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Spectroscopy, leptonic decays and the nature of heavy quarkonia ∗
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Centro Mixto Universitat de València-CSIC
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We examine the electronic width ratios of Υ resonances below the BB̄ threshold by means of an effective (Cornell-
type) QCD potential incorporating 1/mb corrections obtained from a prior fit to the bottomonium spectrum. From
our analysis we conclude that the Υ(2S) and Υ(3S) states should belong to the strong-coupling (nonperturbative)
regime while the Υ(1S) state should belong to the weak-coupling (perturbative) regime, in agreement with a
previous study based on radiative decays.

1. Introduction

Heavy quarkonium has historically played a role
of utmost importance in the rise of the Standard
Model (SM), notably regarding the quark model
of hadrons and the development of QCD as the
presently accepted theory to describe the strong
interaction among them.

Furthermore, a large amount of data have been
collected during the last decade at BEPC, B-
factories, CESR, HERA, and Tevatron experi-
ments, greatly improving the accuracy of the
measured production cross sections, decay widths
and branching fractions involving heavy quarko-
nia (see [1] for a review). In the future, a Su-
per Flavour Factory could provide further experi-
mental results on heavy quarkonia to an unprece-
dented accuracy [2,3].

On the other hand, such precise measurements
are matched by the ever-growing soundness of the
theoretical background, firmly based on an ef-
fective field theory, namely the Non-Relativistic
QCD (NRQCD). The maturity already reached in
the field even makes feasible the search for new
physics, e.g. in quarkonium decays, looking for ex-
perimental deviations from the SM expectations.
Let us mention the seek of light dark matter in in-
visible quarkonium decays [4] (followed up by ex-
perimental searches [5,6]) and Υ radiative decays
into dileptons as a way of searching for a light
non-standard Higgs boson [7,8,9,10,11].
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With the advent of the quark model and QCD,
hadronic properties have been traditionally un-
derstood with the help of (more or less QCD-
motivated) potential models, some of them having
reached a fairly acceptable level in predicting or
postdicting level spacings, transitions rates, etc.
Nevertheless, potential models have several set-
backs and limitations, mainly due to the fact that
they do not come directly from first principles. At
this stage, effective theories enter the game in or-
der to describe rigorously the hadron dynamics.

A prototype is the Heavy Quark Effective The-
ory (HQET) which naturally describes hadrons
with a single heavy quark [12]. These systems
are characterized by two energy scales: the heavy
quark mass, mQ, and the characteristic scale of
the strong interaction ΛQCD. HQET is obtained
by integrating out the scale mQ and expanding
the QCD Lagrangian in powers of ΛQCD.

On the other hand, bound states made of two
heavy quarks are characterized by more scales
whose relevance and hierarchy are usually esti-
mated by invoking the so-called velocity count-
ing rules [13]. Since the heavy quark relative ve-
locity v is typically small (v2 ∼ 0.3 for charmo-
nium and v2 ∼ 0.1 for bottomonium) the different
scales obey the useful relation En ∼ mQv2 <<
p ∼ mQv << mQ, where En is the heavy-quark
bound-state energy with n the principal quan-
tum number. NRQCD is obtained by integrating
out the heavy quark mass mQ [14]. High-energy
modes are not lost but encoded into short-distance
coefficients and new local interaction terms in the
effective Lagrangian.
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The resulting framework allows the separation
between the short-distance scale of the process un-
der study from the longer distance scales associ-
ated with quarkonium structure. Therefore opera-
tors can be expanded as a double series (perturba-
tive and nonperturbative), with αs and v being the
expansion parameters controlling the accuracy of
the truncated series, respectively. However, these
expansion parameters are not completely indepen-
dent in heavy quarkonium physics as the typical
velocity of the heavy quark is determined by a
balance between the kinetic energy mQv2 and the
potential energy which should be dominated by a
Coulombic-term ∼ αs/r. Setting r ∼ 1/mQv, by
invoking the virial theorem we are led to the well
known relation

αs(mQv) ∼ v

Moreover, since αs(µ) runs (decreasing) with
the energy scale (for higher µ), one can approx-
imately write

αs(mb) ∼ v2

where mb denotes the bottom quark mass. The
above relation should play an important role in
assessing the velocity counting rules to be applied
in quarkonium physics. In fact, relativistic cor-
rections of order v2 would be of the same order as
perturbative corrections of order αs(mb). Let us
also remark that the αs perturbative expansions
in NRQCD may be not fast convergent series and
truncation even at NNL will likely imply sizeable
effects [15]. In this work, we will implicitly take
the αs corrections into account through the veloc-
ity counting rules.

2. Potential model connection to pNRQCD

A naive connection of NRQCD with potential
models can be made by realizing that certain
(long-distance, colour-singlet) matrix elements of
NRQCD can be actually related in first approxi-
mation to wave functions at the origin (WFO) or
their derivatives. Nevertheless, this simple picture
does not hold too far as there are NRQCD ma-
trix elements without an equivalence in potential
models, namely, colour-octet contributions since
the heavy quark antiquark pair needs not to be
in a colour-singlet state. Actually, the potential
picture that emerges from NRQCD [16] is quite
different from the traditional one [18,19] and su-
perior.

The observation that NRQCD still contains en-
ergy scales irrelevant for the lower-lying states
of quarkonium, led to further simplifications and
the resulting theory was called potential NRQCD
(pNRQCD) [20,21], when only ultrasoft degrees
of freedom remain dynamical. Such an effective
field theory turns out to be, in fact, close to a
Schrödinger-like description of the bound state
[22,23]. Moreover, matrix elements in pNRQCD
can be expressed as the product of WFOs and
nonperturbative glue-dependent factors, yielding
a formal similarity with potential models in many
observable quantities (like decay widths into lep-
tons or light hadrons [25], or magnetic dipole tran-
sition [24]), which do not happen in NRQCD.

The relation between ΛQCD and the scales mQv
and mQv2 dictates the degrees of freedom of pN-
RQCD:

• The weak coupling regime, when mQv2 &

ΛQCD > mQv and the binding energy is
mainly due to a Coulombic-like potential.
Dynamics can be described using perturba-
tive theory.

• The strong coupling regime, when mQv ∼
ΛQCD and the binding energy is mainly due
to a confining (nonperturbative) potential.

The assignment of each quarkonium state to any
of these regimes is not such an easy task as the
different scales are not directly measurable. The
fact that the spectrum of excitations of the bot-
tomonium family is not Coulombic suggests that
the higher states are not in the weak coupling
regime. However, there are claims in the litera-
ture that the Υ(2S) and Υ(3S) can also be under-
stood within the weak coupling regime [26,27]. In
Ref.[28] Υ(1S, 2S, 3S) radiative decays were used
to investigate their nature. Experimental results
from CLEO were confronted with the theoreti-
cal expectations, in particular as a ratio of decay
widths for different energies of the photon.

In this Letter we follow a similar strategy but
focusing on electronic decays of the Υ(1S, 2S, 3S)
resonances mainly basing our analysis on a phe-
nomenological approach. We have employed the
QQ-onia package presented in Ref.[29] to deter-
mine the required WFOs, making use of a Cornell-
type potential incorporating a -c′/r2 term as sug-
gested by recent lattice studies. Table 1 shows
the experimental values of the electronic partial
widths for all three resonances.
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Table 1
Measured electronic widths (in keV) for the Υ(1S), Υ(2S) and Υ(3S) resonances (from [30]).

Γee[Υ(1S)] Γee[Υ(2S)] Γee[Υ(3S)]
1.340± 0.018 0.612± 0.011 0.443 ± 0.008

3. Velocity counting rules

In this section we briefly review different ve-
locity scaling rules appearing in both perturba-
tive and nonperturbative regimes of heavy quarko-
nia. All our arguments are order-of-magnitude es-
timates which, moreover, are subject to uncertain-
ties especially in the nonperturbative regime due
to our ignorance of the scaling rules expected to
be valid then.

Notice that, no matter the regime, it always
holds the following velocity counting rules

〈nS|
p2

mb
|nS〉 ∼ mbv

2 ; 〈nS|V (0)|nS〉 ∼ mbv
2

by the definition of v and from the virial theorem,
respectively. The latter is an example where the
naive guess of mbv is modified by the dynamics of
the bound state to mbv

2.

3.1. Perturbative regime
The soft scale in heavy quarkonium is basically

set by its size r which can be provided by the Bohr
radius of the bound state. If r is small enough, i.e.
r . 1/ΛQCD, the soft scale should be perturbative
and the potentials can be entirely determined in
perturbation theory.

Then the following scaling rules should hold:

〈nS|V (1)|nS〉 ∼ α2
s/r2 ∼ m2

bv
4

since αs ∼ v and r ∼ 1/(mbv), and

〈nS|V (2)|nS〉 ∼ αs/r3 ∼ m3
bv

4

and so on.
Let us stress that perturbation theory cannot

incorporate quark confinement, so it becomes cru-
cial to determine the potential nonperturbatively
in this regime. This can be the case for high-
lying quarkonium resonances, as we are checking
in this work. Indeed, states below the BB̄ thresh-
old and not too deep (namely Υ(2S) and Υ(3S))
are expected to be in the strong-coupling regime
whereas the deeper Υ(1S) state is expected to be
in the weak coupling regime. States above (or very
close to) open bottom threshold are not expected
to be in either regime [31].

3.2. Nonperturbative regime
Admittedly, the power counting of NRQCD is

not well known in the nonperturbative regime and,
in fact, has been addressed by different authors
in distinct ways [25,32,33]. We might assume a
very conservative counting: mbv

d with d standing
for the operator dimension3. Thus the following
counting rules could hold:

〈nS|V (1)|nS〉 ∼ m2
bv

2 ; 〈nS|V (2)|nS〉 ∼ m3
bv

3

On the other hand, making use of the 1/mb ex-
pansion of the potential, one may write

V (r) = V (0)(r) +
V (1)(r)

mb
+

V (2)(r)

m2
b

+ · · · (1)

where V (k), k = 0, 1, 2, . . . are the leading and sub-
leading terms respectively. The potential V (2)/m2

b

contains the leading-order spin-dependent poten-
tials and the velocity-dependent potential. In this
work we truncate the expansion up to V (1)/m, ne-
glecting 1/m2

b terms and higher. In a nonpertur-
bative regime this approximation should amount
to a O(v2) accuracy at least when solving the
Schrödinger equation, thereby justifying the use
of a non-relativistic approach.

Let us also point out that lattice calculations
will be of help in determining the functional form
of V (1)/mb. We will come back to this important
point in section 5.1.

Finally, notice that the static potential V (0)(r)
is well parametrized by a Coulomb plus linear
term (i.e. a Cornell-type functional form [35,36]),

V (0)(r) = −
c

r
+ σr + µ

where σ stands for the string tension governing
the confining potential and µ is a constant. This
funnel shape will be used throughout this work
as a reference, later on to be somewhat modified
when defining the actual leading-order potential
for heavy quarkonium.

3This is somewhat similar to HQET [34] where any opera-
tor counts like Λd

QCD
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4. Υ leptonic decays

As is well known, leptonic partial widths are a
probe of the compactness of the quarkonium sys-
tem, and provide useful information complemen-
tary to spectroscopy [17]. In particular, the elec-
tronic width for 3S1 states (Γ[Υ(nS) → e+e−])
probes the WFO according to potential models.

Likewise, if the pNRQCD framework is applied,
the leptonic width can still be written in terms
of the radial WFO as mentioned in the Introduc-
tion. The following expression obtained in Ref.[25]
should hold up to order v3 × (En/mb, Λ

2
QCD/m2

b):

Γ[Υ(nS) → e+e−] =
NC

π

|Rn(0)|2

m2
b

×

[

Imfee(
3S1)

(

1 −
E

(0)
n

mb

2ǫ3
9

+
2ǫ

(2,EM)
3

3m2
b

+
c2
F B1

3m2
b

)

+ Imgee(
3S1)

(

E
(0)
n

mb
−

ǫ1
m2

b

) ]

(2)

where NC = 3 is a colour factor and E
(0)
n is the

(leading-order) bound-state energy; ǫ and B stand
for universal (i.e. flavour and state independent)
nonperturbative parameters, which can be ex-
pressed in terms of gluonic field-strength corre-
lators [25]. They can be determined either by ex-
perimental data or by lattice simulation, but still
their numerical values are quite uncertain.

The matching coefficients Imfee(
3S1) and

Imgee(
3S1), corresponing to the O1(

3S1) and
P1(

3S1) operators of the NRQCD Lagrangian, are
given at order αs by the expressions [14,37]

Imfee(
3S1) =

1

3
πQ2α2

[

1 −
16αs

3π
+ O(α2

s)

]

(3)

Imgee(
3S1) = −

4

9
πQ2α2

[

1 −
8αs

3π
+ O(α2

s)

]

(4)

where |Q| = 1/3 for the bottom quark.
At lowest order, one recovers from (2) the well

known formula [38] expressed in our notation as

Γ[Υ(nS) → e+e−] =
NC Imfee(

3S1)

π

|R
(0)
n (0)|2

m2
b

showing that the leptonic width of a quarkonium
vector state is primarily sensitive to the square
of its radial WFO, though perturbative and non-
perturbative corrections are large indeed. Yet the
unknown parameters in Eq.(2) do not allow its di-
rect comparison with experiment.

5. Testing the nature of heavy quarkonium

In the leptonic width ratio of two S-wave states,
however, several terms cancel out, leading to

Γ[Υ(nS) → e+e−]

Γ[Υ(rS) → e+e−]
=

|Rn(0)|2

|Rr(0)|2
× [1 + δnr] (5)

up to corrections of order O(vq), where q will be
later determined in our analysis, providing an in-
sight on the nature of heavy quarkonium and a
hint at the velocity scaling rules to be applied.

The correcting factor δnr is given by

δnr =

(

Imgee(
3S1)

Imfee(3S1)
−

2 ǫ3(2mb)

9

)

×

[

E
(0)
n − E

(0)
r

mb

]

and using Eqs.(3-4) we get

δnr =

(

ree +
2 ǫ3(2mb)

9

)

×

[

E
(0)
r − E

(0)
n

mb

]

(6)

where we have defined ree up to O(α2
s) corrections,

ree =
4

3
×

[

1 +
8αs(2mb)

3π

]

Now, taking into account that En = Mn − 2mb

with Mn being the meson mass [39], we can safely
use the following relation

E(0)
r − E(0)

n ≃ Er − En = Mr − Mn

Hence Eq.(6) can be rewritten as

δnr =

(

ree +
2 ǫ3(2mb)

9

)

×

[

Mr − Mn

mb

]

(7)

On the other hand, ǫ3(µ) stands as the only
nonperturbative gluonic parameter in (6), all oth-
ers cancelling out in the ratio (5) at the desired
accuracy. There is an experimental determination
of this long-distance parameter 4 in [40]:

ǫ3(1 GeV) = 1.8+1.2
−0.7

where the error bars are experimental only. Addi-
tional theoretical uncertainties associated to sub-
leading operators in the power counting and per-
turbative expansion are not taken into account in
the above uncertainty.

Finally, we need to know ǫ3 at the bottomonium
scale. To this aim we can use the scale evolution

ǫ3(µ
′) = ǫ3(µ) +

24CF

β0
ln

αs(µ
′)

αs(µ)
(8)

where CF = 4/3, β0 = 11CA/3 − 4nfTF /3 with
CA = 3, TF = 1/2 and nf = 5 in our case.

Setting ǫ3(1 GeV) = 1.8, yields ǫ3(2mb) ≃ 4.2
which can be then used as an input in Eq.(7).

4Let us note a factor NC = 3 of difference between the
definitions of the gluonic parameter ǫ in [40] and ǫ3 in [25].
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Table 2
Values of the predicted and experimental mass (in GeV), WFO squared (or derivative) in GeV3+2ℓ, mean
square radius (in fm) and typical quark velocity for the Υ(1S, 2S, 3S, 4S), χb(1P, 2P ) and Υ(1D) states
when the improved Cornell-type (Corn-mod) potential of Eq.(10) is employed. For comparison, we present
in the first column the masses obtained using a Cornell (Corn) potential [36].

Resonance Mass (Corn) Mass (Corn-mod) Exp. |Rℓ′

nℓ(0)|2 〈r2〉1/2 〈v2〉
Υ(1S) 9.4603 9.4603 9.4603 12.65 0.23 0.090
χb(1P ) 9.96 9.8929 9.9001 1.409 0.40 0.071
Υ(2S) 10.05 10.0236 10.0233 6.444 0.51 0.087
Υ(1D) 10.20 10.1476 10.1622 0.562 0.53 0.078
χb(2P ) 10.31 10.2729 10.2600 1.854 0.63 0.089
Υ(3S) 10.40 10.3750 10.3552 5.404 0.71 0.103
Υ(4S) 10.67 10.6477 10.5794 5.194 0.88 0.120

5.1. Lattice estimates of V (1)/mb shape and
size

As commented previously, the V (1)/mb poten-
tial has the form 1/r2 relying on perturbation the-
ory in the short-distance region. However, since
the binding energy of the b − b̄ system, typically
of order mbv

2, can be similar or even smaller than
ΛQCD due to the non-relativistic nature of the sys-
tem, it is essential to determine the potential non-
perturbatively. Monte Carlo simulations of lattice
QCD provide a powerful tool for a nonperturba-
tive determination of the potential [41,42].

In a former analysis presented in Ref.[41],
V (1)(r)/mb was found to be comparable with
the Coulombic term of the static potential (i.e.
V (1)/mb ∼ 1/r) when applied to bottomonium
states up to r = 0.6 fm. Consequently, if V (1)(r)
is nonperturbative, the piece V (1)(r)/m in the
potential should not be considered as subleading
with respect to V (0)(r).

However, in a later study involving further long
distance data up to r = 0.9 fm [42], the same
authors found that the 1/r function was not sup-
ported by the fit, while the functional form 1/r2

with the linear term could fit the data well. It
is interesting to note that V (1)/mb turns out to
have the same functional form as expected from
perturbative theory.

The V (1)/m term cannot be neglected as com-
pared to the static potential V (0) and has to be in-
corporated into the quarkonium potential for the
sake of coherence. Thus the leading-order poten-
tial V LO should read

V LO = V (0) +
V (1)

mb
(9)

yielding a potential of the form

VCorn−mod(r) = −
c

r
−

c′

r2
+ σr + µ (10)

We will refer to (10) as a Cornell-modified poten-
tial, since the functional form has been improved
by the additional −c′/r2 piece; besides, the contri-
bution from the V (1)/m term also alters the value
of σ [42].

In our approach the values of the parameters
mb, c, c

′, σ and µ are obtained through a fitting
procedure to the bottomonium spectrum (Υ(1S)
and Υ(2S) states), not from lattice estimates. We
obtain from the fit the following values for the
parameters of the potential (10):

σ = 0.217 GeV 2, c = 0.400, c′ = 0.010 GeV−1

and mb = 4.7 GeV 5.
The values of the predicted masses, WFOs and

other properties of interest for different bottomo-
nium states using this potential are shown in Table
2. An excellent agreement with the experimental
mass values of different resonances in the spec-
trum can be observed.

5.2. Discussion
The WFOs corresponding to the Cornell-

modified potential were obtained using our code
based on a Numerov technique (See Ref.[29] for
a thorough description of the QQ-onia package.).
A comparison of the WFOs of the Υ(1S, 2S, 3S)
states obtained using different potentials can be
found in Table 3.

5A significant coincidence is found between the mb value
used in the lattice calculation [42] and required in our fit.
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Table 3
|RLO

n (0)|2 (in GeV3) values of Υ(ns) states (n = 1, 2, 3) for several potentials: Buchmuller-Tye (mb = 4.88
GeV) [18]; Cornell [18] (mb = 5.18 GeV); Cornell-modified (including a −c′/r2 piece, mb = 4.7 GeV).

Resonance |RLO
n (0)|

2
B−T |RLO

n (0)|
2
Corn |RLO

n (0)|
2
Corn−mod

Υ(1S) 6.477 14.07 12.65
Υ(2S) 3.234 5.669 6.444
Υ(3S) 2.474 4.271 5.404

Let us remark that the inclusion of the
−c′/r2 term in the Cornell potential has a non-
straightforward effect on the new resulting WFOs,
for it implies a modification of both the Coulom-
bic term and the b-quark mass obtained from the
fit. Let us also note that the c′ value is determined
to a large extent by the Υ(2S) resonance in our
fitting method (see [29] for more details).

On the other hand, as already pointed out
in section 5.1, the perturbative calculation of
V (1)/mb yields the same functional r-dependence
as suggested by lattice studies. Therefore, one
may look upon V (1)/mb as an interpolating term
between the perturbative and non-perturbative
regimes, rendering the fit meaningful even using
both Υ(1S, 2S) states. As a check of the fit-
ting procedure (see Table 2), the predicted me-
son masses for the bottomonium family obtained
from the Cornell-modified potential improve with
respect to the Cornell potential [36], when com-
pared with the experimental spectrum [30].

Moreover, the values of the WFOs shown in Ta-
ble 3 look self-consistent: the (absolute) relative
variations for the Cornell-modified versus the Cor-
nell potential are ∼ 10%, 14% and 26% for the
Υ(1S, 2S, 3S) resonances, respectively. Indeed,
one could naively expect a O(v2) effect in the per-
turbative regime as a consequence of incorporating
the new term into the potential, but increasingly
larger variations for higher (thus dominantly non-
perturbative) states.

Finally, note that the V (2)/m2
b (and higher)

terms neglected in the expansion (1) of the QCD
potential should likely provide corrections of rela-
tive order O(v2) to the WFOs obtained by solving
the Schrödinger equation with the leading-order
potential (10). This counting is supported by the
spin-dependent splitting experimentally found in
the bottomonium spectrum. In fact, if the static
potential were exact, then the potential model
would reproduce QCD up to corrections of rela-
tive order v2 [22].

6. Numerical results

Now we proceed to check the validity of formula
(5) by recasting it onto the following double (ex-
perimental to theoretical) ratio:

Γ[Υ(nS) → ee]/Γ[Υ(rS) → ee]

(|RLO
n (0)|2/|RLO

r (0)|2) × [1 + δnr]
= 1 + ∆nr (11)

where we have introduced the dimensionless quan-
tity ∆nr (n, r = 1, 2, 3, n 6= r) parametrizing the
deviation from unity for different combinations of
all three Υ(1S), Υ(2S), and Υ(3S) states.

The following experimental and theoretical in-
puts have been employed in our analysis:

1) The experimental input for the electronic
widths can be readily obtained from Table 1, al-
lowing a determination of the ratios with relative
error ∼ 1%

Γ[Υ(nS) → e+e−]

Γ[Υ(rS) → e+e−]
, (n, r = 1, 2, 3 n 6= r)

2) The |RLO
n (0)|2 values for different potentials

can be found in Table 3. We have assumed in (11)
that

|Rn(0)|2

|Rr(0)|2
=

|RLO
n (0)|2

|RLO
r (0)|2

× [1 + O(vq)]

where q is expected to be 2 on account of the
arguments given in the previous section.

3) δnr were computed according to Eq.(7) (valid
up to order (v2, α2

s) corrections). Experimental
meson masses and mb values for each potential
were used (see Table 3); we set ǫ3(2mb) = 4.2
derived from Eq.(8) using ǫ3(1 GeV) = 1.8 [40].

Thus, if the two quarkonium states n and r were
in the same (strong) regime, one should expect

∆nr . O(vq) ∼ 100 · vq(%) (12)



7

Table 4
∆nr (in %) for different potentials from Table 3 using ǫ3(2mb) = 4.2. Let us observe that ∆23 always
remains smaller than ∆12 and ∆13, as expected if both states Υ(2S, 3S) were in the same (strong-coupling)
regime.

Potential B-T Cornell Cornell-modified
∆13 20% 36% 12%
∆12 15% 30% 14%
∆23 9% 10% 1%

Conversely, one should expect ∆nr > 100 · vq(%),
if anyone of the states is in the strong-coupling
regime and the other in the weak-coupling regime.

The values for ∆nr obtained in our analysis for
the Buchmuller-Tye, Cornell and Cornell-modified
potentials can be found in Table 4, representing
our main result.

In particular, it turns out that when the Cornell
potential is employed we find that ∆13 is greater
than ∆12, which in turn is larger than ∆23, i.e.

∆13 ≃ 35% & ∆12 ≃ 30% > ∆23 ≃ 10%

in agreement with a counting rule providing q = 2
for the latter case.

In sum, our results for the Cornell potential are
thus consistent with the expected level of accu-
racy (up to order v2) of Eq.(11), provided that
both Υ(2S) and Υ(3S) states belong to the strong-
coupling regime, while the Υ(1S) state does not.

Furthermore, once the −c′/r2 piece is included
in the Cornell-modified potential we get

∆13 ≃ ∆12 ≃ 10% > ∆23 ≃ 1%

where ∆23 is now found to be remarkably small.
Of course, there is an uncertainty coming from

the ǫ3 value in the computation of δnr according
to Eq.(7). Setting ǫ3(2mb) equal to zero, we find
that ∆23 becomes appreciably worse. Thereby a
non-null value of ǫ3(2mb) is clearly favoured in
our analysis. Demanding ∆23 = 0 in Eq.(11) we
get ǫ3(2mb) = 3.2 from Eq.(7) and, consequently,
ǫ3(1 GeV) = 0.8 using the running equation (8).

7. Conclusions

In this Letter we have presented a phenomeno-
logical study of the electronic width ratios of Υ
resonances (below open bottom production), find-
ing evidence favouring both Υ(2S) and Υ(3S)
states in the strong coupling regime, at the same
time disfavouring the Υ(1S) in it, in accordance

with the conclusions from the analysis of Ref.[28]
based on radiative decays of Υ resonances.

Moreover, the agreement between the experi-
mental and predicted Υ(2S)/Υ(3S) ratios is even
better than naively expected from a conservative
velocity counting once the Cornell potential be-
comes improved by a −c′/r2 piece, motivated by
recent lattice studies [41,42]. Therefore we can
conclude that our results (both from lepton widths
and spectroscopy) favour the inclusion of such a
nonperturbative term into the Cornell potential.

Let us also point out that a value of the gluonic
nonperturbative parameter: ǫ3(1 GeV) ≃ 1.8+1.2

−0.7

(as found in [40]) is compatible within errors with
our analysis on leptonic decays. Actually, one
might turn the question round extracting ǫ3(2mb)
from Eq.(11) using the experimental data from Ta-
ble 1 and the Cornell-modified potential, yielding
ǫ3(2mb) = 3.2 (ǫ3(1 GeV) = 0.8) with an esti-
mated uncertainty of ∼ 30% assuming a v2 ∼ 10%
accuracy in Eq.(7). Additional theoretical uncer-
tainties should increase the allowed range though
values of ǫ3(1 GeV) around unity are preferred as
a general result of our analysis.

Finally, we want to stress the relevance of fur-
ther accurate experimental measurements of lep-
tonic widths (among other properties) of heavy
quarkonia to carry out precise tests of effective
theories of QCD (likely useful to deal with non-
perturbative effects showing up at the LHC) and
even direct searches for new physics [9,10]. A
future Super Flavour Factory would play an in-
valuable role in this regard.
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