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Abstract. Using a simple picture of the constituent quark as a composite
system of point-like partons, we construct the polarized parton distributions
by a convolution between constituent quark momentum distributions and con-
stituent quark structure functions. We achieve good agreement with experi-
ments in the unpolarized as well as in the polarized case, though a good de-
scription of the recent polarized neutron data requires the introduction of one
more parameter. When our results are compared with similar calculations us-
ing non-composite constituent quarks, the accord with the experiments of the
present scheme is impressive. We conclude that DIS data are consistent with a
low energy scenario dominated by composite constituents of the nucleon.

At low energies, the so called naive quark model accounts for a large num-
ber of experimental observations. At large energies, QCD sets the framework
for an understanding of the Deep Inelastic Scattering (DIS) phenomena be-
yond the Parton Model. However, the perturbative approach to QCD does not
provide absolute values for the observables. The description based on the Oper-
ator Product Expansion (OPE) and the QCD evolution requires the input of
non-perturbative matrix elements. We have developed an approach which uses
model calculations for the latter ingredients [1]. Moreover, in order to relate
the constituent quark with the current partons of the theory, a procedure, here-
after called ACMP, has been applied [2, 3]. Within this approach, constituent
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quarks are effective particles made up of point-like partons (current quarks
(antiquarks) and gluons), interacting by a residual interaction described as in
a quark model. The hadron structure functions are obtained by a convolution
of the constituent quark model wave function with the constituent quark struc-
ture function. This idea has been recently used to estimate the pion structure
function [4]. We summarize here our application to the unpolarized [3] and
polarized [5] DIS off the nucleon. It will be found that DIS data are consistent
with a low energy scenario dominated by composite constituents.

In our picture the constituent quarks are themselves complex objects whose
structure functions are described by a set of functions Φab that specify the
number of point-like partons of type b, which are present in the constituents of
type a with fraction x of its total momentum [2, 3]. In general a and b specify
all the relevant quantum numbers of the partons, i.e., flavor and spin. Let us
discuss first the unpolarized case for the proton [3].

The functions describing the nucleon parton distributions omitting spin
degrees of freedom are expressed in terms of the independent Φab(x) and of the
constituent probability distributions u0 and d0, at the hadronic scale µ2

0
[1], as
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0
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0
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where f labels the various partons, i.e., valence quarks (uv, dv), sea quarks
(us, ds, s), sea antiquarks (ū, d̄, s̄) and gluons g. The different types and func-
tional forms of the structure functions for the constituent quarks are derived
from three very natural assumptions [2]: i) The point-like partons are the
quarks, antiquarks and gluons described by QCD; ii) Regge behavior for x → 0
and duality ideas; iii) invariance under charge conjugation and isospin.

These considerations define the following structure functions [2]

Φqf (x, µ2

0
) = Cfxaf (1 − x)A−1 , (2)

where f = qv, qs, g for the valence quarks, the sea and the gluons, respectively.
Regge phenomenology suggests: aqv

= −0.5 (ρ meson exchange) and aqs
=

ag = −1 (pomeron exchange). The other ingredients of the formalism, i.e.,
the probability distributions for each constituent quark, are defined according
to the procedure of ref. [1] and shown in [3]. Our last assumption relates to
the hadronic scale µ2

0
, i.e., that at which the constituent quark structure is

defined. We choose µ2

0
= 0.34 GeV2, as defined in Ref. [1], namely by fixing the

momentum carried by the various partons. This choice of the hadronic scale
determines all the parameters except one, which is fixed through the data [3].
To complete the process, the above input distributions are NLO-evolved in the
DIS scheme to the experimental scale, where they are compared with the data.

We next generalize our previous discussion to the polarized parton distri-
butions. As it is explained in ref. [5], using SU(6) (spin-isospin) symmetry and
other reasonable simplifying assumptions, it can be shown that
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Figure 1. The proton F2(x,Q2), obtained by NLO-evolution to Q2 = 10 GeV2 (full),
compared to the data (dots) [10]. The result which would be obtained disregarding
the constituent structure is also shown (dashed). Left (right) panel: constituent wave
functions form ref. [8] (ref. [9]).

where f labels the various partons; it means that the ACMP procedure can be
extended to the polarized case just by introducing three additional structure
functions for the constituent quarks: ∆Φqqv

, ∆Φqqs
and ∆Φqg . In order to

determine them we add two minimal assumptions: iv) factorization: ∆Φ cannot
depend upon the quark model used; v) positivity: the constraint ∆Φ ≤ Φ is
saturated for x = 1. In such a way we determine completely the ∆Φ’s. In fact,
the QCD partonic picture, Regge behavior and duality imply that

∆Φqf = ∆Cfx−∆af (1 − x)∆Af−1 (4)

and −
1

2
< ∆af < 0, for all f = qv, qs, g, as allowed by dominant exchange

of the A1 meson trajectory [7]. Moreover, the assumption that the positivity
restriction is saturated for x = 1, in the spirit of ref. [6], implies that the
Φ′s and the ∆Φ′s have the same large x behavior, and that ∆Cf = Cf , (the
latter being introduced in (2)); it means that the partons which carry all of
the momentum also carry all of the polarization. Let us stress that the change
between the polarized functions and the unpolarized ones comes only from
Regge behavior; as a matter of fact, it turns out that, except for the exponent
∆af shown above, the ∆Φ’s, Eq. (4), are given by the unpolarized functions, Eq.
(2). The other ingredients, i.e., the polarized distributions for each constituent
quark, are defined according to the procedure of ref. [1] and they are shown
in ref. [5]. Finally, the parton distributions at the hadronic scale are evolved
to the experimental scale by performing a NLO evolution in the AB scheme
[7]. Results are shown in Figs. 1 and 2. Fig. 1 refers to the unpolarized case.
The structure function F2(x, Q2), obtained evolving the parton distributions
Eq. (1), calculated using Eq. (2) for the Φqf ’s and two different models for uo
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and do, describes successfully the data. The agreement becomes impressive if
compared with a similar calculation with non-composite constituents.

Figure 2. Left (Right): xg1(x, Q2) for the proton (neutron) evolved at NLO to Q2 =
10 (5) GeV2, for the two extreme Regge behaviors mentioned in the text (full curves).
The wave functions used are from ref. [9]. The data [10] are shown for comparison.

In the polarized case, it is found [5] that the constituent structure functions
Eq. (4) give a good result for the proton, but they fail in reproducing the recent
precise neutron data. This is to be ascribed to our naive input for the sea and to
the symmetry for the u and d quarks [5]. In particular, it has been shown that,
by redefining the sea ∆Φ, changing only one parameter so that the experimental
sea polarization is recovered, also the neutron is rather well described. Fig. 2
refers to this last scenario. The procedure is also able to predict successfully
several observables, such as the nucleon axial charges [5]. It should be noticed
that in this framework the spin crisis, as initially presented, does not arise.

Summarizing, low energy models seem to be consistent with DIS data when
a structure for the constituent is introduced. The crucial role played by the
sea in the polarized case, as well as the implementation of Chiral Symmetry
Breaking in our procedure, have to be more deeply investigated. It will be the
subject of future work.
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