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Abstract

The Skyrme model, an effective low energy theory rooted in large Nc QCD, has been applied
to the study of dense matter. Matter is described by various crystal structures of skyrmions.
When this system is heated, the dominating thermal degrees of freedom are the fluctuating
pions. Taking these mechanisms jointly produces a description of the chiral phase transition
leading to the conventional phase diagram with critical temperatures and densities in agreement
with expected values.
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An important issue today is to understand the properties of hadronic matter under extreme
conditions, e.g., at high temperature as in relativistic heavy-ion physics and/or at high density
as in compact stars. The phase diagram of hadronic matter turns out richer than what has
been predicted by perturbative Quantum Chromodynamics (QCD) [1]. Lattice QCD, the main
computational tool accessible to highly nonperturbative QCD, has provided much information
on the the finite temperature transition, such as the value of the critical temperature, the type
of equation of state, etc[2]. However, due to a notorious ‘sign problem’, lattice QCD could not
be applied to study dense matter. Only in the last few years, it has become possible to simulate
QCD with small baryon density [3]. Chiral symmetry is a flavor symmetry of QCD which plays
an essential role in hadronic physics. At low temperatures and densities it is spontaneously
broken leading to the existence of the pion. Lattice studies seem to imply that chiral symmetry
is restored in the high temperature and/or high baryon density phases and that it may go hand-
in-hand with the confinement/deconfinement transition. The quark condensate 〈q̄q〉 of QCD is
an order parameter of this symmetry and decreases to zero when the symmetry is restored.

The Skyrme model, an effective low energy theory rooted in large Nc QCD, has been applied
to the dense matter studies [4, 5, 6, 7, 8, 9, 10]. The model does not have explicit quark and
gluon degrees of freedom, and therefore one can not investigate the confinement/deconfinement
transition directly, but we may study the chiral symmetry restoration transition which occurs
close by. The main ingredient associated with chiral symmetry is the pion, the Goldstone
boson associated with the spontaneously broken phase. The various patterns in which the
symmetry is realized in QCD will be directly reflected in the in-medium properties of the pion
and consequently in the properties of the skyrmions made of it.

The classical nature of skyrmions enables us to construct the dense system quite conveniently
by putting more and more skyrmions into a given volume. Then, skyrmions shape and arrange
themselves to minimize the energy of the system. The ground state configuration of skyrmion
matter are crystals. At low density it is made of well-localized single skyrmions [11]. At a
critical density, the system undergoes a structural phase transition to a new kind of crystal. It
is made of ‘half-skyrmions’ which are still well-localized but carry only half winding number. In
the half-skyrmion phase, the system develops an additional symmetry which leads to a vanishing
average value for 〈σ〉 [12]. In the studies of the late 80’s [13], the vanishing of 〈σ〉 was interpreted
as chiral symmetry restoration by assuming that 〈σ〉 is related to the QCD order parameter 〈q̄q〉.
However, in Ref. [4], it was shown that the vanishing of 〈σ〉 cannot be an indication of a genuine
chiral symmetry restoration, because the decay constant of the pion fluctuating in such a half-
skyrmion matter does not vanish. This was interpreted as a signal of the appearance of a
pseudo-gap phase similar to what happens in high Tc superconductors [14].

The puzzle was solved in Ref. [7] by incorporating a suitable degree of freedom, the dilaton
field χ, associated to the scale anomaly of QCD. The dilaton field takes over the role of the order
parameter for chiral symmetry restoration. As the density of skyrmion matter increases, both
〈σ〉 and 〈χ〉 vanish (not necessarily at the same critical density). The effective decay constant
of the pion fluctuation vanishes only when 〈χ〉 becomes zero. It is thus the dilaton field which
provides the mechanism for chiral symmetry restoration.

Contrary to lattice QCD, there are few studies on the temperature dependence of skyrmion
matter. Skyrmion matter has been heated up to melt the crystal into a liquid to investigate
the crystal-liquid phase transition [15, 16] a phenomenon which is irrelevant to the restoration
of chiral symmetry. In here, we study skyrmion matter at finite density and temperature. We
obtain the phase diagram describing the realization of the chiral symmetry.

The basic strategy of our approach is as follows. We describe dense skyrmion matter as
a certain crystal structure. Thereafter, we let the temperature rise. The dominating thermal
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degrees of freedom in this process are the fluctuating pions which contribute a thermal energy
proportional to T 4. We neglect the thermal fluctuations of the heavy skymions (translations,
rotations and vibrations) which are proportional to T . We show that this strategy leads to a
familiar phase diagram with critical temperature and density in agreement with the expected
values.

The simplest model Lagrangian containing the inevitable ingredients to make the calculation
respect the flavor properties of QCD reads [17, 18]

L = χ2Lσ + Lsk − V(χ), (1)

with

Lσ =
f2

π

4
tr(∂µU †∂µU), (1a)

Lsk =
1

32e2
sk

tr[U †∂µU,U †∂ν ]
2 (1b)

V(χ) =
m2

χf2
χ

4

{

χ4
(

ln χ − 1
4

)

+ 1
4

}

. (1c)

In this equation, U = exp(i~τ · ~π/fπ)(∈ SU(2)) is a nonlinear realization of the pion fields and
χ represents the dilaton field. The model Lagrangian contains four parameters, fπ, esk, mχ and
fχ, i.e. the pion decay constant, the Skyrme parameter, the dilaton decay constant and the
dilaton mass, respectively. We choose in what follows fπ = 93 MeV, esk = 4.75, mχ = 720
MeV and fχ = 210 MeV (a discussion on the values of these parameters can be found in
Ref. [7]). For simplicity we neglect the pion mass and take the χ field as a constant in space
and time. Still, the ‘constant’ dilaton field controls the chiral phase transition through the
potential energy term. In the vacuum, this term has its minimum at χ = 1. At finite density
and temperature, skyrmions and thermal pions contribute to the term proportional to χ2 and
the system undergoes a dynamical phase transition when this term is larger than the potential
energy. While the specific values for the critical temperature and density depend strongly on the
chosen parameters, the phase transition scenario remains qualitatively the same for all reasonable
values.

Skyrmion matter is described by the energy of a single skyrmion:

E(ρ) = χ2Eσ + Esk + V(χ)V, (2)

where

Eσ(ρ) =

∫

V
d3r tr(∂iU0∂iU

†
0 ), (2a)

Esk(ρ) =

∫

V
d3r tr[U †

0∂iU0, U
†
0∂jU0]

2, (2b)

ρ is the baryon number density of the system and V is the volume occupied by a single skyrmion;
i.e., ρ = 1/V . U0(~r) is the static skyrmion configuration that minimizes the system energy E
for a given ρ. Note that both the potential energy terms, which contains an explicit 1/ρ(= V )
factor, and Eσ,sk, through U0(~r), depend on the baryon number density.

What happens if we heat up the system? Naively, as the temperature increases, the kinetic
energy of the skyrmions increases and the skyrmion crystal begins to melt. The kinetic energy
associated with the translations, vibrations and rotations of the skyrmions is proportional to T .
This mechanism leads to a solid-liquid-gas phase transition of the skyrmion system. However,
we are not interested in this transition but in the chiral symmetry restoration transition. A new
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mechanism must be incorporated to describe it and it happens to be the thermal excitation of
the pions in the medium. This phenomenon is proportional to T 4 and therefore dominates the
absorption of heat. We only consider the latter in our discussion.

The pressure of the non-interacting pions is given by [19]

P =
π2

30
T 4, (3)

where we have taken into account the contributions from three pions, π+, π0, π−. This term
contributes to the energy per single skyrmion volume as 3PV χ2. The factor 3 comes from the
fact that our pions are massless. The kinetic energy of the pions arises from Lσ, and therefore
scaling implies that it should carry a factor χ2. After including the thermal pions, the energy
lodged around a single skyrmion can be expressed as

E(ρ, T ) =

(

Eσ(ρ) +
π2

10
T 4V

)

χ2 + Esk(ρ) + V(χ)V. (4)

In order to complete our calculation we have to determine the values of U0(~r) and χ that
minimize E(ρ, T ) for a given density and temperature.

Chiral restoration will occur when χ vanishes. How does this take place in hot and dense
matter? In eq.(4), the potential energy of the dilaton is finite and its magnitude decreases as
the density ρ increases (V decreases). The potential energy has a potential hill at χ = 0 and a
valley at χ = 1. Beyond χ = 1, it increases monotonically. Besides the potential term there is
another term proportional to χ2. As the density increases the Eσ contribution becomes relatively
important. The thermal pion contribution is proportional to T 4/ρ. Thus, the term proportional
to χ2 increases to overcome the potential hill.

Let us look into this phenomenon in detail. For a given ρ and T , explicit dependence of
eq.(4) on χ can be presented as

E = aχ2 + b + c(χ4(ln χ − 1
4) + 1

4). (5)

One may easily match the coefficients a, b and c with eq.(4). E has two local minima at χ = 0
(chirality symmetric phase) and at χ = χ0(6= 0) (chirality broken phase) satisfying

a + 2cχ2
0 ln χ0 = 0. (6)

The energy difference ∆E ≡ E(χ = 0) − E(χ = χ0) is obtained as

∆E = 1
4χ2

0(2a − cχ2
0). (7)

The phase transition happens when ∆E = 0; that is,

2a − cχ2
0 = 0. (8)

Combining eqs.(6) and (8), we get χ0 at the critical point as

χc
0 = e−1/4. (9)

Note that the phase transition happens suddenly from a non-vanishing χ = χc
0 value to χ = 0.

It is therefore a first order phase transition. However, this result is just a peculiarity of the used
dilaton potential V(χ). If we had taken V(χ) ∼ (χ2 − 1)2, the phase transition would have been
second order.
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Figure 1: Ẽσ and Ẽsk as functions of 1/ρ̃1/3.

Using the above equations at the critical point, we get

ρcEσ +
π2

10
T 4

c =
f2

χm2
χ

8e1/2
. (10)

which leads to

Tc =

(

10

π2

(

f2
χm2

χ

8e1/2
− ρcEσ(ρc)

))1/4

(11)

For ρ = 0 (zero density), our estimate for the critical temperature is

Tc =

(

10

π2

f2
χm2

χ

8e1/2

)1/4

∼ 205 MeV, (12)

where we have substituted fχ = 210 MeV, mχ = 720 MeV. It is remarkable that this naive toy
model leads to Tc ∼ 200 MeV, which is quite close to that obtained by lattice QCD [2] and in
agreement with the data [20].

To complete our study we compute Eσ as a function of ρ by minimizing numerically E(ρ, T )
with respect to U0(~r) and χ. An useful approximation may be obtained by fixing χ = 1 and
minimizing Eσ(ρ) + Esk(ρ) with respect to U0(~r). Since χ varies only in the range e−1/4 ∼ 0.8 <
χ < 1, before the system undergoes the phase transition, the approximation is quite reasonable.
These minimum energy configurations can be found by various methods[21], and they turn out
to be single skyrmion FCC (Face Centered Cubic) crystals at low density and half-skyrmion CC
(Centered Cubic) crystals at higher density.

The dependence of Eσ and Esk on fπ and esk can be separated out explicitly as

Eσ,sk(ρ) = (fπ/esk)Ẽσ,sk(ρ̃), (13)
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Figure 2: The chiral phase transition. The solid line shows the exact calculation, while the gray
lines two approximate estimates.

where ρ̃ = ρ/(eskfπ)3 and Ẽσ,sk are dimensionless quantities which do not depend on esk and
fπ. Shown in Fig. 1 are the numerical values on Ẽσ and Ẽsk. In order to show their dominant
asymptotic behaviors, we present various values of Ẽ as a function of 1/(ρ̃)1/3. For high densities
Ẽσ is linear in 1/(ρ̃)1/3, while for low densities it stays constant, implying that at a low density
the interaction between skyrmions is negligible. We parameterize Eσ as

Eσ =

{

10f2
π/ρ1/3, ρ > ρ0

36fπ/esk, ρ < ρ0,
(14)

where ρ0 = (eskfπ/3.6)3.
Using eq. (14) for Eσ and returning to eq. (10) we obtain the critical density for chiral

symmetry restoration at zero temperature as

ρc(T = 0) =

(

f2
χm2

χ

8e1/2

1

10f2
π

)3/2

∼ 0.37 fm−3. (15)

Since ρ0 = 0.24 fm−3 < ρc(T = 0) we have been consistent when using the high density formula
for Ẽσ

The resulting critical density ρc(T = 0) ∼ 0.37 fm−3 is only twice normal nuclear matter
density and it is low with respect to the expected values. This result is not problematic since
ρc(T = 0) ∼ (fχmχ/fπ)3 and T ρ=0

c ∼ (fχmχ)1/2 and therefore the description of the phase
transition does not depend on the specific values of the parameters. Moreover, small changes in
them may lead to larger values for the critical density.

For a finite density smaller than ρc(T = 0), we obtain the corresponding critical temperature
by substituting the asymptotic formulas (14) for Eσ,

5



Tc = Tc(ρ = 0) (1 − 3.09(fm3) ρc)
1/4 for ρ < ρ0 (16)

Tc = Tc(ρ = 0) (1 − 1.92(fm2) ρ2/3
c )1/4 for ρ > ρ0 (17)

The results of these two curves are shown in Fig. 2 by gray lines.
The exact calculation (black dots connected by black line in Fig. 2) has been obtained

numerically by minimizing the energy eq.(4). The resulting phase diagram has the same shape
but the temperatures and densities are generally smaller than in the approximate estimates
shown in Fig. 2.

There is a long history of success of the Skyrme model in describing the chiral symmetry
restoration phase transition for dense hadronic matter [4, 5, 6, 7, 8, 9, 10]. The model might
also be a viable description of the new phenomenology that is being proposed for dense/hot
matter [22]. The time had come for an analysis of its behavior with temperature. We have
presented a first description of the chiral restoration phase transition in the temperature-density
plane, whose main ingredient is that the dominant mechanism is the absorption of heat by the
fluctuating pions in the background of crystal skyrmion matter. This description leads to a phase
transition whose dynamical structure is parameter independent and whose shape resembles much
the conventional confinement/deconfiment phase transition. Moreover, for parameter values
close the conventional ones, we obtain the expected critical temperatures and densities. Further
investigation in these matters is required since it is becoming apparent that the path to the
phase transition is not without new physics and that this ‘bottom up’ approach might be useful
to obtain interesting new physics [23].

Acknowledgements

Byung-Yoon Park was supported by a research fund from Chugnam National University, Hee-
Jung Lee by the research grant of Chungbuk National University in 2008 and Vicente Vento by
grant FPA2007-65748-C02-01 from Ministerio de Ciencia e Innovación.

References

[1] J. Phys. G 35 (2008) 104021 Quark Matter 2008

[2] For a review, see F. Karsch, Recent lattice results on finite temperature and dense QCD,
part II, PoS (Lattice 2007) 015.

[3] M. Fromm and Ph. de Forcrand, arXiv:0811.1931 [hep-lat].

[4] H.-J. Lee, B.-Y. Park, D.-P. Min, M. Rho and V. Vento, Nucl.Phys. A723 (2003) 427.

[5] B.-Y. Park, M. Rho, V. Vento, Nucl. Phys. A736 (2003) 129.

[6] B.-Y. Park, M. Rho, V. Vento, Nucl. Phys. A807 (2008) 28.

[7] H.-J. Lee, B.-Y. Park, M. Rho and V. Vento, Nucl. Phys. A726 (2003) 69.

[8] H.-J. Lee, B.-Y. Park, M. Rho and V. Vento, Nucl. Phys. A741 (2004) 161.

[9] A. C. Kalloniatis and B.-Y. Park, Phys. Rev.D71(2005) 034010.

6

http://arxiv.org/abs/0811.1931


[10] A. C. Kalloniatis, J. D. Carroll and B.-Y. Park, Phys. Rev. D71 (2005) 114001.

[11] I. Klebanov, Nucl. Phys. B 262 (1985) 133.

[12] A. S. Goldhaber, N. S. Manton, Phys. Lett. B 198 231.

[13] See for example, A. D. Jackson, J. J. M. Verbaarschot, Nucl. Phys. A 501 (1988) 419.

[14] See, for example, M. Franz, Z. Tesanovic, O. Vafec, Phys. Rev. B66 (2002) 054536.

[15] G. Kälbermann, J. Phys. G 26 (2000) 129.

[16] O. Schwindt and N. R. Walet, arXiv:hep-ph/0201203.

[17] J. Ellis, J. Lanik, Phys. Lett. B 150 (1985) 289.

[18] G. E. Brown, M. Rho, Phys. Rev. Lett. 66 (1991) 2720.

[19] A. Bochkarev and J. Kapusta, hep-ph/9602405.

[20] Nucl. Phys. A 757 (2005) 1- 283, First three years of operation of RHIC.

[21] M. Kugler, S. Shtrikman, Phys. Rev. D 40 (1989) 3421.

[22] L. McLerran and R. D. Pisarski, Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191 [hep-ph]].

[23] L. McLerran, arXiv:0808.1057 [hep-ph].

7

http://arxiv.org/abs/hep-ph/0201203
http://arxiv.org/abs/hep-ph/9602405
http://arxiv.org/abs/0706.2191
http://arxiv.org/abs/0808.1057

