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2 CERN - TH Division,
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Abstract

Matter effects in neutrino propagation translate into effective parameters for the oscil-
lation and fake CP- and CPT-odd quantities, even in a scenario, such as ∆12 = 0, where
no genuine CP violation is present. This fact seems to impose severe restrictions on the
determination of intrinsic parameters of the system from long-baseline experiments. We
show, however, that the resonance in the effective mixing θ̃13 can be observed for a certain
range of baselines. This provides a way to measure the vacuum mixing angle θ13 and the
sign of ∆m2

23 from atmospheric neutrinos, using a detector with energy resolution and
charge discrimination.
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1 Introduction

Present evidence of neutrino oscillations in atmospheric neutrinos provides the range of
values for the oscillation phase governed by ∆m2

23 to be [1]

1.5 10−3eV2 ≤ | ∆m2
23 | ≤ 5 10−3eV2, (1)

and the neutrino mixing in the corresponding sector, i.e. θ23, to be near maximal. On the
contrary, the solution to the solar neutrino behaviour still presents several alternatives,
the most favoured one [2] being the LAMSW solution for θ12 and ∆m2

12, that would allow,
if connected by a non-vanishing θ13 to the other sector, the possibility of CP violation in
leptonic physics. Up to now, θ13 has been bounded by CHOOZ [3] with a value

sin2 θ13 ≤ 0.05. (2)

The studies around terrestrial long-baseline experiments and neutrino factories have
precisely this objective in mind, the exploration of CP violation in the lepton case [4, 5, 6],
a possibility open only for non-degenerate neutrino masses and non-vanishing mixings on
the neutrino propagation. With this aim, the automatic self-inclusion of a new actor, the
matter effect, is somehow seen as undesirable, as a background which could avoid the
determination of the intrinsic properties of the neutrinos.

In this letter we will take a different attitude and show that, under appropriate condi-
tions, matter effects bring the connecting mixing angle θ13 into the game, even when the
sector (1, 2) is irrelevant. In fact, we will consider terrestrial and atmospheric neutrino
oscillations, with baselines such that, in a good approximation, the oscillating phase ∆12,
defined as ∆12 = ∆m2

12L/(4E), can be neglected.
For ∆12 = 0, the mixing in the sector (1, 2) is inoperative and there is no room for

genuine CP violation. However, the neutrino interaction with an asymmetric medium
leads to (fake) CP-odd and CPT-odd non-vanishing quantities, which are by themselves
a clean indicator of the effects to be searched for. These quantities, if non-vanishing,
distinguish neutrinos from antineutrinos and their sign automatically indicates that of
∆m2

23.
General arguments [5] teach us that the difference in the survival probabilities for

neutrinos and antineutrinos needs a CPT-odd origin, so this observable, particularly for
νµ versus ν̄µ where there are good prospects to distinguish the charge, will be of interest.
There is a drawback, however, for this proposal, if the medium effect acts as a perturbative
modification. The dominant (“allowed”) vacuum oscillations would take place in the (2, 3)
sector and there would be no possibility for the small θ13 to show up. In this perturbative
scenario, the alternative proposal has been to emphasize the “forbidden” appearance
channel νe → νµ [6, 7, 8] appropriate for neutrino factories and candidate to the search
for genuine CP violation.

Another path can be to study whether the interaction of neutrinos with matter can
generate an observable resonant situation in the effective mixing θ̃13, which naturally
incorporates information on θ13. The question then arises, of which the conditions of
observability of such a resonance are, given the strict bounds on θ13.

There seems to be a fatalistic result, a sort of no-go theorem, stating that the maximum
in the effective mixing is compensated by a minimum in the oscillation and only the
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product is measured. This cancelation seems to be also operative for the T-violating
probabilities [9]. Although it is true that this compensation operates in many physical
situations of practical interest, and we will confirm this, it cannot always be true, because
the mixing is independent of the baseline whereas the oscillating phase depends linearly
on it. We will study the conditions under which the resonant θ̃13 transition can be made
visible in the disappearance channel, opening the door to an appreciable effect in the
CPT-odd νµ survival probability and accessible in atmospheric neutrino experiments.

The plan of this paper is as follows. In Section 2 we develop the relevant amplitudes
for 3-family neutrino oscillations in matter of constant density, in the approximation
that ∆12 = 0. A resonant behaviour appears for the effective mixing θ̃13 in matter with
a width proportional to θ13. Section 3 gives the behaviour with energies outside the
resonance region. The interference pattern, for small θ13, is shifted from the vacuum L/E
behaviour to an additional term proportional to L and independent of E. The prospect
is to determine θ13 from the forbidden channel probabilities νe −→ νµ and ν̄e −→ ν̄µ. In
Section 4 we study the conditions on L under which the resonance can be made visible:
the disappearance channel νµ −→ νµ then becomes the simplest and most spectacular
one. The CPT-odd asymmetry is able not only to show the resonance effects but also to
give information on both the magnitude of θ13 and the sign of ∆m2

23. From the resonance
effect in both νµ −→ νµ and νe −→ νµ channels, we estimate the charge asymmetry in
atmospheric neutrinos. In Section 5 we summarize our conclusions.

2 Basics of three-neutrino oscillations in matter

The effective hamiltonian that describes the time evolution of neutrinos in matter can be
written in the flavour basis as [10]

H =
1

2E











U







0
∆m2

12

∆m2
13





U+ +







a
0

0

















, (3)

where a = G
√

2Ne2E represents matter effects from the effective potential of electron-
neutrinos with electrons, and U is the flavour mixing matrix in vacuum (PDG represen-
tation [11]),

U =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13





 . (4)

For a baseline L, the evolution of neutrino states is given by

ν(L) = S(L)ν(0), (5)

with
S(L) = e−iHL (6)

for constant matter density. The corresponding effective hamiltonian for antineutrinos is
obtained by U → U∗ and a → −a.
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If the hamiltonian can be separated into two pieces as H = H0 +H1, where H0 can be
exactly solved and H1 can be treated in perturbation theory, then S(L) = S0(L) + S1(L)
and S0(L) = e−iH0L gives the lowest order transition amplitudes.

For | ∆m2
12 | ≪ | ∆m2

13 |, and a in a region of energies such that it is comparable to
| ∆m2

13 |, we choose to solve exactly

H0 =
1

2E











U







0
0

∆m2
13





U+ +







a
0

0

















=
1

2E
Ũ







0
∆m̃2

2

∆m̃2
3





 Ũ+, (7)

where ∆m̃2 describes the energy-level spacings in matter and Ũ the effective mixings.
One realizes that the matter effect breaks the degeneracy. Therefore,

S0(L) = Ũ











0

e−i
∆m̃

2
2

2E
L

e−i
∆m̃

2
3

2E
L











Ũ+. (8)

The exact diagonalization of H0 yields effective mass differences and mixings in matter,
in the limit ∆m12 → 0, but with no approximation taken on a. We get the following result

Ũ =









0 e−iδ

n2
(l2 − c2

13)
e−iδ

n3
(l3 − c2

13)

−c23
1

n2
s23s13c13

1

n3
s23s13c13

s23
1

n2
c23s13c13

1

n3
c23s13c13









, (9)

for the mixings in terms of the vacuum parameters, where we have defined

n2 =
√

l22 − 2l2c
2
13 + c2

13; n3 =
√

l23 − 2l3c
2
13 + c2

13, (10)

and

l2 ≡
∆m̃2

2

∆m2
13

=
1

2

[

1 + α −
√

1 + α2 − 2α cos(2θ13)
]

;

l3 ≡
∆m̃2

3

∆m2
13

=
1

2

[

1 + α +
√

1 + α2 − 2α cos(2θ13)
]

, (11)

which give the effective mass differences. We have introduced the dimensionless parameter
α ≡ a

∆m2
13

for the sake of simplicity. The ordering of levels in matter is (1,2,3) for the

hierarchical case of ∆m2
13 > 0 and α < 1.

The effective mixing matrix Ũ is independent of θ12 and δ, if the latter is appropriately
rotated away. The matrix Ũ can be expressed also in the PDG form. To do so, we change

Ũ → Ũ







1
eiδ

1





 . (12)
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By comparing with previous expressions, we may establish the correspondence between
the effective mixing angles, θ̃ij , and the vacuum parameters, getting

c̃12 = 0, |s̃12| = 1,

c̃23 = c23, s̃23 = s23,

c̃13 =
l2 − c2

13

n2

, s̃13 =
l3 − c2

13

n3

, (13)

up to signs. The vanishing mixing in matter c̃12 = 0 is a consequence of the degeneracy
∆12 = 0 in vacuum and says that the lowest mass eigenstate in matter contains no
electron-neutrino flavour component. This result is the ingredient that avoids genuine CP
violation in matter, even if one has three non-degenerate effective masses.

Transition amplitudes for να → νβ in the ∆m12 = 0 case are given by S0 matrix
elements, which can be written

A(α → β; L) = S0(L)βα (14)

= δβα + Ũβ2Ũ
+
2α

(

e−i
∆m̃

2

2

2E
L − 1

)

+ Ũβ3Ũ
+
3α

(

e−i
∆m̃

2

3

2E
L − 1

)

.

From this expression we may calculate all probabilities,

P (νe → νe) = 1 − sin2(2θ̃13) sin2
[

∆̃13

]

(15)

P (νµ → νe) = s2
23 sin2(2θ̃13) sin2

[

∆̃13

]

(16)

P (ντ → νe) = c2
23 sin2(2θ̃13) sin2

[

∆̃13

]

(17)

P (νµ → νµ) = 1 − s4
23 sin2(2θ̃13) sin2

[

∆̃13

]

− 2s2
23c

2
23

{

1 − cos [∆13(1 + α)] cos
[

∆̃13

]

+ cos(2θ̃13) sin [∆13(1 + α)] sin
[

∆̃13

]}

(18)

P (ντ → νµ) = s2
23c

2
23

{

2 − 2 cos [∆13(1 + α)] cos
[

∆̃13

]

− sin2(2θ̃13) sin2
[

∆̃13

]

+ 2 cos(2θ̃13) sin [∆13(1 + α)] sin
[

∆̃13

]}

(19)

P (ντ → ντ ) = 1 − c4
23 sin2(2θ̃13) sin2

[

∆̃13

]

− 2s2
23c

2
23

{

1 − cos [∆13(1 + α)] cos
[

∆̃13

]

+ cos(2θ̃13) sin [∆13(1 + α)] sin
[

∆̃13

]}

(20)

where

∆̃13 ≡ ∆13

√

1 + α2 − 2α cos(2θ13), with ∆13 ≡
∆m2

13L

4E
. (21)

and

sin2(2θ̃13) = 4
s2
13c

2
13

1 + α2 − 2α cos(2θ13)
. (22)

The probabilities for time-reversal-conjugated transitions satisfy (α 6= β)

P (νβ → να) = P (να → νβ) . (23)

as they are even functions of the baseline L [5].
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In order to get the corresponding expressions for antineutrinos, we must change a →
−a, i.e. α → −α. The effect of such a change in the probabilities comes from the different
relative sign between mass and matter terms in H0. The same effect can be achieved by
changing not the sign of a but that of ∆m2

13, i.e. by considering a different hierarchy for
mass eigenstates in vacuum.

Now we analyse the resonance. Without taking any limit on s13, Eq. (22) can be
written as

sin2(2θ̃13) =
4s2

13c
2
13

(α − cos 2θ13)2 + 4s2
13c

2
13

(24)

=
4s2

13c
2
13

(

∆m2
13

ã

)2

(

E − cos 2θ13
∆m2

13

ã

)2

+ 4s2
13c

2
13

(

∆m2
13

ã

)2
,

where

ã = 2
√

2GF Ne. (25)

From here we obtain the resonant energy, given by

ER = cos(2θ13)
∆m2

13

ã
, (26)

and the width

Γ = 2 sin(2θ13)
∆m2

13

ã
. (27)

If interpreted in terms of the variable α, the resonant parameters are given by

αR = cos(2θ13);

Γα = 4s13c13. (28)

It is important to stress that the resonant energy is not sensitive to s13, for small θ13,
as it varies like the cosine, but is a measure of ∆m2

13. On the other hand, the resonance
width depends linearly on θ13 and can be a useful tool to measure it.

An inspection of Eqs.(15)–(20) for the probabilities in different channels points out that
there are contributions from both the imaginary part squared of the resonant amplitude,
sin2(2θ̃13), and the interference with the real part, cos(2θ̃13). On top of the resonance,
sin2(2θ̃13) = 1, independent of s13, and cos(2θ̃13) = 0.

For ∆m2
13 > 0, the resonance appears only for neutrinos, whereas for ∆m2

13 < 0 it
would show up only for antineutrinos.

3 Outside the resonance

When we are far from the resonance (α ≃ 1), so that s13 is small with respect to α − 1,
up to quartic terms in s13 for the probabilities we can neglect the effects of the width,

√

1 + α2 − 2α cos(2θ13) ≃| α − 1 | (29)
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and therefore the transition probabilities can be written as

P (νe → νe) = 1 − 4s2
13

(1 − α)2
sin2 [∆13(1 − α)] (30)

P (νµ → νe) = s2
23

4s2
13

(1 − α)2
sin2 [∆13(1 − α)] (31)

P (ντ → νe) = c2
23

4s2
13

(1 − α)2
sin2 [∆13(1 − α)] (32)

P (νµ → νµ) = 1 − s2
23

4s2
13

(1 − α)2
sin2 [∆13(1 − α)] − 4s2

23c
2
23 sin2 [∆13] (33)

P (ντ → νµ) = 4s2
23c

2
23 sin2 [∆13] − s2

23c
2
23

4s2
13

(1 − α)2
sin2 [∆13(1 − α)] (34)

P (ντ → ντ ) = 1 − c4
23

4s2
13

(1 − α)2
sin2 [∆13(1 − α)] − 4s2

23c
2
23 sin2 [∆13] . (35)

As was pointed out already in [8], the forbidden transition P (νµ → νe) presents an in-
terference pattern which, in addition to the vacuum ∆13 ∼ L/E dependence of the os-
cillation phase, has an energy independent phase shift induced by matter as, ∆13α ∼ L,
thus providing a possibility of quantifying matter effects. This phase shift is due to a
purely quantum-mechanical effect with potentials and corresponds to an analogous to the
Minkowski-rotated form of the Aharonov–Bohm experiment [12]. Instead of space inter-
ference, one has here flavour interference; the interferometer becomes the mixing matrix,
the optical path difference the value of ∆13, and the energy-independent effective potential
a/(2E).

As widely recognized in the literature, the νe → νµ transition probability provides a
very good measurement of s13. A very high flux is needed to be sensitive to its forbidden
character. In the limit ∆13(1 − α) ≪ 1, the sin2 [∆13(1 − α)] factor is compensated by
the 1/(1 − α)2 enhancement. Thus, matter effects would remain small for either small
L/E, or α far away from the resonance, or both. Under these conditions, the (fake)
CP-odd probability would be suppressed. On the contrary, once L/E is increased, the
appearance neutrino probability is dramatically increased (for ∆m2

13 > 0) respect to that
for propagation in vacuum, whereas the antineutrino probability becomes much smaller.
To illustrate this feature quantitatively, we give in Figs. 1 and 2 the νe → νµ probabilities
for L = 3000 and 7000 km, respectively. (For L = 700 km the effects are not appreciable.)
The three curves, dotted, solid and dashed, correspond in each figure to neutrino, vacuum
and antineutrino probabilities. Notice that, besides the change in magnitude, there is a
shift in the oscillation pattern, as imposed by an attractive or repulsive potential. In all
these cases, we have taken ∆m2

23 = 3 10−3 eV2, ã = 2.8 10−13eV and θ13 = 0.23. Under
these conditions the mixing resonance has parameters ER = 9.6 GeV with half-width
Γ/2 = 4.7 GeV. An inspection of these results shows no special role of the resonance,
except for L = 7000 km (see next section). In fact, important matter effects appear at
L = 3000 km for both neutrinos and antineutrinos, indicating that they are non-resonant.

Contrary to the forbidden channel νe → νµ (or νe → ντ or the dissappearance νe →/ νe),
the allowed channel νµ → ντ or the survival probability νµ → νµ have contributions coming
from the interference with the real part cos(2θ̃13) of the amplitude, besides the imaginary
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part squared, sin2(2θ̃13). Outside the resonance, the first contribution dominates and all
the physics is controlled by the (2,3) sector, without any room for appreciable matter
effects. Needless to say, s13 plays no role in these cases. It remains to be seen whether
there are new features around the resonance, which could allow s13 to show up.

4 On the observability of the resonance

The main difficulty for the observation of resonant effects in the “connecting” mixing θ̃13

comes from the product compensation, in measurable quantities, of the effective mixing
resonance and the oscillation factor. Therefore, to induce appreciable effects of the reso-
nance we have to impose an overlap of the mixing peak with a maximum of the oscillation
factor. If this is possible, is a way of escaping the washing out effect that was thought to
be unavoidable.

The maximal mixing, sin2(2θ̃13) = 1, is reached on top of the resonance, corresponding
to a value of α equal to αR, Eq.(28). On the other hand, the first maximum of the oscil-

lation term is reached when the oscillation phase, ∆13

√

1 + α2 − 2α cos(2θ13), takes the

value π/2, that corresponds to a value αmax. By imposing the condition that both maxima
coincide, i.e. that αR = αmax, we obtain the baseline that maximizes the observability of
the resonant effect,

Lmax =
2π

ã tan(2θ13)
. (36)

Notice that Lmax is independent of ∆m2
13, which determines the resonant energy, and it

is inverse to θ13. The condition to avoid the cancellation of the resonant effect by the
oscillation does not need to be so restrictive. One could allow a separation between the
two maxima of one resonance half-width, given in terms of α by Γα/2, Eq.(28), and still
expect to observe the overlap. The corresponding baseline for this less restrictive condition
would be

Lmin ≃
Lmax√

2
. (37)

For ã and θ13 as taken in the previous section, L = 7000 km approximately satisfies this
condition.

In Fig. 3 we give the survival probabilities νµ → νµ for L = 7000 km. Again the three
curves in each figure correspond to neutrino, vacuum and antineutrino probabilities. For
the short baselines, the physics is dominated by the (2,3) sector without any appreciable
matter effect even at L = 3000 km, but there appears a spectacular change of regime
for L = 7000 km, in which the resonance becomes apparent. In this way, matter effects
(through the resonance) are only important in one channel: neutrinos (antineutrinos) for
∆m2

23 > 0 (< 0).
An impressive plateau around the resonance is the signal expected for the CPT-odd

asymmetry, with a sign opposite to that of ∆m2
23. We give in Fig. 4 the (fake) CPT-odd

asymmetry for the discussed case of θ13 = 0.23 and for θ13 = 0.15. We conclude that, for
appropriate L, the muon-neutrino survival probability is sensitive to the resonance effect
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in matter and its CPT-odd asymmetry provides a measure of the connecting mixing θ13

in vacuum.
To quantify the implication of such an indicator for the zenith angle effect in atmo-

spheric neutrino oscillations, we proceed in the following way. We convolute both, the νµ

survival probability (Fig. 3) and the νµ appearance probability from νe (Fig. 2) with the
corresponding νµ and νe atmospheric fluxes [13] and with the νµ cross section in matter
[11]. Similarly for antineutrinos. Notice that the difference of behaviour for νµ and ν̄µ

comes now from both, the matter effect and the convolution. The observed muon charge
asymmetry is plotted in Fig. 5 as a function of energy in the interesting resonance region.
Our results are obtained for L ∼ 7000 km, within a zenith angle resolution of 5o. We
conclude that, even for this minimum value of L in the sense of Eq.(37), the four values of
the set (θ13, ± | ∆m2

23 |) can be distinguished. Needless to say, one can amplify the effect
going to values of L closer to Lmax (Eq.(36)), leading to a better sensitivity for smaller
values of θ13.

5 Conclusions

In this paper we have explored the medium effects in neutrino oscillations for baselines
appropriate to terrestrial or atmospheric neutrinos. The analysis has been made in the
approximation ∆12 = 0 and it has been mainly applied to both the forbidden appearance
channel νe → νµ and the survival probability for νµ → νµ. The manifestation of the
matter effects has been presented in terms of the fake CP-odd and CPT-odd asymme-
tries, respectively. These observables are sensitive to the connecting mixing angle θ13 in
magnitude and to the sign of ∆m2

23.
We have analysed the change of regime in going from a short baseline of 700 km to

a long baseline of 7000 km. For the latter, we are entering into a manifestation of the
resonance present in the effective mixing sin2(2θ̃13).

The forbidden appearance νe → νµ probabilities, which are very sensitive to s13, show
already at L = 3000 km very important matter effects, which are non-resonant, with
phase shifts of opposite sign for neutrinos and antineutrinos. The CP-even probability,
relevant for detectors without charge discrimination, still sees appreciable matter effects,
more apparent in oscillation phase shifts than in magnitude. Of course, the sensitivity to
s2
13 in magnitude is there, and a variation in s13 does not affect the oscillation pattern.

At L = 7000 km, matter effects become resonance-dominated and affect neutrinos both
in magnitude and phase (for ∆m2

23 > 0).
Contrary to the transition in regime discussed for νe → νµ, the disappearance channel

νµ → νµ only sees matter effects from a baseline above L ∼ 7000 km, i.e. when the
resonance shows up. Even at L = 3000 km, one cannot induce appreciable medium
effects. This is understood: outside the resonance, the physics is here dominated by
the “allowed” sector (2,3), which is not sensitive to interactions with matter. Once the
resonance in sin2(2θ̃13) operates, medium effects appreciably modify the magnitude for
the neutrino channel but not for antineutrinos, where no resonance appears for ∆m2

23 > 0.
The corresponding CPT-odd asymmetry, shown in Fig. 4, is sensitive to the connecting
mixing s13 in its magnitude and its sign distinguishes the sign of ∆m2

23.
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The calculated muon charge asymmetry originated from both νµ → νµ and νe → νµ

shows important effects in the resonance region. Fig. 5 shows that we are able to distin-
guish the values of θ13, and the sign of ∆m2

13. Notice that this sign is not automatically
translated into the sign of the asymmetry, as it was in Fig. 4. We have estimated that a
10 kT detector with energy resolution and charge discrimination can reach a few percent
accuracy in the measured asymmetry in one year of data taking.
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Figure 1: νe → νµ transition probability for neutrinos (dotted), vacuum (solid) and
antineutrinos (dashed) for a baseline L = 3000 km.
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Figure 2: Same as Fig. 1 for L = 7000 km.
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Figure 3: Muon neutrino survival probability for neutrinos (dotted), vacuum (solid) and
antineutrinos (dashed) for a baseline L = 7000 km.
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Figure 4: (Fake) CPT-odd asymmetry for muon neutrinos and L = 7000 km. Solid line
for θ13 = 0.23, dashed line for θ13 = 0.15.
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Figure 5: Muon charge asymmetry for θ13 = 0.23 and sign(∆m2
23)= + (solid), θ13 = 0.15

and sign(∆m2
23)= + (dashed), θ13 = 0.23 and sign(∆m2

23)= - (dotted) and θ13 = 0.15 and
sign(∆m2

23)= - (dash-dotted)
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