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Abstract

We propose an effective lagrangian for the coupling of the neutral pion with gluons
whose strength is determined by a low energy theorem. We calculate the contribution of
the gluonic components arising from this interaction to the pion transition form factor
γ∗γ∗ → π0 using the instanton liquid model to describe the QCD vacuum. We find that
this contribution is large and might explain the anomalous behavior of the form factor
at large virtuality of one of the photons, a feature which was recently discovered by the
BaBar Collaboration.
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The implications, of recent data by the BaBar Collaboration [1] on the transition form
factor γ∗γ → π0, in our understanding of the structure of the pion are being widely dis-
cussed [2, 3, 4, 5, 6]. A possible scenario to explain these data consists in assuming a flat
shape for pion distribution amplitude [3, 4], supported by some low energy models like
the Nambu-Jona-Lasinio model [7, 8] and instanton based non-local chiral quark model
[9],and its detailed behavior under Quantum Chromodynamics (QCD) evolution, and a
large mass cut-off added to the quark propagator [3], signalling a peculiar behavior of the
qq wave function [10]. Never mind the various explanations, what appears evident is that
the BaBar data[1], if confirmed, are in contradiction with most model predictions based
on the factorization approach to exclusive reactions at large momentum transfer [11] and
this apparent lack of perturbative factorization motivates the present investigation. In
this Letter we suggest an alternative nonperturbative explanation to the BaBar results
based on the existence of additional contributions to the pion form factor never previ-
ously considered. These contributions arise from the admixture of gluonic components,
associated to nonperturbative properties of the QCD vacuum, which provide a strong
interaction with two photons.

Let us propose a low-energy effective π0 interaction with gluons of the following form

Leff
πgg = − 1

fπ0

G

π0
αs

8π
Ga

µνG̃
a
µν . (1)

Such type of Lagrangian density, describing the interaction of a pseudoscalar meson with
gluons, was introduced many years ago by Cornwall and Soni [12] to derive Witten’s
relation between the η′ mass and the topological susceptibility, in a world without light
quarks [13]

χ
Nf=0

t = −f 2

π

6
(M2

η′ +M2

η − 2M2

K), (2)

where fπ = 92.3 MeV is the pion decay constant, MX the mass of the indicated particles,
the topological susceptibility is given by

χ
Nf=0

t = i
∫

d4x < 0|T{Q5(x)Q5(0)}|0 >G, (3)

and
Q5(x) =

αs

8π
Ga

µν(x)G̃
a
µν(x) (4)

is the topological charge density.
The effective pion-gluon interaction, Eq.1, is the analogue of the pion-quark effective

interaction

Leff
πqq = − 1

fπ
Mq q̄iγ5~τq · ~π, (5)

giving the pion coupling to the quarks.
To derive the decay constant fπ0

G , which sets the scale of the gluon nonperturbative
interaction with the neutral pion, we will use a low energy theorem (LET) [14]

< 0|αs

8π
Ga

µνG̃
a
µν |π0 >=

1

2

md −mu

md +mu

fπM
2

π . (6)
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We stress that this matrix element is rather big due to the large light quark mass ratio
[15]

z =
mu

md

= 0.35− 0.6. (7)

By using the effective interaction Eq.1 and the LET Eq.6 we get

fπ0

G = −2(1 + z)

(1− z)

χ
Nf=0

t

f 2
πM

2
π

fπ. (8)

As it was to be expected, the strength of the coupling of the neutral pion to gluons is
related to the violation of isospin symmetry and proportional to the difference of the d-
and u-quark masses

1

fπ0

G

∝ md −mu. (9)

For the value of the mass ratio mu/md shown in Eq.7 which is the one allowed by the
Particle Data Group, one obtains

R =
fπ0

G

fπ
≃ 28.1− 51.1. (10)

q1

q2

I(Ī)
π0 π0

I(Ī)

q1

q2

p p

Figure 1: Gluonic contribution to the pion transition form factor. Symbol I (Ī) denotes
instanton(antiinstanton).

Let us next calculate the contribution arising from the interaction given by Eq.1 to
the transition form factor of two photons to the pion γ∗(q1)γ

∗(q2) → π0(p), where q1 and
q2 are the photon momenta and q1 + q2 = p. We consider the case where all virtualities
of the incoming and the outcoming particles are in the Euclidean domain Q2

1
= −q2

1
≥ 0,

Q2

2
= −q2

2
≥ 0, P 2 = −p2 ≥ 0. The Lagrangian density Eq.1 describes the pion interaction

with soft gluons. Such gluons should interact with photons through nonperturbative QCD
interactions. We use the instanton liquid model (ILM) for the QCD vacuum to calculate
the interaction of two photons with the gluonic component of the pion. The ILM is one
of the most successful models for the description of nonperturbative QCD effects (see
reviews [16, 17]). Within the ILM the single instanton contribution to the pion form
factor coming from the interaction Eq.1 is associated to the diagrams in Fig.1.
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The amplitude for the π0 − γ∗γ∗ interaction via an instanton with center z0 has the
following form

Tµν(p, q1, q2) = ǫµναβ
∑

i

e2i
4

fπ0

G π4

∫
nI(ρ)ρ

2dρ×
∫

d4z0

∫
d4z1

∫
d4x

∫
d4ye−ipz1eiq1xeiq2yQI

5
(z̄1))×

hx̄hȳ

∆2

{
1

∆2
(hȳ∆

αȳβ − hx̄∆
βx̄α) + hx̄hȳx̄

αȳβ
}
, (11)

where

QI
5
(z̄1)) =

6ρ4

π2(z̄21 + ρ2)4
(12)

is the topological charge density of the instanton in the space-time point z1, nI(ρ) is the
instanton density, ρ is the instanton size, ∆ = x̄ − ȳ, hx̄ = 1/(x̄2 + ρ2), hȳ = 1/(ȳ2 + ρ2)
and the notation w̄ ≡ w− z0 for any variable w has been introduced. The sum runs over
the light quark flavors, i.e. i = u, d, s. To get Eq.11 we have used the correlator of two
electromagnetic currents in the instanton field obtained by Andrei and Gross [18]. Their
result was corrected by a color factor (see [19]). The first term in the last line of the
equation is coming from the quark nonzero modes in the instanton field and the last term
arises from the interference between nonzero and zero modes [18].

The final result for the gluon contribution to the pion transition form factor induced
by instantons is

F (P 2, Q2

1
, Q2

2
)Ig =

4 < e2 >

fπR

∫
dρnI(ρ)ρ

4S(ρ, P 2, Q2

1
, Q2

2
) (13)

where

S(ρ, P 2, Q2

1
, Q2

2
) = Φ1(

√
z3)

∫
1

0

dt {I(t, z1, z2, z3) + (1− t)I(t, z2, z1, z3)} , (14)

I(t, z1, z2, z3) =
∫ ∞

0

dα
α(α+ 1)Φ2(Z(α, t, z1, z2, z3))

(α + 1− t)3Z2(α, t, z1, z2, z3)
, (15)

and
Z(α, t, z1, z2, z3) =

√
(α + 1)(tαz1 + tz2 + (1− t)z3)/(α+ 1− t). (16)

The functions

Φ1(z) =
z2K2(z)

2
, Φ2(z) = zK1(z) (17)

behave as Φ1,2(z) → 1 in the limit z → 0. In Eqs.13-16 the notations are z1 = Q2

1
ρ2,

z2 = Q2

2
ρ2, z3 = P 2ρ2 and < e2 >=

∑
i e

2

i .
For an estimate we use Shuryak‘s version of the ILM [20], where the density is given

by
nI(ρ) = n0δ(ρ− ρc) (18)

and
n0 ≈ 1/2fm−4, ρc ≈ 1/3fm. (19)
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Within this simple model for the instanton distribution the result for the form factor is

F (P 2, Q2

1
, Q2

2
)Ig =

4 < e2 > fI
π2fπR

S(ρc, P
2, Q2

1
, Q2

2
), (20)

where fI = π2n0ρ
4

c is so-called instanton packing fraction in the QCD vacuum.
It should be pointed out that in spite of the smallness of instanton packing fraction

fI ≈ 0.06, using the single instanton approximation as above is only valid for values
of the momentum transfers Q1, Q2 ≫ 1/RI , where RI ≈ 3ρc is the distance between
the instantons in the ILM. For smaller photon virtualities it is necessary to include the
contributions arising from multiinstanton configurations. With an average size of the
instanton in the QCD vacuum as in Eq.19 for the region Q2

1
, Q2

2
≥ 1/ρ2c ≥ µ2 = 0.35

GeV2, i.e. z1,2 ≥ 1, the validity of a single instanton approximation is assured.
The calculation above was done for the case when all external momenta are Euclidean.

In order to compare with BaBar data we have to perform an analytic continuation of the
pion virtuality to the physical point of the pion on-shell P 2 → −m2

π − iǫ. An inspection
of the integrals in Eqs.14,15 shows that the dominant contribution to the form factor at
m2

π/Q
2

1,2 ≪ 1 is coming from the region of integration t ≈ 0, due to the pole at Z2 = 0.
Assuming the following behavior of the function Φ2(Z) ≡ ZK1(Z) ∼ 1 near the pole and
keeping only leading terms in m2

π we obtain following closed form formulas for the real
and imaginary parts of the flavor singlet part of form factor

Re(F (m2

π, Q
2

1
, Q2

2
)Ig) ≃ 4 < e2 > fI

π2fπR
×

{z1[z2log(z2)/z1 + log(z1)(log(z1/z2)− 1) + Li2((z1 − z2)/z1)]

(z1 − z2)2
+

z2[z1log(z1)− π2/6− log2(z1 − z2)/2− log(z2)(1− log(z1)/2)]

(z1 − z2)2
+

z2[Log(z2)log((z1/(z1 − z2))− Li2(z2/(z2 − z1))]

(z1 − z2)2
−

log(z1/z2)log(m
2

πρ
2

c)

z1 − z2
}, (21)

Im(F (m2

π, Q
2

1
, Q2

2
)Ig) ≃ 4 < e2 > fI

πfπR

log(z1/z2)

z1 − z2
. (22)

The imaginary part of form factor arises because the pion may decay in this calculation
into a quark-antiquark pair since confinement, which forbids this decay, is not explicitly
implemented. However, the net contribution of the imaginary part to total transition
form factor in the BaBar kinematics is very small. These formulas are useful to extract
the behavior of the transition form factor with Q2. The exact numerical analysis will be
described below. For definiteness we consider the case z1 > z2

In the limit Q2

1
≫ Q2

2
which is valid for BaBar kinematics, the formulas for the real

and the imaginary parts simplify,

Re(F (m2

π, Q
2

1
, Q2

2
))Ig ≈ 4 < e2 > fI

π2fπR

[log(Q2

1
/m2

π)log(Q
2

1
/Q2

2
) + π2/6]

ρ2cQ
2
1

, (23)

Im(F (m2

π, Q
2

1
, Q2

2
))Ig ≈ 4 < e2 > fI

πfπR

log(Q2

1
/Q2

2
)

ρ2cQ
2
1

. (24)
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It follows from Eqs.23,24 that the flavor singlet gluon induced part of the form factor
has a dependence on the large photon virtuality Q2

1
proportional to log2(Q2

1
)/Q2

1
, which

is much stronger than that of the flavor nonsinglet part, which in most of the models
is of the form 1/Q2

1
. The additional feature of this new contribution is its strong chiral

enhancement since the massless logs appear governed by the pion mass as log(Q2

1
/m2

π).
For symmetric kinematics Q2 = Q2

1
= Q2

2
the result is

Re(F S(Q2))Ig ≈ < e2 > fI
π2fπR

(3 + 2log(Q2/m2

π))

ρ2cQ
2

, (25)

Im(F S(Q2))Ig ≈ 2 < e2 > fI
πfπRρ2cQ

2
. (26)

Having determined the dependence of the virtuality in the approximation Eq. 21, we
proceed to study the exact numerical calculation which includes the effect of the functional
form of ZK1(Z). Before we do so, we would like to point out that the exact calculation
leads to a smaller (by about 50%) result, compared to the approximate calculation. This
factor can be absorbed in the uncertainties of the vacuum model associated with the
poor knowledge of the instanton distribution (about 30%), and the additional uncertainty
coming from the value of the pion coupling to gluons Eqs.9 and 10 (about a factor 2) due
indeterminacy in the ratio of u- and d- quark masses, Eq.7.

We compare our result with the BaBar data. Before we do so some caveats have to
be expressed since the comparison is not direct. The BaBar experiment, only measures
the virtuality of one of the photons in the interval Q2

1
= 4− 40 GeV2. They only put an

upper limit on the virtuality for the second photon, Q2

2
< 0.18 GeV2. Finally, they use

a model for the form factor to extract the value at the real photon point Q2

2
= 0. Thus,

a direct comparison of our results with the BaBar data is not possible. Moreover, our
calculation only represents the flavor singlet contribution to the form factor, therefore we
have to add a flavor nonsinglet part. We take in the estimate shown in Fig.2 for the flavor
nonsinglet part the corresponding to a vector meson dominance (VMD) model, i.e.

F (Q2

1
, Q2

2
)VMD
q =

1

4π2fπ

1

(1 +Q2
1/M

2
ρ )(1 +Q2

2/M
2
ρ )
. (27)

In order to compare our results with the BaBar data we perform an extrapolation of
their results from Q2

2
= 0 to Q2

2
= 0.35 GeV2. In Fig.2 we compare our calculation with

the extrapolation of the BaBar data described by [1]

Q2 | FBaBar
exp (Q2) |= A

(
Q2

10GeV 2

)β

, (28)

where A ≃ 0.182 and β ≃ 0.25. This function has been continued to the point µ2(0.35
GeV2 in our case) following the VMD model,

Q2 | FBaBar(Q2, µ2) |= Q2 | FBaBar
exp (Q2) |

1 + µ2/M2
ρ

. (29)

The bands in the figure represent our uncertainties, both in the vacuum model and in the
coupling constant, as mentioned before.
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Figure 2: Contributions to the pion transition form factor compared with the extrapo-
lation of the BaBar data to Q2

2
= µ2 = 0.35 GeV2 (solid line): gluonic contribution in

our model including uncertainties (lower band), conventional VMD contribution (dashed
line) line, and their sum (upper band).

It should be mentioned that the behavior of the gluonic part of the form factor as
function of Q2 is determined by shape of the decay of the non-zero modes in the instanton
field (see Eq.11). At the same time it is well known that the VMD-like behavior of the
flavor nonsinglet part of pion form factor can be easily reproduced within a non local chiral
quark model based on the quark zero-modes dominance in the instanton vacuum[21]. Due
to the weaker decay of the quark nonzero modes with respect to zero modes one can expect
a harder Q2 dependence of the flavor singlet part of the form factor in comparison with
the flavor nonsinglet part. Such tendency is seen in Fig.2. Indeed, the gluonic part is
described well by a fast increasing function of Q2, Eq.23. That function shows a similar
behavior, as function of Q2, as the BaBar data, Eq.28. Contrary to the gluonic part of
the form factor, its flavor nonsinglet part has a conventional 1/Q2 behavior at large Q2,
Fig.2. Taking into account some uncertainties in our estimates related to the poorly known
ratio of the u- and d- quark masses, Eq.7, as well as uncertainties in the parameters of the
instanton model, we conclude, that the new contribution related to the gluonic component
of pion might explain the anomalous behavior of the pion transition form factor found by
the BaBar Collaboration. One should be aware that these contributions are beyond the
Operator Product Expansion and their QCD evolution is non trivial [22].

It is evident that such type of contribution should be present also for the η and η′

mesons. In this case one should carefully take into account the effects of their larger
masses and their strong mixing (see recent discussion in the papers [23, 24]). We also
would like to point out that the strong Q2 dependence of the gluonic part of the form
factor opens a new possibility to disentangle particles with dominant gluonic content,
i.e. glueballs (see review [25]), in γ∗γ∗ collision. These tasks are the subject of future
investigations.

In summary, the BaBar data [1] point towards a breaking of perturbative factorization.
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This has led us to investigate possible non perturbative mechanism that contribute to the
pion transition form factor. We have shown that a nonzero interaction of neutral pion
with gluons arising from isospin violation, i.e. mu 6= md, induces a large contribution
to this form factor at large virtuality of one of the photons. More sophisticated models
for the instanton density and probably multiinstanton contribution might bring the value
closer to the observed one.
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