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(December 20, 2013)

Abstract

We extend the N–quantum approach to quantum field theory to finite temper-

ature (T ) and chemical potential (µ) and apply it to the NJL model. In this

approach the Heisenberg fields are expressed using the Haag expansion while

temperature and chemical potential are introduced simultaneously through

a generalized thermal Bogoliubov transformation. Known mean field results

are recovered using only the first term in the Haag expansion. In addition,

we find that at finite T and in the broken symmetry phase of the model the

mean field approximation can not diagonalize the Hamiltonian. Inclusion of

scalar and axial vector diquark channels in the SU(2)f ⊗ SU(3)c version of the

model can lead to a lowering of the vacuum energy density. We discuss how

to go beyond the mean field approximation by including higher order terms

in the Haag expansion.
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I. INTRODUCTION

The N–quantum approach (NQA) to quantum field theory developed by O.W. Greenberg
[1,2] is a method to solve the operator equations of motion by expanding the Heisenberg fields
as a complete set of normal–ordered and on–shell asymptotic (in– or out–) fields, including
the asymptotic fields for bound states. This expansion is known as the Haag expansion [3].
Although the NQA is yet to be applied to gauge theories successful applications thus far
indicate that the method can be very powerful in some cases (see [2] for a summary of the
applications and references). In particular NQA is well suited to describe bound states.

Greenberg and collaborators applied the NQA to study dynamical symmetry breaking
involving the condensates of composite fields in the NJL model [4] both without [5] and with
[6] isospin. Their method differed from the conventional approach to the NJL model [7] in
several distinct ways:

• The NQA uses retarded amplitudes (for a Haag expansion using in–fields) with all but
one leg on–shell instead of off–shell Feynman amplitudes.

• It allows one to work directly with the fields and states of broken symmetry without
any reference to those of the unbroken–symmetry vacuum.

• The explicit structure of the vacuum need not be specified.

• Bound state amplitudes are calculated directly rather than searching for bound state
poles in scattering amplitudes.

In both [5] and [6] it was shown that the well known gap equation for the NJL model
can be obtained by using only the first term in the Haag expansion in the operator equation
of motion. Analytical expressions for amplitudes and masses for various bound states were
found by going one order higher in the expansion and the resulting masses agreed with the
original results [4] except for the mass of the vector bound state. The form factor of the
Nambu–Goldstone boson was also examined by extending the Haag expansion to third order
in the one–loop approximation [6].

Since the NJL model has been used extensively to study the consequences of chiral
symmetry breaking in hot and dense matter [7], it is interesting to ask whether the NQA
to the NJL model can be extended to finite T and µ. In this letter we shall demonstrate
that the answer to this question is affirmative. We stress that the method presented here to
extend the NQA to finite T and µ is quite general and is not restricted to the study of the
NJL model.

Our strategy is based on the extension of the thermal field theory formalism of Umezawa
and collaborators [8] by including a finite chemical potential, and has been motivated by the
application of the NQA to the BCS theory of superconductivity [9]. The basic idea is to apply
a generalized thermal Bogoliubov transformation to the creation and annihilation operators
of the asymptotic fields in the Haag expansion accompanied by a thermal doubling of the
Hilbert space. In this way temperature and chemical potential are introduced simultaneously
through the coefficients of the transformation and are treated as parameters on an equal
footing. Quantities of interest are then obtained through the algebra of thermal creation
and annihilation operators without specifiying the structure of the thermal vacuum state.
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When the method is applied to the NJL model we recover the known mean field results
for number and scalar densities, total chemical potential, gap equation and vacuum energy
density using only the first term in the Haag expansion. Thus NQA in the lowest order Haag
expansion is equivalent to the mean field approximation usually employed in the studies of
the NJL model at finite T and µ. Furthermore, in the same approximation, we find that the
Hamiltonian can not be diagonalized at finite T and in the broken symmetry phase of the
model due to particle–hole and anti–particle and anti–hole excitations. This seems to be a
general result valid for all versions of the NJL model at finite T and µ.

In the following section we start by summarizing the pertinent results for the U(1) NJL
model for (T, µ) = (0, 0) in the NQA. In Section III the NQA is extended to finite T and
µ which is used to recover the known mean field results in Section IV. In the same section
we present the off–diagonal Hamiltonian and show that it can only vanish in the T = 0
or in the Breit–Wigner phase of the model. We repeat the same excercise in Section V
using the SU(2)f ⊗ SU(3)c NJL model including the scalar and axial vector color 3̄ diquark
channels with their respective coupling constants. By demanding that the total Hamiltonian
is diagonalized at T = 0 a simple relation between these coupling constants is found. This
relation is then used to show how the inclusion of the diquark channels can lower the vacuum
energy density of the many–body system. In the final section we summarize the results and
outline the procedure for going beyond the mean field approximation.

II. NQA TO THE U(1) NJL MODEL: (T, µ) = (0, 0)

We first consider the U(1) invariant version of the NJL model defined by the Lagrangian

L = iΨ̄∂/Ψ + g0

[

(Ψ̄Ψ)2 + (Ψ̄iγ5Ψ)2
]

. (2.1)

The charge conjugation symmetric form of the corresponding field equation of motion and
Hamiltonian in momentum space are

q/Ψ(q) = −
g0

2

∫

d4p1d
4p2d

4p3 δ4(q − p1 − p2 − p3)

⊗

{

[

[Ψ̄(p1), Ψ(p2)]−, Ψ(p3)
]

+
−
[

[Ψ̄(p1), γ5Ψ(p2)]−, γ5Ψ(p3)
]

+

}

(2.2)

and

H = (2π)3
∫

d4p̄1d
4p̄2 δ3(~p1 + ~p2)e

−(p0

1
+p0

2
)t 1

4

[

Ψ̄(p1), ~γ · (~p1 − ~p2)Ψ(p2)
]

−

−(2π)3
∫

d4p̄1d
4p̄2d

4p̄3d
4p̄4 δ3(~p1 + ~p2 + ~p3 + ~p4)e

−(p0

1
+p0

2
+p0

3
+p0

4
)t

⊗
g0

4

{

[

Ψ̄(p1), Ψ(p2)
]

−

[

Ψ̄(p3), Ψ(p4)
]

−
−
[

Ψ̄(p1), γ5Ψ(p2)
]

−

[

Ψ̄(p3), γ5Ψ(p4)
]

−

}

, (2.3)

where Ψ̄(p) = Ψ†(−p)γ0, [A, B]± = AB ± BA and we shall adapt the notation dnp̄ ≡
dnp/(2π)3. When (T, µ) = (0, 0) there are no contributions from the exchange (Fock) terms
in the mean field approximation in this model.
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For the model defined by Eq. (2.1) the Haag expansion for the Heisenberg field Ψ(p) is
given by [5],

Ψ(q) = ΨIN(q)δm(q)

+
∑

k

∫

d4p1d
4p2 δ4(q − p1 − p2)f

(k)(p1, p2) : ΨIN(p1)δm(p1)F
(k)
IN (p2)δmk

(p2) :

+
∫

d4p1d
4p2 δ4(q − p1 − p2)e(p1, p2)C

−1 : Ψ̄IN(p1)δm(p1)EIN(p2)δmk
(p2) :

+ · · · . (2.4)

Here ΨIN is the asymptotic in–field of Ψ constrained to be on the mass–shell by the delta
function δm(p) ≡ δ4(p2 − m2). C = iγ2γ0 is the charge conjugation operator and the
symbol : : denotes normal ordering. The k summation runs over the Ψ̄Ψ, Ψ̄iγ5Ψ, and
Ψ̄γµΨ bound states with corresponding on–shell in–fields F

(k)
IN and amplitudes f (k)(p1, p2).

Similarly e(p1, p2) is the amplitude for the ΨΨ bound state with an on–shell asymptotic
field EIN. The ellipses represent higher order contributions involving terms with three or
more products of ΨIN, Ψ̄IN and asymptotic bound state fields together with corresponding
amplitudes. An example of the third order contribution is given in [6].

As shown in [5], inserting the first term in the above expansion into the operator equation
of motion Eq. (2.2) yields the well known gap equation

m = 4g0

∫

d3p̄
m

ωp

(2.5)

with ωp =
√

|~p |2 + m2. Note that the asymptotic mass m plays the role of the chiral gap.
There are three solutions to this gap equation; m = 0 corresponding to the phase with
unbroken chiral symmetry and m = ±m0 for the broken symmetry phase. The vacuum
energy densities for the two phases are

1

V
〈H〉m=0 = −2g0

∫

d3p̄d3q̄ − 2
∫

d3p̄ |~p | (2.6)

1

V
〈H〉m=±m0 = −2g0

∫

d3p̄d3q̄ −
∫

d3p̄
2|~p |2 + m2

ωp

(2.7)

To facilitate comparison with known results for finite T and µ we shall use the non–
covariant regularization scheme and cut off the three momentum integral at |~p | = Λ. Then,
as is well known, dynamical symmetry breaking occcurs only for those values of the coupling
constant satisfying the relation π2/Λ2 < g0. For these values of g0 the vacuum energy density
of the broken symmetry phase is lower than that of the unbroken phase, indicating that the
phase with chiral condensates is the energetically favored phase.

III. EXTENSION TO FINITE T AND µ

In this work we shall explore the consequences of using only the first term in Eq. (2.4)
to describe the NJL model at finite T and µ. At first sight this seems to be a trivial
approximation, but as we shall see it turns out not to be the case. Extension of the present
work to include the second order terms will be discussed below.
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The lowest order term in the Haag expansion for Ψ is 1

ΨIN(q)δm(q) =
1

(2π)3

m

ωq

∑

s=±

[

b(~q, s)u(~q, s)δ(q0 − ωq) + d†(−~q, s)v(−~q, s)δ(q0 + ωq)
]

. (3.1)

Because this term alone reproduces the gap equation Eq. (2.5) and diagonalizes the Hamilto-
nian, the operators b and d correspond to quasi–particle and quasi–anti–particle annihilation
operators, respectively, which annihilate the interacting vacuum state at zero temperature
and chemical potential |G(0, 0)〉,

b(~q, s)|G(0, 0)〉 = d(~q, s)|G(0, 0)〉 = 0. (3.2)

Thus using the first order term in the Haag expansion is equivalent to subjecting the creation
and annihilation operators in the Heisenberg field Ψ to a Bogoliubov transformation into
quasi–particle and quasi–anti–particle basis.

However, the b and d operators do not annihilate the interacting vacuum state at finite
T and µ denoted as |G(T, µ)〉. In order to construct operators that annihilate |G(T, µ)〉 we
apply a generalized thermal Bogoliubov transformation to the b and d operators as well as to
the annihilation operators corresponding to quasi–holes b̃ and quasi–anti–holes d̃ as follows

b(~q, s) = αqB(~q, s) − sβqB̃
†(−~q, s) (3.3)

b̃(~q, s) = αqB̃(~q, s) + sβqB
†(−~q, s) (3.4)

d(~q, s) = γqD(~q, s) − sδqD̃
†(−~q, s) (3.5)

d̃(~q, s) = γqD̃(~q, s) + sδqD
†(−~q, s) (3.6)

Here B and B̃ annihilate a quasi–particle and a quasi–hole at finite T and µ, respectively,
and D and D̃ are the thermal annihilation operators for quasi–anti–particles and quasi–
anti–holes, respectively. These operators annihilate the interacting thermal vacuum state
for each T and µ.

B(~q, s)|G(T, µ)〉 = B̃(~q, s)|G(T, µ)〉 = D(~q, s)|G(T, µ)〉 = D̃(~q, s)|G(T, µ)〉 = 0 (3.7)

In the NQA it is not necessary to specify the structure of |G(T, µ)〉. We only have to
assume that it is annihilated by the annihilation operators in the Haag expansion. The
thermal doubling of the Hilbert space accompanying the thermal Bogoliubov transformation
is implicit in Eq. (3.7) where a ground state which is annihlated by thermal operators B,
B̃, D and D̃ is defined.

In addition, thermal operators satisfy the Fermion anti–commutation relations

(2π)3ωp

m
δ3 (~p − ~q) δs1s2

=
[

B†(~p, s1), B(~q, s2)
]

+
=
[

D†(~p, s1), D(~q, s2)
]

+

=
[

B̃†(~p, s1), B̃(~q, s2)
]

+
=
[

D̃†(~p, s1), D̃(~q, s2)
]

+
(3.8)

1We use the conventions and normalizations of Itzykson and Zuber [10].
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with vanishing anti–commutators for the remaining combinations. The coefficients of the
transformation are αq =

√

1 − n−
q , βq =

√

n−
q , γq =

√

1 − n+
q and δq =

√

n+
q , where n±

q =

[e(ωq±µ)/(kBT ) + 1]−1 are the Fermi distribution functions for particles and anti–particles.
They are chosen so that the total particle number densities are given by

n−
q =

1

V

m

ωq

〈G(T, µ)|b†(~q, s)b(~q, s)|G(T, µ)〉 (3.9)

n+
q =

1

V

m

ωq

〈G(T, µ)|d†(~q, s)d(~q, s)|G(T, µ)〉 (3.10)

Hence in this approach temperature and chemical potential are introduced through the
coefficients of the thermal Bogoliubov transformation and are treated as parameters.

The first order Haag expansion for Ψ extended to finite T and µ is

ΨIN(q)δm(q) =
1

(2π)3

m

ωq

∑

s=±

{

[

αqB(~q, s) − sβpB̃
†(−~q, s)

]

u(~q, s)δ(q0 − ωq)

+
[

γqD
†(−~q, s) − sδqD̃(~q, s)

]

v(−~q, s)δ(q0 + ωq)

}

. (3.11)

Note that this extension is independent of the structure of the Lagrangian and is therefore
not restricted to the NJL model. If bosonic fields are present, as in the second order terms
in Eq. (2.4), a thermal Bogoliubov transformation for bosonic creation and annihilation
operators must be introduced together with a redefinition of the thermal ground state so
that it is annihilated by both fermionic and bosonic annihilation operators. In the following
sections we shall use the above ansatz for the Ψ field to study the NJL model at finite T
and µ.

IV. NQA TO THE U(1) NJL MODEL: (T, µ) 6= (0, 0)

Before extending the U(1) NJL model to finite T and µ we first calculate the number
(N ) and scalar (S) densities using the ansatz given in Eq. (3.11). It is a straightforward
exercise to show that the number density is given by

N =
1

V
(2π)3

∫

d3p̄1d
3p̄2 δ3(~p1 + ~p2)〈G(T, µ)|

1

2

[

Ψ†(p1), Ψ(p2)
]

−
|G(T, µ)〉

= 2
∫

d3p̄
(

β2
p − δ2

p

)

(4.1)

while the scalar density is found to be

S =
1

V
(2π)3

∫

d3p̄1d
3p̄2 δ3(~p1 + ~p2)〈G(T, µ)|

1

2

[

Ψ̄(p1), Ψ(p2)
]

−
|G(T, µ)〉

= −2
∫

d3p̄
m

ωp

(

1 − β2
p − δ2

p

)

(4.2)

We now insert a bare chemical potential term µ0Ψ̄γ0Ψ in the Lagrangian Eq. (2.1) and
use Eq. (3.11) in the corresponding equation of motion and renormal order. Keeping only
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the linear terms in the thermal field operators, one finds that the equation of motion is given
by

(

m + µ0γ0

)

Ψ(q) =

{

[

4g0

∫

d3p̄
1

ωp

(

1 − β2
p − δ2

p

)]

m +
(

g0N
)

γ0

}

Ψ(q) (4.3)

Whereas the exchange terms did not contribute at (T, µ) = (0, 0), when introducing T and
µ through the thermal Bogoliubov transformation one finds contributions to the equation
of motion from both the direct and exchange terms. In fact, the exchange terms generate a
contribution to the chemical potential proportional to the number density. From Eq. (4.3)
we see that the total chemical potential is given by µ = µ0 − g0N .

The gap equation for (T, µ) 6= (0, 0) is found by equating the scalar terms in Eq. (4.3).
The results is

m = 4g0

∫

d3p̄
m

ωp

(

1 − β2
p − δ2

p

)

(4.4)

and reduces to Eq. (2.5) in the (T, µ) → (0, 0) limit. To obtain the vacuum energy density
ǫ(T, µ) we use Eq. (2.3) (plus the µ0 term) and keep terms with two contractions after
renormal ordering. We find

ǫ(T, µ) =
1

V
〈G(T, µ)|H|G(T, µ)〉

= −

{

2g0

∫

d3p̄d3q̄ +
1

2
g0N

2 + 2
∫

d3p̄ ωp (1 − β2
p − δ2

p) −
m2

4g0

+ µ0N

}

(4.5)

Above expressions for the number and scalar densities, total chemical potential, the gap
equation and the vacuum energy density all agree with the standard mean field results for
the U(1) NJL model [7]. We note that unlike in the variational method the explicit structure
of the thermal vacuum state need not be specified when obtaining these results. Instead
they were determined by the algebra of the thermal fields defined by Eq. (3.7) and (3.8).
We now turn to the discussion of the diagonalization of the model Hamiltonian.

In order to obtain the off–diagonal terms in the Hamiltonian, denoted as HOD, to sec-
ond order in the thermal creation operators we keep terms involving one contraction when
renormal ordering Eq. (2.3) (again, with the µ0 term), and exploit the fact that the ther-
mal annihilation operators annihilate the thermal vacuum state. Using the gap equation
Eq. (4.4) the result can be written as

HOD = m
∑

s

s
∫

d3p̄

{

[

αpβpB̃
†(~p, s)B†(−~p, s) + γpδpD̃

†(−~p, s)D†(~p, s)
]

−
µ

ωp

[

αpβpB̃
†(~p, s)B†(−~p, s) − γpδpD̃

†(−~p, s)D†(~p, s)
]

}

(4.6)

We see that the off–diagonal terms consist of particle–hole and anti–particle–anti–hole exci-
tations coupled to the spin triplet state. These terms vanish in the chirally symmetric phase
when m = 0, or in the zero temperature limit when αpβp = γpδp = 0. However Eq. (4.6) can

not vanish for finite T in the broken symmetry phase.
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In the standard treatment of BCS theory of superconductivity [11] the gap equation
is obtained by demanding that the second order off–diagonal Hamiltonian vanishes. We
could also have followed this path and derived the gap equation from HOD. Instead we used
the result obtained from the equation of motion to simplify the second order off–diagonal
Hamiltonian as a consistency check. Also, in the BCS theory the condensation takes place
between particles and holes in the spin singlet state and thus contributions from spin triplet

terms in the Hamiltonian are usually ignored [11]. In the present case the chiral condensate
is also a spin singlet bound state and if we adapt an analogous approximation Eq. (4.6) can
also be ignored.

V. SU(2)F ⊗ SU(3)C NJL MODEL AT FINITE T AND µ

We now apply the method presented in the preceeding sections to the SU(2)f ⊗ SU(3)c

NJL model consisting of scalar (0+, T = 0) and pseudoscalar (0+, T = 1) color singlet q̄q
channels as well as scalar and axial vector (1+, T = 1) color 3̄ qq channels. This model was
used in [12] to study three quark bound states in the NJL model and is defined as

L = iΨ̄∂/Ψ + g1

[

(Ψ̄Ψ)2 + (Ψ̄iγ5~τΨ)2
]

+ g2
3

2

[

(Ψ̄γ5Cτ2λ
AΨ̄T )(ΨT C−1γ5τ2λ

AΨ)
]

+ g3
3

2

[

(Ψ̄γµCτaτ2λ
AΨ̄T )(ΨTC−1γµτ2τaλ

AΨ)
]

(5.1)

where λA with A = 2, 5, 7 project out the color 3̄ channel.2 Summation convention is
implied for repeated indices. Positive values for the coupling constants g1, g2 and g3 implies
attraction in color 1 and 3̄ channels.

Just as in the case of the U(1) NJL model we Haag expand the Heisenberg field operators
and apply the thermal Bogoliubov transformation to the first order terms. Use of the
equation of motion corresponding to Eq. (5.1) immediately yields the total chemical potential
and the gap equation for finite T and µ

µ = µ0 − 4g1

∫

d3p̄
(

β2
p − δ2

p

)

(5.2)

m = 26g1

∫

d3p̄
m

ωp

(

1 − β2
p − δ2

p

)

(5.3)

These results for µ and the gap equation are identical to the Hartree–Fock results for the
SU(2)f ⊗ SU(3)c NJL model without the diquark channels [7]. Indeed, we find that to the
lowest order in the Haag expansion the diquark channels do not contribute to the equation
of motion.

The diquark channels do contribute to the vacuum energy density which, with the use
of Eq. (5.2) and (5.3), can be written as

2The Gell–Mann matrices λa are normalized as Tr(λaλb) = 2δab.
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ǫ(T, µ) = −6

{

12g1

∫

d3p̄d3q̄ + 2
∫

d3p̄ ωp (1 − β2
p − δ2

p) − (26g1 + 6g2 − 72g3)

(

m

26g1

)2

+
(µ − µ0)

2

4g1

− (6g2 − 36g3)
[
∫

d3p̄
(

β2
p − δ2

p

)

]2
}

(5.4)

Above expression reduces to the known vacuum energy density for the SU(2)f ⊗ SU(3)c NJL
model when g2 = g3 = 0 [7]. Similarly, the second order off–diagonal Hamiltonian can be
simplified to the following form

HOD = m
∑

l,ǫ

∫

d3p̄

{

∑

s

s

[

1 +
1

26g1
(6g2 + 72g3)

m2

ω2
p

]

⊗

[

αpβpB̃
†
lǫ(~p, s)B

†
lǫ(−~p, s) + γpδpD̃

†
lǫ(−~p, s)D†

lǫ(~p, s)

]

−
∑

s

s
1

ωp

[

µ + (6g2 + 36g3)
∫

d3p̄
(

β2
p − δ2

p

)

]

⊗

[

αpβpB̃
†
lǫ(~p, s)B

†
lǫ(−~p, s) − γpδpD̃

†
lǫ(−~p, s)D†

lǫ(~p, s)

]

−
∑

s1,s2

[

1

26g1
(6g2 + 72g3)

m2

ω2
p

]

⊗

[

αpγpD
†
lǫ(~p, s2)B

†
lǫ(−~p, s1) − s1s2βpδpD̃

†
lǫ(−~p, s1)B̃

†
lǫ(~p, s2)

]

⊗
(

χ1~σ · ~pχ2

)

}

(5.5)

where l = u, d and ǫ = 1, 2, 3 are the flavor and color indices, respecitvely and χi is the two
component spinor for spin si.

One sees immediately that the Hamiltonian for the SU(2)f ⊗ SU(3)c NJL model is exactly
diagonalized in the Breit–Wigner phase when m = 0. However in the broken symmetry
phase the first two terms in Eq. (5.5), which is similar to Eq. (4.6), vanish only in the zero
temperature limit but the third term in general does not. This term consists of particle–
anti–particle and hole–anti–hole excitations with zero total three momentum with the spins
coupled to both 0 and 1. Since it contains spin singlet excitations it is desirable that this
term vanishes exactly in order to obtain a true ground state of the many–body system at
least in the zero temperature limit. This can be accomplished if we impose the condition
g3 = − 1

12
g2 on the coupling constants for the scalar and axial vector diquark interactions.

An immediate consequence of this restriction is that the scalar and axial vector qq channels
can not both be attractive or repulsive.

In Figure 1a we plot the phase transition curve for the SU(2)f ⊗ SU(3)c NJL model
using the Hartree approximation for the q̄q channel.3 The input parameters for all our

3In this approximation Eq. (5.2) becomes µ = µ0 and the coefficient infront of the integral in

Eq. (5.3) changes from 26 to 24.
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numerical work are Λ = 0.05 GeV, g1 = 5.01 GeV−2 and g2 = −12g3 = 3.11 GeV−2

which are taken from [13]. On the phase transition line m = 0 and the model Hamiltonian
is exactly diagonalized. The corresponding vacuum energy densities, ǫ(T, µ) − ǫ(0, 0), are
shown in Figure 1b. The upper curve corresponds to the energy density obtained with only
the q̄q channel while the lower one includes both the q̄q and qq channels. For all values of
temperature and chemical potential on the phase transition line the inclusion of the scalar
and axial vector diquark channel lowers the vacuum energy density of the system.

The effect of the diquark channel on the energy density is similar in the broken symmetry
phase at finite temperature. Figure 2a shows the behaviour of the asymptotic mass m as a
function of µ for T = 0.1 GeV. The phase transition is second order, which is a consequence
of the Hartree approximation for the q̄q channel, and the critical chemical potential is found
to be µc = 0.253 GeV. Below µc the Hamiltonian is only approximately diagonalized and in
Figure 2b we plot the vacuum energy density as a function of µ. As in Figure 1b the upper
curve is obtained with only the q̄q channel while the lower curve has contributions from both
the q̄q and qq channels. Note that in both cases the values of the vacuum energy densities
are largest at µ = µc indicating that the broken symmetry phase is the energetically favored
phase. We also find that the addition of the qq channel lowers the vacuum energy density
for finite density at zero temperature. Hence the inclusion of the diquark channel can lower
the vacuum energy density of the system when the Hartree approximation is invoked for the
q̄q channel.

VI. SUMMARY AND OUTLOOK

In this work we have extended the NQA to quantum field theory to finite temperature
and chemical potential. The basic idea is to subject the asymptotic fields in the Haag ex-
pansion to a thermal Bogoliubov transformation accompanied by a thermal doubling of the
Hilbert space. Temperature and chemical potential are introduced non–linearly through the
coefficients of the transformation. The NQA allows one to solve the operator equations of
motion without explicitly specifying the structure of the ground state although it can be
obtained a posteriori by diagonalizing the Hamiltonian. All quantities of interest are deter-
mined through the algebra of asymptotic fields. One only needs to assume the existence of a
ground state which is annihilated by the annihilation operators used in the Haag expansion.
The thermal doubling of the Hilbert space is implicit in Eq. (3.7) where a thermal ground
state was introduced which is annihilated by the thermal annihilation operators.

We tested our formalism on the U(1) and SU(2)f ⊗ SU(3)c versions of the NJL model
and found that the first term in the Hagg expansion can reproduce the mean field results for
the number and scalar densities, the chemical potential, the gap equation and the vacuum
energy density for finite T and µ. Furthermore we found that the second order Hamiltonian
can not be diagonalized at finite T when the models are in the broken symmetry phase.

When scalar and axial vector qq channels are added to the SU(2)f ⊗ SU(3)c NJL model
we found it necessary to impose a relation on the scalar and axial vector coupling constants
to diagonlize the Hamiltonian for zero temperature. As a consequence scalar and vector
diquark channels can not simulateously be attractive or repulsive. For an attractive scalar
diquark channel and in the Hartree approximation to the q̄q channel, this restriction can lead
to the lowering of the vacuum energy density. These findings should be taken into account
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when the work developed in [12] to study three quark bound states in the NJL model is
extended to finite T and µ.

To go beyond the mean field approximation it is necessary to add higher order terms
in the Haag expansion as shown in Eq. (2.4). Here the second order terms involve both
fermionic and bosonic fields, the latter corresponding to various bound states in the model.
It is necessary to subject both types of fields to their respective thermal Bogoliubov transfor-
mations accompanied by a redefinition of the thermal ground state so that it is annihilated
by both the fermionic and bosonic annihilation operators. In the NJL model it is possible
to analytically calculate the bound state amplitudes by exploiting their behaviour under
parity, time–reversal and charge–conjugation transformations [5]. Once these amplitudes
have been determined for finite T and µ they can be fed back into the Haag expansion of
the Heisenberg fields and quantities of interest recalculated.

We emphasize that the formalism presented here is quite general and has wide applica-
tions. Recently the importance of the scalar diquark channel in the study of color supercon-
ductivity has been emphasized by several authors using an effective four–Fermion instanton
induced interaction [14]. Our method is very well suited for this application and investiga-
tion into the phenomenology of color superconductivity at finite temperature and chemical
potential beyond the mean field approximation is currently in progress. Other applications
include studies of pion or kaon condensations or properties of pion gas in chiral perturbation
theory. In fact, our method can be applied to any quantum field theory in Minkowski space
with well defined asymptotic fields.
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FIG. 1. a) Phase trasnsition line for the SU(2)f ⊗ SU(3)c NJL model with Λ = 0.05 GeV and

g1 = 5.01 GeV−2. b) Vacuum energy density ǫ(T, µ)− ǫ(0, 0) on the phase transition line begining

at (T, µ) = (0, 0.307) GeV and ending at (T, µ) = (0.185, 0) GeV. The upper and lower curves

have been obtained with g1 = 5.01 GeV−2, g2 = g3 = 0 and g1 = 5.01 GeV−2, g2 = −12g3 = 3.11

GeV−2, respectively.
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FIG. 2. a) Asymptotic mass m in the SU(2)f ⊗ SU(3)c NJL model as a function of chemical

potential µ for T = 0.1 GeV with the same model parameters as in Figure 1a. b) Vacuum energy

density ǫ(T, µ)− ǫ(0, 0) as a function of µ for T = 0.1 GeV. The upper and lower curves have been

obtained with g1 = 5.01 GeV−2, g2 = g3 = 0 and g1 = 5.01 GeV−2, g2 = −12g3 = 3.11 GeV−2,

respectively.
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