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Abstract

It is shown that, at variance with previous analyses, the MIT bag model can explain the available

data of the Sivers function and satisfies the Burkardt Sum Rule to a few percent accuracy. The

agreement is similar to the one recently found in the constituent quark model. Therefore, these

two model calculations of the Sivers function are in agreement with the present experimental and

theoretical wisdom.
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The study of the partonic properties of transversely polarized hadrons will answer crucial

questions on their structure, such as their relativistic nature and their angular momentum

content. Experiments are progressing fast, motivating a strong theoretical activity [1]. One

of the quantities under scrutiny is the Sivers function, the object of this study. Semi-inclusive

deep inelastic scattering (SIDIS), i.e. the process A(e, e′h)X, with the detection in the final

state of a hadron h with the scattered electron e′, is one of the processes to access the

transversity parton distributions (PDs). For several years it has been known that SIDIS off

a transversely polarized target shows the so called “single spin asymmetries” (SSAs). It can

be shown (see, i.e., Ref. [2] and references therein), that one of the mechanisms generating

the SSAs is governed by the Sivers function [3]. The latter describes the amplitude of

modulation of the number density of unpolarized quarks in a transversely polarized target

due to the correlation between the transverse spin of the target and the intrinsic transverse

parton momentum. The Sivers function is a Transverse Momentum Dependent (TMD) PD,

denoted f⊥Q
1T (x, kT ), where x is the Bjorken variable and kT is the transverse momentum of

the parton Q. It is a time reversal odd object [1] and for this reason, for several years, it was

believed to vanish. However, this argument was invalidated by a calculation in a spectator

model, following the discovery of Final State Interactions (FSI) at leading-twist, i.e., not

kinematically suppressed in DIS [4]. The current wisdom is that a non-vanishing Sivers

function is generated by FSI, technically represented by the gauge link in the definition of

TMD parton distributions [5]. Recently, the first data of SIDIS off transversely polarized

targets have shown a strong flavor dependence of the Sivers mechanism [6]. Complementary

experiments on transversely polarized 3He target, addressed in [7], are being performed at

JLab [8]. Parameterizations of f⊥Q
1T (x, kT ) are available [9, 10, 11], and new data are expected

soon. From the theoretical point of view, a model independent constraint on calculations

of f⊥Q
1T (x, kT ) is the Burkardt Sum Rule (SR) [12]. It states that the average transverse

momentum of all the partons in a hadron, 〈~kT 〉, which can be defined through f⊥Q
1T (x, kT ),

has to vanish. If the proton is polarized in the positive x direction, the Burkardt SR reads:

∑

Q=u,d,s,g..

〈kQy 〉 = −
∫ 1

0

dx

∫

d~kT

k2
y

M
f⊥Q

1T (x, kT ) = 0 . (1)

Given the present situation of increasing experimental activity, estimates of f⊥Q
1T (x, kT ),

subject to solid theoretical constraints, can be very useful. Since a direct calculation in

QCD is not yet feasable, this quantity has been calculated in several models: a quark-
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diquark model [4, 13]; the MIT bag model, in its simplest version [14] and introducing

an instanton contribution [15]; the Constituent Quark Model (CQM) [16]. To distinguish

between the model estimates, data and model independent relations, such as the Burkardt

SR, can be used. In all the models used so far the total momentum of the proton is carried

by the quarks of flavor u and d. According to Eq. (1), this implies that the magnitude of

f⊥Q
1T for Q = u and d has to be similar and the sign has to be opposite. This is also the

trend of the parameterizations of the data [9, 11]. In different versions of the diquark model

the magnitude of the d contribution is much smaller than that of the u. In the MIT bag

model [14] u and d-quark contributions of opposite sign are found to be proportional by a

factor of -4. Even in the modified version of the MIT bag model of Ref. [15], the Burkardt

SR is not fulfilled. On the contrary, in the CQM, we found a satisfactory description of

the data and therefore the calculation fulfills the Burkardt SR at the 2% level [16]. This

puzzling situation deserves to be investigated. To this end, we next analyze the MIT bag

model calculation to understand the origin of the discrepancy with the CQM calculation.

One should realize that, in the CQM, even if a pure S-wave description of the proton is

used, i.e., a pure SU(6) wave function, we are able to reproduce the gross features of the

data. The same SU(6) spin-flavor structure is used in the bag calculation of Refs. [14, 15]

and no agreement with the data is found. This situation is in contradiction with previous

calculations of other PDs in the bag model [18] and in the CQM [19] which both have been

able to reproduce the gross features of the data.

If the proton is polarized in the positive x direction, the Sivers function can be written,

in a helicity basis for the proton, as [16, 17]

f⊥Q
1T (x, kT ) = 2ℜ

{ M

4ky

∫

dξ−d2~ξT
(2π)3

e−i(xξ−P+−~ξT ·~kT )〈PSz = 1|ÔQ|PSz = −1〉
}

, (2)

where ÔQ = ψ̄Q(0, ξ−, ~ξT )L†
~ξT

(∞, ξ−)γ+L0(∞, 0)ψQ(0) , ψQ(ξ) is the quark field, L~ξT
(∞, ξ−)

is the gauge link [11]. In the following, the framework and the notation of Ref. [14] are used

to calculate Eq. (2) in the MIT bag model [18, 20]. By expanding the gauge link to next to

leading order, inserting in Eq. (2) the bag model wave function in momentum space, ϕ(k)

[20] , and using for the definition of the quark helicity and momentum labels the ones in

Fig. 1, f⊥Q
1T (x, kT ) can be written as
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FIG. 1: The contributions to the Sivers function in the present approach. The graph has been

drawn using JaxoDraw [24].

f⊥Q
1T (x, k⊥) = −g2MEP

ky
2ℜ

{

∫

d2q⊥
(2π)5

i

q2

∑

{m},β

CQ,β

{m}ϕ
†
m1

(~k − ~q⊥)γ0γ+ϕm2
(~k)

×
∫

d3k3

(2π)3
ϕ†

m3
(~k3)γ

0γ+ϕm4
(~k3 − ~q⊥)

}

. (3)

This equation corresponds to Eq. (17) in Ref. [14] modified to follow the Trento conven-

tion [17] which implies an additional factor of 1/2. Here g is the strong coupling constant,

CQ,β

{m} = T a
ijT

a
kl〈PSz = 1|bi†Qm1

bjQm2
bk†βm3

blβm4
|PSz = −1〉 with {m} = m1, m2, m3, m4; M is

the proton mass, Ep its energy, biQ,m is the annihilation operator for a quark with flavor Q,

helicity m, and color index i, and T a
ij is a Gell-Mann matrix. In turn, the k3 integral can be

written as

∫

d3k3

(2π)3
ϕ†

m3
(~k3)γ

0γ+ϕm4
(~k3 − ~q⊥) ≡ Fm3

(~q⊥) δm3m4
+Hm3

(~q⊥) δm3,−m4
, (4)

with

Fm3
(~q⊥) =

C√
2

∫

d3k3

[

t30t
′3
0 + kz

3t
3
1t

′3
0 /k3 + k

′z
3 t

′3
1 t

3
0/k

′3

+
(

~k3 · ~k′3 + i vzdm3

)

t31t
′3
1 /(k

′
3k3)

]

, (5)

Hm3
(~q⊥) =

C√
2

∫

d3k3

[

(iky
3 − kx

3dm3
) t

′3
0 t

3
1/k3 −

(

ik′y3 − k′x3 dm3

)

t30t
′3
1 /k

′
3

+ (vydm3
+ i vx) t31t

′3
1 /(k3k

′
3)

]

, (6)

where k3 = |~k3|, k′3 = |~k′3|, dm3
≡ (δm3

1

2

− δm3,− 1

2

), ~v = ~q⊥ × ~k3, ~k
′
3 = ~k3 − ~q, C =

16ω4/(π2j2
0(ω)(ω − 1)M3

P ), with ω being the bag model mode [20] and the function t3i =

ti(k3), t
′3
i = ti(k

′
3), i = 0, 1 are defined in [14].
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In Ref. [14], only the first term in the r.h.s. of Eq. (4) is calculated. This term corresponds

to the helicity conserving contribution (m3 = m4) associated with the quark in the lower

part of Fig. 1. This result only applies if the integral is performed taking ~q⊥ along the z

direction. However, this is incorrect in the present case. As in any DIS process, the direction

of the virtual photon determines the operator structure, i.e. γ+ in here. The fixing of the

photon direction leads to a γ3 matrix in this operator. Therefore we do not have anymore

the freedom to choose z as the direction of the exchanged gluon, which must lie in the (x, y)

plane. Besides, one can check that the integral Eq. (4) does depend on the direction of ~q⊥.

Moreover, if the findings of Ref. [14] were correct, it would mean that a helicity flip could

occur only for the quark which interacts with the photon and not for the quark in the lower

part of Fig. 1, a restriction which does not have any physical motivation. Thus the present

calculation differs from the previous one in that we take into consideration both terms of

Eq. (4). By the same argument, the expression ϕ†
m1

(~k − ~q⊥)γ0γ+ϕm2
(~k) in Eq. (3) also

contains both helicity-flip and non-flip terms. One should notice that, in Ref. [15], a helicity

flip term (with m3 = −m4) has been found to contribute to the Sivers function. In that

paper, instanton effects have been added to the pure MIT bag model calculation of Ref.

[14] and the presence of this helicity flip term is due solely to the instanton contribution.

However, in the calculation of Ref. [15], the term depending on δm3−m4
in Eq. (4), associated

to the perturbative one-gluon exchange, should appear and has not been considered [21].

It is interesting to realize that, in a completely different scenario, the CQM calculation

satisfying the Burkardt SR of Ref. [16], a contribution is found for helicity conserving and

helicity flip of the quark in the lower part of Fig 1, as it happens in our MIT bag model

calculation.

Evaluating the matrix elements for the valence quarks and assuming an SU(6) proton

state in Eq. (3), one gets

f⊥Q
1T (x, k⊥) = −g

2

2

MEP

ky
C2

∫

d2q⊥
(2π)2

1

q2
[C−+

Q Y (~q⊥, kT ) + C+−
Q U(~q⊥, kT )] , (7)
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f⊥ (1)d 1T(x)

f⊥ (1)u 1T(x)
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FIG. 2: The quantity f
⊥(1)q
1T (x), Eq. (10), for the u and d flavour. The dashed curves are the

results of the approach of Ref. [14], the full ones those obtained here.

with

Y (~q⊥, kT ) = [k′yt′1t0/k
′ − kyt1t

′
0/k − vyt1t

′
1/(kk

′)]

×
∫

d3k3

[

t30t
′3
0 + kz

3t
3
1t

′3
0 /k3 + k

′z
3 t

′3
1 t

3
0/k

′
3 +

(

k2
3 − ~k3 · ~q⊥

)

t31t
′3
1 /(k3k

′
3)

]

,(8)

U(~q⊥, kT ) =
[

t′0t0 + kz(t′1t0/k
′ + t′0t1/k) + (k2 − ~q⊥ · ~k)t1t′1/(kk′)

]

×
∫

d3k3

[

ky
3 t

′3
0 t

3
1/k3 − k′y t30t

′3
1 /k

′
3 + vx t31t

′3
1 /(k

′
3k3)

]

, (9)

where k = |~k|, k′ = |~k′|, ti = ti(k), t
′
i = ti(k

′), i = 0, 1 and C−+
u = −16/9 (C−+

d = 4/9),

C+−
u = −4/9 (C−+

d = −8/9) for Q = u(d). Let’s recall that in Ref. [14] only the first term of

Eq. (7), proportional to C−+
Q , contributes to f⊥Q

1T . It is therefore found that f⊥u
1T = −4f⊥d

1T .

Notice that, in order to calculate f⊥Q
1T , one is using a two-body operator associated with FSI

and therefore one should not expect a proportionality between the u and d results. On the

contrary, in the calculation of conventional PDs, in any SU(6) model calculation, the used

operators are of one-body type and therefore the results turn out to be proportional [18].

Numerical results are shown in Figs. 2 and 3 for the first moment of f⊥Q
1T , i.e.

f
⊥(1)Q
1T (x) =

∫

d2~kT

k2
T

2M2
f⊥Q

1T (x, kT ) . (10)

In Fig. 2 the dashed curves are the ones obtained in Ref. [14] (cf. Fig. 4 in Ref [14] adapted

to the Trento convention [17], i.e., reduced by a factor of two). The obtained value for the

Burkardt SR Eq. (1) turns out to be 8.73 MeV. To have an estimate of the quality of the
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xf⊥ (1)d 1T(x)

xf⊥ (1)u 1T(x)

 X

-0.04

-0.02

0
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0.04

0 0.25 0.5 0.75 1

FIG. 3: The same as in Fig. 2, after NLO evolution (see text). The patterned area represents the

1 − σ range of the best fit of the HERMES data proposed in Ref. [11].

agreement of this result with the SR, we consider the ratio r = (〈kd
x〉+ 〈ku

x〉)/(〈kd
x〉 − 〈ku

x〉) ,
obtaining r ≃ 0.60, i.e., the Burkardt SR seems to be violated by 60 %. The full curve in

Fig. 2 is the result of the present calculation. Clearly, the d contribution becomes comparable

in magnitude to the u one. The obtained value for the Burkardt SR is -0.78 MeV and

r ≃ 0.05, i.e., it is only violated by 5 percent. These results are comparable in quality

to those obtained for the CQM [16], restoring the approximate agreement between the

two schemes. In order to compare the results with the data, one should perform a QCD

evolution from the experimental scale, which is, for example for the HERMES data, Q2 = 2.5

GeV2 [22]. Unfortunately, the evolution of TMDs is still to be understood, although recent

developements can be found in Ref. [23]. In order to have an indication of the effect of

the evolution, we evolve at NLO the model results assuming, for the moments of the Sivers

function, Eq. (10), the same anomalous dimensions of the unpolarized PDFs, as we did

7



xf⊥ (1)d 1T(x)

xf⊥ (1)u 1T(x)
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FIG. 4: The same as in Fig. 3, but comparing with the parameterization of the data proposed in

Ref. [9] (patterned area).

in Ref. [16] for the CQM calculation. The parameters of the evolution have been fixed in

order to have a fraction ≃ 0.55 of the momentum carried by the valence quarks at 0.34

GeV2, as in typical parameterizations of PDs , starting from a scale of µ2
0 ≃ 0.1 GeV2

with only valence quarks. The results in Fig. 3 and 4 show an impressive improvement of

the agreement with data once the full contribution of Eq. (7) is taken into account. The

data are described rather well for both flavors. Comparing this encouraging outcome with

that of Ref. [16], one can notice that the Burkardt SR is better fulfilled in the CQM. Most

probably this has to do with the fact that the Burkardt SR is associated with transverse

momentum conservation and, in the MIT bag model, the proton wave function is not an exact

momentum eigenstate. In closing, we can say that, for the first time, it has been established

that correct model calculations provide phenomenological successful interpretations of the

Sivers function, which are consistent with each other.
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