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ABSTRACT

We analyze via a bag model description of
hadron structure the consequences of having two
fundamental scales in QCD, one associated with
confinement and the other with chiral symmetry
restoration. The main effect is that the ex—
terior pion field becomes weaker and therefore we
are able to reproduce the axial vector coupling
constant.
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1. INTRODUCTION

The Chiral Bag Modell) is a quite successful phenomenological description
of hadrons, whose guiding principle is Quantum Chromodynamics (QCD)Z). This
theory, supposedly a good description of the strong interactions, behaves rather
differently for low energies, than for high energies. The simpler behaviour
(known as asymptotic freedom) occurs at high energies when the coupling constant
becomes very weak and therefore one may proceed to use perturbative methods. On
the other hand for low energies, the coupling becomes strong, leading hopefully
to the unobservability of the hadromnic constituents (confinement) and the
spontaneous breaking of chiral symmetry. All these properties constitute the
foundations of the Bag Model. There is though a further assumption implicit in
these models, namely, that the energy scale for confinement and spontaneous
chiral symmetry breaking is the same. In this way there is only one scale
parameter for both pheromena, ultimately the bag radius. The perturbative
(asymptoticalkly free) ﬁhase contains only quarks and gluons, while in the non-

perturbative phase, one has Goldstone bosons, consequence of the spontaneous

chiral symmetry breaking.

Studies by two different methods, semi-classical techniquesB), and
numerical lattice gauge theory calculationsé) have brought to our attention a
different scenario, based on two scales, one for the confinement-deconfinement
transition and another for the chiral symmetry breaking-restoration transition.
For example in the Monte Carlo calculation of QCD omn a lattice&), it is found
that for SU{2) there exist clearly two phase transition temperatures Tch and Tc’

such that TC > Tc’ while for SU(3) these temperatures seem to be almost

1t

identical. Here Tc is the temperature above which the chiral symmetry is

h

restored and T the one for deconfinement.
C

If one reintetrprets these results in terms of the bag wodel, the
alternative of having two scales, leads by simple scaling arguments to a
scenario with two length scales, the confinement one Rc and the size of the
Wigner phase Rch' By dimensional reasons
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which turns out to be slightly greater than one. The following scenario arises
naturally: a simplified view of a hadroun consists of two concentric spheres
determined by Rch and Rc. Chiral symmetry is realised in the Wigner mode inside

(r ¢ Rch) and in the Goldstone mode outside the smaller sphere (r > Rch). For



r < RCh there are only quarks and gluons, while only pions exist for r » Rc.

All the constituents coexist in the region R h < r<R.
[ c

Twe extreme limits of our model are known in the literature, the already
mentioned Chiral Bag Model (Rch = Rc) and the so—called Cloudy Bag Mode15)
(Rch = 0). One feature that attracts immediate attention, to the possibility of
having the three region model is that one is able to calculate gA correctly in a
perturbative manner, since our result extrapolates between the Cloudy Bag Model

value of 1.09 to the Chiral Bag Model wvalue of 1.63.

One comment is needed at this point which should clarify our attitude in
the rest of the paper. We take in this work a perturbative approach, meaning
that we neglect effects arising from the solitonic nature of the picnic
fieldﬁ)- The quantitative statements made throughout our work should be
understood as up to normalizations due to vacuum polarizations, which we expect
to be small in the perturbative regime. As has been shown7), the expectation
values of observables are flat as a function of the confinement radius and

therefore perturbative results become of interest.

in the next section we proceed to formulate our model, writing down the
equations of motion for the constituent fields. In section 3 we obtain
perturbative solutions to the equations of motion. Ia section 4 we calculate
the axial vector coupling constant BA and the energy of the system then analyze
the possibility of eliminating collapse by the introduction of the skin.
Finally in the last section we discuss the results obtained in this

investigation.
2. TEE MODEL

A hadron consists of a hypertube in space—~time, such that for fixed time
space is divided in three regions. The core region is called Wigner phase and
is characterized by the absence of collective modes (pions) and a perturbative
coupling between quarks and gluons. The exterior region is characterized by the
exclusive presence of collective modes. Finally the region between the two
(skin), in which perturbative and collective modes coexist and interact with

each other.

For simplicity in the formulation we do not consider gluonic effects and we

take the surfaces to be static concentric spheres of radii Rc and Rc’ with

h
R < Rc' The above description is realized mathematically by the following
1

cl
) ... 8)
Lagrangian density °,
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and finally the surface term that establishes the continuity of the axial

current across the cutermost surface and which is given by

L (s VT (4 BE
fr fr
In the above equatiomn, i represents the quark field, $ the pion field, EL is the

non—-linear derivative

1) -4
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and m is an effective coupling constant with the dimensions of a mass.

The origin of the quark-pion coupling is not related to any fundamental
property of the theory. Since the skin region 1s non—perturbative and therefore

not asymptotically free, we feel one should aualyze the effect of such a

coupling.

We now proceed in the static approximation for the pion field and perform a
perturbative expansion in powers of l/fn’ the pion—quark coupling comstant,
keeping only lowest chiral invariant order. This procedure leads to the

following equations of motion
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It is worth mentioning, that the regularity condition of the Cloudy Bag
Model is substituted by Eq. (4b), which is of Neuman character. Also, the
spontaneous breaking of the flavour symmetry has generated an effective mass
term for the quarks in the intermediate region. Finally, it is obvious from
Eq. (4c¢) that the exterior pion field is weaker than that of the Chiral Bag
Model and thus gA will be smaller than in that case. This sharing of strength

between the interior and exterior pions is the mechanism which gives rise to the

small value of 8 in the Cloudy Bag Model.

3. SOLUTIONS OF THE EQUATIONS OF MOTION

The perturbative scheme defines a unique way to look for solutions, namely,
one solves for the guark modes and those determine uniquely the pion modes. The
first step is therefore to look for solutions of Eqs. (3), in particular the

lowest quark mode is given by

gri r< Ry )

kf/: ?2 &CY'(R‘),} (3)

where
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we will simplify the notation and call Rch = R) and Re = Ry. In Eqs. (5a) and

{5b) N represents the normalization constant which is given in Appendix A, p2 =

3
/wZ — m? and K = [(w-m)/(wtm)]*=p/(wtm). TFrom the boundary conditiom Eq. (3b)

we obtain
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The mode energy w is obtained from the confinement condition Eg. (3c)
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Once the quark wave function is known, Eqs. (4) determine uniquely the

pionic modes. ' Thé solution is found to be,
; ; ;
$'(F) = @ (F)+ ¢ (7) ®

with
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The coefficients and the source terms are given by
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and
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Herewith the solutions corresponding to ordinary baryons have been found.

In order to reproduce the Chiral Bag Model results and to avoid singula-
rities in the limit R} » R, we let m be a function of the skin parameter 1 -
Rl/Rz, such that it vanishes in that limit. We have no rule from general
principles as to the form of this mass dependence, and we have adopted for our

investigation a smooth function of the skin parameter, namely
4
R.
m= m (’7" =
o Ro (iL)

This formula leads to the correct limit in the Chiral Bag Model picture, while

leaves some massive quarks in the Cloudy Bag Model limie.
4. RESULTS

We proceed in this section to calculate observables which we consider
crucial in the understanding of the physics involved. Our scheme for cobtaining
them is the so—called cavity field theory, where quantization is performed by
elevating to operators the expansion coefficients of the fields in terms of

modes, and imposing upon them the appropriate anticommutation relations. Since
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we shall not allow for free pions in this paper, there will be no pionic modes,

just pionlc c-number propagators.

OQur model 1s invariant under chiral symmetry at the current level,
although the symmetry is spontaneously broken due tc the degeneracy of the non—
perturbative vacuum. The vanishing of the axial curxent divergence leads to the
so—called Goldberger—Treiman relation, which we use to calculate the axial

vector coupling constant. In the model the axial current is given by

¢ T v )
=¥ z O (R,-~ { (r-
Ar' (strp_ \!l/ 2 ) + i g/u¢ é(r Ri) . (12)
In terms of this current the axial coupling constant for the nucleon is defined

by

AN
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where the right hand side is just a consequence of the conservation of axial

(13)

current. The second term in the right—hand side of Eq. (13) appears due to the
existence of the pion pole (kZ = Q) and therefore g, can be obtained just by
computing the contribution to the term which is proportional to 3.; i. Note
that only the pionic part of Eq. (12) contributes to this term, but that both
quarks and pions coatribute to gA. This remark is just another way of stating
the Goldberger—-Treiman relation, namely that 8y is proportional to the strong
coupling constant, which 1s given by the asymptotic pion field, i.e, by the

residue of the pole at k2 = 0. We thus obtain

R)_ 3
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In Appendix B we show the exact expressions for the massless limit. It is
trivial to prove from these expressions the two known limits, namely,

—_— ..".5_. __.V!.E?;_ ~_5_ ﬁ?-] —_ _{l d.hd wm -2 0.
gA 7% wk,-1 = 3/ I /RJ- (15a)

and
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In Fig. 1 we show results of the numerical calculation for the massive case as
function of the mass parameter and of the skin parameter. It is apparent that

for all cases plotted we are able to fit the chiral symuetric limit gy * 1.36.
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Another observable which is of relevance for our study is the mass of the

nucleon. This is obtained by integrating the Hamiltonian density defined by
(el
:;{ - To: © (21_‘\") + TZ, 9 (Rz‘r) er—R‘) + T;o Q(r-féz)}(lﬁ)

where the T00's are the appropriate components of the energy momemtum tensor

defined in the usual way

2
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where %?represents any field component. Note that the surface couplings do not
intervene in the definition of the energy, they just appear in the boundary
conditions. Keeping to lowest order in the expansion in powers of 1/f , we

s

obtain for a systém with three quarks occcupying the lowest cavity modes
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The energy coming from the quark-pion coupling is attractive. Contributions
coming from the quark-gluon coupling are missing but since they are pertur-
bative, they can just be added to the above equation. We do not worry in here
about corrections for centre~of-mass spurious motion. Again we refer to

Appendix B for analytical expressions in the massless case.

The calculation of other observables follows the same pattern developed
above. It is certainly not the purpose of this paper to reproduce the static
properties of baryons, in which certainly the model will do at least as good as
the two previous models, but to explore in a qualitative manner the picture that
arises once a skin is added to the bag. The results of the numerical

calculation are shown in Figs. 2 and 3.



5. DISCUSSION AND CONCLUSIONS

We have defined a bag model that includes in a phenomenlogical way two
scales, one associated with chiral symmetry restoration and one with
deconfinement. Due to the coupling of quarks to pions, the former acquire an
effective mass in the intermediate region. In order to obtain a non~gingular
limit for vanishing skin size, this mass parameter has been restricted to be a
soft function of skin depth. A nice feature of the model is that it inter—
polates between two well-known and successful hybrid models and thus we are
certain of repreducing a great deal of phenomenology. This though is not our
motivation in here and therefore we have avoided the techmicalities involved
with data fitting and have just paid attention to two crucial observables,
namely 8y and the nucleon energy. In Fig. 1 we show the former and the model
is able to reproduce the chiral invariant "experimental” value of 1.36. As the
mass parameter increases the skin depth has to increase if Bp is to be
reproduced.. Moreover, in our naive approach, at least a small skin 1s needed if

we want to fit the data.

Coming back to the energy, we show in Fig.2, the absolute value of the
pionic energy as a function of skin depth and mass. There is no unique
behaviour. For low masses the energy decreases as a function of skin depth,
i.e, the pionic energy becomes less attractive as we increase the size of the
system. For larger masses, on the contrary, the energy might become even highly

attractive compared to the zero mass case.

In Fig. 3 we show the enmergy functional as a functilon of mass for fixed
skin. It collapses at short distances. If one varies the skin for fixed mass
the changes are small and the collapse feature remains. It is important to note
that between 0.6 and 1.5 fm., i.e, the stability dip, the energy functional is
vety shallow, changing at most by 200 MeV. Aftrer this analysls, the only
6)

mechanisms we know that avoid collapse are Skyrme's fourth order term ° and the

9)

coupling of an w-vector meson” .

OQur investigations have been motivated by recent analysis of QCD by
semi-classical methods and fundamentally by numerical lattice calculatious.
Certainly the very late results for SU(3) with dynamical light fermion point to
an almost simultaneous phase transition (Tc = Tch). If we accept this
quantitative prediction of lattice QCD we are led to a small skin size. In our
scheme this would imply a small mass parameter {quark—pion coupling) as a result

of the 8y calculation. Therefore the Chiral Bag Model can be considered as the
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only valid smooth limit of our model, which is consistent with lattice QCD

results as interpreted here.

In our opinion there are two fundamental aspects in building hadron models.
Firstly, one has to introduce in those models all the information available from
the fundamental theory. Today that information comes mostly from lattice
calculations and non-perturbative methods. Secondly, these models have to be
able to reproduce a fair amount of phenomenology. The second condition by
itself seems to us of no relevance. Models must serve to test and to obtain
predictions which arise from the way we understand the theory through the model.
Therefore the main difficulty results in the interpretation of the more
fundamental results in terms of simple models. We have interpreted in this
paper the possibility of several phase tramsitlon temperatures, as the existence
of various well-defined regions in the structure of a hadron. If one looks at
very recent QUD calculations, one might be tempted to conclude that Tc = Tch’
but still there might be an intermediate region, where quarks acquire mass in a
slow fashion until they decouple and only Goldstone bosons remain. We have to
wait and see. 1In the meantime our analysis of the firxst alternative leads us to
affirm that the existence of a skin no matter how thin changes the physics of
hadron models considerably and for example, the deformation required to fit 8a

0)

; . L 1
will not be as dramatic as could be expected without it .

ACKNOWLEDGEMENTS

We are greatful to M. Rhe and G.E. Brown for helpful advise and clarifying
discussions. This work was supported in part by CAICYT and Korea Science and

Engineering Foundation.



- 11 -

REFERENCES

1).

2).

3).

4.

5).

6).

7).

8).

9).

10).

G.E. Brown and M. Rho, Phys.Lett. 82B (1979) 177;
G.E. Brown and M. Rho and V. Vento, Phys.Lett. 84B (1979) 383.

W. Marciano and H. Pagels, Phys.Rep. 36C (1978) 137.

C. Callan, R.F. Dashen and D.J. Gross, Phys.Rev. D19 (1979) 1826;
R.D. Pisarki, Phys.Lett. 110B (1982) 155;
E.V. Shuryak, Phys.Lett. 1078 (1981) 103.

J. Engels, F. Karsch and H. Satz, Phys.Lett. 113B (1982) 398;
J. Kogut et al., Phys.Rev.Lett. 48 (1982) 1140;

J. Kogut et al., Phys.Rev.Lett. 50 (1983) 393;

J. Engels et al., Nucl.Phys. B205 (1982) 545;

J. Kogut et al., Phys.Lett. 51 (1983) 869;

C. Lelik, J. Engels and H. Satz, Phys.Lett 129B (1983) 323;
BE. Svetitsky and F. Fucito, Phys.Lett. 131B (1983) 165;

J. Kogut et al., Phys.Rev.Lett. 53 (1984) 644,

A.W. Thomas, CERN preprint TH-3368 (1982).

M. Rho, A.S. Goldhaber and G.E. Brown, Phys.Rev.Lett. 3l (1983) 747;
E. Witten, Nucl.Phys. B223 (1983) 422,433;

$. Adkins, C.R. Nappi and E. Witten, Nucl.Phys. B228 {1983) 552;
S. Adkins and C.R. Nappi, Nucl.Phys. B233 (1983) 109;

.S. Adkins and C.R. Nappi, Phys.Lett. 137B (1984} 251;

D. Jackson and M. Rho, Phys.Rev.Lett. 51 (1983) 751.

G.E. Brown, A.D. Jackson, M. Rho and V. Vento, Phys.Lett. 140B (1984) 285;
L. Vepstas, A.D. Jackson and A.S. Goldhaber, Phys.Lett. 1408 (1984) 280;

H.B. Nielsen and I. Zahed, private communicatiomn.

V. Vento, Phys.Lett. 121B (1983) 370;
$.A. Chin and G.A. Miller, Phys.Lett. 121B (1983) 232.

V. Vento, Phys.Lett. 107B (198L1) 5.

Y. Vento, G. Baym and A.D. Jackson, Phys.Lett. 1028 (1981) 97.



- 12 -

APPENDIX A

NORMALIZATION OF THE SINGLE PARTICLE WAVE FUNCTIONS

Performing the apprépriate integrals the normalization integral is given by
- 3 4
N L REFR) + (LR GR)-£ &2 Gr))+
5 .
byt (4 RS AR) -4 RPH (R
-4
2

(4 B TR -4 Brea)
+285 (2 p P

where

F(R) = j3 (WR)+ no(wR) f1(wR) + 44 (WR) = fo(WR) f2(wR).

G(R) = J& (pR) +nelpR) ja(pR) v K*( 7 (pR) ~Jo(pR)j; (pR),

H

HR) = nd (pR) = JolpR) 1 (pR) + K> ( 2§ (pR) ~no(pr) e or)),
IR) = n& (pR) - gi(pR) + K*pR [ fi(pR)n pR) -

- 4 42 @R) o (pR) - 4 iy (pr) 1y (pR)]

and jl and n, 1=20,1,2 are the spherical Bessel and Neumann functions and 3,

v, k and p are defined in the main text in section 3.
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APPENDIX B

THE MASSLESS LIMIT

Taking the mass to be zero ‘is equivalent to'making in the equations p=w, p=1,

y=0 and k=1. We obtain in this limit

"2 3 2 4 - A
N = 2R JE(wR) [ wal]
which leads for 8, [Eq. 14] to,
5 wR [,, i(g,)z]
- 2 _WRa + =1
gA 9 wk,-1 < \R:
since wRy = 2.0428... then

TR

For the mass of the system our starting point is Eq. (18) and we obtain

e
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B
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3
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FIGURE CAPTIONS

Fig. 1:
Nuclear axial wvector coupling comstant gA as a function of skin depth for

different mass parameters. The following sets of parameters have been used:

|
<

mURz_ ;mOR2=.5,a=l-0__...__.;

m.o R2= 05,a= -].'—---'-—---—-; ﬂlO R2=1.-0,(1=1_-.0 ——— ———
y mp R2 = 1-0; A = 2l ——re .

Fig. 2:

Absolute wvalue of the pionic energy related parameter

_ 4orm [Erl -FﬂiRz%'
< Z T -F) TOTED

€

% 3] ‘
as a function of skin depth using the same set of parameters as in the previous
figure.
Fig. 3:

Energy functional versus the bag radius keeping the skin parameter fixed to
/%
R; /R, = 0.8 and using B . 150 MeV for different values of the mass parameter.

We use ¢ = 0.1 and the masses as shown in the figure.
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