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F-91191 Gif-sur-Yvette, France

February 1, 2008

ABSTRACT

Quantum effects inside the chiral bag induce a color anomaly which requires a com-

pensating surface term to prevent breakdown of color gauge invariance. We show that

the presence of this surface term first discovered several years ago allows one to derive

in a gauge-invariant way a chiral-bag version of the Shore-Veneziano two-component

formula for the flavor-singlet axial charge of the proton. This has relevance to what

is referred to as the “proton spin problem” on the one hand and to the Cheshire-Cat

phenomenon in hadron structure on the other. We show that when calculated to the

leading order in the color gauge coupling and for a specific color electric monopole

configuration in the bag, one can obtain a striking Cheshire-Cat phenomenon with a

negligibly small singlet axial charge.
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1 Introduction

It was discovered some years ago [1, 2] that the vacuum fluctuation inside a

chiral bag that induces the leakage of baryon charge into the hedgehog pion field

outside induces color leakage if one allows for a coupling to a pseudoscalar isoscalar

field η′. This would break color gauge invariance in the model unless it is canceled by

a surface counter term of the form (which will be referred to as NRWZ counter term

in what follows)

LCT = i
g2

32π2

∮

Σ
dβKµnµ(TrlnU † − TrlnU) (1)

where NF is the number of flavors (here taken to be =2), β is a point on a surface

Σ, nµ is the outward normal to the bag surface, U is the U(NF ) matrix-valued field

written as U = eiπ/feiη/f and Kµ the properly regularized Chern-Simons current

Kµ = ǫµναβ(Ga
νG

a
αβ − 2

3
fabcgGa

νG
b
αG

c
β) given in terms of the color gauge field Ga

µ.

Note that (1) manifestly breaks color gauge invariance, so the action of the chiral

bag model with this term is not gauge invariant but as shown in [1], when quantum

fluctuations are calculated, there appears an induced anomaly term on the surface

which exactly cancels this term. Thus gauge invariance is restored at the quantum

level.

In this paper, we show that a proper account of this term allows us to formulate

a fully consistent gauge invariant treatment of the flavor-singlet axial current (FSAC)

matrix element of the proton removing a serious conceptual error committed in the

previous work done by us together with Park and Brown [3, 4]. In the work of

refs.[3, 4], the axial anomaly in the FSAC was introduced explicitly in terms of a

Chern-Simons current inside the bag and of a heavy η′ field (which we shall denote

simply η in the equations) outside the bag arguing that the diagonal matrix element

was gauge invariant while off-diagonal terms are not. However this argument strictly

speaking is incorrect although it turns out that the conclusion reached there remains

more or less correct. See Cheng [5] for a recent discussion on this point. In this

paper, we propose to formulate the theory without invoking ab initio the problematic

Chern-Simons current inside the bag. For this, the NRWZ color boundary condition

plays a crucial role.

A complete description calls for a full Casimir calculation which is highly subtle

and yet to be performed. In this paper, we shall limit ourselves to the lowest non-

trivial order in the color gauge coupling constant and find that the Cheshire Cat

principle – that physics should be more or less independent of the confinement bag

radius[6] – found in the non-anomalous sector is also applicable in the anomalous

sector for a particular field configuration for the color electric field. This conclusion
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differs from that of Dreiner, Ellis and Flores [7] who obtained the opposite result by

ignoring the perturbative gluon effect inside the bag. We shall see that the Dreiner-

Ellis-Flores scenario can be recovered in a particular limit of our theory.

This paper is organized as follows. In Section 2, the formulation of the theory

implementing the color anomaly is presented. The relevant axial charge with the

UA(1) anomly suitably incorporated is computed in terms of the degrees of freedom

that figure in the chiral bag model. In Section 3, the results of the calculation are

given. Further discussions and open problems are found in Section 4.

2 Formulation

2.1 Boundary conditions

The equations of motion for the gluon and quark fields inside and the η′ field

outside are the same as in [3, 4]. However the boundary conditions on the surface

now read

n̂ · ~Ea = −
NF g

2

8π2f
n̂ · ~Baη (2)

n̂× ~Ba =
NF g

2

8π2f
n̂× ~Eaη (3)

and
1

2
n̂ · (ψ̄γγ5ψ) = fn̂ · ∂η + Cn̂ ·K (4)

where C = NF g2

16π2 and ~Ea and ~Ba are, respectively, the color electric and color magnetic

fields. Here ψ is the QCD quark field.

As it stands, the boundary condition for the η′ field (4) looks gauge non-

invariant because of the presence of the normal component of the Chern-Simons

current on the surface. However this is not so. As shown in [2], the term on the

LHS of (4) is not well-defined without regularization and when properly regularized,

say, by point-splitting, it can be written in terms of a well-defined term which we

will write as 1
2

: ψ̄n̂ · γγ5ψ : plus a gauge non-invariant term (see eq.(2) of [2]) which

cancels exactly the second term on the RHS. The resulting boundary condition

1

2
n̂· : (ψ̄γγ5ψ) := fn̂ · ∂η (5)

is then perfectly well-defined and gauge-invariant. However it is useless as it stands

since there is no simple way to evaluate the left-hand side without resorting to a

model. Our task in the chiral bag model is to express the well-defined operator

: (ψ̄~γγ5ψ) : in terms of the bagged quark field Ψ. In doing this, our key strategy is

to eliminate gauge-dependent surface terms by the NRWZ surface counter term.
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2.2 Flavor-singlet axial current

Let us write the flavor-singlet axial current in the model as a sum of two terms,

one from the bag and the other from the outside populated by the meson field η′ (we

will ignore the Goldstone pion fields for the moment)

Aµ = Aµ
BΘB + Aµ

MΘM . (6)

We shall use the short-hand notations ΘB = θ(R − r) and ΘM = θ(r − R) with R

being the radius of the bag which we shall take to be spherical in this paper. We

demand that the UA(1) anomaly be given in this model by

∂µA
µ =

αsNf

2π

∑

a

~Ea · ~BaΘB + fm2
ηηΘM . (7)

Our task is to construct the FSAC in the chiral bag model that is gauge-invariant

and consistent with this anomaly equation. Our basic assumption is that in the

nonperturbative sector outside of the bag, the only relevant UA(1) degree of freedom

is the massive η′ field. (The possibility that there might figure additional degrees of

freedom in the exterior of the bag co-existing with the η′ and/or inside the bag co-

existing with the quarks and gluons will be discussed later.) This assumption allows

us to write

Aµ
M = f∂µη (8)

with the divergence

∂µA
µ
M = fm2

ηη. (9)

Now the question is: what is the gauge-invariant and regularized Aµ
B such that the

anomaly (7) is satisfied? To address this question, we rewrite the current (6) absorbing

the theta functions as

Aµ = Aµ
1 + Aµ

2 (10)

such that

∂µA
µ
1 = fm2

ηηΘM , (11)

∂µA
µ
2 =

αsNf

2π

∑

a

~Ea · ~BaΘB. (12)

We shall deduce the appropriate currents in the lowest order in the gauge coupling

constant αs and in the cavity approximation for the quarks inside the bag.
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2.2.1 The “quark” current Aµ
1

Let the bagged quark field be denoted Ψ. Then to the lowest order in the

gauge coupling and ignoring possible additional degrees of freedom alluded above,

the boundary condition (5) is

1

2
n̂ · (Ψ̄γγ5Ψ) = fn̂ · ∂η (13)

and the corresponding current satisfying (11) is

Aµ
1 = Aµ

1q + Aµ
1η (14)

with

Aµ
1q = (Ψ̄γµγ5Ψ)ΘB, (15)

Aµ
1η = f∂µηΘM . (16)

We shall now proceed to obtain the explicit form of the bagged axial current operator.

In momentum space, the quark contribution is

Aj
1q(q) =

1

2

∫

d3rei~q·~r〈NBag|Ψ
†σjΨ|NBag〉

= (a(q)δj k + b(q)(3q̂j q̂k − δj k)) 〈
1

2

∑

quarks

σk〉 (17)

where

a(q) = N2
∫

drr2(j2
0(ωr) −

1

3
j2
1(ωr))j0(qr), (18)

b(q) =
2

3
N2

∫

drr2j2
1(ωr)j2(qr) (19)

where N is the normalization constant of the (bagged) quark wave function. In the

limit that q → 0 which is what we want to take for the axial charge, both terms are

non-singular and only the a(0) term survives, giving

Aj
1q(0) = g0

A,quark〈
1

2

∑

quarks

σj〉 (20)

where g0
A,quark is the singlet axial charge of the bagged quark which can be extracted

from (18). In the numerical estimate made below, we shall include the Casimir effects

associated with the hedgehog pion configuration to which the quarks are coupled [8, 9],

so the result will differ from the naive formula (18).

To obtain the η′ contribution, we take the η′ field valid for a static source

η(~r) = −
g

4πM

∫

d3r′χ†~Sχ · ~∇
e−mη |~r−~r′|

|~r − ~r′|
(21)

4



where g is the short-hand for the η′NN coupling constant, M is the nucleon mass,

χ the Pauli spinor for the nucleon and S the spin operator. The contribution to the

FSAC is

Aj
1η(q) =

∫

VM

d3rei~q·~rf∂jη,

= (c(q)δj k + d(q)(3q̂j q̂k − δj k))〈
1

2

∑

quarks

σk〉 (22)

with

c(q) =
fg

2M

∫ ∞

R
drr2 e

−mηr

r
m2

ηj0(qr), (23)

d(q) = −
fg

2M

∫ ∞

R
dr
e−mηr

r
[r2m2

η + 3(mηr + 1)]j2(qr). (24)

In the zero momentum transfer limit1, we have

Aj
1η(0) =

gf

2M

[

(y2
η + 2(yη + 1))δj k − y2

η q̂j q̂k
]

e−yη〈Sk〉 (25)

where yη = mηR.

The boundary condition (13) provides the relation between the quark and η′

contributions. In the integrated form, (13) is

∫

dΣfx3r̂ · ~∇η =
∫

VB

d3r
1

2
Ψ̄γ3γ5Ψ (26)

from which follows
gf

M
= 3

eyη

y2
η + 2(yη + 1)

g0
A,quark. (27)

This is a Goldberger-Treiman-like formula relating the asymptotic pseudoscalar cou-

pling to the quark singlet axial charge. From (20), (25) and (27), we obtain

Aj
1 = g0

A1
〈Sj〉 (28)

with

g0
A1

=
gf

3M

y2
η + 2(yη + 1)

eyη
=

3

2
g0

A,quark. (29)

This is completely analogous to the isovector axial charge g3
A coming from the bagged

quarks inside the bag plus the perturbative pion fields outside the bag. Note that

the singlet charge g0
A1

goes to zero when the bag is shrunk to zero, implying that

the coupling constant g goes to zero as R → 0 as one can see from eq.(27). This

1With however mη 6= 0. The limiting processes q → 0 and mη → 0 do not commute as we will

see shortly.
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is in contrast to g3
A where the axial charge from the bag “leaks” into the hedgehog

pion outside the bag and hence even when the bag shrinks to zero, the isovector axial

charge remains more or less constant in agreement with the Cheshire Cat[10].

An interesting check of our calculation of ~A1 can be made by looking at the

mη → 0 limit. From (17) and (25), we find that our current satisfies

q̂ · ~A1(0) =
gf

M
(yη + 1)e−yη〈q̂ · ~S〉 (30)

which corresponds to eq.(11). Now eq.(11) is an operator equation so one can take

the limit mη → 0 and expect the right-hand side to vanish, obtaining q̂ · ~A1 → 0.

Equation (30) fails to satisfy this. The reason for this failure is that the q → 0 and

mη → 0 limits do not commute. To obtain the massless limit, one should take the η′

mass to go to zero first.

Before taking the zero-momentum limit, the expression for c(q) for the η field,

(23), is

c(q) =
fg

3M







m2
η

q2

e−yη(cos(qr) + mη

q
sin(qr))

1 +
m2

η

q2





 (31)

which vanishes in the mη → 0 limit. On the other hand, the d(q), (24), which before

taking the zero-momentum limit, is of the form

d(q) = −
fg

2M
(
e−yη(y2

η + 3yη + 3)

qR
j1(qR)

−
m2

η

q2
e−yη(yη + 1)j0(qR) +

m4
η

q4

e−yη(cos(qr) + mη

q
sin(qr))

1 +
m2

η

q2

) (32)

becomes in the mη → 0 limit

−
fg

2M

j1(qR)

qR
. (33)

Adding the quark current (17) in the q → 0 limit, we get

Aj
1(0) =

fg

M
(δjk − q̂j q̂k)Sk (34)

which satisfies the conservation relation. This shows that our formulas are correct.

2.2.2 The gluon current Aµ
2

The current Aµ
2 involving the color gauge field is very intricate because it is

not possible in general to write a gauge-invariant dimension-3 local operator corre-

sponding to the singlet channel. We will see however that it is possible to obtain

a consistent axial charge within the model. Here we shall calculate it to the lowest
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nontrivial order in the gauge coupling constant. In this limit, the right-hand sides of

the boundary conditions (2) and (3) can be dropped, reducing to the original MIT

boundary conditions [11]. Furthermore the gauge field decouples from the other de-

grees of freedom precisely because of the color anomaly condition that prevents the

color leakage, namely, the condition (5). In its absence, this decoupling could not

take place in a consistent way.2

We start with the divergence relation

∂µA
µ
2 =

αsNf

2π

∑

a

~Ea · ~BaΘVB
. (35)

In the lowest-mode approximation, the color electric and magnetic fields are given by

~Ea = gs
λa

4π

r̂

r2
ρ(r) (36)

~Ba = gs
λa

4π

(

µ(r)

r3
(3r̂~σ · r̂ − ~σ) + (

µ(R)

R3
+ 2M(r))~σ

)

(37)

where ρ is related to the quark scalar density ρ′ as

ρ(r) =
∫ r

Γ
dsρ′(s) (38)

and µ,M to the vector current density

µ(r) =
∫ r

0
dsµ′(s),

M(r) =
∫ R

r
ds
µ′(s)

s3
.

The lower limit Γ usually taken to be zero in the MIT bag model will be fixed later

on. It will turn out that what one takes for Γ has a qualitatively different consequence

on the Cheshire-Cat property of the singlet axial current. Substituting these fields

into the RHS of eq.(35) leads to

~q · ~A2 =
8α2

sNf

3π
~σ · q̂

∫ R

0
drρ(r)

(

2
µ(r)

r3
+
µ(R)

R3
+ 2M(r)

)

j1(qr) (39)

where αs = g2
s

4π
and we have used

∑

i6=j

∑

a λ
a
i λ

a
j = −8

3
for the baryons3.

2To higher order in the gauge coupling, the situation would be a lot more complicated. A full

Casimir calculation will be required to assure the consistency of the procedure. This problem will

be addressed in a future publication.
3Here we are making the usual assumption as in ref.[12] that the i = j terms in the color factor

are to be excluded from the contribution on the ground that most of them go into renormalizing the

single-quark axial charge. If one were to evaluate the color factor without excluding the diagonal

terms using only the lowest mode, the anomaly term would vanish, which of course is incorrect. As

emphasized in [12], there may be residual finite contribution with i = j but no one knows how to

compute this and so we shall ignore it here. It may have to be carefully considered in a full Casimir

calculation yet to be worked out.
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In order to calculate the axial charge, we take the zero momentum limit and

obtain

lim
q→0

~A2(~q) =
8α2

sNf

9π
Ã2(R)~S (40)

where

Ã2(R) =
∫ R

0
rdrρ(r)

(

2M(r) +
µ(R)

R3
+ 2

µ(r)

r3

)

≡ 2
∫ R

0
drrρ(r)α(r). (41)

The quantity α(r) is defined for later purposes. It is easy to convince oneself that (40)

is gauge-invariant, i.e., it is ∝
∫

VB
d3r~r

∑

a
~Ea · ~Ba which is manifestly gauge-invariant.

The result (40) was previously obtained in [13].

2.2.3 The Chern-Simons current and NRWZ counter term

The Chern-Simons current Kµ whose divergence is gauge-invariant is not by

itself gauge-invariant. The question that can be raised here is: How is the gauge-

invariant object (40) related to the Chern-Simons current incorrectly used in refs.[3,

4] ? To answer this question, we first take the λa outside from the field operators

Ga
µ =

gs

4π
λaGµ,

Ga
µν =

gs

4π
λaGµν . (42)

This is convenient in abelianizing the theory.

From the electric and magnetic fields in the cavity (see eqs. (36) and (37)) and

using

Ei = −∂iG0, (43)

Bi = εijk∂jGk (44)

we get, up to gauge transformations,

G0(~r) =
∫ r

0
ds
ρ(s)

s2
, (45)

Gi(~r) =

(

µ(r)

r3
+

1

2

µ(R)

R3
+M(r)

)

(~r ∧ ~σ)i. (46)

The curly fields behave under gauge transformations as

GΛ
µ = Gµ + ∂µΛ. (47)

Consider a static Gµ and restrict ourselves to time-independent field transformations.

Then

Λ(~r, t) = Λ1t+ Λ2(~r) (48)

8



where Λ1 is a constant so that

GΛ
0 = G0 + Λ1 (49)

and Λ2(~r) is a time-independent function such that

GΛ
i = Gi + ∂iΛ2. (50)

For these fields the Chern-Simons current is given by

Ki = −2G0Bi + 2εijkGjEk + O(g3

s
). (51)

At the surface of the bag

r̂ · ~K ∼ GΛ
0 r̂ ·

~B (52)

which is in general different from zero. We may choose the constant Λ1 so that G0

vanishes at the surface of the bag. In general, there may be a finite contribution.

However this is no cause for worry since the crucial point of our reasoning is that

such a contribution, if non-vanishing, will be canceled by the NRWZ surface counter

term.

The gauge dependence of the Chern-Simons current is given by

KΛ
i −Ki ∼ −Λ1

~Bi + (~∂Λ2 ∧ ~E)i (53)

where we have denoted by E and B the color electric and magnetic fields with the λ

factor taken out as in eq.(42). Since our fields are static (~∂ ∧ ~E = 0), we may write

the RHS of eq.(53) as an exact differential, i.e.,

εijk∂j(Λ2Ek − Λ1Gk). (54)

This term when calculating the charge, i.e., integrating over the bag, will be killed

by the NRWZ surface coupling. This shows that the Chern-Simons current cannot

be injected into the interior of the bag without properly imposing the NRWZ counter

term, an error committed in refs.[3, 4].

2.2.4 The structure of the η′

In our discussion on the boundary condition eq.(5), we emphasized the role

of the NRWZ mechanism in removing gauge-non-invariant terms accumulating on

the surface. An important point to note here is that this mechanism imposed no

condition on the normal component of the Chern-Simons current itself. It is just that

the normal flux of the Chern-Simons current was canceled by the surface counter

term.
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Thus far we have assumed that the only relevant degrees of freedom are the

quarks and gluons inside the bag and the η′ (and pions) outside the bag. This is

the minimal picture. Now suppose that there are additional degrees of freedom (in

addition to (15) and (16)) either outside or inside of the bag or both inside and outside.

We shall assume for simplicity that there is one such degree of freedom outside. The

same result will be obtained for the other cases except for possibly different physical

interpretations. Now from the divergence condition (7), the additional current must

be gauge-invariant and divergenceless, i.e.,

δAµ
1η = −∆µΘM (55)

with

∂µ∆µ = 0. (56)

A possible candidate for such a degree of freedom could be a heavy quarkonium or a

heavy gluonium. The condition (11) would remain unchanged provided the boundary

condition (13) is modified to

1

2
n̂ · (Ψ̄γγ5Ψ) + r̂ · ~∆ = fn̂ · ∂η. (57)

To see what the consequences of the boundary condition (57) are, consider a ~∆

that can be written in terms of the harmonic function4

~∆ = ~∇Φ (58)

with in the cavity

Φ =
∑

l,m

Clr
lYl,m. (59)

The boundary condition, eq.(57), gets a contribution from l = 1 and hence only the

coefficient C1 enters. This modifies the asymptotic normalization (27) to

gf

M
=

eyη

y2
η + 2(yη + 1)

(

3

2
g0

A,quarks + 4πR4c1

)

(60)

where the normalization constant is chosen so that Φ(~r) = c1~S · ~r. The new term

contributing to the singlet current in momentum space is given by

∆i(q) = 4πc1R
2Si

j1(qr)

q
. (61)

4 The argument given here is actually more general, applying as well to the case where ~∇× ~∆ 6= 0.
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This new current adds a contribution to g0
A1

. Using eqs.(60) and (61) together, we

obtain

g0
A1

=
gf

3M

y2
η + 2(yη + 1)

eyη
=

3

2
(g0

A,quarks +
4π

3
R4c1). (62)

The expression (62) has an interesting physical interpretation. In terms of the η′

parameters, it is exactly the same as what we obtained before, i.e., eq.(29). However

this is not so in terms of the quarks and the additional degree of freedom. One may

interpret this as describing the quark-glueball undressing of the η′. It is not clear

what this additional degree of freedom could be: One could perhaps relate it to (a

part of) the pseudoscalar field G = TrGµνG̃
µν (where G̃µν is dual to Gµν) introduced

by the authors of [14]. Without knowing its content or structure, one can however

infer its role if one adopts the Cheshire-Cat principle. Equation (62) shows that g0
A1

will become large in magnitude as the radius grows if c1 is non-negligible and this will

violate the Cheshire Cat. Thus the Cheshire Cat will require that c1 ∼ 0. Since we do

not know how to compute it within the model anyway, we shall simply assume it to

be zero. An interesting possibility is that when the η′ nucleon coupling is measured

with accuracy, we will not only determine g0
A1 unambiguously but also learn more

about this mysterious degree of freedom if it is not completely negligible.

2.2.5 The two-component formula

The main result of this paper can be summarized in terms of the two component-

formula for the singlet axial charge (with c1 = 0),

g0
A = g0

A1
+ g0

A2
=

3

2
g0

A,quarks +
8α2

sNf

9π
A2(R). (63)

The first term is the “matter” contribution (29) and the second the gauge-field contri-

bution (40). This is the chiral-bag version of Shore-Veneziano formula[15, 14] relating

the singlet axial charge to a sum of an η′ contribution and a glue-ball contribution.

3 Results

In this section, we shall make a numerical estimate of (29) and (40) in the

approximation that is detailed above. In evaluating (29), we shall take into account

the Casimir effects due to the hedgehog pions but ignore the effect of the η′ field

on the quark spectrum. The interaction between the internal and external degrees

of freedom occurs at the surface. Our approximation consists of neglecting in the

expansion of the boundary condition in powers of 1
f

all η dependence, i.e.

ir̂ · γΨ = eiγ5~τ ·r̂
ϕ(~r)
fπ eiγ5

η
f Ψ ∼ eiγ5~τ ·r̂

ϕ(~r)
fπ Ψ (64)
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This approximation is justified by the massiveness of the η′ field in comparison to

the Goldstone pion field that supports the hedgehog configuration, ϕ. Within this

approximation, we can simply take the numerical results from [3, 4] changing only

the overall constants in front.

The same is true with the gluon contribution. To the lowest order in αs, the

equation of motion for the gluon field is the same as in the MIT bag model. This is

easy to see, since the modified boundary conditions eqs.(2) and (3) become

r̂iG
iµ = −

αsNF

2π

η

f
r̂iG̃

iµ ∼ 0. (65)

The only difference from the MIT model is that here the quark sources for the gluons

are modified by the hedgehog pion field in (64). Again the results can be taken from

[3, 4] modulo an overall numerical factor.

In evaluating the anomaly contribution (41), we face the same problem with

the monopole component of the ~Ea field as in [3, 4]. If we write

Ea
i (r) = f(r)r̂λa

i (66)

where the subscript i labels the ith quark and a the color, the f(r) satisfying the

Maxwell equation is

f(r) =
1

4πr2

∫ r

Γ
dsρ′(s) ≡

1

4πr2
ρ(r). (67)

If one takes only the valence quark orbit – which is our approximation, then ρ′ in

the chiral bag takes the same form as in the MIT model. However the quark orbit is

basically modified by the hedgehog boundary condition, so the result is of course not

the same. The well-known difficulty here is that the bag boundary condition for the

monopole component

r̂ · Ea
i = 0, at r = R (68)

is not satisfied for Γ 6= R. Thus as in [3, 4], we shall consider both Γ = 0 and Γ = R.

The existence of a solution which satisfies explicitly and locally the boundary

condition suggests an approach different from the one in the original MIT calculation

[11], where the boundary condition of the electric field was imposed as an expectation

value with respect to the physical hadron state. In [11], the E and B field contribu-

tions to the spectrum were treated on a completely different footing. While in the

former the contribution arising from the quark self-energies was included, thereby

leading to the vanishing of the color electric energy, in the latter they were not. This

gave the color magnetic energy for the source of the nucleon-∆ splitting. We have

performed a calculation for the energy with the explicitly confined E and B field
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treated in a symmetric fashion [4]. Although in this calculation the contribution of

the color-electric energy was non-vanishing, it was found not to affect the nucleon-∆

mass splitting, and therefore could be absorbed into a small change of the unknown

parameters, i.e., zero point energy, bag radius, bag pressure etc. As we shall see

shortly, the two ways of treating the confinement with Γ = R and Γ = 0 give qualita-

tively different results for the role of the anomaly. One could consider therefore that

the singlet axial charge offers a possibility of learning something about confinement

within the scheme of the chiral bag. At present, only in heavy quarkonia [16] does

one have an additional handle on these operators.

The numerical results for both cases are given in Table 1.

Table 1: The flavor-singlet axial charge of the proton as a function of radius R and the

chiral angle θ. The column labeled g0
A1

corresponds to the total contribution from the quarks

inside the bag and η′ outside the bag (eq.(29)) and g0
A2

(Γ = R) and g0
A2

(Γ = 0) to the gluon

contribution eq.(40) evaluated with Γ = R and Γ = 0 in (67), respectively. The parameters

are: αs = 2.2, mη = 958 MeV and f = 93 MeV. The row with R = ∞ corresponds to the

unrealistic (and extreme) case of an MIT bag model with the same parameters for the same

degrees of freedom but containing no pions.

R(fm) θ/π g0
A1

g0
A2

(Γ = R) g0
A2

(Γ = 0) g0
A(Γ = R) g0

A(Γ = 0)

0.0 -1.000 0.000 0.000 0.000 0.000 0.000

0.2 -0.742 0.033 -0.015 0.009 0.018 0.042

0.4 -0.531 0.164 -0.087 0.046 0.077 0.210

0.6 -0.383 0.321 -0.236 0.123 0.085 0.444

0.8 -0.277 0.494 -0.434 0.232 0.060 0.726

1.0 -0.194 0.675 -0.635 0.352 0.040 1.027

∞ 0.00 0.962 -1.277 0.804 -0.297 1.784

4 Discussion

The quantity we have computed here is relevant to two physical issues: the so-

called “proton spin” issue and the Cheshire-Cat phenomenon in the baryon structure.

A more accurate result awaits a full Casimir calculation which appears to be non-

trivial. However we believe that the qualitative feature of the given model with the

specified degrees of freedom will not be significantly modified by the full Casimir

effects going beyond the lowest order in αs.
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In the current understanding of the polarized structure functions of the nucleon,

the FSAC matrix element or the flavor-singlet axial charge of the proton is related

to the polarized flavor-singlet structure function ∆Σ = ∆u + ∆d + ∆s [5, 17]. The

presently available analyses give [17, 18]

∆Σ = 0.27 ± 0.04 ± · · · (69)

= 0.10 ± 0.05(exp) ±0.17
0.11 (th) (70)

Our predictions for g0
A – which can be compared with ∆Σ – differ drastically

depending upon whether one takes Γ = 0 for which the color electric monopole field

satisfies only globally the boundary condition at the leading order (that is, as a matrix

element between color-singlet states) as in the standard MIT bag-model phenomenol-

ogy or Γ = R which makes the boundary condition satisfied locally. The former

configuration severely breaks the Cheshire Cat with the bag radius R constrained to

0.5 fm or less (“little bag scenario”) to describe the empirical values (69) and (70).

This is analogous to what Dreiner, Ellis and Flores [7] obtained. In this scenario,

there is no way that the Cheshire Cat can be recovered in the singlet channel unless

a hitherto unknown degree of freedom discussed above which contributes the surface

term r̂ · ~∆ in the boundary condition (57) intervenes massively with the right sign to

cancel the rest, a possibility which we find to be highly unlikely although not totally

excluded.

On the other hand, the configuration with Γ = R which we favor leads to a

remarkably stable Cheshire Cat in consistency with other non-anomalous processes

where the Cheshire Cat is seen to hold within, say, 30% [4, 10]. The resulting singlet

axial charge g0
A < 0.1 is consistent with (70) though perhaps somewhat too low

compared with (69). One cannot however take the near zero value predicted here

too literally since the value taken for αs is perhaps too large. Moreover other short-

distance degrees of freedom not taken into account in the model (such as the light-

quark vector mesons and other massive mesons) can make a non-negligible additional

contribution[14]. What is noteworthy is that there is a large cancellation between

the “matter” (quark and η′) contribution and the gauge field (gluon) contribution in

agreement with the interpretation anchored on UA(1) anomaly[18].

As mentioned above – and also noted in [3, 4], the electric monopole configura-

tion with Γ = R is non-zero at the origin and hence is ill-defined there. This feature

does not affect, however, other phenomenology as shown in [4]. We do not know yet

if this ambiguity can be avoided if other multipoles and higher-order and Casimir

effects are included in a consistent way. This caveat notwithstanding, it seems rea-

sonable to conclude from the result that if one accepts that the singlet axial charge is
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small because of the cancellation in the two-component formula and if in addition one

demands that the Cheshire Cat hold in the UA(1) channel as in other non-anomalous

sectors, we are led to (1) adopt the singular monopole configuration that satisfies the

boundary condition locally and (2) to the possibility that within the range of the bag

radius that we are considering, the η′ is primarily quarkish with c1 ≈ 0. This issue

will be addressed further in a forthcoming publication which will include Casimir

effects.

Acknowledgments

We are grateful for helpful correspondence from Byung-Yoon Park. This work

was done while one of the authors (MR) was visiting the Department of Theoretical

Physics in the University of Valencia under the auspices of “IBERDROLA de Ciencia

y Tecnologia.” He is grateful for its support as well as for the hospitality of the

members of the Theory Department.

15



References

[1] H.B. Nielsen, M. Rho, A. Wirzba and I. Zahed, Phys. Lett.B269 (1991) 389

[2] H.B. Nielsen, M. Rho, A. Wirzba and I. Zahed, Phys. Lett.B281 (1992) 345

[3] B.-Y. Park, V. Vento, M. Rho and G.E. Brown, Nucl. Phys.A504 (1989) 829

[4] B.-Y. Park and V. Vento, Nucl. Phys.A513 (1990) 413

[5] H.-Y. Cheng, “The Status of the Proton Spin Problem,” Lectures at the Xth

Spring School on Particles and Fields, Taiwan, ROC, March 20-22, 1996, hep-

ph/9607254.

[6] See, e.g., Chiral Nuclear Dynamics by M.A. Nowak, M. Rho and I. Zahed (World

Scientific Pub. Singapore, 1996) Chapter 8.

[7] H. Dreiner, J. Ellis and R.A. Flores, Phys. Lett.B221 (1989) 167.

[8] G.E. Brown, A.D. Jackson, M. Rho and V. Vento, Phys. Lett.B140 (1984) 285.

[9] M.D. Francia, H. Falomir and E.M. Santangelo, Phys. Lett.B371 (1996) 285

[10] A. Hosaka and H. Toki, “Chiral Bag Model for the Nucleon,” Phys. Repts. 277

(1996) 65.

[11] T. De Grand, R.L. Jaffe, K. Johnson and J. Kiskis, Phys. Rev D12 (1975) 2060.

[12] R.L. Jaffe, Phys. Lett.B365 (1996) 359.

[13] T. Hatsuda and I. Zahed, Phys. Lett.B221 (1989) 173.

[14] J. Schechter, V. Soni, A. Subbaraman and H. Weigel, Phys. Rev. Lett.65 (1990)

2955; Mod. Phys. Lett. AA5 (1990) 2543; Mod. Phys. Lett. A7 (1992) 1

[15] G.M. Shore and G. Veneziano, Phys. Lett.B244 (1990) 75

[16] M. Voloshin and V. Zakharov, Phys. Rev. Lett. 45 (1980) 688.

[17] For summary, J. Ellis and M. Karliner, “The Strange Spin of the Nucleon,”

Lectures at the Int. School of Nucleon Spin Structure, Erice, August 1995, hep-

ph/9601280.

[18] G. Altarelli, R.D. Ball, S. Forte and G. Ridolfi, hep-ph/9701289

16

http://arXiv.org/abs/hep-ph/9607254
http://arXiv.org/abs/hep-ph/9607254
http://arXiv.org/abs/hep-ph/9601280
http://arXiv.org/abs/hep-ph/9601280
http://arXiv.org/abs/hep-ph/9701289

