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Abstract

A general formalism for the evaluation of time reversal odd parton distributions is applied here

to calculate the Boer-Mulders function. The same formalism when applied to evaluate the Sivers

function led to results which fulfill the Burkardt sum rule quite well. The calculation here has

been performed for two different models of proton structure: a constituent quark model and the

MIT bag model. In the latter case, important differences are found with respect to a previous

evaluation in the same framework, a feature already encountered in the calculation of the Sivers

function. The results obtained are consistent with the present wisdom, i.e., the contributions for

the u and d flavors turn out to have the same sign, following the pattern suggested analyzing the

model independent features of the impact parameter dependent generalized parton distributions.

It is therefore confirmed that the present approach is suitable for the analysis of time reversal odd

distribution functions. A critical comparison between the outcomes of the two models, as well as

between the results of the calculations for the Sivers and Boer-Mulders functions, is also carried

out.
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I. INTRODUCTION

The study of the transverse polarization of quarks in the nucleon, one of its less known

features (for a review, see, e.g., Ref. [1]), is progressing fast, since the expected new data from

ongoing experiments are motivating a strong theoretical activity (for recent developments,

see Ref. [2]). The present work aims to contribute to the understanding of the transverse

polarization of quarks by evaluating, using different models of the proton structure, the

Boer-Mulders function [3]. We will use a theoretical scenario [4, 5] recently developed for

the calculation of the Sivers function [6], which has reproduced its main features, such as the

sign, the Burkardt sum rule [7], and the general trend of the parameterizations extracted

from the available data [8].

The Boer–Mulders function h⊥1 describes the number density of transversely polarized

quarks in an unpolarized target. As the Sivers function, f⊥
1T , describing the number density

of unpolarized quarks in a transversely polarized target, the Boer–Mulders function is a

Transverse Momentum Dependent (TMD) PD and it is a time-reversal odd object (T-odd)

[1]. For this reason, for several years, it was believed to vanish due to time reversal invariance.

However, this argument was invalidated, initially in the case of the Sivers function, by a

calculation in a spectator model [9], following the observation of the existence of leading-

twist Final State Interactions (FSI) [10]. The current wisdom is that non-vanishing T-odd

functions are generated by the gauge link in the definition of TMD parton distributions

[11, 12, 13], whose contribution does not vanish in the light-cone gauge, as it happens for

the standard PD functions. Those T-odd functions can be intuitively related to impact

parameter dependent (IPD) parton distributions [14, 15]. However, because of the gauge

link, it is formally questionable. For example, in the case of the Sivers function, it has been

shown that a model independent relation between this quantity and the corresponding GPD

is still to be found [16].

The Boer–Mulders function is being measured through Semi-inclusive deep inelastic scat-

tering (SIDIS) [17, 18, 19] (see Ref. [20] for an analysis of these data) and through the

Drell-Yan (DY) process in hadronic colliders [21, 22, 23]. In particular, in Ref. [24], the

Boer-Mulders function has been recently extracted from the data of the unpolarized p+D

Drell-Yan processes measured by the E866/NuSea Collaboration at FNAL [22]. However,

the extraction of h⊥1 is very difficult, as it always involves another chirally-odd distribution
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function. As a matter of fact, in SIDIS, the Collins fragmentation function is required [25],

and in DY the observable quantity is a convolution of two h⊥1 belonging to the two colliding

nucleons [26]. Presently, the lack of accurate data affects the quality of the extraction.

The present experimental scenario motivates therefore the formulation of theoretical esti-

mates. In principle one should perform a calculation in QCD; however, this is presently not

possible. Lacking this possibility, it becomes relevant to perform model calculations of the

Boer-Mulders function. A few estimates exist. In a quark-diquark model with axial vector

diquarks, it was originally found that h⊥1 has a different sign for the u and d flavors [27].

These findings have been corrected by the Authors of Ref. [28], who, following a procedure

established in previous papers [29], demonstrated that the sign of h⊥1 for the u and d flavors

turns out to be the same, assuming the spectator diquark to be either scalar or axial vector.

This feature is in qualitative agreement with the pattern predicted by quark helicity-flip

IPD GPDs in models [30, 31] and in lattice simulations [32]. It has also been found in a few

other model calculations: in the MIT bag model, in its simplest version [33]; in a large Nc

analysis of TMDs [34]; in a phenomenological parameterization based on the quark-diquark

picture [35].

In here, the recently proposed formalism of Refs. [4] and [5], used so far for the evaluation

of the Sivers function in a Constituent Quark Model (CQM) and in the MIT bag model,

respectively, will be extended to calculate h⊥1 for the valence quarks. In the case of the

Sivers function, within both models, this approach has proven to be able to reproduce the

main features of f⊥
1T . Similar expectations motivate the present analysis of h⊥1 . The MIT

bag model calculation presented here has an additional purpose, namely completeness. As

a matter of fact, in Ref. [33], the general framework for the calculation of T-odd TMDs

has been nicely set up, but an important contribution has been nevertheless disregarded. In

Ref. [5], we have reincorporated this contribution into the calculation of the Sivers function.

We found that the results of Ref. [33] were incomplete and, as a consequence, they did not

fulfill the Burkardt Sum Rule. Once this missing contribution is properly included in the

calculation, the Burkardt Sum Rule turns out to be fulfilled to a large extent [5]. The same

problem affects the evaluation of h⊥1 in Ref. [33], which is therefore retaken here, along the

lines of Ref. [5].

The paper is structured as follows. In the second section, the main quantities of interest

are introduced and the formalism for the calculation of h⊥1 in a CQM and in the MIT bag
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model is developed (some technical details are given in the Appendix). The numerical results

of the calculations are presented and discussed in the following section. In the last section,

we draw conclusions from our study. All throughout the paper, the formalism and the results

are critically compared with those previously obtained for the Sivers function f⊥
1T .

II. FORMALISM

The Boer-Mulders function, h⊥Q
1 (x, kT ) [3], the quantity of interest here, is formally

defined, according to the Trento convention [36], for the quark of flavor Q, through the

following expression1:

h⊥Q
1 (x, kT ) = − M

2kx

∫

dξ−d2~ξT
(2π)3

e−i(xp+ξ−−~kT ·~ξT )

× 1

2

∑

Sz=−1,1

〈PSz|ψQ(ξ−, ~ξT )L†
~ξT

(∞, ξ−) γ+γ2γ5 L0(∞, 0)ψQ(0, 0)|PSz〉 + h.c. ,

(1)

where ~S is the spin of the target hadron, the normalization of the covariant spin vector is

S2 = −1, M is the target mass, ψQ(ξ) is the quark field and the gauge link is

L~ξT
(∞, ξ−) = Pexp

(

−ig
∫ ∞

ξ−
A+(η−, ~ξT ) dη−

)

, (2)

where g is the strong coupling constant. One should notice that this definition for the gauge

link holds in covariant (non singular) gauges, and in SIDIS processes, since the definition of

T-odd TMDs is process dependent. As observed in Ref. [9] for the first time, and later in

[37, 38] using factorization theorems, the gauge link contains a scaling contribution which

makes the T-odd TMDs non vanishing in the Bjorken limit.

For completeness, we recall now the definition of the Sivers function, f⊥Q
1T (x, kT ). Taking

1 An equivalent expression is obtained by performing the following changes in Eq. (1): kx → −ky and

γ2 → γ1. Here and in the following, a± = (a0 ± a3)/
√

2 and kT = |~kT |.
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the proton polarized along the y axis, one has

f⊥Q
1T (x, kT ) = − M

2kx

∫

dξ−d2~ξT
(2π)3

e−i(xp+ξ−−~kT ·~ξT )

× 1

2

∑

Sy=−1,1

Sy 〈PSy|ψQ(ξ−, ~ξT )L†
~ξT

(∞, ξ−) γ+ L0(∞, 0)ψQ(0, 0)|PSy〉 + h.c. .

(3)

The difference between the two quantities is clearly seen and physically transparent in Eqs.

(1) and (3). The function h⊥Q
1 (x, kT ) counts the transversely polarized quarks (as given by

the Dirac Operator γ+γ2γ5 in Eq. (1)) in an unpolarized proton (as given by the average

over the proton helicity Sz in Eq. (1)), while f⊥Q
1T (x, kT ) counts the unpolarized quarks (as

given by the Dirac Operator γ+ in Eq. (3)) in a transversly polarized proton (as given by

the explicit transverse component Sy in Eq. (3)). If there were no gauge links, the two

T-odd functions f⊥Q
1T (x, kT ) and h⊥Q

1 (x, kT ) would be identically zero. Expanding the gauge

link to the first non-trivial order, i.e. the next to leading one, the Boer–Mulders function

h⊥Q
1 (x, kT ), Eq. (1), becomes

h⊥Q
1 (x, kT ) = − M

2kx

∫

dξ−d2~ξT
(2π)3

e−i(xp+ξ−−~kT ·~ξT )

× 1

2

∑

Sz=−1,1

〈PSz|ψQi(ξ
−, ~ξT )

× (ig)

∫ ∞

ξ−
A+

a (η−, ~ξT ) dη− T a
ij γ

+γ2γ5 ψQj(0, 0)|PSz〉 + h.c. . (4)

The formalism will be presented now for the evaluation of h⊥Q
1 (x, kT ) in the MIT bag model

and in the CQM. Let us start from the former. At the beginning, our procedure will follow

step by step the one nicely set up in Ref. [33] for the evaluation of T-odd TMDs in the MIT

bag model. The properly normalized fields for the quark in the bag (see also [39]) are given

in terms of the quark wave function in momentum space, which read

ϕm(~k) = i
√

4πN R3
0





t0(|~k|)χm

~σ · k̂ t1(|~k|)χm



 , (5)

with the normalization factor N

N =

(

ω3

2R3
0 (ω − 1) sin2 ω

)1/2

;
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where ω = 2.04 for the lowest mode and R0 = 4ω/M is the bag radius. The functions ti(k)

are defined as

ti(k) =

∫ 1

0

u2 du ji(ukR0)ji(uω) . (6)

Following Ref. [33], we fix the other ingredients of Eq. (4), having in mind Fig. 1 (and its

h.c.). In particular, the gluon propagator is treated in a perturbative way and it is assumed

that it is not modified in the bag medium. This leads, in the Landau gauge, to

h⊥Q
1 (x, kT ) =

g2M EP

kx

∫

d3k3

(2π)3

d3k1

(2π)3

d4q

(2π)4
δ
(

k+
1 − xP+ + q+

)

δ(2)
(

~k1T − ~kT + ~qT

)

× 2πδ(q0)
1

q+ + iǫ

1

q2 + iǫ

× 1

2

∑

Sz=−1,1

∑

β

∑

m1,m2,m3,m4

T a
ijT

a
kl 〈PSz|bi†Qm1

bjQm2
bk†βm3

blβm4
|PSz〉

× ϕ†
m1

(~k1) γ
0γ+γ2γ5 ϕm2

(~k)ϕ†
m3

(~k3) γ
0γ+ ϕm4

(~k3 − ~q) + h.c. . (7)

The last expression corresponds to the definition of the Boer-Mulders function in the MIT

bag model, given in Ref. [33].

Substituting in Eq. (7) the identity

1

q+ − iǫ
− 1

q+ + iǫ
= i 2π δ(q+) ,

and performing the trivial integrations, one gets

h⊥Q
1 (x, kT ) = −2ig2 M EP

kx

∫

d2~qT
(2π)5

1

q2

× 1

2

∑

Sz=−1,1

∑

β

∑

m1,m2,m3,m4

T a
ijT

a
kl 〈PSz|bi†Qm1

bjQm2
bk†βm3

blβm4
|PSz〉

× ϕ†
m1

(~k − ~qT ) γ0γ+γ2γ5 ϕm2
(~k)

∫

d3k3

(2π)3
ϕ†

m3
(~k3) γ

0γ+ ϕm4
(~k3 − ~qT ) . (8)

The last line here depends on the four spin indices, whose combinations are dictated by

the spin-flavor-color matrix elements given in the second line. Let us see now where the

differences between the present calculation and that of Ref. [33] arise. Following the notation

of Ref. [5], we write

ϕ†
m1

(~k − ~qT )γ0γ+γ2γ5 ϕm2
(~k) = Im1

(~k, ~qT ) δm1m2
+ Jm1

(~k, ~qT ) δm1,−m2
, (9)
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∫

d3k3

(2π)3
ϕ†

m3
(~k3)γ

0γ+ϕm4
(~k3 − ~qT ) = Fm3

(~qT )δm3m4
+Hm3

(~qT )δm3,−m4
. (10)

In these expressions, all the possible helicity combinations in the initial and final states are

emphasized. To our understanding, there are no physical reasons to rule out none of the

above possible contributions. It is easily realized that both the terms with no-helicity flip

of the quark 3, i.e. Fm3
, as well as the one allowing the helicity-flip of this quark, i.e. Hm3

,

are non-vanishing under the integration over d3k3. This result is in contrast with the result

presented in Ref. [33], where only a term similar to Fm3
is considered. As we explained in

Ref. [5], this result only applies if the integral is performed taking ~qT along the z direction.

However, this is incorrect because, in any DIS process, the operator structure is determined

by the direction of the virtual photon. Here, the operator γ+ results from having taken

the photon along the z axis. Therefore we no longer have the freedom to choose z as the

direction of the exchanged gluon, which must then lie in the (x, y) plane. Besides, one

can check that the integral Eq. (10) does depend on the direction of ~qT . Moreover, if the

findings of Ref. [33] were correct, it would mean that no helicity flip for the interacting quark

could occur, a restriction which does not have any physical motivation. Thus the present

calculation differs from the previous one in that we take into consideration both terms of

Eq. (10). By the same argument, the expression ϕ†
m1

(~k−~qT )γ0γ+γ2γ5ϕm2
(~k) in Eq. (9) also

contains both helicity-flip and non-flip terms.

Using Eqs. (9) and (10) in Eq. (8), the Boer-Mulders function reads

h⊥Q
1 (x, kT ) = −2ig2MEP

kx

∫

d2qT
(2π)5

1

q2

× 1

2

∑

Sz=−1,1

∑

β

∑

m1,m2,m3,m4

T a
ijT

a
kl 〈PSz|bi†Qm1

bjQm2
bk†βm3

blβm4
|PSz〉

×
{

Im1
(~k, ~qT ) δm1m2

+ Jm1
(~k, ~qT ) δm1,−m2

}{

Fm3
(~qT ) δm3m4

+Hm3
(~qT ) δm3,−m4

}

.

(11)

After the evaluation of the spin-flavor-color matrix elements,

∑

β

T a
ijT

a
kl 〈PSz|bi†Qm1

bjQm2
bk†βm3

blβm4
|PSz〉 = Cm1m2,m3m4

QSz
, (12)

performed assuming SU(6) symmetry, for Q = u, d and Sz = 1(−1) (these coefficients are

listed in the Appendix), and after a straightforward calculation, one is left with the final
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expression

h
⊥u(d)
1 (x, kT ) = −g2 MEP

kx

∫

d2qT
(2π)2

C2

q2

× {6(3) I1 F1 + 1(2) I2 F2 + 1(2) J1H1 + 1(2) J2H2} , (13)

with the eight functions I1,2, F1,2, H1,2, J1,2 and the c-number C given in the Appendix. The

two first terms on the r.h.s. of (13) are the contributions involving quarks which do not flip

helicity. On the other hand, the last two terms on the r.h.s. of the same expression represent

the contribution due to the double helicity flip of the quarks. This contribution will turn

out to be non negligible. We reiterate that the result Eq. (13) is different from that of the

previous calculation in the bag model [33], which includes only a Fm3
-like term.

Through the coefficients Eq. (12) it is possible to reconstruct what happens at the level

of the quark helicity in a perfectly transparent way. The rôle of each contribution can

be followed and evaluated. The dominant contributions are the non-flipping I1F1 and the

double-flipping J1H1 ones. Due to the spin-flavor-color coefficients, i.e., due to the SU(6)

symmetry assumption, the non-flipping term is bigger than the double-flipping contribution.

The improvement of the Boer-Mulders in the MIT bag model with respect to the previous

calculation [33] quantitatively consists in the addition of the double-flipping contribution.

In effect, the other two terms, I2F2 and J2H2, are governed by the product of the two lower

components of the bag wave function (cf. Eqs. (A8) and (A14) in the Appendix), which

encodes the most relativistic contribution arising in the MIT bag model. They turn out to

be a few orders of magnitude smaller than the dominant ones, arising from the interference

between the upper and lower parts of the bag wave function. We will see now that this

happens also if a proper non relativistic reduction (NR) of the gauge link, suitable for CQM

calculations, is performed.

The calculation scheme for T-odd functions in a CQM has been completely set up in

Ref. [4], where it has been applied to the Sivers function. Since the formalism required here

for the Boer-Mulders function is the same used in our previous paper to evaluate f⊥Q
1 (x, kT ),

we refer to that paper to obtain a workable formula for h⊥Q
1 (x, kT ). As it has been discussed

after Eqs. (1) and (3), with respect to the f⊥Q
1 (x, kT ) calculation, one has to change the

polarization of the proton and the Dirac structure of the quark operator. Starting from the

definition, Eq. (1), it is found therefore that, in a CQM, the equivalent of the expression

8



Eq. (8), previously obtained in the MIT bag model, is:

h⊥Q
1 (x, kT ) = −2ig2M

2

kx

∫

d~k1d~k3
d2~qT
(2π)2

δ(k+
1 − xP+)δ(~k1T + ~qT − ~kT )MQ , (14)

where

MQ =
∑

F3,m1,c3,m2,c4,m3,i,m4,j

δ(Sz ,r,m1,m2,ln,m3,m4,i,j,c3,c4)
1

2

∑

Sz=−1,1

× Ψ†
r Sz

(

~k1{m1, i,Q}; ~k3{m3, c3,F3}; −~k3 − ~k1, ln

)

× T a
ijT

a
c3c4

V h(~k1, ~k3, ~q)

× Ψr Sz

(

~k1 + ~q, {m2, j,Q}; ~k3 − ~q, {m4, c4,F3}; −~k3 − ~k1, ln

)

, (15)

where, li = {mi, ci,Q} represents the set of helicity, color and flavor quantum numbers,

respectively, and the vector Ψr Sz
is an intrinsic proton state. Given the diagram shown in

Fig. 1, the interaction V h(~k1, ~k3, ~q) reads

V h(~k1, ~k3, ~q) =
1

q2
ūm1

(

~k1

)

γ+γ2γ5 um2

(

~k1 + ~q
)

ūm3

(

~k3

)

γ+ um4

(

~k3 − ~q
)

. (16)

Ψr Sz
can be factorized into a completely antisymmetric color wave function, Γ, and a sym-

metric spin-flavor-momentum state, Φsf , as follows:

Ψr Sz
= Φsf,Sz

(

~k1{m1,Q}; ~k3{m3,F3}; −~k1 − ~k3, {mn,Fn}
)

Γ(i, c3, cn) . (17)

The matrix element of the color operator in Eq. (15) can be therefore immediately evaluated:

∑

c3,c4,i,j

Γ†(i, c3, cn)T
a
ijT

a
c3c4Γ(j, c4, cn) = −2

3
, (18)

which is the well-known result for the exchange of one gluon between quarks in a color

singlet 3-quark state [40]. Besides, as a consequence of the symmetry of the state Φsf , one

can perform the calculation assuming that the interacting quark is the one labeled “1”, so

that, after the evaluation of the summation on the flavors F3, Mα can be written, for the u

and d flavors, as follows:

Mu(d) =

(

−2

3

)

· 3 · 1

2

∑

Sz=−1,1

∑

m1,m2,m3,m4

Φ†
sf,Sz

(

~k1, m1;~k3, m3; −~k1 − ~k3, mn

)

× 1 ± τ3(1)

2
V h

NR
(~k1, ~k3, ~q)

× Φsf,Sz

(

~k1 + ~q,m2; ~k3 − ~q,m4; −~k1 − ~k3, mn

)

, (19)

9



where the helicity mn of the spectator quark is determined by m1, m3 and Sz due to angular

momentum conservation. Some remarks concerning the interaction, Eq. (16), are in order.

In general, the interaction can be separated according to the possible helicity combinations

of the interacting quarks in the initial and final state. Besides, since the wave functions to

be used are NR, a NR reduction of the interaction has to be obtained. This NR reduction

is given by the V h
NR

(~k1, ~k3, ~q) expression in Eq. (19). In order to obtain it, we follow the

procedure developed for the Sivers function in Ref. [4], using therefore the definitions of free

four-spinors in Eq. (16) and performing a NR expansion as it is commonly done in nuclear

physics. At O (k2/M2) one obtains

V h
NR

(

~k1, ~k3, ~q
)

= V no−flip
NR

(

~k1, ~k3, ~q
)

+ V double−flip
NR

(

~k1, ~k3, ~q
)

, (20)

i.e., the relevant processes for the evaluation of h⊥1 are the ones where either the interacting

and active quarks do not flip their helicities, or they flip them both. The expressions for

the V no−flip
NR and V double−flip

NR potentials are given in the Appendix. As explained in Ref. [4]

in the case of the Sivers function, we reiterate that, in this approach, it is the interference

of the upper and lower components of the four-spinors of the free quark states which leads

to a non-vanishing h⊥1 . Effectively, these interference terms in the interaction are the ones

that, in the MIT bag model previously described, arise due to the wave function. Terms of

higher order would correspond to those arising, in the MIT bag model calculation, from the

product of the lower components of the quark wave function, a contribution which has been

found to be negligible. The results of the relativistic calculation justifies therefore the NR

reduction of the interaction in the CQM calculation.

Eq. (14), with Mu(d) given by Eq. (19), provides a suitable formula to evaluate h⊥1

using the proton state in momentum space, Φsf , described in a CQM. We will here restrict

our calculation to a Harmonic Oscillator potential model with pure SU(6) symmetry for

the proton. The choice of a SU(6) wave function is motivated to render the comparison

with the previous calculation, performed in the MIT bag model with SU(6) symmetry, more

plausible. It is worth recalling that, as it has been stressed in Ref. [4], the breaking of SU(6)

in the CQM of Isgur and Karl [41] does not change essentially the results of the calculation.

This has been obtained also in the evaluation of standard PDs or GPDs in quark models

(see, i.e. [42]): the essential features of a CQM calculation are obtained in a pure SU(6)

framework. The formal expression of the proton state can be given in terms of the sets of
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conjugated intrinsic coordinates given in the Appendix. It reads

|2S1/2〉S =
e−(k2

ρ+k2
λ)/α2

π3/2α3
|χ〉S , (21)

where the spectroscopic notation |2S+1XJ〉twith t = A,M, S being the symmetry type, has

been used, and |χ〉S is the standard SU(6) vector describing the spin-flavor structure of the

proton. The parameter α2 = mω of the H.O. potential is fixed to the value 1.35 fm−2, in

order to reproduce the slope of the proton charge form factor at zero momentum transfer [40].

We have now all the necessary ingredients to write the final expression for h
⊥u(d)
1 , which

reads

h
⊥u(d)
1 (x, kT ) = g2M

2

kx

(

3

2

)3/2
1

2 π3/2α3

∫

d2~qT
(2π)2

√

3

2

√
2 k0

λ

|k0
λ − kz

λ|
1

q2
e
− 1

α2

h

k2
λ
+ 7

8
q2
T
−
√

3

2
~q.~kλ

i

[

1(0)B +
1

3

(

2

3

){

A +
q2qx

48m2

}]

, (22)

with k0
λ =

√

m2 + k2
λ, and

~kλ =

√

3

2
(~q − ~k) , kz

λ =
3
2
m2 + ~k2

λT − 3x2P+2

2
√

3P+x

k2
λ = kz2

λ + ~k2
λT . (23)

The explicit expressions for the functions A,B are given in the Appendix.

III. RESULTS AND DISCUSSION

To evaluate numerically Eqs. (13) and (22), the strong coupling constant g, and therefore

αs(Q
2), has to be fixed. Here, the model-independent prescription introduced for calculations

of PDs in quark models (see, i.e., Ref. [42]) will be used. It consists in fixing the momentum

scale of the model, the so-called hadronic scale µ2
0, according to the amount of momentum

carried by the valence quarks. In the present approach, for both the MIT bag model and

the CQM, only valence quarks contribute. The assumption that all the gluons and sea pairs

in the proton are produced perturbatively, according to NLO evolution equations, yields

µ2
0 ≃ 0.1 GeV2, if ΛNLO

QCD ≃ 0.24 GeV. Therefore, one has αs(µ
2
0)/(4π) ≃ 0.13 [42]. This is

obtained imposing that ≃ 55% of the momentum is carried by the valence quarks at a scale

of 0.34 GeV2, as in typical low-energy parameterizations (see, i.e., Ref. [44]).
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The first moments of the Sivers and Boer-Mulders functions, i.e. the quantities

q(1)(x) =

∫

d2~kT
k2

T

2M2
q(x, kT ) , (24)

where q = h⊥Q
1 , or f⊥Q

1T , are depicted in Figs. 2-5. The results for the calculation in the MIT

bag model as well as in the CQM are represented for both functions on Fig. 2. As already

mentioned in Refs. [4, 5], the signs of the Sivers functions for the u and d flavors, nega-

tive and positive respectively, are in agreement with both the theoretical and experimental

knowledge. Concerning the Boer-Mulders function, no data are available but following the

pattern predicted by quark helicity-flip IPD GPDs [30, 31], the same sign for the u and d

flavors is expected. This is found in the present approach, confirming the results of previous

estimates, such as the first MIT bag model calculation [33], the quark-diquark model [28], a

large Nc analysis [34] and a phenomenological parameterization based on the quark-diquark

picture [35]. This can be clearly seen in the lower panels of Fig. 2. The good performances

of the approach, established in the calculation of the Sivers function, are therefore confirmed

here for the Boer-Mulders function.

For the sake of clarity, the same results are rearranged in Fig. 3, such that one can

compare, in both models, the Sivers with the Boer-Mulders functions. It turns out that the

shape of both functions is similar in the CQM and in the MIT bag model. In particular,

the absolute value of h⊥1 turns out to be a little bigger than that of f⊥
1T . Also the size

is not too different, since it crucially depends on the scale of the model, which fixes the

strong coupling constant g appearing in Eqs. (13) and (22). A small variation of g affects

dramatically the results. We have decided to fix the hadronic scale as explained at the

beginning of this section, i.e. in a model independent way, obtaining αs(µ
2
0)/(4π) ≃ 0.13.

One could have instead taken the initial scales corresponding to the ones fixed for the two

different models by the Authors proposing them, i.e. αs(µ
2
0)/(4π) ≃ 0.11 for the CQM [40]

and αs(µ
2
0)/(4π) ≃ 0.18 for the MIT bag [43], respectively. The sizes of the results in the

two different models would have come out more similar. Since there are no precise data

available, a finer tuning of these parameters is not relevant at this moment.

In Figs. 4 and 5, a microscopic analysis of the contributions of different helicity-flips of

the quark interacting with the virtual photon and of the active recoiling one is presented,

for f⊥
1T and h⊥1 , respectively.

In the case of the Sivers function, the helicity-flip can occur either for the quark interacting

12



with the virtual photon, or for the active recoiling one [4, 5]. The latter contribution has

been disregarded in Ref. [33], while it is seen in Fig. 4 that it is very important. We recall

that, once such a term is taken properly into account, the Burkardt Sum Rule is fulfilled to

a large extent [5]. A similar problem occurs also for the calculation of h⊥1 . In the previous

section, we have shown that, in the case of this function, contributions are found if there is

no helicity-flip for the two active quarks, or if they both flip their helicities (cf. Eq. (13)

and (20)). The latter contribution has been once more disregarded in Ref. [33], while it is

seen in Fig. 5 that it is sizeable. Moreover, if the two contributions are disregraded, f⊥
1T for

a given flavor turns out to be proportional to h⊥1 for the same flavor. Besides, f⊥
1T (h⊥1 ) for

a flavor turns out to be proportional to f⊥
1T (h⊥1 ) for the other flavor.

These proportionalities, are not found once the proper helicity-flip contributions are taken

into account. Indeed, the reincorporated term is subtractive in the case of the Sivers function,

while it is additive in the case of the Boer-Mulders function. This implies that the two T-odd

functions cannot be proportional. In any case, the proportionality found in Ref. [33] has no

physical motivation, as, in order to calculate the two T-odd functions, one is using a two-

body operator associated with FSI and therefore one should not expect a proportionality

between the u and d results. On the contrary, in the calculation of conventional PDs, in any

SU(6) model calculation, the used operators are of one-body type and therefore the results

turn out to be proportional [39].

Another interesting byproduct of the present results is that there is basically no quali-

tative difference between the results in the two models, despite the fact that one of them

is NR. As already said in the previous section, this has to do with the fact that the terms

which encode the most relativistic contribution arising in the MIT bag model turn out to

be a few orders of magnitude smaller than the dominant ones. This is seen in Eqs. (A8)

and (A14) in the Appendix at the formal level. This gives us more confidence in the order

O(k2/m2) of the NR expansion used.

Let us now compare our results with the other microscopic calculation of the Boer-Mulders

function, the one in the quark-diquark model [28]. We get the same, negative, sign for the

u and d flavors, which has been proven to be related to the model independent features of

IPD GPDS [30]. On the other hand, the relative size of the u and d flavors turn out to be

different (at variance with [28], we have the result for u a bit larger than for d). Anyway,

as far as we understand, a model parameter in Ref. [28] can change such a relative size,

13



making this comparison not conclusive. What makes our approach unique, transparent and

instructive, is that a microscopic analysis of the helicity-flip of the different quarks involved

is not possible in two-body models, such as the quark-diquark model. We have seen instead

that one can learn several interesting aspects of the problem by performing this helicity-flip

analysis at the single quark level.

One relevant missing part in our analysis is the evaluation of the pQCD evolution of

the results from the scale of the model to the experimental one. Unfortunately, to our

knowledge, the anomalous dimensions of the relevant operators have not been calculated yet

and no workable evolution equations have been provided. Some crucial steps towards the

solution of this problem have been done [45, 46, 47, 48, 49, 50], and they will be considered

in future work.

Other natural developments of this calculation are the analysis in a relativistic three-body

model, as well as the connection of T-odd TMDs with the corresponding IPD GPDs.

IV. CONCLUSIONS

We have applied a formalism, developed previously to calculate the Sivers function, to

the calculation of the Boer-Mulders function with the aim of understanding the microscopic

mechanisms associated with the transverse polarization of the nucleon. The interest of the

calculation lies in the fact that, despite the difficult experimental extraction of this function,

ongoing experiments will produce data. We have applied the formalism to two very different

models of nucleon structure: a non relativistic constituent quark model and a relativistic

MIT bag model, both of which are able to interpret well the static properties of the proton.

Our calculation is complete in the sense that it takes into account all possible contributions,

i.e. not only the helicity non-flip contribution, but also the helicity double flip one.

The calculated moment of the Boer-Mulders function has the same negative sign for the u

and d flavors confirming the results of previous predictions and estimates. This nice outcome

also happened in our previous calculation of the Sivers function using the same formalism,

where our results satisfied the Burkardt Sum Rule and followed the general trend of previous

correct estimates. The shapes of both functions, Sivers and Boer-Mulders, are similar in the

CQM and the MIT bag model. This is a consequence of the fact that the terms carrying the

most relativistc contribution in the bag model are a few orders of magnitude smaller thean
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the main contributions. It should be stressed that, the additional terms found in both of

these functions in the MIT bag model calculations, are crucial to establish this behavior and

also to satisfy fundamental relations like the Burkardt Sum Rule.

To conclude, we have developed a formalism that allows a straightforward evaluation of

all kinds of parton distributions, which can be easily applied to different models of hadron

structure and, in particular, to two of the most succesful ones. Moreover the results ob-

tained are quite model independent in structure, and are in agreement with fundamental

principles and predictions. Our analysis has the advantage, with respect to other analyses

in other formalisms, that it shows the microscopic separation of the different helicity-flip

contributions for the different quarks involved in the process and, in so doing, is able to

understand the microscopic structure of the transverse polarization up to evolution effects.

APPENDIX A: SOME DETAILS OF THE RESULTS OF THE CALCULATION

Some details are listed below.

1. MIT bag model calculation

The matrix elements Eq. (12) are listed below, for Q = u and Sz = 1(−1),

C++,++
uSz=1(−1) = −5

9
(0) , C++,−−

uSz=1(−1) = −5

9

(

−2

9

)

, C−−,++
uSz=1(−1) = −2

9

(

−5

9

)

, (A1)

C−−,−−

uSz=1(−1) = 0

(

−5

9

)

C+−,+−

uSz=1(−1) = 0 (0) , C+−,−+
uSz=1(−1) =

1

9

(

1

9

)

, (A2)

C−+,+−

uSz=1(−1) =
1

9

(

1

9

)

, C−+,−+
uSz=1(−1) = 0 (0) , (A3)

and for Q = d and Sz = 1(−1),

C++,++
dSz=1(−1) = −1

9
(0) , C++,−−

dSz=1(−1) = −1

9

(

−4

9

)

, C−−,++
dSz=1(−1) = −4

9

(

−1

9

)

, (A4)

C−−,−−

dSz=1(−1) = 0

(

−1

9

)

C+−,+−

dSz=1(−1) = 0 (0) , C+−,−+
dSz=1(−1) =

2

9

(

2

9

)

, (A5)

15



C−+,+−

dSz=1(−1) =
2

9

(

2

9

)

, C−+,−+
dSz=1(−1) = 0 (0) . (A6)

The functions entering Eq. (13) are listed below:

F1 =

∫

d3~k3

{

t0(k3)t0(k
′
3) + kz

3

t1(k3)

k3
t0(k

′
3) + kz

3

t1(k
′
3)

k′3
t0(k3)

+
(

k2
3 − ~k3 · ~qT

) t1(k3)

k3

t1(k
′
3)

k′3

}

, (A7)

F2 =

∫

d3~k3

{

(

~qT × ~k3

)z t1(k3)

k3

t1(k
′
3)

k′3

}

, (A8)

H1 =

∫

d3~k3

{

kx
3

t1(k3)

k3
t0(k

′
3) − (kx

3 − qx)
t1(k

′
3)

k′3
t0(k3) −

(

~qT × ~k3

)y t1(k3)

k3

t1(k
′
3)

k′3

}

,

(A9)

H2 = −
∫

d3~k3

{

ky
3

t1(k3)

k3

t0(k
′
3) − (ky

3 − qy)
t1(k

′
3)

k′3
t0(k3) +

(

~qT × ~k3

)x t1(k3)

k3

t1(k
′
3)

k′3

}

,

(A10)

and

I1 = kx t1(k)

k
t0(k

′) − (kx − qx)
t1(k

′)

k′
t0(k) −

(

k
′xkz − k

′zkx
) t1(k)

k

t1(k
′)

k′
, (A11)

I2 = ky t1(k)

k
t0(k

′) + (ky − qy)
t1(k

′)

k′
t0(k) +

(

k
′ykz + k

′zky
) t1(k)

k

t1(k
′)

k′
,

(A12)

J1 = t0(k)t0(k
′) + kz t1(k)

k
t0(k

′) + kz t1(k
′)

k′
t0(k)

+
(

kx2 − qxkx − ky2 + qyky + kz2
) t1(k)

k

t1(k
′)

k′
, (A13)

J2 = − (2kxky − qxky − qykx)
t1(k)

k

t1(k
′)

k′
, (A14)

with k = |~k| and ~k′ = ~k − ~qT .

The constant C entering Eq. (13) is:

C =

√

2

9

C ′

(2π)3
, (A15)

with

C ′ = 4π N2R6
0 =

16ω4

π2 j2
0(ω)(ω − 1)

(2π)3

M3
P

, (A16)

determined by the MIT bag model parameters.

16



2. CQM calculation

The potentials corresponding to gluon exchanges without quark helicity flips or with

double quark helicity flips, Eq. (20), are listed below:

V no−flip
(

~k3, ~k1, ~q
)

=
1

2q2

{

−i
(

1 +
kz

1

m
+
~q · ~k1

4m2

)

(

qx

2m
+
qxkz

3

4m2

)

+

(

1 +
kz

1

m
+
~q · ~k1

4m2

)

(

−k
y
3

m
+

qy

2m
+
qykz

3

4m2

)

σz
3

+
1

4m2
(kx

1q
y − qxky

1)

(

qx

2m
+
qxkz

3

4m2

)

σz
1

+
i

4m2
(kx

1q
y − qxky

1)

(

−k
y
3

m
+

qy

2m
+
qykz

3

4m2

)

σz
3σ

z
1

}

. (A17)

V double−flip
(

~k3, ~k1, ~q
)

=
1

2q2

{

− i

4m2

(

qy

2m
+
qykz

1

4m2

)

(kx
3q

y + ky
3q

x) σx
3σ

x
1

−i
(

qy

2m
+
qykz

1

4m2

)(

1 +
kz

3

m
+
qyky

3 − qxkx
3

4m2

)

σy
3σ

x
1

+
i

4m2

(

qx

2m
+
qxkz

1

4m2

)

(kx
3q

y + ky
3q

x)σx
3σ

y
1

+i

(

qx

2m
+
qxkz

1

4m2

)(

1 +
kz

3

m
+
qyky

3 − qxkx
3

4m2

)

σy
3σ

y
1

}

(A18)

The set of conjugated intrinsic coordinates used in Eq. (21) is

~R =
1√
3
(~r1 + ~r2 + ~r3) ↔ ~K =

1√
3
(~k1 + ~k2 + ~k3) ,

~ρ =
1√
2
(~r3 − ~r2) ↔ ~kρ =

1√
2
(~k3 − ~k2) ,

~λ =
1√
6
(~r2 + ~r3 − 2~r1) ↔ ~kλ =

1√
6
(~k2 + ~k3 − 2~k1) . (A19)

The B and A functions appearing in Eq. (22) are

B = − qx

2m

(

1 +
kz

ρ

2
√

2
− 3√

6

k̄z
λ

2m
−
q2
x + q2

y − qxkx − qyky

4m2

)

A = −5

6

qx
2m

+
3√
6

k̄z
λqx

4m2
+

1

24m3

(

4q3
x − 4q2

xkx + 4qxq
2
y − qxq

2
y − qxqyky − 3kxq

2
y

)

(A20)
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FIGURE CAPTIONS

Fig. 1: The contributions to the Sivers and Boer-Mulders functions in the present approach.

The graph has been drawn using JaxoDraw [51].

Fig. 2: Upper (lower) panel, left: the first moment of the Sivers (Boer-Mulders) function,

Eq. (24), for the u flavor, in the NR (full) and MIT bag models (dashed); right: the same

for the d flavor.

Fig. 3: Left panel: the first moment for the Sivers and Boer-Mulders functions in the NR

model. Dashed curve: the Sivers function for d; dot-dashed curve: the Sivers function for u;

long dashed curve: the Boer-Mulders function for d; full curve: the Boer-Mulders function

for u. Right panel: the same in the MIT Bag model.

Fig. 4: Comparison between the results for the first moment of the Sivers function in the

NR model and in the MIT bag model. Left panel: results in the NR model. Full (Long

dashed) curve: full result for the flavor u (d); dot dashed (dashed) curve: result with the

spin-flip occurring only for the interacting u (d) quark (as in Ref. [33]). Right panel: the

same for the MIT Bag model

Fig. 5: The same of Fig. 4, but for the Boer-Mulders function.
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