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València-CSIC E-46100 Burjassot (Valencia), Spain
d Far Eastern State University, Sukhanova 8, GSP, Vladivostok, 690660 Russia

(November 2, 2013)

Abstract

We perform an analysis of the elastic production of vector mesons with

polarized photon beams at high energy in order to investigate the validity of

a recently proposed dynamical mechanism based on the dominance of the f1

trajectory at large momentum transfer. The density matrix characterizing

the angular distributions of the vector meson decays is calculated within an

exchange model which includes the Pomeron and the f1. The asymmetries

of these decays turn out to be very useful to disentangle the role of these ex-

changes since their effect depends crucially on their quantum numbers which

are different. The observables analyzed are accessible with present experi-
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Exclusive photoproduction experiments of vector mesons have become powerful tools
for testing diffractive mechanisms at high energy [1–3]. Regge theory has been success-
ful in describing the diffractive production in terms of the Pomeron exchange mechanism.
Donnachie and Landshoff [4,5] showed that, by assuming the Pomeron-photon analogy and
introducing a form factor for the coupling of the Pomeron to quarks, the diffractive vector
meson production with real and virtual photons could be described successfully by the soft
Pomeron exchange. The soft Pomeron exchange governs this process for small |t| and fulfills
the s-channel helicity conservation, a consequence of the old vector dominance model [6]
and a requirement of the experimental data [7,8]. However, at larger |t|, the soft Pomeron
alone cannot explain the recent ZEUS data on elastic vector meson photo- and electropro-
duction [9] and new contributions seem necessary. For example Donnachie and Landshoff
[10,11] introduce in addition to the soft Pomeron the hard Pomeron with the trajectory
αP ′ = 1.44 + 0.1t describing in this way the data up to |t| ∼ 2 GeV2.

Recently we have suggested a new anomalous Regge trajectory with high intercept
αf1

(0) ≈ 1 and small slope α′
f1

≈ 0 [12].1 This trajectory has the quantum numbers
P = C = +1 and the signature σ = −1 while the Pomeron carries P = C = σ = +1. In
Ref. [12] we have shown that the f1 exchange describes the vector meson photoproduction
data at large energy and momentum transfer.2 In this model, the soft Pomeron is dominant
at |t| ≤ 1 GeV2 while the f1 exchange dominates the large |t| region, |t| ≥ 1 GeV2.

In order to understand the details of the mechanisms involved in our model it is important
to investigate other physical quantities which can distinguish between the two exchanges,
i.e., the Pomeron and the f1, in a clear way. Diffractive production of vector mesons by
polarized photon beams seems to be the appropriate tool for such purpose as we will show
hereafter.

One of the important features of the new anomalous f1 trajectory is its odd signature,
which should discriminate it from the Pomeron which has even signature. Therefore the
contribution from this new exchange can be disentangled from the Pomeron contribution
in spin-dependent processes. In order to investigate the very specific features of the f1

trajectory contribution we consider vector meson production with polarized photon beams
and its decay into pseudoscalar mesons. We find that the asymmetries of the vector meson
decays described by the soft Pomeron and f1 exchanges are drastically different from the
predictions obtained with the soft and hard Pomeron exchanges.

Our starting point is the density matrix of the vector meson production by photons from

1It is not well known how the Pomeron arises from QCD, although it seems quite plausible that

it is related to the conformal anomaly of the theory [13,14]. In the same way we do not yet know

how the anomalous f1 trajectory arises from QCD, but we have strong suspicions that the origin

of its physical relevance lies in its relation to the axial anomaly of the theory.

2The f1 trajectory also gives natural explanation to the behavior of the cross sections of elastic

hadron-hadron scattering at large |t| and furthermore its contribution to the flavor singlet part of

the spin-dependent structure function g1 at low x region gives a new explanation to the proton

spin problem.
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proton targets,

ρλ
V

λ′

V
=

1

N

∑

λ′

N
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N
,λ′

γ
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N
,λγλ

N
ρ(γ)λγλ′

γ
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V
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N
,λ′

γλ
N
, (1)

where T is the T -matrix element of elastic vector meson photoproduction process, λ’s are
the polarization states of the particles, and N is the normalization factor defined as

N =
1

2

∑

λ’s

|Tλ
V

λ′

N
,λγλ

N
|2. (2)

The photon density matrix ρ(γ) is given by

ρ(γ) =
1

2
(1 + Pγ · σ), (3)

where σ is the Pauli matrix and Pγ specifies the polarization of linearly polarized photons
and is given by

Pγ = pγ(− cos 2Φ,− sin 2Φ, 0), (4)

where Φ denotes the angle between the photon polarization vector and the vector meson
production plane, and pγ denotes the magnitude of the polarization (0 ≤ pγ ≤ 1). The
decay angular distribution of the vector meson in its rest frame reads

dN
d cosϑdϕ

≡ W (cos ϑ, ϕ, Φ) = W 0(cos ϑ, ϕ) +

3
∑

i=1

P i
γ(Φ)W i(cos ϑ, ϕ), (5)

where ϑ and ϕ are the polar and azimuthal angles of the direction of flight of one pseudoscalar
meson in the vector meson rest frame. As in the literature, we use the Gottfried-Jackson
frame [15] as the vector meson rest frame, where the z axis is in the direction of the incident
photon as seen in this frame. (See Refs. [1,16–18] for details.)

The explicit forms of W α are

W 0(cos ϑ, ϕ) =
3

4π

{1

2
(1 − ρ0

00) +
1

2
(3ρ0

00 − 1) cos2 ϑ −
√

2Reρ0
10 sin 2ϑ cos ϕ

− Reρ0
1−1 sin2 ϑ cos 2ϕ

}

,

W 1(cos ϑ, ϕ) =
3

4π

{

ρ1
11 sin2 ϑ + ρ1

00 cos2 ϑ −
√

2Reρ1
10 sin 2ϑ cos ϕ − Reρ1

1−1 sin2 ϑ cos 2ϕ
}

,

W 2(cos ϑ, ϕ) =
3

4π

{√
2 Imρ2

10 sin 2ϑ sin ϕ + Imρ2
1−1 sin2 ϑ sin 2ϕ

}

,

W 3(cos ϑ, ϕ) =
3

4π

{√
2 Imρ3

10 sin 2ϑ sin ϕ + Imρ3
1−1 sin2 ϑ sin 2ϕ

}

, (6)

where ρα
ij are the matrix elements of ρα which are defined by

ρ0 =
1

2N
TT †, ρi =

1

2N
TσiT †, (7)
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with i = 1, 2, 3, whose normalization is Trρ0 = 1. There are various decay angular distribu-
tion functions arising from different photon polarizations, whose measurements determine
the vector meson density matrix elements. Interesting quantities in connection with the
nature of the exchanged particles are the asymmetries.

Depending on the direction of the polarization vector of the linearly polarized photon
beams, we define the asymmetry Σ as

Σ ≡ σ‖ − σ⊥

σ‖ + σ⊥
=

1

pγ

W L(0, π
2
, π

2
) − W L(0, π

2
, 0)

W L(0, π
2
, π

2
) + W L(0, π

2
, 0)

, (8)

where σ‖ (σ⊥) is the cross section for the symmetric decay of particle pairs produced parallel
(normal) to the plane of polarization of the photon. W L represents angular distribution for
the decay (5) with linearly polarized photon beams. In terms of the density matrix, it can
be written as

Σ =
ρ1

11 + ρ1
1−1

ρ0
11 + ρ0

1−1

. (9)

Another relevant quantity is the parity asymmetry Pσ, which is defined from the observa-
tion that, if either natural (P = σ) or unnatural parity (P = −σ) exchange in the t-channel
contributes, one has an additional symmetry [19],

T−λV λ′

N
,−λγλN

= ±(−1)λV −λγTλV λ′

N
,λγλN

, (10)

from which we get

ρ
0(N/U)
λλ′ =

1

2

[

ρ0
λλ′ ∓ (−1)λρ1

−λλ′

]

. (11)

This allows us to define the parity asymmetry by means of σN and σU , which are the
contributions of natural and unnatural parity exchanges to the cross section respectively as

Pσ ≡ σN − σU

σN + σU
= 2ρ1

1−1 − ρ1
00. (12)

Therefore when we have only the natural parity exchange we get Pσ = +1, while we obtain
Pσ = −1 when only the unnatural parity exchange contributes.

We apply the above formalism to ρ and φ meson photoproduction with polarized photon
beams. We denote the four-momenta of the initial proton by p, that of the final proton by
p′, the photon beam four-momentum by q, and that of the produced vector meson by qV .
The matrix element for the soft Pomeron exchange part reads [20–22]

T P
λV m′,λγm = i12

√
4παemβuGP (w2, t)F1(t)

m2
V βf

fV

1

m2
V − t

(

2µ2
0

2µ2
0 + m2

V − t

)

×
{

ūm′(p′) 6q um(p)ε∗V (λV ) · εγ(λγ) − [q · ε∗V (λV )] ūm′(p′)γµum(p)εµ
γ(λγ)

}

,

(13)
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where the vector meson and the photon helicities are denoted by λV and λγ while m and
m′ are the spin projections of the initial and final nucleon, respectively. The remaining
quantities are defined by

GP (w2, t) =

(

w2

s0

)αP (t)−1

exp

{

−iπ

2
[αP (t) − 1]

}

,

F1(t) =
4m2

p − 2.8t

(4m2
p − t)(1 − t/0.71)2

, (14)

with w2 = (2W 2 + 2m2
p − m2

V )/4 and W 2 = (p + q)2. mp represents the proton mass,
while mV the vector meson masses, and the Pomeron trajectory is αP (t) = 1.08 + α′

P t with
α′

P = 1/s0 = 0.25 GeV−2. We use µ2
0 = 1.1 GeV2, βu = βd = 2.07 GeV−1 and βs = 1.45

GeV−1. The vector meson decay constant is represented by fV .
The f1 exchange amplitude reads [12]

T f1

λV m′,λγm = igf1V γgf1NNFf1NN(t)Ff1V γ(t)
m2

V

t − m2
f1

ǫµναβqµε∗νV (λV )εα
γ (λγ)

×
(

gβδ − (p − p′)β(p − p′)δ

m2
f1

)

ūm′(p′)γδγ5um(p), (15)

where the f1V γ coupling constants are determined from the f1 decay: gf1ρ0γ = 0.94 GeV−2

and gf1φγ = 0.18 GeV−2. The form factors are Ff1NN(t) = 1/(1− t/m2
f1

)2 with mf1
(= 1.285

GeV) defining the f1 mass and Ff1V γ(t) = (Λ2
V − m2

f1
)/(Λ2

V − t) with Λρ = 1.5 GeV and
Λφ = 1.8 GeV. We refer for the details of the amplitudes to Ref. [12].

In Fig. 1 we show the differential cross section for ρ photoproduction at γp c.m. energy
W = 94 GeV, which is the kinematical region of the ZEUS experiments. The different
role of the Pomeron and f1 exchanges is apparent: The Pomeron dominates at small |t|
while the f1 gives the major contribution at larger |t|. The differential cross section for φ
photoproduction can be found in Ref. [12].

Figures 2 and 3 show the density matrices defined in Eq. (7) for ρ and φ photoproduction
for the same energy. The figures emphasize the diverse features of the Pomeron and f1

exchanges arising as a consequence from their different symmetry properties (10). The
inclusion of the f1 exchange changes the signs of some density matrix elements at large |t|
where the f1 exchange dominates the process. This feature is responsible for the dramatic
difference in the asymmetries between the two approaches.

We give predictions for the parity asymmetry Pσ in Fig. 4. We obtain identical result for
the Σ asymmetry of Eq. (8). Σ is not related unambiguously to natural and unnatural parity
exchange, but it becomes equivalent to Pσ if the helicity-flip amplitudes are suppressed as
in our case. Furthermore, Pσ = ±1 implies Σ = ±1 although the reverse implication is not
always true [16].

Because of its natural parity, the Pomeron exchange leads to Pσ = +1 while the f1

exchange gives Pσ = −1 due to its unnatural parity. Therefore in Fig. 4 one can view the
relative strength of the two exchanges as a function of |t|. In ρ photoproduction the two
exchanges are comparable in magnitude at |t| ≈ 1 GeV2, which leads to the vanishing of Pσ
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in this region. Below this region, the Pomeron dominates and the asymmetry approaches
+1, while it becomes −1 for |t| > 2 GeV2 where the f1 dominance is clearly established.

Although, as shown above, the best way to distinguish the two mechanisms in vector
meson production is to use the polarized photon beams, similar information can be obtained
from vector meson electroproduction with unpolarized electron beam experiments [17,18] at
small Q2, which can be performed at present electron facilities.

Data on the density matrix in vector meson electroproduction by fixed-target experiments
is available [23,24]. Recently the H1 and ZEUS Collaborations [25,26] reported data on the
density matrix elements in ρ0 electroproduction at higher energy. Both seem to be consistent
with the Pomeron exchange model. However it should be noted that these data were obtained
only in the region of small |t|, say |t| ≤ 0.6 GeV2, with large errors. In this region the natural
parity exchange (Pomeron exchange) dominates and the f1 exchange contribution is small,
so it is not possible to draw any definite conclusion on the effect of the f1 exchange from
these limited data set. Since the f1 exchange alters the predictions of the Pomeron exchange
at large |t|, it is necessary to measure the |t|-dependence of the density matrices up to |t| ≈ 2
GeV2, and this may clarify the nature of the exchanged trajectory which is responsible for
vector meson production at large |t|.

In summary, we have shown that the new anomalous unnatural-parity f1 exchange leads
to significant |t| dependence of the Pσ and Σ asymmetries in polarized vector meson photo-
production. The recent claim of Donnachie and Landshoff [10,11] that the relatively large
|t| data of the ZEUS experiments could be explained by including the hard Pomeron will
lead to a very different prediction on these asymmetries and can be discriminated from the
f1 exchange process. We have good reason to believe that the existence of the anomalous f1

exchange in vector meson production is deeply related to the properties of the axial anomaly
in QCD [12]. Therefore the investigation of the decay asymmetries in vector meson produc-
tion by polarized photon or (un)polarized lepton beams at present experimental facilities
such as CERN, DESY and Fermilab will shed light on our understanding of the diffractive
processes from the fundamental structure of QCD.

We are grateful to J. A. Crittenden, S. B. Gerasimov, and A. I. Titov for fruitful dis-
cussions. Y.O. and D.P.M. were supported in part by the KOSEF through the CTP of
Seoul National University. V.V. was supported by DGICYT-PB97-1227. N.I.K. thanks the
Department of Physics of Seoul National University for the warm hospitality.
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FIG. 1. The differential cross section for ρ meson photoproduction at W = 94 GeV. The dashed

and dot-dashed lines are the contributions from the Pomeron and f1 exchange, respectively, while

the solid line is obtained by including both exchanges. Experimental data are from Ref. [9].
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FIG. 2. Vector meson density matrix ρ
0,2
ik in the Gottfried-Jackson frame. The dotted and

dot-dashed lines (dashed and solid lines) are predictions of the Pomeron exchange and Pomeron

plus f1 exchange models, respectively, for ρ (φ) photoproduction at W = 94 GeV. In the case of

ρ0
ik (left panel) the two models give the same results.
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FIG. 3. Vector meson density matrix ρ1
ik. Notations are the same as in Fig. 2.
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FIG. 4. The asymmetry Pσ for ρ (dot-dashed line) and φ production (solid line) within Pomeron

plus f1 exchange. The dashed line is the prediction of the Pomeron exchange for ρ and φ production.

10


