arXiv:1103.0874v1 [nlin.CD] 4 Mar 2011

Coexistence of periods in a bisecting bifurcation

V. Botella-Soler®?, J.A. Oteo?, J. Ros®P

®Departament de Fisica Teorica, Universitat de Valéncia, 46100-Burjassot, Valéncia,
Spain
YIFIC, Universitat de Valéncia-CSIC, 46100-Burjassot, Valéncia, Spain

Abstract

The inner structure of the attractor appearing when the Varley-Gradwell-
Hassell population model bifurcates from regular to chaotic behaviour is
studied. By algebraic and geometric arguments the coexistence of a con-
tinuum of neutrally stable limit cycles with different periods in the attractor
is explained.
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1. Introduction

Since the first discoveries of chaotic behavior in discrete maps, there has
been great interest in the description of how the dynamics of a map changes
from regular to chaotic, and viceversa, when a parameter of the map is
varied. The so-called routes to chaos have been widely studied for smooth
maps where well-known phenomena such as period-doubling, saddle-node
bifurcations or intermittency appear [I, 2 [3]. The study of piecewise defined
maps, which are useful in the mathematical description of mechanical systems
with friction or collisions and of electrical circuits with switching components,
has introduced new phenomenology [4], 5.

Here we consider a one-dimensional piecewise smooth discontinuous map
originally proposed in studies on population ecology [6] [7], the Varley-Gradwell-
Hassell map (henceforth referred to as VGH map). It is a three-parameter
map composed of a linear part and a power-law decreasing piece. It may
present both regular and chaotic behavior, and for a critical value of one of
its parameters the system undergoes an abrupt order-to-chaos transition. In
[8] it was shown that at this transition point, the system has a continuum of
neutrally stable limit cycles, i.e. cycles with multiplier unity. That situation
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appears also in two-dimensional maps and in a recent work [9] we have named
such bifurcations bisecting bifurcations for a reason that will become clear
in the following sections. The interesting characteristic of the bisecting bi-
furcation in the VGH map is that neutrally stable limit cycles with different
periods coexist at the transition point. Their periods and their distribu-
tion in phase space depend on the location of the discontinuity of the map.
Our previous results are here sharpened by invoking algebraic and geometric
arguments.

The structure of the paper is as follows. In Section [2] we introduce the
VGH map and its bisecting bifurcation. In Section |3 we explain a way to
study algebraically the existence and location of this type of bifurcations. In
Section [4] using the cobweb diagram of the map we provide a geometrical ex-
planation of the bisecting bifurcation as well as the reason for the coexistence
of different periods. In Section |5 we detail the structure of the attractor and
of the basins of attraction at the bifurcation point. And finally, in Section [0]
we discuss the main results presented in the paper.

2. The VGH map
The VGH map is defined in [0, 00) and reads

re, z < ¢,
v ={ ., 1 (1)

where 7,0 > 1 and ¢ > 0. When ¢ = 1 the system is continuous, being
discontinuous otherwise. The VGH map presents both regular and chaotic
behavior and its dynamics exhibits a number of phenomena including interior
crises and crisis-induced intermittency [§].

A customary construction of the bifurcation diagram by varying b, for
fixed r and ¢, shows an order-to-chaos bifurcation at b = 2. For b < 2 the
system is regular with a single periodic attractor whose period depends on
c. When b > 2 the system is chaotic without further regular window. This is
clear from the bifurcation diagrams in Figure [l where three different values
of the parameter ¢ are considered. The top and bottom panels of the figure
stand for cases where the map is discontinuous (¢ = 0.8,1.2) and the middle
panel shows the bifurcation diagram in the continuous case (¢ = 1). At the
bifurcation point b = 2 all these diagrams exhibit a vertical segment which
constitutes the focus of this work.



Detailed numerical experiments, buttressed by the arguments in the next
sections, demonstrate that any initial condition end up in a neutrally stable
limit cycle. There is precisely an infinity of them which form the vertical
segment in the diagrams of Figure [I| It is worthwhile to point out that the
numerical detection of this continuum of attractors which mediates the bifur-
cation presents three main difficulties. First of all it exists only for the precise
numerical value b = 2. Then, an accurate enough machine-representation of
the parameter values must be used in the sampling. Secondly, as the num-
ber of neutrally stable periodic orbits that exist for b = 2 is infinite, a large
enough number of initial conditions must be used to generate the vertical
segment in the diagram. Finally, the whole attractor can easily be mistaken
for a single chaotic attractor unless properly scrutinized. The algebraic and
geometric analyses in the next sections are of great help in the correct iden-
tification of the vertical segment in the bifurcation diagram.

3. Localization of the bifurcation in parameter space

In this section we prove that for the VGH map the bisecting bifurcation
takes place only at b = 2. We start by introducing a change of variables that
permits us to exactly linearize the VGH map

z = 2log(x)/log(r), & =2log(c)/log(r). (2)
In terms of z and &, the VGH map can be cast in the following linear form
| 242 z <€,
L(Z)_{ (1-bz+2, z>¢& (3)
This linearized version allows the following algebraic approach. In the new
form L(z), the elements {z1, 22, ..., zr} of a cycle of period T satisfy
p _ Zpn—1+ 2, Zn—1 S 57
L (1—b)Zn_1+2 Zn—l>£> n:2,...,T,
_ zr + 2, 2r <&,
T { (1 =020 +2, 2p>¢. (4)

These expressions can be cast in the form

21+ arzr = 2,
Zntap_12p1 = 2, n=2,3,...,T, (5)



with coeflicients

_ _17 2k < 67
O‘k_{ (b—1), 2> ¢ (6)
The linear system of equations can be expressed in matrix form
T
Y Ayz=2 i=12...T, (7)
j=1
where the matrix A is
ap 1 0 0
0 as 1 0 0
A 0 0 a3 1 0
0 0 @ 7 | 1
1 0 e e 0 [0 %4

In order to find an attractor consisting of infinitely many limit cycles of
period T" we need the system of equations to be compatible and indeter-
minate. A necessary condition is therefore det(A) = 0. The determinant of
the matrix A is

T
det(A) = [Jaw + (-1)"". (8)
k=1
If the cycle has d of its elements satisfying z; > £ this gives
det(A) = (=)0 - )"+ (-=1)", (9)

which vanishes for b = 0 and, if d is even, also for b = 2. Since we are only
interested in b > 1, the only possible solution is then b = 2. This is precisely
the value found from the bifurcation diagrams in Section [2| It is important
to notice that this value of b and equation imply neutral stability for any
possible cycle. Of course, the argument in this section does not complete the
analysis of the vertical segment in those diagrams. It only excludes any other
value of b as candidate. In the next Section we will explicitly show that the
infinite set of periodic orbits actually exist.



4. Geometrical explanation of the bisecting bifurcation

Next we develop an heuristic explanation for the emergence of a bisect-
ing bifurcation based on the cobweb diagram of a general one-dimensional
piecewise defined map f(z; p) with parameter p. Notice that an infinite set of
regular trajectories of period n will be observed for a critical value p. of the
parameter when the nth iterate of the map f!" has a piece which is co-linear
with the bisectrix. Hence, the name we are using for these bifurcations. More
explicitly, at the bifurcation, fI™ will be of the form

f[n](xvpc) = x, T e (Ilvx’l’)a (10)
An instance of this phenomenon in the VGH map is given by its second
iterate which reads

rlx, r <€
VR (o) r2op 10, t<x <, an
x) = 1
,'027171.(1*[7)27 c<x S (E)b—l’

r2xl=t, T > > (E)ﬁ
When b = 2 the third piece becomes x and we find a bisecting bifurcation
mediated by an infinite set of neutrally stable period-2 limit cycles provided
¢ < /r. This is illustrated in Figure [2| where three cobweb plots of V[2(z)
for values b = 1.6,2.0,2.4 and ¢ = 1 are shown. In the three cases the same
three initial conditions have been evaluated. When b = 1.6, all trajectories
converge to the stable fixed point. In the critical case, when b = 2, each
initial condition evolves to a different neutrally stable fixed point of V2(z).
For b = 2.4 the trajectories are chaotic.

In principle, several iterates of f can have pieces co-linear with the bisec-
trix simultaneously for the same value of p.. In such cases, infinite sets of
cycles of different periods will coexist when p = p.. This is the case for the
VGH map. When b = 2 and ¢ > 1 the neutrally stable limit cycles can show
different periods. This is illustrated in Figure [3| where the evolution in the
cobweb diagram and the trajectories of two different initial conditions are
shown for b = 2, r = 4 and ¢ = v/2. One of the trajectories enters a period-2
limit cycle while the other evolves to a period-4 limit cycle. The distribution
of the limit cycles of different periods in phase space is detailed in the next
Section.



5. Attractors and basins of attraction for b = 2

In this Section we study at depth the structure of the attracting segment
of the VGH system at the critical point b = 2. To facilitate the analysis we
express the VHG map for b = 2 in terms of the new variable w = z — 1 as

w2, w<E-1,
W<w)_{—w, w>E&—1.

One advantage of this form is that the segment of limit cycles, A = [—|{] —
1,]€| + 1], is symmetric in phase space with respect to w = 0.

(12)

5.1. Structure of the attractor
We start our study by distinguishing the cases of positive and negative &.

5.1.1. £<0
This case presents the simplest dynamics. The segment A is composed
of infinite period-2 limit cycles around w = 0, which is a fixed point.

5.1.2. £>0

The dynamics is more complicated for positive £. All integer initial con-
ditions wy € Z lead to limit cycles with integer elements. In particular, if
the initial condition is even (resp. odd), the final limit cycle will have as its
elements all even (resp. odd) integers inside the segment A. The periods of
these cycles, which depend on &, are detailed in Table[1] If wy ¢ Z we need
to study the cases £ € N and ¢ ¢ N separately:

e {¢N
For positive non-integer ¢ we have two infinite sets of limit cycles of
periods T'=2(n+ 1) and T' = 2(n + 2) with n = [£] (where |-] stands
for the floor function). These cycles spread over A in a rather peculiar
way. To make it clear we find useful to consider the finite set of points

B=A({w=(-1)%+(-1)@2k+1), k=0...n, o B=01}

(13)
whose elements, when written in increasing order, we denote by w?, i =
1, 2,.... Then, B punctuates a partition of the interval A in subinter-

vals. Points in the same subinterval belong to cycles with the same



period. Points in contiguous subintervals belong to cycles with differ-
ent period.

For instance, if 0 < ¢ < 1 then n = 0 and the frontiers of the subinter-
vals are given by

B:{w17w27w37w4}:{_5_175_1a_£+17£+1}' (14>

Thus, in this case three subintervals exist inside the attractor. In Table
we have detailed the period of the limit cycle for initial conditions
inside the attracting segment A.

e (N
When £ is a natural number every limit cycles has period 7' = 2(£ +1).

All this information is contained in Figure 4] where we have plotted the
structure of the attracting segment at b = 2 as a function of £ with £ € [—1, 3].
The different tones of gray stand for different periods. As an example, a
particular £* < 1 has been chosen to illustrate the position of the frontiers
given in (({14]). The discontinuous horizontal lines stand for cycles with initial
conditions wq € Z.

5.2. Basins of attraction

Given the limit cycle to which a point wy tends, its basin of attraction
can be written as

By, = {w € Rjw= [wy] +2k+d,k €Z}, d=wo— |wg|. (1)

This structure of the basins of attraction is reflected in Figure |5 for two dif-
ferent values of £. In this figure for each initial condition wy € [—3,3] we
plot the cycle in A which traps it. The figure suggests a periodic structure
in the horizontal direction. It reflects the partition of phase space into equiv-
alence classes established by . More specifically, all even, odd and odd
half-integer initial conditions constitute three equivalence classes by them-
selves. Any other initial condition generates its equivalence class by repeat-
edly adding alternatively 2d and 2(1 — d).

The combination of Table 1 and allows to determine the period of
the cycle to which an arbitrary point wgy tends. For the sake of illustration,



consider the case £ = 1.5 and the initial condition wy = 2.7. In this case
n = |£] =1 and the frontiers inside the segment A are given by

B = {w" v’ w? w* w’ w®} = {-2.5,~1.5,-0.5,0.5,1.5,2.5}. (16)

Since the chosen initial condition falls outside the attracting segment we will
make use of to determine another initial condition wj, € B,,, leading to
the same final limit cycle. Choosing k = 0 we can readily find

wh = |wo] + 2k —d=1.3 € (w*,w). (17)

If we now take into account the classification detailed in Table [l we can
conclude that both wy and w{, will enter a limit cycle of period 4. It can be
checked that this is in fact the case in the upper panel of Figure

6. Discussion of the results

This work focuses on the coexistence of different periods in the set of
neutrally stable limit cycles that mediates the bisecting bifurcation of the
VGH map. We have proved algebraically that it occurs only for b = 2. In
principle, the same method might be used to determine the existence and
position in parameter space of these bifurcations for any piecewise linear
map.

The geometric explanation complements the algebraic approach and pro-
vides us with an intuitive way of interpreting the bifurcation in terms of the
cobweb diagram. In particular, it allows us to understand the coexistence
of different periods as the simultaneous presence of pieces co-linear with the
bisectrix in different iterates of the map.

The structure of the attractor in b = 2 has been described in detail. Given
a certain value of the discontinuity parameter (either ¢ or ), the periods of
the limit cycles and their location in phase space can readily be determined.
The structure of the basins of attraction of the limit cycles has been resolved
as well, allowing us to associate each initial condition to its final limit cycle.

The described bisecting bifurcation is accompanied by border collisions
[4, 5, 10] as can be seen in Figure [2| In the example described in that figure,
two unstable fixed points of VI (z) (for b > 2) collide with discontinuities
of the map when b = 2 and cease to exist for b < 2. An attempt to clas-
sify the phenomenology of border-collision bifurcations in one-dimensional
discontinuous maps can be found in [11]. The classification is based on the
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linearization of the map around the collision point both in phase space and
parameter space. However, the bisecting bifurcation presented here corre-
sponds to one of the critical cases explicitly excluded from this classification.

In this study we have restricted our attention to the VGH map but what
we have called bisecting bifurcations are present in other continuous and
discontinuous piecewise smooth maps. However, to the best of our knowledge,
they have very often gone unnoticed in the literature. In the continuous case,
bisecting bifurcations can be observed in maps such as the skew tent map [12]
or the map describing the dynamics of the boost converter [I3]. In particular,
in [I4] a continuous piecewise smooth map introduced as a model of economic
growth [I5] is studied and the values of the parameters for which a bisecting
bifurcation takes place are identified. Discontinuous maps candidates to show
bisecting bifurcations can be found in [I6l [I7]. Our numerical experiments
have shown this is in fact the case. Moreover, the map studied in [16] shows
coexistence of different periods in the set of neutrally stable limit cycles with
a structure very similar to the one described in this paper for the VGH map.
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Table 1: Period of the trajectories according to the initial point wg € [—|¢| — 1, |€] + 1],
with b =2 and £ > 0 (£ ¢ N). The description of the case wy € Z is also valid for £ € N.

Initial point Period ~ Condition
. 2(n+1 even 1%

wp € (W, w) and wy ¢ Z 25“ N 2; odd i
wo = w' and wy ¢ Z 2(n +2) Vi
w €7 N=[(+1)/2] 2N+1 even w
0 =1£/2] 2(M +1) odd wy

><:
><E
<L
c=1 : i
16 1,8 20 22 24 26 28 3,0
b [r=2]

Figure 1: Bifurcation diagrams of the VGH map V(z) with » = 2 and three different
values of c.
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Figure 2: A sequence of three cobweb plots of V[2/(z) illustrating the bisecting bifurcation
from order to chaos at b = 2. Here ¢ = 1,7 = 2. The presence of the segment of fixed
points is apparent in the case b = 2.

(6]

Xn+1

N W »~ OO

Figure 3: Cobweb diagram (left panel) and trajectories (right panel) of V(z) for b = 2,
¢ = /2, 7 = 4 and two different initial conditions (zo = 0.3,0.6). It is clearly seen that
each initial condition enters a neutrally stable limit cycle of different period.
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Figure 4: Structure of the attracting segment (b = 2) in phase space for different values
of &. The different tones of gray code cycles with different periods. The discontinuous
horizontal lines stand for individual cycles with integer elements of periods 1, 2, 3 and
4 (dashed, dotted, dash-dotted and dashed respectively) embedded in the continuum of
cycles of the attracting segment.

t15

-2|

-3 -2 -1

Figure 5: Structure of the basins of attraction for two different values of the discontinuity
location parameter £. The graphs show the final attractor for each wg. For £ = 1.5 (upper
panel) infinite limit cycles of periods 4 and 6 exist as well as the period-2 cycle {-1,1} and
the period-3 cycle {-2,0,2} can be seen. For £ = 2.0 (lower panel) infinite limit cycles of
period-6 are present filling the space between the points of the period-3 cycle {-2,0,2} and
the period-4 cycle {-3,-1,1,3}.
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