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Email: Vicente.Vento@uv.es

Abstract

We discuss scenarios for scalar glueballs using arguments based on sum rules, spectral decomposi-
tion, the 1

Nc
approximation, the scales of the strong interaction and the topology of the flux tubes. We

analyze the phenomenological support of those scenarios and their observational implications. Our
investigations hint a rich low lying glueball spectrum.
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1 Introduction

The glueball spectrum has attracted much attention since the formulation of the theory of the
strong interactions Quantum Chromodynamics (QCD)[1, 2]. QCD sum rules [3] and models [4, 5]
have been used to determine their spectra and properties. Lattice QCD computations, both in the
pure glue theory and in the quenched approximation of QCD, have been used to determine their
spectra [6, 7]. It has become clear by now that it is difficult to single out which states of the hadronic
spectrum are glueballs because we lack the necessary knowledge to determine their decay properties
[8]. Moreover the strong expected mixing between glueballs and quark states leads to a broadening of
the possible glueball states which does not simplify their isolation [10]. The wishful sharp resonances
which would confer the glueball spectra the beauty and richness of the baryonic and mesonic spectra
are lacking. This confusing picture has led to a loss of theoretical and experimental interest in these
hadronic states. However, it is important to stress, that if they were to exist they would be a beautiful
and unique consequence of QCD .

Glueballs have not been an easy subject to study and much debate has been associated with their
properties[10]. Even the quantum numbers of the lowest lying glueball have not been agreed upon
until recently. There is now a general consensus that the lightest glueball is a 0++ [9]. However, its
properties, i.e., mass and widths still differ among the various calculations. Dominguez and Paver
[11], Bordes, Peñarrocha and Giménez [12], and Kisslinger and Johnson [13] obtain by means of low
energy theorems and/or sum rule calculations with (or without) instanton contributions a low lying
(mass < 700 MeV), narrow (Γππ < 100 MeV) scalar glueball. Narison and collaborators[14] using
a two (substracted and unsubstracted) sum rules prefer a broader (200-800 MeV), heavier (700-1000
MeV) gluonium whose properties imply a strong violation of the Okubo-Zweig-Ishimura’s (OZI) rule
1. In a recent state of the art sum rule calculation, Forkel [15], obtains the gluonium at 1250 ± 200
MeV with a large width (∼300 MeV). However he has some strength at lower masses which he is not
able to ascribe to a resonance in the fits 2. Lattice QCD [6, 7] produce heavy glueballs. Present day
interpretation of experiments[16, 17] claim a heavy glueball (∼1500 MeV). We found illuminating the
discussion of Kisslinger and Johnson [13] since using their calculation they can explain the existence of
two scalar glueballs, a light one (∼500 MeV) and heavy one (∼1700) MeV, by studying the influence
of the higher condensates in their sum rule approach.

To investigate the scalar glueball sector we develop our description initially in a world where the
OZI rule is exactly obeyed, i.e., decays into quarks which require gluons are strictly forbidden. OZI
dynamics (OZID) generates a glueballs spectrum which is formed of towers of states disconnected from
mesons, baryons and leptons. The lowest lying scalar glueball (hereafter called g) is, in this world, a
bound state of two strongly interacting gluons with a torus type flux tube topology [18]. OZID confers
this topology a Super Selection rule inhibiting any decays from this state into other particles. It is
therefore stable and (almost) invisible since it only interacts with other glueballs and gravitationally.
g, arises as a pseudo-Goldstone boson of broken scale invariance and therefore its mass is provided by
the gluon condensate.

However, OZID is an idealized scenario, which breaks down, and through this breaking the inter-
actions of the glueballs with quarks, and through them with all other standard model probes, arise.
The implementation of this breaking leads to scenarios, which we analyze.

1However, a lighter glueball would be narrow since the coupling to ππ is proportional to the square of the mass.
2Private communication.
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2 QCD scalars

To transform the OZID scenario into a Gedanken picture of reality we need the support of theory. Our
basic assumption is that the trace anomaly gives rise in QCD to a dilaton which is a pseudo-Goldstone
boson of scale invariance in line with the arguments of anomaly cancellation of ’t Hooft [19], which
have been so succesfully applied to the axial anomaly [19, 20, 21]. The would be dilaton will describe
the 0++ glueball ground state. In the extreme OZID picture, gluodynamics is the theory describing g
and becomes effectively

L =
1

2
(∂g)2 + V (g) (1)

where the potential V (g) has been constructed to satisfy the anomaly constraint and some low energy
theorems [22, 23, 24]. A consequence of this analysis is the following relation between the mass of the
dilaton and the condensate,

m2
gf

2
g = −4 < 0| β(αs)

4αs
G2 |0 >, (2)

where fg =< 0|w|0 > is the dilaton’s vacuum expectation value, mg the dilaton mass, and the right
hand side arises from the anomaly. This relation was also obtained by Novikov et al. [25] isolating
the leading power correction in their calculation3.

The theoretical support for OZID we find in the 1
Nc

expansion of QCD. Eq.(2) is consistent with
the expected behavior

mg ∼ 1 and fg ∼ Nc. (3)

Let us introduce the following correlator

Π(q2) = i

∫

dxeiqx < 0| T

(

β(αs)

4αs

G2(x)
β(αs)

4αs

G2(0)

)

|0 > . (4)

It is known that [25]

Π(0) = −4 < 0|β(αs)

4αs
G2(0)|0 >, (5)

which is related to the energy of the vacuum. To leading order in 1
Nc

,

Π(q2) =
∑

glueballs

N2
c a2

n

M2
n − q2

+
∑

mesons

Ncc
2
n

m2
n − q2

, (6)

where Mn and mn represent respectively the masses of the glueballs and mesons contributing to the
correlator, and the numerators are related to the following transition matrix elements

Ncan =< 0|β(αs)

4αs
G2| nth glueball > (7)

3The validity of this approximation in their scheme sets the limit on the mass of g, i.e. full consistency in their
analysis would imply a very small mass for g and the effective theory eq.(1) would be a good realization of QCD in this
sector.
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and

√

Nccn =< 0|β(αs)

4αs

G2| nth meson > . (8)

In the extreme 1

Nc
limit at low q2, Π(q2) is dominatd by the lowest mass glueball mg, and then

| < 0|β(αs)

4αs

G2|g > |2 = −4m2
g < 0|β(αs)

4αs

G2|0 > (9)

in agreement with the effective theory, i.e.

m2
gfg =< 0|β(αs)

4αs

G2|g > . (10)

The above statements contradict the results of Voloshin and Zakharov [26], which require that the
matrix elements of their scalar gluonic operator with light mesons are not negligible. To avoid this
contradiction we have to include the lowest lying scalar meson, which is one order down in 1

Nc
.

If we extend the analysis to include the lowest lying meson, which we call σ, we get

m2
σfσ =< 0|β(αs)

4αs
G2|σ >, (11)

and from the general properties of the 1
Nc

expansion we obtain,

mσ ∼ 1 fσ ∼
√

Nc. (12)

Let us estimate the masses of these two states following the analysis of Shifman [27] although
adapting his philosophy to the above scheme. To calculate the 0++ gluonia mass he assumes that
the gluonic resonances couple strongly to the quark degrees of freedom in line with the arguments of
Voloshin and Zakharov [26]. We proceed in the OZID (large NC) limit, i.e. g does not couple to them
but σ does, and it is therefore the latter which plays the role of saturating the matrix elements.

The glueball contributes to the spectral function as

ImΠ(q2) = πm2
gf

2
g δ(q2 − m2

g) (13)

The σ follows the discussion in ref. [27] since it may decay into other mesons, i.e. 2π, 2η, 2K, . . .,
thus we obtain

m2
gf

2
g +

s2
r

8π2
= −4 < 0|β(αs)

4αs
G2|0 >, (14)

where we have used m2
σf2

σ = s2
r

8π2 . The additional term appearing from the existence of the g implies
a reduction of the masses with respect to the cited analysis.

Let me use 1
Nc

in here,

m2
gf

2
g

m2
σf2

σ

= Nc.

Repeating the numerical estimate of ref. [27] for massless quarks and for Nc = 3 we get
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mres = 600MeV

and therefore

mg ∼ mσ ∼ 600MeV

and

fg ∼
√

3fσ.

For massive quarks the Shifman’s estimates lead to

mg ∼ mσ ∼ 750MeV

Thus g and σ have similar masses in this naive scenario.
In gluodynamics the absence of quarks increases the coupling constant. The right hand side of

Eq.(14) is related to the energy of the vacuum which increases and the left hand side has no contribution
from the quarks, i.e. σ meson, thus

(mgfg)
gluodynamics ∼

√

44

27
(mgfg)

QCD. (15)

Moreover we expect fg to decrease in gluodynamics since decay channels into photons will be closed.
This statement together with our previous estimate Eq.(15) leads to

mgluodynamics
g > 1GeV.

This qualitative argument explains the mechanisms by which the pure gauge calculations sees higher
masses.

However, in line with the arguments of Kisslinger and Johnson [13], we should expect in gluody-
namics two 0++ glueballs, separated by approximately 1 GeV and which would move lower in energy
once the effects of quarks are introduced.

3 Topology and dynamics

Nature does not realize OZID, namely the number of colors is not very large. We have to establish
a scheme for breaking OZID. How should we incorporate corrections to the leading order in the 1

Nc

expansion? In order to understand how nature departs from OZID we resort to symmetry breaking
and topological arguments.

Dynamical transmutation in QCD gives rise to the confinement scale, Λ, which introduces di-
mensions into a dimensionless (apart from quark masses) theory. Conventional low energy physics is
governed by the chiral symmetry breaking scale fπ [28], which ultimately should be a function of Λ.
In our case low energy dynamics will be governed by fg and fσ respectively. Recalling the results of
previous section we notice that fπ ∼ fσ ∼ O(

√
Nc), Eq. (12), while fg ∼ O(Nc). Eq.(3). The breaking

of OZID is governed by powers of their inverses. Thus we expect the corrections to the mesons to be
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O( 1
Nc

) while that for the glueball O( 1

N2
c
). OZID is better realized in the glueball sector than in the

meson sector.
A second idea which guides our intuition about the breaking of OZID is the topology of the flux

tubes and their relation with perturbative emission. The mesonic qq̄ states have an elongated, almost
linear structure in their flux tubes[29, 30, 31]. The glueballs in most treatments arise from twisted
flux tube configurations [32, 33, 34, 35]. In particular we conjecture based on a the simplest possible
non linear topology, namely a torus like configuration [18], the behavior of particle emission.

Gluon and quark emission occur inside the flux tubes and therefore the scale of the perturbative
emission is limited by the confinement size, i.e. the running coupling constant takes its maximum
possible value when the particles are emitted with the lowest possible momentum, which is bounded
from below by Heisenberg’s principle,

i) for the meson: L < Lconf ∼ 1

ΛQCD
∼ 1fm.

ii) for the glueball4: L <
Lconf√

2π
∼ 1

4
fm.

Therefore,

αmeson ∼ α(Lconf ) >> αglueball = α(
Lconf√

2π
) (16)

where α is the running coupling constant.
This argument also suggests that OZID dynamics is a better approximation in the case of glueballs

than in the case of mesons since for the former the perturbative emission is weak. We expect therefore
that the pure perturbative emission approximation of QCD to gluon and quark emission for g is very
appropriate at any scale, while for the σ non perturbative chiral effects will be important [36].

4 g-σ Mixing

Since g and σ have the same quantum numbers they can easily mix in broken OZID and the observed
particles are coherent superpositions of them. We use the discussion of previous section and 1

Nc

arguments presented in the Appendix to construct the breaking pattern.
We consider that g and σ mixed due to additional terms in the hamiltonian which are of higher

order in 1
Nc

. Since fσ ∼
√

Nc and fg ∼ Nc the following is the most general hamiltonian in this
reduced Fock space,

(

m δ
δ m + ∆m

)

(17)

where ∆m ∼ 1
Nc

, δ ∼ ( 1
Nc

)
3

2 and we exclude terms O(( 1
Nc

)2 and higher powers. The diagonal basis of
this hamiltonian can be presented as,

g̃ = g cos (θ/2) − σ sin (θ/2), (18)

σ̃ = g sin (θ/2) + σ cos (θ/2), (19)
4The torus flux tube is basically a planar figure since the cross section radius of the tube is small with respect to the

other radius. Thus ∆px ∼
1

2R
where R is the radius of the large circle of the torus. Thus ∆p =

√

(∆px)2 + (∆py)2 = 1
√

2R
.

But Lconf = 2πR thus L <
Lconf
√

2π
.
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where the tilde labels the physical particles and θ is the mixing angle.
The masses of the physical particles become

mg̃ = m +
∆m

2
− r

mσ̃ = m +
∆m

2
+ r (20)

(21)

where

tan θ =
2δ

∆m
(22)

and

r =
∆m

2

√

1 + (
2δ

∆m
)2 =

∆m

2 cos θ
(23)

In Figs.1 we represent the masses of the physical states as a function of the mixing angle θ. The
curves separate possible mass regions. The horizontal solid line represents the mass of both states
for δm → 05. The dashed lines represent the value of mg̃ for ∆m = ±250MeV and the short-dotted
lines those for mσ̃. To the left of the vertical line the values are consistent with the 1

Nc
expansion, the

condition that defines that line is

tan θ =
2δ

∆m
∼ 2

Nc
∼ 2

3
.

In Figs.1 the curves on the left show that the two state mixing scenario for positive ∆m leads to a
”light” glueball with a mass in the range 650 MeV < mg̃ < 750 MeV and a scalar meson with a mass in
the range 750 MeV< mσ̃ < 1050 MeV . The 1

Nc
expansion favors small mixings in the physical states.

The curves on the right show that for negative ∆m the meson becomes lighter 450 MeV < mσ̃ < 750
MeV, while the glueball becomes heavier 750 MeV< mg̃ < 850 MeV.

Let us speculate about strong OZID breaking. If we abandon the 1

Nc
expansion, i.e. allow the mixing

matrix elements to be larger than required by this approximation, the masses separate notoriously
and in particular the glueball (meson) becomes very light in the ∆m > 0 ( ∆m < 0 ) scenario.
Correspondingly, the associated meson (glueball) becomes heavy. In this case however the mixing
is large thus it is difficult to talk about glueball or meson since both states are an almost perfect
mixture,i.e. the g̃ state has a large a large σ component and the σ̃ state a large glueball component.

We have performed a mathematical analysis of our theoretical scheme, in the next section we put
the present analysis under the scrutiny of data.

5 Discussion

The OZID glueball does not interact with quarks, neither with leptons nor electroweak gauge bosons,
therefore in our approach it is sterile. However, the physical glueball does because of its admixture

5We take a value for ∆m small enough so that the deviation from this line which occurs for θ →
π
2
, which leads

ultimately to a ±δ splitting for δ finite, is beyond the shown values.
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Figure 1: The limiting values for the masses of the physical g̃ (solid–dashed lines) and σ̃ (solid–short-
dashed lines) are shown as a function of the mixing angle for the range 0 < |∆m| < 250 MeV . The left
(right) figure corresponds to positive (negative) ∆m. The degenerate initial mass has been taken, as
discussed in the text, at m = 750 MeV. The vertical line defines the approximate limit of the validity
of the 1

Nc
expansion.

with the σ. From now on we will only talk about the physical particles and we omit their tilde in the
notation. Using a σ-model interaction we get

Γσ→2π =
3

64πf2
π

(

m2
σ − m2

π

mσ

)2
√

m2
σ − 4m2

π

∼ 3

64π

m3
σ

f2
π

∼ 1.5

(

mσ(GeV)

1GeV

)3

GeV, (24)

where we have taken fπ ∼ 100 MeV and neglected terms O(m2
π) in the last line.

Let us look at the lower spectrum of scalars shown in table 1. Below 750 MeV the only existing
resonance is the broad f0(600), whose mass and width are still quite undetermined. Using the data
on the width and using Eq.(24) we obtain

737MeV < mσ < 874MeV. (25)

Thus the ∆m < 0 scenario is discarded by the data. Therefore the glueball is lighter than the
meson, i.e. within the limits of the 1

Nc
expansion

650MeV < mσ < 750MeV. (26)

Note that in this approximation the mixing angle is small and therefore

Γg→2π ∼ 1.5 sin2 (θ/2)

(

mg(GeV)

1GeV

)3

GeV < 100MeV, (27)
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f0(600) f0(980) f0(1370) f0(1500) f0(1710)

mass (MeV) 400 − 1200 980 ± 10 120 − 1500 1507 ± 5 1714 ± 5

width (MeV) 600 − 1000 40 − 100 200 − 500 109 ± 7 140 ± 10

Decay ππ dominant ππ dominant ππ seen ππ 35% ππ seen
modes γγ seen KK̄ seen 4π 4π 50% KK̄ seen

γγ seen ... ρρ dominant ηη 5% ηη seen
... other 4π seen ηη′ 2%

ηη seen KK̄ 9%
KK̄ seen γγ not seen
γγ seen

Table 1: The scalar spectrum according to the Particle Data Group [38]

Γσ→2π ∼ 1.5 cos2 (θ/2)

(

mσ(GeV)

1GeV

)3

GeV > 500MeV. (28)

Our analysis supports that the broad f0(600) hides, within its experimental indetermination our
two states, the conventional σ meson and the lightest searched for glueball.

If we relax the OZID hypothesis we could arrive to an exotic scenario in which for large mixings
one of the states could have a small mass close to the 2π threshold and an extremely small width due
to the kinematical threshold factor appearing in Eq.(24). This exotic scenario would be characterized
by a quasi stable state close to the observed lower mass limit (∼ 400 MeV) and a broad width state
in the upper mass limit (∼ 1200 MeV).

The f0(980), which belongs to the meson nonet, is too narrow to correspond to our sigma-model
state, since it survives the large Nc limit [36], we ascribe it to the first mesonic excitation. Since its
width is relatively low it does not seem to arise from a mixing with the lower lying states and therefore
it sets the upper bound for the mass of the lowest lying σ-meson. Thus the existence of the f0(980)
excludes, in our view, the extreme exotic scenario and validates an approximate OZID scheme.

The f0(1370) region is again ill-determined experimentally. In this case new channels, like 2η, open
up. The same mass analysis for the excitations could be carried out, which would lead us to conclude
that two excited states, a glueball and a meson, exist. Here we should not apply our naive sigma model
width and therefore our discussion for the widths is absent. However, the recent analysis of Forkel[15]
concludes with the existence of a broad glueball at 1250 which corresponds to the region around the
upper mass limit. We conclude from this analysis that in this region of the spectrum the ∆m < 0
scenario takes place and that the companion meson should have lower mass than the glueball. The
proximity of the f0(980), and a minimal population hypothesis, leads us to propose that the f0(980)
is the required companion. The fact that the lower mass particle, a meson in this case, is narrower
also confirms the breaking scheme.

Finally if the f0(1500) is a glueball [16, 17], by assuming the same analysis, a new ∆m > 0 scenario
may take places, which would ascribe the f0(1700) as its companion meson. The f0(1500) could be
also the higher lying glueball of ref. [13] after mixing.

Thus, our analysis leads to the existence of three glueball states in the low lying scalar spectrum
with three companion mesons. The precise dynamical mechanisms by which they arise are as of yet
unknown, however more precise studies within the large Nc approximation might shed light to our
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proposal. The duality of the ∆m mechanism which leads to an ordering of the spectrum in the form

mg < mσ < mσ1
< mg1

< mg2
< mσ2

....

has been guided by observation and physical intuition as explained above.
The analysis could be completed by studying other decay modes. In particular 2γ decays also hint

about the mass orderings. Using the trace anomaly [24]

Γσ→2γ =
α2

16π3

m3
σ

fσ
2
∼ 10.5

(

mσ

1GeV

)3

eV (29)

where we have used Nc = 3 and fσ ∼ fπ ∼ 100MeV. We obtain therefore

Γg→2γ ∼ 10.5 sin2 (θ/2)

(

mg(GeV)

1GeV

)3

eV < 1eV, (30)

Γσ→2γ ∼ 10.5 cos2 (θ/2)

(

mσ(GeV)

1GeV

)3

eV > 3eV. (31)

Thus, in this weak mixing scenario, the glueball state is narrower than the meson state.

6 Conclusions

We have analyzed the possible existence of a 0++ glueball low lying state from different perspectives.
The analysis has been modelled by 1

Nc
physics on which we have also based our estimates. We are

led to a scenario of weak OZID breaking and a low mass glueball. This glueball is narrow since only
its σ state component is allowed to decay and the small mixing angle inhibits decays. It represents a
beautiful example of OZID dynamics.

The discussion and mechanisms can be repeated for the higher lying scalars and a spectrum arises
in which glueballs and scalar mesons appear in pairs, with masses ordered according to the sign of the
1/Nc breaking parameter ∆m.

The lowest lying states, g and σ, appear within the f0(600) peak in agreement with previous
estimates [12, 14, 13], and therefore they might be difficult to isolate [37], although their widths are
vastly different for strong and electromagnetic decays. Maybe more precise experiments could manage
to see the two peaks.

The existence of low lying glueballs might strongly influence the transition towards the Quark
Gluon Plasma [39, 40] and it might be in this physical regime where it might appear unquestioned.

The present investigation lies at the foundations for the understanding of the scalar spectrum. Our
reasonings can be made more quantitative by lattice studies and more sophisticated model studies. It
opens up the possibility of understanding glueballs and their dynamics.
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