be concluded that differences might be institution 

and patient dependent for the nearest organs. In our study, we also compared these 

techniques for large distances, and it is clear that BT is superior as the distance 

increases.  

 The fact that the studies by GEC-ESTRO (Murray et al., 2014) and Georg et 

al. (2014) are very recent denote the current importance and concern of the 

scientific and medical society about cancer risks and dose to healthy tissues 

resulting from different radiation techniques. In Chapter 2 and Chapter 3 we hope 
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to have been contributed to this aspect by comparing different sources and different 

radiation techniques in terms of second cancer risks, and to have been done an 

overview of the risks. Due to the large uncertainties in cancer risk estimates at low 

radiation doses, we do not advocate the use of MC simulations (highly time-

consuming) for individual patients.  

 Despite Chapter 2 was applied to a prostate carcinoma, results can be 

extended to other treatments such as the gynecological ones, which is the most 

extended application of HDR brachytherapy. The comparison between 
192

Ir and 
60

Co is also of application for any other treatment region. 

 Results from Chapter 3 concerning the current limitations of knowledge on 

tumor induction at low radiation doses motivated our interest in the study presented 

in Chapter 4. Epidemiologists and medical physicists from Sweden contacted us to 

perform MC simulations to characterize radium sources widely used during the first 

part of last century. As stated by the UNSCEAR committee in 2013, the extensive 

group of children treated with 
226

Ra sources may be very helpful to determine the 

relationship between a specific late hazard effect and the absorbed dose 

(UNSCEAR, 2013). Thus, while the topic might seem esoteric, the lack of accurate 

dosimetric data for the sources that were used in Sweden, and an evaluation of 

uncertainties, made it difficult to take the most profit of their extended data on 

patient follow-up. Therefore, it is expected that the dosimetric data presented in 

Chapter 4 are important for retrospective epidemiological studies. 

 Reducing the high absorbed doses to organs near the treatment volume is of 

importance to improve the treatment outcome in terms of toxicity. This was the aim 

of Chapter 5 when applied to the treatment of surface lesions. Typically moulds 

and flaps are used on superficial skin brachytherapy for treatment depths up to 

about 5 mm. The use of superficial skin shielding applicators is an efficient solution 

because these reduce significantly the absorbed dose to the surrounding healthy 

tissues. Currently there are radionuclide based HDR 
192

Ir applicators as well as 

electronic sources. All these applicators restrict the useful beam to cross-sectional 
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circular beams of some specific diameters. On the other hand, the use of moulds 

and flaps allows producing irregular dose distributions, which might be of more 

interest in some cases. In Chapter 5 we extended the advantage of shielding 

applicators to moulds and flaps by adding a lead shield above the implant. For 

example, shields might be placed on the nose surface to attenuate radiation to the 

eye lens from a nasal implant, or around the breast to protect the thyroid from direct 

radiation coming from a breast treatment. The study presented in Chapter 5 has 

allowed making this efficiently by evaluating the bolus thickness required to be 

placed between the implant and the lead shielding in order to avoid a large surface 

overdose due to electron contamination and backscattering in the lead shield. This 

study also allowed evaluating the dose reduction near the shielding. Thus, this study 

and the methodology proposed is easy, economical and effective to implement in 

clinical practice to allow irregular dose distributions in the surface while shielding 

some of the nearest organs, as achieved with specifically designed surface 

applicators. 

 The study presented in Chapter 6 concerning the reduction of the fetal dose 

in a pregnant patient with breast cancer was motivated by the experience and 

knowledge acquired from the other studies of this thesis. It was March 2013 when a 

pregnant patient with breast cancer was submitted to the radiotherapy oncology 

department of La Fe University and Polytechnic Hospital (Valencia, Spain). 

Besides the tumor control, the reduction of the fetal dose was a priority. To our 

knowledge, all previously reported cases of radiotherapy applied to pregnant 

patients were based on EBRT. However, Chapter 2 had revealed that BT was 

advantageous over EBRT at large distances. In addition, we had recently evaluated 

the influence of lead shielding, and knew how to avoid surface overdose. Chapter 5 

also allowed obtaining the thickness of the lead shielding required to absorb most of 

the primary beam that could contribute to increase notably the absorbed dose to the 

fetus, and this information was used to build the shielding presented in Chapter 6. 

The results with this setup and shielding were very promising when compared with 

previously reported data from EBRT, allowing the reduction of the fetal dose in 
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comparison with EBRT for distances between the caudal edge of the breast and the 

uterine fundus larger than 10 cm. Differences reach more than one order of 

magnitude at 30 cm distance. In 1983 it was estimated that 1 out of 1000 pregnant 

women were diagnosed with cancer (Donegan, 1983). This number is expected to 

increase as the age of pregnancy increases. Many of those patients need 

radiotherapy, and so the proposed setup and shielding can be of great benefit for 

them. 

 



 

SUMMARY 

 The use of HDR 
192

Ir brachytherapy has increased substantially since the 

1990s and it is expected to grow even more in the near future (Guedea, 2014), thus 

becoming a fundamental therapeutic tool.  Compared to EBRT, BT has the 

advantages of a rapid fall off of dose around the sources and shorter overall 

treatment duration, herein reducing the risk of tumor repopulation. However, the 

dose distribution is not homogeneous and accuracy in source positioning is critical 

(Gerbaulet et al., 2002). 

 During radiation therapy not only the tumor volume absorbs dose, but also 

all the remaining tissues of the body. This may result in some cases in acute, sub-

acute and/or long-term side-effects, which depend on the location of the target 

volume, the amount of absorbed dose and dose rate, and the type of radiotherapy 

that is used. Reducing the absorbed dose to healthy tissues will surely improve the 

treatment success.  

 Due to improved long-term survival rates, long-term side-effects such as the 

induction of a second primary tumor related to the radiation treatment are becoming 

increasingly important. The scientific community tries to establish a relationship 

between organ equivalent doses and the probability that a specific tumor is induced. 

If the relationship were known, the secondary cancer induction from a typical 

brachytherapy treatment could be obtained and compared with the probability from 

other radiation techniques. The AAPM Task Group 158 and the NCRP Scientific 

Committee have excluded brachytherapy from their studies due to lack of data (Xu 
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et al., 2008), which confirms the necessity to make a complete study regarding 

peripheral doses from HDR brachytherapy.  

 The goal of this thesis was threefold. Firstly, to evaluate the peripheral dose 

in a typical clinical scenario and discern which HDR radionuclide is more 

advantageous from a patient radiation protection point of view (see Chapter 2). 

Secondly, the risk of secondary malignancies induced by the BT treatment was 

reviewed (see Chapter 3). Concerning to this second point, because 

epidemiological data with higher dose estimation accuracy are needed, we provided 

a more accurate dosimetry based on the currently used formalism for old radium 

brachytherapy sources, for which a large and long patient follow-up exists (see 

Chapter 4). Thirdly, we aimed to reduce the peripheral dose received by organs 

and tissues near the implant using specifically designed implant shielding (see 

Chapter 5 and Chapter 6). Below is a summary of the information contained in 

each of the chapters of this dissertation.  

 In Chapter 1 a general introduction extending the information that has been 

summarized in the previous paragraphs was presented, along with the objectives of 

the thesis and an outline of it. 

 In Chapter 2 the peripheral dose to a patient undergoing HDR 

brachytherapy applied to a localized prostate carcinoma was obtained for both, 
60

Co 

and 
192

Ir sources. These are nowadays the only commercially-available 

radionuclides for HDR BT. MC simulations in GEANT4 were performed using a 

voxelized phantom described in ICRP Publication 110, which reproduces masses 

and shapes from an adult reference man defined in ICRP Publication 89. Point 

sources of 
60

Co or 
192

Ir with photon energy spectra corresponding to those exiting 

their capsules were placed in the center of the prostate, and equivalent doses per 

clinical absorbed dose in this target organ were obtained in several radiosensitive 

organs. Values were corrected to account for clinical circumstance with the source 

located at various positions with differing dwell times throughout the prostate. This 

methodology was repeated for a homogeneous water phantom. A database of organ 
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equivalent doses when applying HDR brachytherapy to the prostate with either 
60

Co 

or 
192

Ir was provided. 

 The results were that, for the nearest organs considered (bladder, rectum, 

testes, small intestine, and colon), equivalent doses given by a 
60

Co source were 

roughly 10% smaller than from 
192

Ir. However, as the distance increases, the more 

penetrating gamma rays produced by 
60

Co deliver higher equivalent doses. Thus, 

according to physical considerations, 
192

Ir is dosimetrically advantageous over 
60

Co 

sources at large distances, but not in the closest organs. The overall result is that 

effective dose per clinical absorbed dose from a 
60

Co source (11.1 mSv/Gy) is 

roughly 10% lower than from a 
192

Ir source.  

 Regarding the differences between calculations in a heterogeneous and a 

homogeneous water phantom, it was concluded that equivalent doses were the same 

for those soft tissues closer to the prostate than about 30 cm. As the distance 

increased, the differences of photoelectric effect in water and soft tissue, and 

appearance of other materials such as air, bone or lungs, produced variations 

between both phantoms which were at most 35% in the considered organ equivalent 

doses.  

 Finally, peripheral doses from HDR brachytherapy sources were compared 

with reported values from proton therapy and IMRT. Damage to distant healthy 

organs per clinical absorbed dose is lower with brachytherapy than with IMRT or 

protons, although the overall effective dose per Gy given to the prostate was very 

similar. Given that there are several possible fractionation schemes, which result in 

different total amounts of therapeutic absorbed dose, advantage of a radiation 

treatment (according to equivalent dose to healthy organs) is treatment and facility 

dependent, although BT is advantageous over EBRT for the furthest organs.  

 In Chapter 3, the current knowledge on cancer induction from ionizing 

radiation was reviewed. It was aimed to determine if a well established relationship 

between organ equivalent dose and probability of cancer induction was already 
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known, which could facilitate and improve the comparison between different 

radiation modalities performed in the previous chapter.  

 Graphically, three main areas can be identified in this dose–effect curve (Hall 

et al., 2004). In the central zone (between 0.1 Sv and 2.5 Sv) there appears to be a 

linear relationship in which, as the organ equivalent dose increases so does the 

probability of tumor induction.  

 At higher organ equivalent doses (> 2.5 Sv), radiation induced cell 

sterilization, cell repopulation, and proliferation may cause a deviation from a linear 

dose response (Nguyen et al., 2015). Phenomenological risk models based on fitting 

parameters have been applied to estimate the risk of inducing a tumor in organs 

inside the primary radiation field, i.e., at doses in excess of 2.5 Gy. In particular, 

recent studies have applied a model developed by Schneider (2009), which is based 

on the linear-quadratic formula, to estimate the outcome of different treatment 

modalities (Nguyen et al., 2015). Linear, linear-exponential, and plateau models 

have been also used (Abo-Madyan et al., 2014). A review study by Xu et al. (2008) 

showed that the cumulative risk for the development of second cancers has been 

estimated as ranging from 5% to 12% over a 25 year follow-up interval, although 

there exists a high dispersion of data. The model parameters have been determined 

with limited data and, therefore, uncertainties will limit the model predictions. 

Nguyen et al. (2015) have recently estimated that the uncertainties associated with 

model predictions are higher than 100%. This implies that, currently, it might not be 

feasible to reliably predict cancer risks based on treatment plan information and 

phenomenological risk models. 

 At low radiation doses (less than 0.1 Sv) also different models have been 

proposed based on observations. Because of its simplicity, reasonability, and 

conservative approach, international committees such as the ICRP and the NCRP 

recommended extrapolating the linear relationship to the lowest dose range. 

However, the available evidence for this has not been statistically significantly 

better for predicting cancer than other methods based on a threshold dose (Fletcher 
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et al., 2013) owing to high background incidence cases. Uncertainties in past 

epidemiological data of irradiation exposures within the diagnostic dose range did 

not rule out a possible threshold dose below which no excess cases of cancer 

appeared. This threshold dose might be within the range of 10 to 60 mSv (Xu et al., 

2008; Pauwels et al., 2011). Thus, the risks, if existent, are of the same order of 

magnitude than background levels.  

 From a deep literature review of studies concerning radiation therapy and 

cancer risks for organs receiving low radiation doses, Xu et al. (2008) concluded 

that many of the past dosimetry studies were based on inconsistent and sometimes 

confusing dose quantities, which reduces the possibility that they can be used to 

perform more sophisticated epidemiological studies. We thus conclude that 

retrospective risk assessments of ionizing radiation require more reliable dosimetric 

data and epidemiological studies, as well as an estimate of their uncertainty before 

general conclusions can be established.  

 During the first part of the 20th century, 
226

Ra was the most used 

radionuclide for brachytherapy. Thus, like survivors of the atomic bombs, data of 

children treated with 
226

Ra sources may be very helpful to determine the 

relationship between a specific late hazard effect and the absorbed dose.
 
As recently 

noted by the UNSCEAR committee, the latter is of current interest in the search for 

improved knowledge on dose-response relationships for cancer induction and other 

late effects due to exposure to ionizing radiation in early childhood (UNSCEAR, 

2013). Related to this, Sweden has long held a complete registry on cancer 

incidence coupled to unique citizen ID numbers. Together with detailed knowledge 

about the children that underwent 
226

Ra treatment, these data are of interest to use in 

research on late radiation effects. However, earlier dosimetric data for the sources 

that were used in Sweden were restricted. The aim of Chapter 4 was to 

dosimetrically characterize two 
226

Ra sources, commonly used in Sweden during 

the first half of the 20th century, for retrospective dose-effect studies, as requested 

by Swedish epidemiologists. 
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 An 8 mg 
226

Ra tube and a 10 mg 
226

Ra needle, used at Radiumhemmet 

(Karolinska University Hospital, Stockholm, Sweden) from 1925 to the 1960s, were 

modeled in two independent MC radiation transport codes: GEANT4 and MCNP5. 

Absorbed dose and collision kerma around the two sources were obtained, from 

which the TG-43 parameters that can be implemented in current planning systems 

were derived for the secular equilibrium state. Furthermore, results from this 

dosimetric formalism were compared with results from a realistic MC simulation 

with a superficial mould constituted by 5 needles inside a glass casing, placed over 

a water phantom, trying to mimic a typical clinical set-up. The aim of this 

comparison was to validate the use of dosimetric data in the format of TG-43 

parameters for surface treatments, where lack of backscattering at the water surface 

could give place to errors in the dose calculation. Furthermore, calculated absorbed 

doses using the TG-43 formalism were also compared with previously reported 

measurements and calculations based on the Sievert Integral. Finally, the dose rate 

at large distances from a 
226

Ra point-like-source placed in the center of 1 m radius 

water sphere was calculated with GEANT4, and data were fitted by an analytical 

function to allow estimation of absorbed dose at large distances from the sources. 

 From this study, TG-43 parameters (including gL(r), F(r,θ), Λ and sK) have 

been provided for epidemiological studies, and the fitting parameters of a 

mathematical curve that provides the dose rate between 10 cm and 60 cm from the 

source have been calculated. Results from TG-43 formalism are consistent within 

the treatment volume with those of a MC simulation of a typical surface clinical 

scenario. Comparisons with reported measurements made with TLDs show 

differences up to 13% along the transverse axis of the radium needle. It was 

estimated that the uncertainty associated to the absorbed dose within the treatment 

volume is 10% to 15%, whereas uncertainty of absorbed dose to distant organs is 

roughly 20% to 25%.  

 The results provided in Chapter 4 facilitate retrospective dosimetry studies 

of 
226

Ra using modern treatment planning systems, which may be used to improve 

knowledge on long term radiation effects. It is surely important for the 
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epidemiologic studies to be aware of the estimated uncertainty provided here before 

extracting their conclusions. 

 The following two chapters of this dissertation were aimed to reduce the 

peripheral dose received by organs and tissues near the implant using specifically 

designed implant shielding. In particular, in surface HDR brachytherapy with either 
60

Co, 
192

Ir, or 
169

Yb sources (the latter has potential as HDR source and might be 

available in the future), some radiosensitive organs near the surface may be exposed 

to high absorbed doses. This may be reduced by covering the implants with a lead 

shield on the body surface, which has two main dosimetric consequences. Firstly, 

backscattering produces a dose enhancement in the patient in the vicinity of the 

shielding. Secondly, photon absorption reduces dose above the shield, downstream 

from the distal surface of the barrier. Radiation transmission data had not been 

evaluated in surface or interstitial BT for a typical clinical scenario. Chapter 5 was 

aimed to evaluate the dosimetric perturbation produced by lead shields that are used 

in some surface HDR BT treatments.  

 Monte Carlo simulations in GEANT4 were performed for the three 

radionuclides placed at a single dwell position. Four different shield thicknesses (0, 

3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were 

considered, with the lead shield placed at the phantom surface. From these 

simulations, backscatter dose enhancement and transmission data were obtained. 

Finally, results were corrected to account for a realistic clinical case with multiple 

dwell positions.  

 From this study it was concluded that the range of the high backscatter dose 

enhancement in water is 3 mm for 
60

Co and 1 mm for both 
192

Ir and 
169

Yb. Thus, as 

stated in Chapter 5, the backscatter overdose produced by the lead shield can be 

avoided just using a few millimeters of bolus, herein justifying the use of lead 

shields. On the other hand, transmission data for 
60

Co and 
192

Ir are smaller than 

those reported by Papagiannis et al. (2008) for brachytherapy facility shielding. For 
169

Yb, the difference is negligible. 
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 The previous study is of application in several clinical scenarios. For 

example, shields might be placed on the nose surface to attenuate radiation to the 

eye lenses from a nasal implant, or around the breast to protect the thyroid from 

direct radiation coming from a breast treatment. Another application of the previous 

approach is to minimize the fetal dose in a pregnant patient with breast cancer 

needing radiotherapy.  

 Chapter 6 aimed to assess the radiation dose to the fetus of a pregnant 

patient undergoing HDR 
192

Ir interstitial breast brachytherapy, and to design a new 

patient setup and lead shielding technique that minimizes the fetal dose. To do that, 

the pregnant woman was planned to be seated in a chair with the breast over a table 

and inside a leaded box specifically designed to protect the fetus. A total of 36 Gy 

in 8 fractions were prescribed. The shielding design consisted of a 3.5 cm thick 

layer of lead placed between the breast and the table. Thus, during the treatment, the 

breast rested over this lead shield. In addition, two lateral pieces of lead (3 cm thick 

each) were added. One of the lateral layers had a port through which the transfer 

tubes were connected to the catheters. The lateral blocks allowed placing an extra 

piece of lead (2.5 cm thick) above the breast, parallel to the first layer, aiming to 

reduce primary radiation to the thyroids and eye lenses. In addition, in order to 

minimize the transit dose when the 
192

Ir source exits and returns to the remote 

afterloader, a hollow lead tube was made, which covered the transfer tubes. Finally, 

a layer of water-equivalent material (1 mm thick) was placed between the lead 

shielding and the patient skin to minimize the backscattering and electron 

contamination coming from the shield, as had been determined in the previous 

chapter.  

 Dose measurements were done with radiochromic films that were placed 

between the slices of an anthropomorphic phantom modeling the patient. Dose 

variation as a function of distance from the implant volume as well as dose 

homogeneity within a representative slice of the fetal position was evaluated 

without and with shielding. Results with the previous setup were very promising. 

With shielding, the peripheral dose ranged from 50 cGy at 5 cm from the caudal 
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edge of the breast to < 0.1 cGy at 30 cm. The shielding reduces absorbed dose by a 

factor of two near the breast and more than an order of magnitude beyond 20 cm. 

The dose is heterogeneous within a given axial plane, with variations from the 

central region within 50%. From a literature analysis, it was also observed that 

interstitial HDR 
192

Ir brachytherapy with breast shielding can be more advantageous 

than EBRT from a radiation protection point of view, as long as the distance 

between the caudal edge of the breast and the uterine fundus is higher than about 10 

cm. At 30 cm distance, absorbed dose is more than a factor of ten smaller with 

shielded HDR brachytherapy than with EBRT. Furthermore, the weight of the 

shielding here proposed is notably lower than that needed in EBRT. Therefore, the 

shielded breast brachytherapy setup presented in Chapter 6 may benefit pregnant 

patients needing localized radiotherapy, especially during the early gestational ages 

when the fetus is more sensitive to ionizing radiation. 

 Finally, Chapter 7 presented a general discussion previous to this summary. 

 



 

SUMMARY IN SPANISH / 

RESUMEN EN ESPAÑOL 

 La braquiterapia (BT) es una modalidad de tratamiento de radioterapia en la 

que se coloca una fuente radiactiva encapsulada cerca, en contacto o en el interior 

del volumen a tratar. La desintegración de esta fuente produce la emisión de 

energía, lo que puede dar lugar a la muerte celular. Una dosis absorbida muy 

elevada (la dosis absorbida se define como la energía absorbida por unidad de 

masa) se deposita en un corto período de tiempo y en un pequeño número de 

fracciones. Para poder realizar un tratamiento de BT se requiere que el volumen de 

tratamiento sea accesible y bien delimitado en tamaño y forma. La BT se utiliza 

comúnmente como una modalidad de tratamiento eficaz para el cáncer de cuello 

uterino, de próstata, de mama y de piel. También ha demostrado ser eficaz para 

tratar tumores de la región del cerebro, cabeza y cuello (por ejemplo, labios o 

lengua), ojo, la tráquea y los bronquios, el aparato digestivo y el tracto urinario (por 

ejemplo, la vejiga, el recto, el ano, la uretra o el pene), el tracto reproductor 

femenino (útero, vagina y vulva), y otros tejidos blandos (Gerbaulet et al., 2002).  

 En función de la tasa de dosis D alrededor de la fuente radiactiva empleada, 

la BT se clasifica en: BT de alta tasa de dosis (HDR) (D>12 Gy/h), BT de media 

tasa de dosis (MDR) (D=2-12 Gy/h)), BT de tasa de dosis pulsada (PDR) (pulsos 

cortos de radiación, generalmente una vez una hora) y BT de baja tasa de dosis 

(LDR) (D<2 Gy/h). En detrimento de la LDR, la HDR se está convirtiendo hoy en 

día en la modalidad más extendida en todo el mundo (Guedea, 2014). Las ventajas 

de la HDR sobre la terapia LDR incluyen la reducción de exposición del personal a 
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radiación ionizante, la reducción del tiempo de tratamiento global, la aplicación del 

tratamiento de forma remota, así como un ahorro económico (Bastin et al., 1993). 

Además, para el caso particular de la braquiterapia de próstata, se minimizan 

algunos de los problemas comunes relacionados con los implantes de semillas 

permanentes, tales como la incapacidad para corregir la posición de las semillas, 

incapacidad para optimizar la dosis absorbida una vez que las semillas están en su 

lugar, y la discrepancia entre la distribución de dosis planeada y la definitiva 

(Demanes et al., 2014). Por contra, se ha estimado que con la BT HDR existe un 

mayor riesgo de efectos secundarios (Dale, 1985). Por todas estas razones, la terapia 

de HDR es la técnica de BT considerada en este estudio que trata la protección 

radiológica del paciente. 

 El uso de la BT HDR se ha incrementado sustancialmente desde la década de 

1990 y se espera que crezca aún más en un futuro próximo (Guedea, 2014), 

convirtiéndose así en una herramienta terapéutica fundamental. En comparación 

con la radioterapia externa (EBRT), la BT tiene la ventaja de una rápida caída de la 

dosis con la distancia a la fuente y una duración del tratamiento total menor, siendo 

así un tratamiento más localizado y que reduce el riesgo de repoblación tumoral. 

Sin embargo, la distribución de dosis no es homogénea y la precisión en el 

posicionamiento de la fuente radiactiva es crítica (Gerbaulet et al., 2002). 

 Durante un tratamiento de radioterapia no sólo el volumen del tumor absorbe 

dosis, sino también todos los tejidos restantes del cuerpo, en mayor o menor 

medida. Órganos cercanos o en contacto con el tejido a irradiar pueden recibir 

también altas dosis de radiación, mientras que el tejido más alejado se expone a 

dosis de radiación bajas. Esto puede resultar en algunos casos en efectos 

secundarios agudos, sub-agudos y/o efectos de largo plazo. La aparición de estos 

efectos depende de la ubicación del volumen a tratar, de la cantidad de dosis 

prescriba, de la tasa de dosis, y del tipo de radioterapia que se utiliza. Es seguro que 

la reducción de la dosis absorbida por los tejidos sanos mejora el éxito del 

tratamiento en relación a las secuelas. 
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 Debido al incremento de la tasa de supervivencia a largo plazo, los efectos 

secundarios tales como la inducción de un tumor secundario están convirtiéndose 

cada vez más importantes. La comunidad científica intenta establecer una relación 

entre dosis equivalentes a órganos y la probabilidad de que se induzca un tumor. Si 

se conociera dicha relación, se podría obtener cuál es la probabilidad de inducir un 

tumor tras un tratamiento típico de braquiterapia, comparándola con la probabilidad 

derivada de otras técnicas de tratamiento con radiaciones. El Grupo de Trabajo 158 

de la Sociedad Americana de Físicos Médicso (AAPM) y el Comité Científico del 

Consejo Nacional Americano de Protección y Medición de Radiación (NCRP) han 

excluido la braquiterapia de sus estudios de tumores radio inducidos debido a la 

falta de datos (Xu et al., 2008), lo que confirma la necesidad de realizar un estudio 

completo con respecto a las dosis periféricas en braquiterapia HDR. 

 Tres son los objetivos principales de esta tesis. En primer lugar, evaluar la 

dosis periférica en un escenario clínico típico de BT HDR y discernir qué fuente 

radiactiva de HDR es más ventajosa desde el punto de la protección radiológica del 

paciente (véase el Capítulo 2). En segundo lugar, se pretende realizar una revisión 

bibliográfica sobre el riesgo de inducir un tumor secundario tras un tratamiento de 

BT (véase el Capítulo 3). Con respecto a este segundo punto, ya que se necesitan 

más datos epidemiológicos con mayor precisión en la estimación de la dosis, 

llevamos a cabo una caracterización dosimétrica precisa de antiguas fuentes de 
226

Ra para las cuales existe un extenso y completo seguimiento, basada en el 

formalismo utilizado actualmente para fuentes de BT (véase el Capítulo 4). En 

tercer lugar se tiene como objetivo reducir la dosis periférica recibida por los 

órganos y los tejidos cercanos al implante de BT HDR, utilizando para ello 

blindajes que hemos diseñado especialmente para este objetivo (véase el Capítulo 5 

y el Capítulo 6). 

 A continuación se muestra un resumen de la información contenida en cada 

uno de los capítulos de esta tesis. 
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 En el Capítulo 1 se presentó una introducción general que extiende la 

información que se ha resumido en los párrafos anteriores. Además, se introdujeron 

los objetivos de la tesis y un esbozo de lo contenido en cada uno de ellos. 

 En el Capítulo 2 se obtuvo la dosis periférica en un paciente sometido a BT 

HDR aplicada a un carcinoma de próstata localizado tanta con fuentes de 
60

Co 

como de 
192

Ir. Estos dos radionúclidos son hoy en día los únicos comercialmente 

disponibles para HDR BT. Para llevar a cabo el objetivo de este estudio se 

realizaron simulaciones MC con GEANT4, utilizando un maniquí voxelized 

proporcionado por la Publicación 110 de la Comisión Internacional de Protección 

Radiológica (ICRP). Este maniquí reproduce las masas y formas de todos los 

órganos del hombre adulto considerado de referencia. Las fuentes puntuales de 
60

Co 

o 
192

Ir se colocaron en el centro de la próstata y se simuló la emisión de fotones con 

un espectro de energía igual al que sale de las fuentes reales. A partir de estas 

simulaciones se obtuvo la dosis equivalente en todos los órganos del cuerpo, 

normalizado por la dosis absorbida por la próstata. Los valores fueron corregidos 

para tener en cuenta la circunstancia clínica según la cual la fuente no se lleva a una 

única posición en el centro de la próstata, sino que se sitúa en varias posiciones a lo 

largo de toda la próstata, con diferentes tiempos de permanencia en cada una de 

estas posiciones. Esta metodología se repitió para un maniquí igual que el anterior, 

pero en el que la composición de todos los vóxeles se sustituyó por agua. Esto 

último tenía por objetivo comparar los resultados dosimétricos en un maniquí 

realista respecto a cuándo se considera todo el cuerpo hecho de agua, que es la 

situación actual en la planificación de tratamientos de braquiterapia. 

 Este estudio proporcionó una base de datos de dosis equivalentes a órganos 

tras aplicar braquiterapia HDR a la próstata, ya sea con fuentes de 
60

Co o de 
192

Ir. 

Lo que se observó fue que en los órganos cercanos considerados (vejiga, recto, 

testículos, intestino delgado y colon), las dosis equivalentes dadas por la fuente de 
60

Co son aproximadamente un 10% inferiores a las derivadas de un tratamiento con 
192

Ir. Sin embargo, a largas distancias (más de 30 cm aproximadamente), el 
60

Co 

proporciona dosis equivalentes superiores debido a una mayor energía media de los 
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fotones que emite. Así, de acuerdo a las consideraciones físicas, el 
192

Ir es 

dosimétricamente ventajoso sobre el 
60

Co a grandes distancias, pero no en los 

órganos cercanos. El resultado global es que la dosis efectiva por dosis clínica 

absorbida en la próstata es 11.1 mSv/Gy cuando se hace uso de una fuente de 
60

Co, 

y un 10% aproximadamente inferior cuando se hace uso de una fuente de 
192

Ir. 

 En cuanto a las diferencias entre los cálculos en un maniquí heterogéneo y un 

maniquí homogéneo de agua, se concluyó que las dosis equivalentes eran iguales 

para los tejidos blandos que estaban a un máximo de unos 30 cm de la próstata, es 

decir, cerca del implante. A medida que aumentaba la distancia, las diferencias de 

efecto fotoeléctrico en el agua y los tejidos blandos, y la aparición de otros 

materiales tales como aire, hueso o pulmones, producen variaciones entre ambos 

maniquíes, alcanzado las diferencias entre la dosis equivalente a órganos un 35% en 

el peor de los casos. 

 Finalmente, las dosis periféricas derivadas de tratamientos con fuentes de BT 

HDR se compararon con los valores reportados en la literatura para tratamientos 

con protones y radioterapia externa de intensidad modulada (IMRT). Se vio que el 

daño a los órganos sanos distantes es menor con braquiterapia que con IMRT o 

protones, aunque la dosis efectiva total por Gy a la próstata es muy similar en los 

tres casos. Dado que hay varios posibles esquemas de fraccionamiento, que resultan 

en diferentes cantidades totales de dosis absorbida terapéutica, la ventaja de un tipo 

de tratamiento de radioterapia frente a otro (según dosis equivalente a órganos 

sanos) es dependiente del propio tratamiento y del fraccionamiento utilizado en la 

instalación, aunque en cualquier caso la BT es ventajosa sobre la EBRT y los 

protones para los órganos más alejados. 

 En el Capítulo 3 se revisa el conocimiento actual sobre la inducción de 

cáncer debido a las radiaciones ionizantes. El objetivo fue determinar si existía una 

relación bien establecida entre la dosis equivalente a órganos y la probabilidad de 

inducción de cáncer, lo que podría facilitar y mejorar la comparación entre 

diferentes modalidades de tratamiento de radiación realizada en el capítulo anterior. 
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 Se pueden identificar tres regiones diferentes en el gráfico que relaciona la 

dosis equivalente a órgano con la probabilidad de inducir un tumor (Hall et al., 

2004). En la zona central (entre 0.1 y 2.5 Sv) hay una relación lineal según la cual, 

un aumento de la dosis absorbida incrementa proporcionalmente la probabilidad de 

inducir un tumor. 

 A mayores dosis equivalentes a órganos (> 2.5 Sv), los efectos de 

esterilización celular debida a la radiación, la repoblación de células y la 

proliferación pueden causar una desviación en la respuesta lineal (Nguyen et al., 

2015). Para realizar estimaciones en los órganos que se encuentran dentro del 

campo de radiación y que, por lo tanto, reciben más de 2.5 Sv, los investigadores 

han aplicado modelos de riesgo fenomenológicos basados en diversos parámetros 

de ajuste. En particular, estudios recientes han aplicado un modelo desarrollado por 

Schneider (2009) que se basa en la fórmula lineal-cuadrática para estimar el 

resultado de diferentes modalidades de tratamiento (Nguyen et al., 2015). Otros 

modelos como el de meseta-lineal y lineal-exponencial también han sido utilizados 

para hacer estimaciones (Abo-Madian et al., 2014). Un estudio de revisión 

realizado por Xu et al. (2008) mostró que el riesgo acumulado para el desarrollo de 

tumores secundarios se ha estimado que va desde el 5% al 12% tras un intervalo de 

seguimiento de 25 años, aunque existe una alta dispersión en los datos. Los 

parámetros del modelo se han determinado con datos limitados y, por tanto, las 

incertidumbres limitarán las predicciones realizadas. Nguyen et al. (2015) han 

estimado recientemente que las incertidumbres asociadas con las predicciones de 

estos modelos son superiores al 100%. Esto implica que, en la actualidad, podría no 

ser factible predecir de forma fiable los riesgos de cáncer basándonos en la 

información del plan de tratamiento y modelos de riesgo fenomenológicas. 

 En dosis bajas de radiación (menos de 0.1 Sv) también existen diferentes 

modelos, algunos basados en la teoría y otros en observaciones. Debido a su 

simplicidad, razonabilidad, y el enfoque conservador, los comités internacionales 

como la ICRP y la NCRP recomiendan extrapolar la relación lineal a este rango de 

dosis bajas. Sin embargo, la evidencia disponible no es estadísticamente más 
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significativa para predecir el cáncer inducido que la de otros modelos basados en 

una dosis umbral (Fletcher et al., 2013), lo cual es debido a los altos valores de 

fondo. Las incertidumbres en los datos epidemiológicos no descartan una posible 

dosis umbral por debajo de la cual no hay un exceso de casos de cáncer. Por lo 

tanto, los riesgos derivados de bajas dosis de radiación, en el caso de que existan, 

son del mismo orden de magnitud que los niveles de fondo. 

 A partir de una revisión bibliográfica llevada a cabo por Xu et al. (2008), la 

cual se centraba en las pequeñas dosis de radiación derivadas de tratamientos de 

radioterapia, se llegó a la conclusión que muchos de los estudios dosimetría 

realizados hasta la fecha se basaron en cantidades de dosis inconsistentes y, a veces, 

confusas, lo que reduce la posibilidad de que puedan ser utilizados para llevar a 

cabo estudios epidemiológicos más sofisticados. Por lo tanto, concluimos que las 

evaluaciones de riesgo retrospectivas de las radiaciones ionizantes requieren datos 

dosimétricos más fiables, así como una estimación de su incertidumbre antes que se 

puedan extraer conclusiones más generales. 

 Durante la primera parte del siglo 20, el 
226

Ra fue el radionúclido más usado 

en braquiterapia. Por lo tanto, al igual que los sobrevivientes de las bombas 

atómicas, los datos de los niños tratados con fuentes de 
226

Ra pueden ser muy útiles 

para determinar la relación entre un determinado efecto radioinducido y la dosis 

absorbida. Como señaló recientemente el Comité Científico de las Naciones Unidas 

en el Efecto de las Radiaciones Atómicas (UNSCEAR, 2013), este último grupo es 

de interés actual en la búsqueda de un mejor conocimiento sobre las relaciones 

dosis-efecto. En relación con esto, Suecia ha mantenido durante mucho tiempo un 

registro completo de la incidencia de cáncer en todos los pacientes tratados. Junto 

con un conocimiento detallado acerca de los niños que se sometieron al tratamiento 

de 
226

Ra, estos datos son de interés para su uso en la investigación sobre los efectos 

tardíos de la radiación. Sin embargo, los datos dosimétricos hasta la fecha utilizados 

para las fuentes que se utilizaron en Suecia son escasos y de presentan dudas.  
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 A petición de epidemiólogos suecos, el objetivo del Capítulo 4 fue 

caracterizar dosimétricamente dos fuentes de 
226

Ra comúnmente utilizadas en 

Suecia durante la primera mitad del siglo 20 con el fin de llevar a cabo estudios 

retrospectivos. Para ello, un tubo de 8 mg de 
226

Ra y una aguja de 10 mg de 
226

Ra, 

utilizados en Radiumhemmet (Hospital Universitario Karolinska, Estocolmo, 

Suecia) desde 1925 hasta la década de 1960, fueron reproducidos en dos códigos 

MC que simulan el transporte de radiaciones y su interacción con la materia. Los 

códigos independientes utilizados fueron GEANT4 y MCNP5. Con ellos se 

obtuvieron las distribuciones de dosis absorbida y kerma de colisión alrededor de 

las dos fuentes, a partir de las cuales se derivaron los parámetros del TG-43 que se 

pueden implementar en los sistemas actuales de planificación. Además, los 

resultados de este formalismo dosimétrico se compararon con los resultados de una 

simulación realista también hecha con MC con un molde superficial constituido por 

5 agujas dentro de una funda de vidrio. Ésta se colocó sobre un maniquí de agua 

que simulaba el paciente, tratando de imitar un típico caso clínico de tratamiento de 

piel. El objetivo de esta comparación fue validar el uso de los datos dosimétricos 

proporcionados en el formalismo del TG-43 para tratamientos superficiales, 

teniendo en cuenta que el TG-43 considera un medio infinito de agua mientras que 

en un tratamiento de piel hay una falta de retrodispersión en la superficie del agua, 

que podría dar lugar a errores en el cálculo de la dosis. Además, las dosis 

absorbidas calculadas utilizando el formalismo del TG-43 también se compararon 

con las mediciones y cálculos previamente reportados en la literatura que se 

basaban en el antiguo formalismo de la Integral de Sievert. Por último, la tasa de 

dosis a grandes distancias de un una fuente de 
226

Ra colocada en el centro de una 

esfera de agua de 1 m de radio se calculó con GEANT4, y la tasa de dosis en 

función de la distancia se ajustó con una función analítica para permitir la 

estimación de la dosis absorbida a largas distancias de la fuentes (entre 10 y 60 cm 

de la fuente). 

 Los resultados del formalismo del TG-43 son coherentes dentro del volumen 

de tratamiento con los de una simulación MC de un escenario clínico. Por otro lado, 
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las comparaciones con medidas realizadas en 1994 con dosímetros 

termolunimiscentes muestran diferencias de hasta un 13% a lo largo del eje 

transversal de la aguja. La incertidumbre estimada para la dosis absorbida en el 

volumen de tratamiento está entre el 10% y el 15%, mientras que la incertidumbre 

de la dosis absorbida a órganos distantes es aproximadamente un 20% a un 25%. 

 Se espera que los resultados presentados en el Capítulo 4 permitan facilitar 

estudios de dosimetría retrospectiva con fuentes 
226

Ra, usando sistemas de 

planificación de tratamientos modernos, que pueden ser utilizados para mejorar el 

conocimiento sobre los efectos de la radiación a largo plazo. Sin duda, es 

importante que los estudios epidemiológicos sean conscientes de la incertidumbre 

estimada aquí antes de extraer sus conclusiones. 

 Los siguientes dos capítulos de esta tesis se orientaron a reducir la dosis 

periférica recibida por los órganos y los tejidos cercanos al implante, utilizando para 

ello blindajes diseñados específicamente para este propósito. En particular, en 

tratamientos superficiales con fuentes HDR de BT, ya sea con 
60

Co, 
192

Ir, o 
169

Yb 

(éste último tiene potencial como fuente HDR y puede estar disponible en el 

futuro), algunos órganos radiosensibles cerca de la superficie pueden estar 

expuestos a altas dosis absorbidas. Esto puede reducirse cubriendo los implantes 

con un blindaje de plomo situado en la superficie del cuerpo. Este blindaje tiene 

principalmente dos repercusiones dosimétricas. En primer lugar, la retrodispersión 

producida en el plomo puede generar una sobredosificación importante en la 

superficie del paciente, la cual no es deseada. En segundo lugar, el blindaje reduce 

la dosis al otro lado del mismo. Antes de realizar este estudio no existían datos de 

transmisión de radiación a través de barreras de plomo de distintos espesores 

utilizados en braquiterapia superficial e intersticial. El Capítulo 5 está dirigido a 

evaluar la perturbación dosimétrica producida por estos blindajes de plomo que se 

utilizan en algunos tratamientos superficiales de BT HDR. 

 Para llevar a cabo este estudio se realizaron simulaciones MC con GEANT4, 

simulando los tres radionúclidos previamente citados. Se consideraron cuatro 
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espesores diferentes de plomo (0, 3, 6 y 10 mm) y tres profundidades de 

localización de las fuentes diferentes (0, 5 y 10 mm) en agua, estando el blindaje 

colocado en la superficie del maniquí. A partir de estas simulaciones, se obtuvieron 

las componentes de retrodispersión y transmisión. Los resultados fueron corregidos 

para tener en cuenta un caso clínico realista con múltiples posiciones de 

permanencia de las fuentes. 

 De este estudio se concluyó que el rango de la sobredosificación en piel 

debida a la retrodispersión es de 3 mm para 
60

Co y 1 mm tanto para fuentes de 
192

Ir 

como de 
169

Yb. Por lo tanto, como se dijo en el Capítulo 5, se concluye que la 

retrodispersión producida por el blindaje de plomo se puede evitar simplemente 

usando unos pocos milímetros de bolus colocado entre el blindaje y la superficie del 

paciente. Este simple montaje justifica el uso de blindajes de plomo. Por otro lado, 

se observó que los datos de transmisión para 
60

Co e 
192

Ir son más pequeños que los 

reportados por Papagiannis et al. (2008) para los blindajes de una instalación de 

braquiterapia. En cambio, para el 
169

Yb la diferencia era insignificante. 

 El estudio anterior es de aplicación a varias situaciones clínicas. Por ejemplo, 

los blindajes pueden ser colocados sobre la superficie de la nariz para atenuar la alta 

dosis de radiación a la que se ven expuestos los cristalinos en un implante nasal, o 

alrededor de la mama para proteger la tiroides de la radiación directa procedente de 

un tratamiento de mama. Otra aplicación podría ser la reducción de la dosis fetal en 

una paciente embarazada con cáncer de mama que necesite radioterapia. 

 El Capítulo 6 tuvo como objetivo evaluar la dosis de radiación al feto de una 

paciente embarazada que se somete a un tratamiento de BT intersticial con una 

fuente HDR de 
192

Ir, así como diseñar una nueva posición de tratamiento y un 

blindaje específico que minimice al máximo esa dosis fetal. Para ello, se planeó 

sentar a la paciente, colocando el pecho a tratar sobre una mesa, en el interior de 

una caja de plomo específicamente diseñado para proteger al feto. La dosis prescrita 

al volumen a irradiar fue de 36 Gy en 8 fracciones. El diseño del blindaje consistió 

en una gruesa capa de 3.5 cm de plomo colocada entre el pecho y la mesa. Por lo 
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tanto, durante el tratamiento, la mama descansaba sobre este blindaje de plomo, 

atenuando así la radiación directa al feto. Además, se añadieron dos piezas laterales 

de plomo (3 cm de espesor cada una). Una de las capas laterales tenía un agujero a 

través del cual los tubos de transferencia por los cuales se transporta la fuente de 

forma remota se conectaron a los catéteres que se introducen dentro de la mama. 

Los bloques laterales permiten la colocación de una pieza extra de plomo (2.5 cm 

de espesor) por encima de la mama, paralelo a la primera capa, con el objetivo de 

reducir la radiación primaria al tiroides y los cristalinos. Además, con el fin de 

minimizar la dosis de tránsito debido a los movimientos de salida y entrada de la 

fuente de 
192

Ir, se hizo un tubo de plomo hueco, que cubría los tubos de 

transferencia. Por último, una capa de material equivalente agua (con 1 mm de 

espesor) se colocó entre el blindaje de plomo y la piel del paciente para minimizar 

la retrodispersión de electrones, tal y como se había determinado en el capítulo 

anterior. 

 Las medidas de la dosis fetal se hicieron con películas radiocrómicas 

colocadas entre las rodajas de un maniquí antropomórfico que simulaba al paciente. 

Así se obtuvo la variación de la dosis en función de la distancia desde el volumen 

del implante, así como la homogeneidad dentro de un corte representativo de la 

posición fetal. Las medidas dosimétricas se realizaron tanto con blindaje como sin 

blindaje, para evaluar su eficiencia. Los resultados con la configuración anterior 

fueron muy prometedores. Con el blindaje, la dosis periférica varió de 50 cGy a 5 

cm del borde caudal de la mama a menos de 0.1 cGy a los 30 cm de distancia. El 

blindaje redujo la dosis absorbida en un factor dos cerca de la mama y en más de un 

orden de magnitud más allá de los 20 cm. La dosis es heterogénea dentro de un 

corte axial dado, con variaciones respecto a la zona central del paciente de hasta un 

50%. De un análisis de la literatura, también se observó que la braquiterapia 

intersticial de HDR con fuentes de 
192

Ir y con el blindaje aquí desarrollado es más 

ventajoso que la EBRT desde un punto de vista de la reducción de la dosis al feto, 

siempre y cuando la distancia entre el extremo caudal de la mama y el fondo uterino 

sea mayor a 10 cm. A 30 cm de distancia, la dosis fetal es más de un factor 10 
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inferior con braquiterapia de HDR y el blindaje aquí diseñado que con EBRT. 

Además, el peso del blindaje aquí propuesto es notablemente inferior al 

recomendado en EBRT. Por lo tanto, la braquiterapia intersticial de mama con el 

blindaje presentado en el Capítulo 6 puede beneficiar a pacientes embarazadas que 

necesiten radioterapia localizada, especialmente durante las primeras edades de 

gestación, cuando el feto es más sensible a la radiación ionizante. 

 Por último, el Capítulo 7 ha presenta una discusión general que ha precedido 

a este resumen. 
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