arxiv:1104.3944v1 [hep-ph] 20 Apr 2011

Report: IFIC/11-18, FTUV-11-0419

Three-particle correlationsin QCD jets and beyond

Redamy Pérez—RaszVincent MathielE and Miguel-Angel Sanchis—Lozan

Departament de Fisica Teorica and IFIC, Universitat dénéa - CSIC
Dr. Moliner 50, E-46100 Burjassot, Spain

Abstract: In this paper, we present a more detailed version of ouriguevwork for three-particle
correlations in quark and gluon jets [1]. We give theorétiesults for this observable in the double
logarithmic approximation and the modified leading lodariic approximation. In both resummation
schemes, we use the formalism of the generating functionth$alve the evolution equations analytically
from the steepest descent evaluation of the one-partistatilition. In addition, in this paper we include
predictions beyond the limiting spectrum approximatiod atudy this observable near the hump of the
single inclusive distribution. We thus provide a furthesttef the local parton hadron duality (LPHD)
and make predictions for the LHC. The computation of highekrcorrelators is presented in the double
logarithmic approximation and shown to be rather cumbeesom
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1 Introduction

The observation of quark and gluon jets has played a crugialin establishing Quantum Chromody-
namics (QCD) as the theory of strong interaction within ti@n8ard Model of particle physics![2, 3].
Jets, narrowly collimated bundles of hadrons, reflect condions of quarks and gluons at short dis-
tances|[4,5].

The evolution of gluon and quark initiated jets is dominabgdsoft gluon bremsstrahlung. Powerful
schemes, like the Double Logarithmic Approximation (DLAYahe Modified Leading Logarithmic Ap-
proximation (MLLA), which allow for the perturbative resumation of soft-collinear and hard-collinear
gluons before the hadronization occurs, have been dewtloper the past thirty years (for a review
see[[6]). In the frame of high energy jets, one of the strifgstictions of perturbative QCD (pQCD),
which follows as a consequence of Angular Ordering (AO) imitthe MLLA and the Local Parton
Hadron Duality (LPHD) hypothesis [7], is the existence of tiump-backed shapg! [8] of the inclu-
sive energy distribution of hadrons, later confirmed by expents at colliders like the LEP |9, 10] and
the Tevatron[[11]. Within the same formalism, the transyer®mentum distribution, dt, -spectra of
hadrons produced ipp collisions at center of mass energi = 1.96 TeV at the Tevatron [12], was well
described by MLLA [13] and next-to-MLLA (NMLLA) [[14], 15] prdictions inside the validity ranges
provided by such schemes, both supported by the LPHD. Thesstudy and tests of enough inclusive
observables like the inclusive energy distribution anditichusive transverse momentuin spectra of
hadrons have shown that the perturbative stage of the mowdsch evolves from the hard scale or
leading parton virtuality) ~ E to the hadronization scal@, is dominant. In particular, these issues
suggest that the hadronization stage of the QCD cascadet@dfect pQCD predictions and therefore,
that the LPHD hypothesis is successful while treating cawigle inclusive observables.

The study of particle correlations in intrajet cascadesickviare less inclusive observables, provide a
refined test of the partonic dynamics and the LPHD[In [163, tio-particle correlations inside quark
and gluon jets were first computed at DLA. [n 17, 18], thiservable was computed for the first time at
MLLA for such particles, whose energy or(energy fraction of the jet carried away by one parton) stays
close to the maximum of the one-patrticle distribution.[18][the previous solutions were extended, at
MLLA, to all possible values of by exactly solving the QCD evolution equations. This obably was
measured by the OPAL collaboration in tiiee~ annihilation at theZ® peak, that is fog/s = 91.2 GeV

at LEP [20]. Though the agreement with predictions preskim¢L9] turned out to be rather good for the
description of the data [20], a discrepancy still subsisisifing out a possible failure of the LPHD for
less inclusive observables. However, these measuremenésredone by the CDF collaboration p
collisions at the Tevatron for mixed samples of quark andgiets[11]. The agreement with predictions
presented in [17, 18] turned out to be rather good, in pddidor very soft particlesa < 0.1) having
very close energy fractiong:{ ~ x,). A discrepancy between the OPAL and CDF analysis showed up
and still stays unclear. That is why, the measurement ofganticle correlations at the LHC becomes
crucial.

By going one step beyond, in this paper we give predictiongHiee-particle correlations inside quark
and gluon jets. This observable together with two-partideelations can be measured in equal footing
at the LHC. Such tests will provide further verifications betLPHD for less inclusive observables
and shed more light on the role of confinement in jet evolutiGuirther issues on the importance of



correlations versus single-particle distributions stgdiave been presented|inl[21, 22].

The paper is organized as follows.

e in sectior 2 we recall the formalism of jet generating fumeéls and their evolution equations;

e the kinematics and the process for the inclusive produatibthree particles inside the jet are
specified in subsectidn 2.1 ahd Z2]1.1 respectively;

e in subsectioh Z2]2, we obtain the MLLA exact system of intedjfterential evolution equations for
the three-particle correlations and in subsedtioh 2.3siigle logarithms (SLs) contributions are
obtained from the exact evolution equations;

e in subsectiof 2]4, we obtain the DLA solution of the evolntemuations and study the shape and
overall normalization of this observable;

e in subsectiom 2]5 the evolution equations are solved itefgtand the solution are expressed in
terms of the logarithmic derivatives of the one-particlstidbution and the two-particle correla-
tions;

e in subsectionn_216, we finally give the analytical predicsamhich will be displayed in order to
provide predictions for the Tevatron and the LHC;

e in subsection 2]7, the hump approximation is applied todbservable;

e in subsectiol 218, the region inwhere the emission of three correlated particles becomes-do
nant is discussed;

e in subsection_2]9, we give the analytical solution of the Diofr-particle correlator and show
that including higher order corrections for differentiagtver rank correlators would become a
cumbersome task;

e in subsectionl3, the predictions are displayed and the phenology is applied to the Tevatron
and the LHC;

e a conclusion summarizes this work; the appendices areswrits complements of the main core
of the paper.

2 Formalism of the generating functional

A generating functiona¥ (E, ©; {u}) can be constructed [23] that describes the azimuth avezayézh
content of a jet of energy’ with a given opening half-angl®; by virtue of the exact angular ordering
(MLLA), it satisfies the following integro-differential eution equation([6]

as (k1)

s
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in (@), z and(1 — 2) are the energy-momentum fractions carried away by the tfepiafg in thed —
BC parton decay described by the standard one loop splittingtifuns [24]

1+ 22 14+ (1—2)2
al(x) = Cp T2 agl(s) = op LEULZEE @
~ 1—=2 z
QU (2) = T (2% + (1 - 2)?),  ®II)(2) = 2C < Al z>> )
Ca=N., Cp=(N;-1)/2N,, Tgr=1/2, 4)

where N, is the number of colorsZ 4 in the integral in the r.h.s. of]1) accounts for 1-loop \attu
corrections, which exponentiate into Sudakov form facterg¢?) is the running coupling constant of
QCD

47
as(q®) = > ()
AN, By In —
AQCD
whereAgcp ~ a few hundred MeV's is the intrinsic scale of QCD, and
1 /11 4
= —N,— —nT 6
Bo 4Nc<3 3" R) ©)

is the first term in the perturbative expansion of thiinction,n; the number of light quark flavors.

-

If the radiated parton with 4-momentuin = (ko, k) is emitted with an angl® with respect to the
direction of the jet, one hag ( is the modulus of the transverse triveckar orthogonal to the direction
of the jet)k, ~ |k|© ~ ko© ~ zE© whenz < lork, ~ (1 — z)EO whenz — 1, and a collinear
cutoff k£, > Qg is imposed.

In (1) the symboK«} denotes a set girobing functions u, (k) with k& the 4-momentum of a secondary
parton of typez. The jet functional is normalized to the total jet produstiross section such that

Za(p,©O;u=1)=1; (7
for vanishingly small opening angle it reduces to the prgliimction of the single initial parton
Za(p,© = 0;{u}) = ua(k = p). 8)

To obtainexclusive n-particle distributions one takes variational derivatives ofZ4 over u(k;) with
appropriate particle momenta= 1...n, and sets, = 0 afterwards;nclusive distributions are gener-
ated by taking variational derivatives around= 1. We introduce the n-particle differential inclusive
distribution, also known as parton densities,[as [6]

n o

Zalki,o. ko, ©; {u(k)))| . (@)

u=1
Accordingly, we introduce the following notations for gluand quark jetst = G, Q, Q
(n) — 21 Tnn)
Al (2) = = D
which we will use hereafter;; corresponds to the Feynman energy fraction of the jet takety &y one

particle i". In the case of three-particle correlations= 3, the observable to be measured experimen-

O Y4, A" =2 2, DV (1, 2,,Y),  (10)
z

tally reads
3
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2.1 Kinematicsand variables

The probability of soft gluon radiation off a color chargedwing in thez direction) has the polar angle

dependence
sin@do  _ dsin(0/2) dO.
2(1 —cos®) sin(0/2) ~ O

therefore, we choose the angular evolution parameter to be

y = m 2250O/2) Sig(O@/ 2 gy = 71?:2%@/22)); (11)
note that this choice accounts for finite angte&l) up to the full opening half-angl® = 7, at which
2F
Yo=r =1n 00’
where2FE is the center-of-mass annihilation energy of the proeess — ¢g. For small angled(11)
reduces to 0 J J
Y:ln@, 0«1, Y - dne (12)

where@) = FEO, defined as the virtuality of the jet, is the maximal transeemomentum of a parton
inside the jet with opening half-angl®. Moreover, we make use of variables known from previous
works [19[25],

r;EO N Qo

z

t=In—, y=In , A= : 13
n Y Qo Agep (13)
1 z; FEOq T

¢ =1In—, =In - , o mi=In= Y =4 4y i 14
x; Yi Qo i ; Y5 T Mij (14)

Sincedd = dln@ , y could also be used as the evolution-time variable in fonttiog quark and gluon
jet evolution equations. Accordingly, the anomalous disi@m, related to the coupling constdnt (5), can
be parametrized as follows

(g =2, D) 2y - ! | 15)
™ Bo(l+y +mij + A)

such that,

o for one particle[[6], the denominator i {15) is simgly- y + A, with [26] £ = In Z, y = In mg()@
n=0;

m2E91

o for two-particle correlation [19, 25}, + y + 112, with ¢ = In = o y=In M2 = In 22

:B3E@1

o for three-particle correlatiort,+ y + 713, with / = In =, y = In M3 = N2+ M3 =InZ 2.

2.1.1 Integration boundsfor three-particle evolution equations

The production of three hadrons is displayed in[Rig.1 aftguark or a gluon (A) jet of energy¥,
half opening angle9, and virtuality @ = E©( has been produced in a high energy collision. The
kinematical variable characterizing the process is giwethb transverse momentuln = zE0; > Qg
(or (1 — 2)E©1 > Qo) of the first splittingA — BC'. The parton C fragments into three offspring such

4
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Figure 1: Three-patrticle yield and angular ordering ingsidégh energy jet.

that three hadrons of energy fractions x2 andxzg can be triggered from the same cascade following
the condition:
Oy > 01 > 03 > O3, (16)

which arises from the exact AO in MLLA[6]. In particular, teendition®, > ©, is kinematical rather
than supported by the AQ; it states that every collinear mlisoemitted inside the jet of half opening
angle®. The two variables entering the evolution equationszeaad©, such that

1‘1§Z§1 = O§€§£1 (17)
From [16) and the initial condition at threshatd F©( > 23O, > 23EO©3 > (g, one has

—E§@1§@0 = 0<y<uys. (18)

2.2 From singleinclusive distribution and two-particle correlation to three-particle cor-
relation

The evolution equations satisfied by (9) are derived fromMb&A master equation for the generating

functional Z4(u(k;)) (@). In this case, one takes the firgas, secondm and finally third
W functional derivatives ofZ 4 (u(k;)) over the probing functions(k;) so as to obtain the
system of evolution equations for 3-particle correlatioRsllowing from [1), after applying the oper-

ator WM to both members of the equation, accordingfo (9) (10tkey with the initial
condition [7), it is straightforward to get the coupled systof evolution equations

Q)Y = / d=2289(2) |G9(=) + (QP(1 - 2) - QP ) + G (2)Qs(1 - 2) + Ga(2)Q1
+ G ()@ - 2) + Q) + EF (1 - 2) + ()08 (192)

Y

B — / d:2209(2) [G9(2) = 269 + G (2)Ga (1 — ) + G (2)Ga(1 = 2)

1
+ GR()G1(1 - 2)] +/ a:22ns0(2) | (209(2) - GO + 2013 (2)Qs(1 - 2)

+ 208 (2)Qa(1 - 2) + 208 ()1 (1 - 2)] . (19b)

The I.h.s. of the equations (19a) ahd (119b) can be writteherconvenient form

A

A®) = A®) — Ay Ay Ay — (AD) — A1 49) A5 — (A — A1 A5) Ay — (AD) — AyA45)A;,  (20)
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whered = G, Q, Q is the leading parton of the jet. Moreover, we have introdube notations4§7f?n =
A&??n(l), where
Agn)n = Ag")n(l) =z... an(")(xl, cey T, YY),

for the sake of simplicity. The evolution equations for thegte inclusive distribution and the two-
particle correlation are written in [19] in the form

Q= /1 d= 2 5g(2) [(Q(l —2-Q)+ G(z)], (212)
G, = / 1 dz % [<1>g(z) (G(2) — 2G) +ny 8(2) (2Q(2) - G)] , (21b)
and
Q¥ - Qi) = | jdz % 9902 |60+ (QU1 - ) - Q)
+(G1(2) = Q1) (@1 = 2) = Q2) + (Ga(2) = @2) (i1 = 2) — Ql)] . (22a)

(G® — G1Gy), = /1 dz %@g(z) -<G(2)(z) - zG(2)> i (Gl(z) - Gl) <G2(1 - @)}
+ / ' % ny®7(2) [2 (Q(2)(z) - Ql(z)Q2(2)> - (G<2> - G1G2>
+ (2019~ Ga) (20201 - 9) - o) | (22b)

respectively. Making use of the equations (P1al21b) and[PZ®h), one can then construct the total
derivatives|A; Ay A3], , [(A( ) A1A2)A3} , [(Ag?)) - AlAg)A2:| : [(A( ) A2A3)A1] as they ap-
pear in[(20), which are to be subtracted, term by term frorrsylsem of equatlon9b) Therefore,
we get the equivalent system for the three-particle cdiogla inside quark and gluon jets:

QW — / 1 dz%@f’](z) [G(?’)(z) + <Q<3>(1 —2) - Q¥) (23a)
+ (@70 -2 - Q) (Gs(:) - Qo) + (6T () - Q) (@a(1 - 2) — Q3)
+ (@0 -2 -0 (G22) - Q) + (65 ) - @) (@21 - 2) - Q)
+ (@0 -2)-Qf)) (G1(5) - Q) + (65) - ) (Qu1 - 2) - Qu)
+ (@1 = G1(2)) (Q2(1 = 2) = Q2) + (Q2 — G2(2)) (Q1(1 — 2) — Q1)) Q3
+ (@1 — G1(2)) (@3(1 = 2) — Qs) + (Qs — G() (Q1(1 — 2) — Q1)) Q2
+ (@2 — G2(2)) (@s(1 — 2) — @s) + (@5 — Ga(2)) (Qa(1 — 2) — Q) Q1]

1
Gw = / a=289() [(€9 () 209) + (0B (2) - ¢2) (G501 —2) ~C3)  (23b)

(¢ -6F) (a1 - 2) - Gz)+<st %)) (Gi(1 - =) -
(61— G1(2)(Ga(1 —2) = G2)Gs + (G - G- - G3>G2
(G~ Gala)(Gal1 =) - GGl + [ 2w [ (2096 - 6)

2(QF(2) — 6 ) (@51 2) = Gs) + (2Q1()Qa(2) — G1G2)Gs
2(QF() - G (@a(1 - 2) = Go) + (2Q1(2)@s(2) — G1G3)Ga



+2(QF) () - 68 (@11 = 2) = 1) + (2Q2(2)Qs(2) — G2G3)Gy
+ (G1 —2Q1(2))(2Q2(1 — 2) — G2)G3 + (G1 — 2Q1(2))(2Q3(1 — 2) — G3)Ga
+ (G2 — 2Q2(2))(2Q3(1 — 2) — G3)G4].

The system of evolution equations (#3a23b), which appeaasconsequence of the exact AO in intra-jet
cascades, provides the complete theoretical picture ahtiee-particle correlations as a functionagf
and the characteristic hardness of the&jethis is the first new result of this paper. However, since¢he
equations could only be solved numerically, we will extréet SLs contribution®)(,/a;) in order to
provide an approximated analytical solution in the follogi

2.3 Approximate evolution equations

Let us start with equatioi_(Z2Ba). We proceed to cast all Shiribitions corresponding to hard-collinear
parton splittings in the shower. In the hard parton fragmigon region one has~ (1—=z) ~ 1, such that
the second contribution in (23a) can be approximated thr@.iGaylor series fom z ~ In(1 — 2) < ¢4,
written in the appendikA. Therefore, one obtains the sifigalisystem of evolution equations

A Qg

Q= | =26 ) (24)
A Lo b 2 2

Gg(f’) = /xldz?(l - z)(I)g(z)G(g)(z) + /gc1 dz—nfq)g(z) KQQ > +2 ( @ Gg2)>(25)

X (Qa— Ga) + (2Q1Q2 = G1G2)Ga +2 (QFF) — G ) (Q2 = G2) + 201Qs — G1Ga) G
+ 2 (Qé G%) (Q1 — G1) + (2Q2Q3 — G2G3)G1 + (G1 — 2Q1)(2Q2 — G2)G3
+ (Gh —2Q1)(2Q3 — G3)G2 + (G2 — 2Q2)(2Q3 — G3)G1] ,

where we have kept all terms of ord®(,/a;), which contribute to MLLA. In addition, from the DLA
relation Z, = ZgA/ Ne [27], and Eqs[(9-10), one has the useful expressions fositigle inclusive
distribution, two- and three-patrticle correlations:

c C Cp (C o
@izﬁjaz, R S X @9)
Cr(C Cp/C C
(3) _ @)y ZE(TF (2) (2) (2) ZEfYE ZF_
0 NCG NC<NC 1>(G Gy + GG+ GE G1>+NC<N0 1><Nc 2>
XGlGQGg, (27)

which in turn can be replaced ih_(25). The two expressionstewriin [26) are known from previous
works at DLA [16/27], while[(2]7) will be used for the first timie this context. After integrating over
the regular part of the splitting functiors| (2)] (3) ahdl @ge obtains the integro-differential system of
equations;3 = 112 + 123),

Cr 3) .
N,/ dﬁ’Yo(ngys)G (¢, y3;5m3) — 1N, il

~ Zl
Gy = ; Al (0 + y3) G (€, y33m3) — ard (G + y3)G® (01, ysims) + (a — b)73 (4 + 3)(29)

Qé?») 261+ y3)G® (1, y33m3), (28)

X [(G%) (01, y3 4+ n23:m2) — G1(l1,y3 +m3)G2 (b1 + n12,y3 + 7723)) G3(01 4+ m3,y3)
+ <G%) (C1,y35m3) — G1(€1,y3 +m3)G3 (01 + ma, ys)) Go(ly 4+ m2,y3 + 123)

7



+ (Gé? (01 4+ m2,y3:m23) — G2(l1 + M2, y3 + 123)G3(41 + i3, y3)> G1(l1,y3 +m3)
+ (a — )vg (1 + y3)G1 (1, y3 + ms)Ga(lr + ma, ys + 123) G (b1 + M3, y3),

with the following hard constants,

1 [11 4 Cr\1 njp=

a(ng) = i, | g Net 3nsTr <1 - 2%)] =7 0.935, (30)
1 [11 4 Cr\ 2| ny=

b(ng) = o | 3 Ne — 37 TR (1 - 2%) 270,915, (31)
1 [11 4 3] o=

c(ng) = —Nc+ -nfTg (1 — 2@> £ 0.917, (32)

4N. | 3 3

wheren ; = 3 corresponds to the number of light active flavors of quarks s. As an example of such
procedure, one could write the example,

a(ng) = /Oldz [(1 —z)<2—z(1—z)) + ng (z2—|—(1 —z)2> <1 4%)] .

The first integral terms of the equations [n](28) dnd (29) &@assical origin and therefore, universal.
Correctionsx —2, a, (a — b) and(a — ¢), which areO(,/a;) suppressed, better account for energy
conservation at each vertex of the splitting process, agpaoed with the DLA. Notice that the form of
the quark initiated jet equatioh (28) is universal at MLLA€Y80) and (82 in the appendix_A.1 for the
single inclusive distribution and two-particle corretatirespectively), that is, invariant with respect to
the number of particles considered in the cascade. In thatiegufor the gluon initiated jef (29), the
first and second constantén ;) andb(n s) were obtained in the frame of the single inclusive distitut
and two-particle correlations respectively [17, 18]. The&d constanic(n;) appears in this paper for
the first time for the three-particle correlation. In pautar, notice that a certain recurrency shows up
in the coefficients combining the colour factgrs1)” ! (1 — 2?V—F)n as a function of the number of
particles considered in the shower.

2.4 DLA solution of the evolution equations

In this subsection we compute the leading order DLA contidims in order to provide general features
concerning the the shape and overall normalization of tpesticle correlations. This procedure is
equivalent to cast the leading order (LO) solution of theatigms [28,20). We differentiaté_(28) and
(29) with respect to /", such that after setting hard correctiors3/4, a, b, c = 0, the MLLA evolution
equations are reduced to the new DLA compact differentinhégn

. C
B —ZA 240)
A9, = Fie, (33)

with

40], = {[(c,~1) ~ (2, ~ 1) = (2 1) - (€, ~ 1) e}, . @)

after having sett® = ) A, 4,4, for the three-particle correlator amﬁ?) = C(Azl_)j A; A; for the two-

particle correlator. We fix the anomalous dimension to theratteristic hardness of the @t~ E©,



(Y3(E©y) = const) and solve this equation iteratively by derivating thes.of (34) with respect té
andy, such that the solution of (83) reads

(€9 —1) = (¢, —1) = (¢, —1) - (¢, —1) (35)
N, (€8, =) + (¢ —1) + (€, —1) a2 |
:C_A 2+512+513+A23 0_32+512+513+A237

which have been written in terms of the logarithmic derivesiof the one-particle spectrum,

1 0A; 1 0A;

A —2
Aij =" (Vana;y + Ya,ga,0), Yae= T YA,y = e (36)

and the DLA two-particle correlator|[6,16] (for a review saso [28])
6@ g Ne 1 (37)

Ay T T Ca1+ Ay

The dot oveC(™ differentiates the DLA correlators from the MLLA correlasmbtained below. In DLA
however, since the single inclusive distribution satisfles ]CV—fG [27], one has

VQit = VGt = Vips VQiy = VGiy = Viy-

That is why, we will use the much simplest notation, ; = v;¢, Vg, ,y = ¥iy- Itis worth giving the
order of magnitude of some quantities that will be considéneforthcoming calculations. In DLA, the
one-particle inclusive distribution can be written 45/, y) o exp (2y9+/Zy) asymptotically for fixed
running couplingyy = const [27]. Though the solution with fixed coupling constant po®s general
features of the single inclusive distribution, it is not agh for the description of a more realistic picture
at colliders. However, from its simplicity, it can be usedjtee the order of magnitude of terms involved
in the solution of the DLA and MLLA evolution equations. Tkésre, making use of (36), one has

Va0 =000), Yay=00), Yaw =00, Yaoy=0N3), Yay=003), (38)
Aij=0(1), Ajjo=0%), Aijy=0M0), (39)

wherev, ¢, Va4, 0, @ndiy, ., are double derivatives af4, = In A;(¢,y). The DLA solution [35)
describes the following picture: the first teff|s —1) in the L.h.s. translates the independent or decor-
related emission of three hadrons in the shower like depioyeFig[2a. After inserting the two-particle
correlator [(3V) in the I.h.s. of (B5), terms év—A correpond to the case where two partons are correlated
inside the same subjet, while the other one is emitted intigEly from the rest like in Figl2b. Next, re-
placing [37) in the r.h.s. of(35) one obtains a contributior% described by Figl2c, where two partons
are emitted independently inside the same subjet. Thedastt gj; depicted by Fif.J2d, involves three
particles strongly correlated inside the same partoniavehand corresponds to the cumulant of genuine
correlations. Actually, this interpretation has been gigfier computing the color factors of such Feyn-
man diagrams describing the process, normalized'hyn the end. Notice that diagrams displayed in
Fig[2c and Fig.Rd present the same color factors but diffdrerentz structure. In both cases, the DLA
strong AOO > ©’ > 0" and strong energy ordering > x2 > x3 are necessary conditions satisfied

by (33) [29].
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Figure 2: Three particles emitted inside the shower witloric@dctors for the square of the amplitudes:
C%, C3N,, C4N2 andC 4 N? for a, b, c and d respectively.

@ A

Performing the steepest descent evaluation of the DLA siimglusive distribution from an integral
representation, which was written in Mellin space in thefdt6/27],

) 1/Bo(w—v)
Glt,y) = £+y+A// duody wfw/ ds (f(”“)) ‘AS,Q——G (40)
0

27i)? v+s \(w+s)v

and which accounts for the running of the coupling the energy of most particles inside the jet was
proved to be close to the maximum of the distribution, whichpes like a Gaussian in this regionl[27],

3 (i — lmaz)? Y
NS EE } » o bnaz ™ 5 (41)

From this method [16], the expressions of the logarithmitivdéve of the one particle distribution were
written as,

A;(4;,Y) ~ exp [—

Vi e(pis vi) = o, Yiy(p,v) = voe 1. (42)
such thatj;; and the correlator were given in the form [16],

N, 1
A;; = 2cosh(p; — v; =1t *
; cosh(p; — vj), CA T Ca 14 2cosh(pi — pj) )

respectively, wheréu;, v;) were related t@/;, y;) through the 2x2 non-linear system of equatians [16],

yi —4&;  (sinh2p; —2p;) — (sinh2v; — 21;)  sinhy;  sinhypy (44)
vi + 4 2(sinh? p1; — sinh? ;) ’ Vi Vit yit A
Therefore, the DLA three-particle correlator reads in #pproximation
5(3 5(2 5(2 5(2
5(2) 2 _ 2)
() () e
205; 1+ cosh(py — p2) + cosh(puy — ps) + cosh(pe — ps)
N, 1
+ C

2C3 1+ cosh(u — p2) + cosh(py — pz) + cosh(pg — p3)”

with cf’ extracted from[[@3). Taking £; — fmas |< o o Y32 fori = 1,2,3, one has in this
approximation (see appendix C.2)

2 2
A~ 2+9 <—€" ;/J) —249 [7112((2”;//50” , (46)
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so that,

01 — 05\ 2 01 — 03\ 2 Oy — 03\ 2
A12+A13+A23w6+9<1y 2) +9<1Y 3> +9<2 3>

Y
B In(zy/x1) 2 In(zs/x1) 2 In(z3/x2) 2
=049 i) O mory) 0 merad) - @

Therefore, the shape of the three-particle correlator eaexipected to be quadratic as a function of the
difference(¢; — ¢;), as for the two-particle correlator. Thus, the correlatostrongest when particles
have the same energy = x, = x3.

Moreover, the decreasing behavior of the correlator as am®p gets much harder than the others
x; > x; shows that QCD coherence effects dominate this region opliase space as interferences
between such gluons occur. New kinds of contributions lieedne in the first term of the r.h.s. 6f{35)
appear in this context.

The overall normalization of the-particle correlator is fixed by that of the same rank muiltip}-
correlator determining the multiplicity fluctuations idsithe jet[[16],

Cl(f)(ﬂfl,---,l’k) < (n(n—l)...(:—k—kl»‘
(n)
Then, one has )
@) e Ne 3) e Ne NG
CA (1‘1,1‘2) 1_ 30 N CA (1‘1,1‘2,1‘3) 1_ CA +4Ci. (48)

These bounds can also be obtained by setfiig;, z;) = 2 (for z; = z;) in (37) and [[(35) respectively.
Since DLA neglects the energy balance, it is not realistit @oes not provide the real physical picture
of any jet process in the frame of jet calculus.

2.5 lterative solution of the evolution equations

As we can see, the computation of three-particle correlati@quires a mastering knowledge of the
one-patrticle inclusive energy distribution and two-paeticorrelations. The behavior of the two-particle
correlators as shown by these solutions was proved to beafitas a function of¢; —¢;) and increasing
as a function of¢; + ¢;) like in the Fong-Webber approximatidn [17]18]. Howevee siolutions[(92.93)
(see appendik_Al1) were shown to better account for softrgkemherence effects, by describing the
flatting of the slopes ad{+ ¢;) increases. IN[25], the solution was obtained by the sttegpescent
evaluation of the spectrud; (¢, y), while in [19], the evaluation was performed by taking thpression

of G;(¢,y) given by [89) in the appendixA.1. 10 [19], the solution of #eolution equations for two-
particle correlation were obtained from the differentiarsion of the equation$ (80)91) ovérlnd y
written in the appendik Al1. Therefore, in this subsectiwr,will make some transformations in order
to simplify this cumbersome task without adding furtheromfiation. In the appendix_Al.1, we briefly
summarize what should be known in order to complete the isoluf the evolution equations for the
three-particle correlations.

Differentiating [28) and[(29) with respect t@”, one has the differential system of evolution equations
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for three-particle correlations,

23 _ CF 93 3CF 22 (¥ 3)
Qpy = N, %G A (G - Bog G ) (49)
Gy = RGP —ar (G =R +(a— 03 { [ (G - 61G2) Gy (50)

+ (6 - Gi63) Go + (GF) — oGy ) G| s [(G“ G1G» ) G
+ (61 - 61Gs) G + (G — GaGi) G| (0= 033 [(G1GaGs)i— o Gr Ga G

which is written in this paper for the first time. The equati@®Q) is self-contained and can be solved
iteratively like [33). For this purpose, one sét§?) = Cgl)szngGg and Gg.) = Cgi)jGiGj in the
left and right hand sides df (50), such that the solutioniabthin the appendixIB can be written in the

compact form

3 2 2 2 2 3
Cn, — 1= (€6, —1)F + (c6l, — 1)) + (), — )R + Fioi. (51)
where,
@ 3)
(2) Gy ) _ Ne
By =1+2m0 =g (52)
G G
with
Né?i =1—b (Y10 +Pop+ b3 — Bord) — ale+ (a—b)x7 +E7 +05 —e1 — e, (53a)
Dg) =24 Ay + A1z + Aos + aly + 2aB075 + €1 + €2, (53b)

N =1 ¢ (re+ b+ Ve — Bord) — ale + (a — b) (k2 + X8> + x2) + (€12 + 652)(53c)
+(&0° +6°) + (6 +05°) —e1 — e,
DE =D =2+ App + Asz + Ags + aly + 26072 + &1 + 2. (53d)

The solution[(5l1) can be checked to recover the DLA reBuly ii85de a gluon jet, thatis fat'y = N,
Since DLA neglects recaoil effects at each splitting inside ¢ascade, one should expect the DLA three-
particle correlation to be much larger than MLLA predictcend therefore to overestimate the data. We
introduce the following notations and give the order of magle of each contribution following from

(38) and[(39),

5(3) Cg) ¢ Cg)
¢(=ICY , = dT =0(%), (= C—ﬁ’ = 0(%), (54a)
G123 G123
NS G
X/ = =g =008), xij =—5" =000, (54b)
CGij CGz‘j
g L[ g ij
& = 2 {X/ (V1 + Y2y +¥3y) + X3 (P10 + P20 + 7,113,@)] = O(), (54¢)
0
i (i g 2
of == (i +xi,) = 06d), (54d)
70
€1 = ? [Ce(W1y + 2y +V3y) + Cu(P10 + 2p +P30)] = O(70), (54e)
0
1
7 (Gl + Gy = O(75). (54f)
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The solution of the gluon evolution equation for the coi@aan be either obtained numerically by
solving [50) or by performing the evaluation from the prexdasolution[(5l1). However, in this paper,
we will directly compute the solutiori (51) from the steepdsescent method introduced in_[25] and
make some approximations in subsection 2.6. Accordingly, stolution of [(4B) is also obtained in
the appendiX B by settin@®) = CngQlQQQg and fo = C Q @, in the Lh.s. of [@P) and
GB) = C’g’) G1G5G3 in the r.h.s. of the same equation, such that,

123

3 2 2 2 ~ (2 ~(3
Col —1= (gl —1) BY + (c§), = 1) B + (c&), —1) I + i3, (55)
where,
(2) o0 @ Ng
=(2 ij =(3
By =1+ D(2;’ Fios = Gk (56)
Q Q
with
NS =€+ 85 —& ¢ (57a)
Qij 1 2 1 2,
Uty | e ta, (57b)

Dg):Am—i-Alg—i-Agg-i-Z 5
P ’Y()Qi

C 3 G1GoG ~ ~
NG = FC(Gl)23|:1 -7 (¢17z + a0+ a0+ G — 5073)} 7@1@2@2 + (&% +6°)  (57c)
+ (P40 + (P +63%) — & — 62,
DS)—Dé?)—A12+A13+A23+Z 232-1-61-#62, (57d)
where one find the list of corrections,
co® s Com - _ ¢
(=InCy,., G = % =0(), (= .(gg’y = 0(%), (58a)
Q123 CQ123
-y )
X =5 =000), X = —5" = 0(0), (58b)
(2) (2)
iJ (¥
1
& = 2 [Xz (VQ1y + Yoy + VQsy) + Xif (0010 + Vot + Qs p )} = O0(%), (58c)
0
5 L (lijeij <ij
6y = = (W5 +xi,) = 00d), (58d)
70
& = 2 [Ce(?bczl,y + YQay + VQay) + Cy(VQu0 + Vqae + ¢Q3,z)] = O(70), (58e)
0
=2 (fzfy +Ciy) = O0R). (58f)

The order of magnitude of these terms follows fram] (38) arfl).(Betting all corrections to zero, one
recovers the DLA solutiori (35) fat'y = Cr. The solutions[(51) and (55) of the evolution equations en-
tangle corrections of orde? () andO(~2), which are MLLA and NMLLA respectively. Furthermore,
every term in[(5ll) and_(55) can be associated to a Feynmaradiagf Fig.2 as was explained in subsec-
tion[2.4. The functionﬂ(zg andF123 in (51) and[(55) correspond respectively to the cumulantoigne
correlations associated to the process displayed iblFigiFFay2d. These contribution$, (34aJt54f) and
(58aF58¥) are small corrections arising from the iterafieéution of the evolution equations because one
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takes the derivatives over the functiofis= In C'g’l)%,f =1In CS’)% andy” = In 6(2) XY =1n 6(2) for
both quark and gluon jets. For the evaluation of such camestone needs to take the DLA expressmns
of CS’BQS andéf}j written in (38) and[(317) respectively.

26 MLLA approximation and evaluation by the steepest descent method

In [19], the exact solutions of the two-particle evolutioquations were compared with the MLLA so-

lutions from the steepest descent method for the one padistribution. The agreement between both
approaches was successful and made possible the fast atiopuif the correlators from the steepest
descent. That is the reason for in this paper, we limit oueseto this method. Making use of the ratio
@B2), it is easy to demonstrate that,

Yoo =ve+0R), Yoy =v,+00), Ay mille Aij +O0(3). (59)

Dropping corrections of orde®(13), which go beyond the MLLA approximation, we obtain for the
gluon jet

mila L —b (Y10 + o+ 134) + 5? —€

)
Byt =1+ 60
N 2+ A+ A3+ A3 +e (60)
G mila 1 — ¢ (V104 Yap+130) +E2+EB +EP — ¢ 61)
1 2+ A+ A3+ A+ €
and for the quark jet
Fij -
B R4 Sl - 62
! 3+ A+ Az + Aoz —a(Yre+ Y20+ ¢Pse) + & (62)
~(3) mila N Cgl)zs [1-a (1/)175 + o0 + TJZ)?),Z)] + 5%2 + 5%3 + 5%3 —:61
Floz3 = =5 _ (63)

C% 3+ A+ A3+ Ax—a(e+hor+ihse)+é&

The subtracted terms —a in the denominators of (62) and (63) appear after havingaceul [[8V) and
@B8) in (57b) and[(57c) respectively. Such simplified expi@ss are useful for the steepest descent eval-
uation that proved successful while describing the singitusive distribution and two-patrticle correla-
tions in [25]. Except the MLLA corrections, andgij , all the other corrections and functions appearing
in the solutions of the evolution equations were obtaind@%3, which will allow for the straightforward
computation of the three-particle correlators in quark ghubn jets. We write some of these formulee
for the evaluation in the appendiX C. Integrating the equafB1) over %", the solution for the single
inclusive distribution is given by the following integrapresentation in Mellin space [25],

dwdv o0 Y /OO ds w(v + s) 1/Bo(w—v) . a/Bo N
e s (64
Glly) = +y+N) // 2mi)? v\ s e, (64)

The integral representatioh (64) was estimated by the estajescent method at small < 1 and
high energy scal&€) > 1; the approached solution was compared with the exact enl{#9) (see
the appendix_All) in the limiting spectrum (= 0) and beyond X # 0). In particular, [6%#) was also
demonstrated to be equivalent i0](89) for= 0 [19]. The agreement between the approached and
exact solutions turned out to be good, such that the follgwixpressions of the approached logarithmic
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derivatives from the steepest descent method were suitéltf@valuation of the two-particle correlators
[23],

1 N -
Yio(pi, vi) = yoe! + ia’yg [e’”Q(ui, v;) — tanh v; — tanh v; coth p; (1 + e Q (i, 1/,-))] (65)

- %5073 [1 + tanh 1/,-(1 + K (s, 1/,-)) + C'(pi, v4) (1 + €M1 Q (i, VZ))] +0(2),

1 , .
iy, v) = yoe M — ia’yg [2 + e " Q(ui, v;) + tanh v; — tanh v; coth p; (1 + e Qg 1/,))}

- %6078 [1 + tanh yi<1 + K (pi, yl)) — C(ps, 1) (1 + e_’”()(,ui, yl))} + (9(78), (66)

where the function®) (s, v;), C(ui, v;) and K (u;, v;) are defined in the appendi¥ C. The tesma in

(65) and[(66) accounts for energy conservation while ¢ha accounts for the running of the coupling
as. The variablesy;, v;) are related t@/;, y;) through the same 2x2 non-linear system of equations (44).
After inverting (44) numerically; (¢;, y;) andy;(¢;, ;) can be plugged int@ (65) arld (66) so as to get the
logarithmic derivatives of the single inclusive spectrusradunction of the original kinematical variables
¢; andy; as it was done i [25]. The MLLA two-particle correlators aved in [51) and[(55) aré (108)
and [109) and are written in the appendix C. These expressiave been taken from referencel[25].

Corrections¢!’, €7 ande;, ¢ are new for three-particle correlations. Such expressimasexplicitly
written in the appendix_Cl1 from the steepest descent evafuaf the single inclusive distribution
(64). They are small and decrease the three-particle etorefor ¢; # ¢;, that is when one parton
is much harder than the other. Notice that the steepest mlasmthod constitutes the only way for the
disentanglement between MLLA(,/a;) and NMLLA O(a;) corrections appearing in the solution of
the evolution equations for the two and three-particlealations. It makes also possible to distinguish
between corrections following from the energy balance &edtinning effects of the coupling constant
as. Finally, this method also allows for the application of tmemp approximation or Fong-Webber
expansion of the solutions with MLLA(,/a;) accuracy[[17, 18].

In this frame, the role of MLLA corrections should be expécte be larger than for the two-particle
correlations. Indeed, higher order corrections increaiie thve rank of the correlator, which is known
from the Koba-Nielsen-Olesen (KNO) problem for intra-jatliiplicity fluctuations [28, 30, 31]. For the
2-particle for instance one has—b(v1 ¢ + 12 ¢) and for the three-particle correlator one gets the larger
correctionoc —c(¥1,¢ + 2.0 + P34).

2.7 Hump approximation

From the steepest descent evaluation introduced in [25},the hump of the single inclusive distribution
| £—Y/2|< o o Y32 fori = 1,2,3, correctionst?’, £ ande;, ¢ could be written in the symbolic
form (see appendix G.2),

iz (-4 2
1,681 = % Y0+ O(%), (67)

: 01 — 05\ 2 01 — 03\ 2 ly — 03\ 2
617612<1Y2> ’Y0+<1Y3> ’Yo+<2Y 3> Yo + O(3), (68)

such that both can be neglectgd ~ 0, e; ~ 0 in this approximation, like)’/ was also in[[25]. In the
appendiX_C.R, following from the steepest descent methmekpressions of (5Ba-53d) are given and
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(57aE57d) expanded iyyas. In particular, the expressioris (128e) and (128g), aftergoexpanded in
70, can be demonstrated to recover the Fong-Webber resulthddrmvo-particle correlations [17,18].
Replacing the expressioris (1¥8a-128j) intol[(51,52) anfb@j5one finds those for the three-particle
correlators in the Fong-Webber approximation/ [17, 18].sT8olution will be compared with that from
(&1) and[(6B) after making use 6f (65) and](66) in subsetion 3

2.8 From two to three-particle correlationsin the small x region

In [19], the sign of the two-particle correlatcﬁﬁf) — 1 > 0) was studied as a function ofin the region
of the phase space where the two partons (hadrons after imgstie LPHD) are strongly correlated.
From the previous inequality, it turned out that two parterith ¢; = 2.6 (z; < 0.07) at LHC energy
scales (i.e.Q = 450 GeV, see subsectidn 3) are correlated as they are emittedtfre same cascade
following the QCD AO. Asymptoticallyy” — oo, one had; 2> 4.5 (z; < 0.011).

For three-particle correlations we study the sign of the ulamt of the genuine correlatd?l(g’% > 0 and
determine the approximate regionirwhere diagrams displayed in Fig.1 and Fig.2d become dorninan
One has,

L—c(Pro+op+1s0) +EP2+EP + € — e > 0.

However, correctionsij , €1 have been shown to be negligible and to vanish for particdesig the same
energy momentum. Thus, we rather study the sign of

1 —c(10+ 20+ 1030) > 0.

Making use ofi, = ’yo\/g = 04/ L7+ for the sake of simplicity, one has,

Y —¢ M 9c?

Y

Thus, for LHC energyy” = 7.5, the value of¢(z) where the cumulant becomes positive turns out to
be ¢ > 4.3, which in x corresponds ta < 0.014. AsymptoticallyY — oo, one has/; = 10.1

(z; < 4.1 x 1079). Therefore, there exists a rangeziwhere the observab@g?), is dominated by the
emission of two correlated partons emitted independentipnfthe third one, that i8.014 < = < 0.07

for diagrams Fi.l2b and Fig.2c; far < 0.014, the process will be dominated by three particles emitted
from the same partonic cascade following the QCD AO desdribeFigl2d. Asymptoticallyy” — oo,

one hast.1 x 10~° < z < 0.011 for diagrams Fig.2b and Fig.2c, and< 4.1 x 10~° for Fig[2d. These
values will indeed justify our choices for the representainf the three-particle correlations as function
of (z1, 2, x3) in subsection3.

2.9 Beyond three-particle correlations

It is worth reminding that the LPHD hypothesis has also beamfronted to multi-particle factorial
moments up to the 5th order in the experimental studiep ahde™e™ collisions at HERA[[34] and LEP
[35] respectively, where it was found that the LPHD hypoihéaces difficulties when it is applied to soft
multi-particle fluctuations. In this work the studies arerigall out by using the momentum and transverse
momentum cuts in order to test the MLLA soft limit calculai®o[33]. The theoretical computation of
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multiplicity correlators or multiplicity fluctuationgn(n — 1)...(n — k + 1)) was performed in [32] at
MLLA up to the rankk = 5 of the correlator.

However, performing these calculations for higher rankedintial inclusive correlators, related to the
previous ones by the integral

<n(n—1)...(n—k¢—|—1)>A:/dwl...dackxl...kaff)(xl,...,xk,Y)

becomes rather cumbersome. As an example, in this subseut® display the DLA equation and
solution of the 4-particle correlator. The DLA equationdsa

24 Ca 4

A§2)34 = EVSng)?A» (69)

whereA has been defined in the appendix DN (129). The solutiof dfé® the definition ofA (I29)
reads,

e 1= g, () e, (0 ) . Hy (¢9,60)

Ne (70
Ca c? C33+ A1+ A3+ A+ A+ Aoy + Asgy (70)

where the functiongf,, H, and H3 are written in the appendixID ib_(IB0J), (131) ahd (1132) retpely.

The solution[(7D) can also be interpreted in terms of Feyndiagrams contributing to the emission of
four hadrons inside the jet. Accordingly, the term ]CV; correspond to the casé — 12(34) where
two offspring are correlated while the other two are emittetbpendently; as a consequence it depends
only on the two-particle correlator. The second teﬁn% is associated to the casds— (12)(34)
andA — (123)4, which translates into either emitting two sub-jets witlotparticles correlated within
each, or emitting three correlated partons like in[Fig. hwihother independent emission. Finally, the

3 . .. ..
Ne after settingHs; = 1+ ... corresponds to the full correlated emission of four offisgiinside

termoc =5
the samcé shower. The inclusion of SLs correction$ id (70)ldvbe cumbersome and stays beyond the
scope of this paper. On the other hand, the computation f&frdiitial higher order rankij correlators
at MLLA would imply the failure of the perturbative approabbcause of the increasing size of higher
order correctionsc (¢ ¢+. .. Y1) = O(\/a;). Hence, for higher ordekr correlators, the small range
where MLLA predictions stay valid gets reduced even at higérgy scales, such that (see subsection

2.8)

k2 M,
:£7 €k> IZC\/[
/80 1+7k

M,

with i
1 11 4 Cr
= N+ (=) Tr(1—2=—) |.
Ck v |3 +(=1) 3”f R< Nc> ]

3 Predictionsfor the LHC and phenomenological consequences

In this section, we perform theoretical predictions foetparticle correlations for the LHC. We display
the MLLA solutions [51) and (85) of the evolution equatioB€l) and [(4P) respectively. We compare
the DLA solution of the evolutions equations from secfiofi ®ith the MLLA solution from the steepest

descent evaluation of the one-particle distribution insadtion[2.6 and the solution from the hump
approximation in 2J7. Thus,
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e the DLA solution is computed by plugging (43) info {45);

e the MLLA solution from the steepest descent will be dispthyy substituting the MLLA two-
particle correlatord (108),_(109) and the functidns (66]1)( (62) and[(63) intd_(81) and (b5) for

gluon and quark jets respectively;

e the MLLA hump approximation will be displayed by pluggirig2@a)-(128) into[(5R) and (56)
and finally [51) and (85).

In particular, the computation of the DLA and MLLA solutiofrem the steepest descent needs the prior
inversion of the system of equatiofis{44) in order to obtainy;) as functions of the original kinematical
variables {;,y;). The correlators are functions of the variablés, y;) and the virtuality of the jet

Q = EO,. After settingy; = Y — ¢; with fixed Y = In(Q/Qo) in the arguments of the solutioris {51)
and [55) the dependence can be reduced to the follow:’lﬁg:3 (01,02,03,Y) andCS’l)23 (01,02,03,Y).

3.1 Predictionsfor thelimiting spectrum A = 0

In this subsection we give predictions within the limitingestrum)\ < 0.5 for charged hadrons mostly
composed by pions and kaons.

In Fig[3, the DLA [35%), MLLA hump approximation from subsiect[2.7 and MLLA [51) three-patrticle
correlators are displayed, as a function of the differeffge- ¢3) = In(xy/z1) for two fixed values of

03 =In(1/x3) = 4.5, 5.5, fixed sum(¢; + ¢2) = | In(z122)| = 10 and finally fixedY” = 7.5 (virtuality

@ = 450 GeV andAgcp = 250 MeV), which is realistic for the LHC phenomenology [13]. Tvalues

ls = In(1/x3) = 4.5, 5.5 (x5 = 0.011, z3 = 0.004) have been chosen according to the range of the
energy fractionz; < 0.1, where the MLLA scheme can only be applied and in particutse, range

x < 0.014, where the cumulant correlat(ﬁrl(;’% is dominant (see subsectibn2.8).

In Fig[4, the DLA [35%), MLLA hump approximation from subsiect[2.7 and MLLA [51) three-patrticle
correlators are displayed, in this case, as a function ostime (¢; + ¢2) = |In(zxz9)| for the same
values ofls = In(1/z3) = 4.5, 5.5, for 21 = 29 andY = 7.5. The ranger.0 < |In(z;x2)| < 13.0 has

been chosen according to the conditiorg 0.014 discussed i 2]8.

As expected in both cases, the DLA and MLLA three-particleaators are larger inside a quark than
in a gluon jet. Of course, these plots will be the same andteegretation will apply to all possible per-
mutations of three particles (123). As observed and writgove, the difference between the DLA and
MLLA results is quite important pointing out that overallroections inO(,/cs) are quite large. Indeed,
the last behavior is not surprising as was already obsermdtieotreatment of multiplicity fluctuations
of the third kind, where [32]

(n(n — <1)§? ~2))6 _ 905 [1— (1.425 — 0.021ny)\ /o) ,
na

(n(n — (1)52 - 2)>Q =4.52[1 — (2.280 — 0.018n¢)/ay] .
"Q

For instance, for one quark jet produced at #ifepeak of thee™e~ annihilation () = 45.6 GeV), one
hasa; = 0.134. Replacing this value into the previous formula for a quatkmultiplicity correlator,
one obtains a variation from 4.52 (DLA) to 0.83 (MLLA). Thatane of the reasons for DLA has been
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Y=7.5;3=0.1; |Ln(x,x,)|=10 Y=7.5;1=0.1; |Ln(x x.)|=10

—— DLALn(Ih)=45 || —— DLALn(l/x,)=45
- = =DLA Ln(l/xa):5.5 - = =DLA Ln(l/xs):5‘5
35¢ Hump Ln(1/x,)=4.5| ] Hump Ln(1/x,)=4.5
3.25r Hump Ln(l/x3)=5.5 8
—— MLLA Ln(1/x,)=4.5| |
- = - MLLALn(1/x <55 3
2751 1 5 = = = MLLALN(1/x,)=5.
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Figure 3: Three-particle correlations inside a gluon jeft(land a quark jet (right) as a function of
51 — €2 = ID(Z’Q/ZL'l) for fl + €2 = |1I1(SL'1SL'2)| = 10, 63 = ln(l/l'g) = 4.5, 5.5, fixedY = 7.5 in the
limiting spectrum approximation = 0.

known to provide unreliable predictions which should notthenpared with experiments. From [Fig.3,
the correlation are observed to be the strongest when leartiave the same energy = z; for fixed

x;, and to decrease when one parton is much harder the othersednadh this region of the phase
space two competing effects should be satisfied: on one lharalconsequence of gluon coherence and
AO, gluon emission angles should decrease and on the othdr tiee convergence of the perturbative
seriesk, = z;FO; > (g should be guaranteed. That is why, as the collinear cutafapeterQg

is reached, gluons are emitted at larger angles and degtructerferences with previous emissions
occur. Moreover, the observable increases for softer pasdth x3 decreasing, which is for partons less
sensitive to the energy balance. In Eig.4 the MLLA correlasi increase for softer partons, then flatten
and decrease as a consequence of soft gluon coherencejueapmpfor three-particle correlations, the
hump-backed shape of the one-particle distribution. Bseani the limitation of the phase space, one
hasC® < 1 for harder partons. Finally, in FId.5, we display the thpeeticle correlators as function
of the sum| In(zyz923)|, for x1 = x2 = x3; when compared with Figl4 and Hi@.3, the correlators are
shown to be larger. That is why, and as expected, the caometaare the strongest for particles having
the same energy-momentum = x5 = x3. In these figures, the MLLA hump approximation is seen
to become larger than the DLA correlator for smaller values than those close to the hump region,
which is unphysical. This is due to the fact that this appr@tion should not be trusted beyond the
hump region ¢ — Y/2 |< o « Y3/2,3Y/2 = 11.25 in this case.

The MLLA hump approximation from subsectibn P.7 is obsert@te larger than the MLLA solution
from the steepest descent of the one-particle distributitnone should bear in mind that this is only
an approximation made for the sake of clarity in the intagiren of the solutions. In particular, from
Fig[3 one can observe a smoother descent for the slope obtredators in this case than that given from
the more exact steepest descent. This difference comesiiwrmole played by the iterative corrections
displayed in Fig.B, which decrease the correlators away fitee hump region when one of the partons
becomes harder than the others. Near the maximum z; of the correlators, the difference between
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Figure 4: Three-particle correlations inside a gluon jeft(land a quark jet (right) as a function of
01 + Uy = |In(xq29)| fOr &1 = 29, £3 = In(1/x3) = 4.5, 5.5, fixedY = 7.5 in the limiting spectrum
approximation\ ~ 0.

the two approaches @ (%7@) and should decrease for — 1, according to[(68).

3.2 Predictions beyond the limiting spectrum X # 0

The approximated evaluation of the one-particle distidmufrom the steepest descent method made
possible the evaluation of the two-particle correlatioagdmd the limiting spectrum approximation, that
is for Qo # Agcp. Accordingly, it makes also possible the evaluation of tivee-particle correlators
Cg’l)%(el,eg,eg,Y) andcg’f%(el,ez,eg,y) beyond this limitA = 0. This parameter, also known as
hadronization parameter, guarantees in particular theergance of the perturbative approach< 1.

In Figl@ and Fid.l’ we display the same set of curves beyondirfigng spectrum § = 1.5) as in
Fig[3 and Fid.# in the limiting spectrum\ (~ 0), with the exception of curves coming from the hump
approximation. The value of in this case was evaluated f@ ~ 1 GeV, which corresponds to the
proton mass, andgcp = 250 MeV. As observed the correlation increases witand the range where

C®) > 1 becomes larger in this case.

4 Conclusions

In this paper we provide the first full pQCD treatment of thpegticle correlations in parton showers
and a further refined test of the LPHD within the limiting spam approximation and beyond. The
evolution equations satisfied by this differential obsbleehave been obtained for the first time and
the differential version of the equations has been solvadtively. It has been possible to interpret
the analytical solution in terms of Feynman diagrams dbswithe process and to evaluate it from the
steepest descent method applied to the single inclusitribdition. The correlations have been displayed
in the ranger < 0.014, where the process is dominated by three particles emitbed the same partonic

cascade following the QCD AO described in Elg.1 and[Fig.2dcttfermore, four-particle correlations
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Figure 7: Three-particle correlations inside a gluon jeft(land a quark jet (right) as a function of
01 + Uy = |In(xq29)| fOr &1 = 29, £3 = In(1/x3) = 4.5, 5.5, fixedY = 7.5 in the limiting spectrum
approximation\ = 1.5.

have been computed at DLA so as to show that the inclusiongbfeniorder corrections for more than
three particles would rather be a cumbersome task. Thelabores have been shown to be strongest
for the softest hadrons having the same enargy= x2 = z3 in both quark and gluon jets, increasing
as a function ofn(x;/z;) and|In(x;x;)| whenzy, softens, that is for partons being less sensitive to the
energy balance.

Coherence effects appear when one or two of the partonsvawah the process is harder than the
others, thus reproducing for this observable the humpdshahape of the one particle distribution.
Away from the maximum at; = x;, because of limitation of the phase space, oneas < 1.
Predictions beyond the limiting spectrum for heavier chdrgadrons as compared with pions and kaons
show that the correlations should increase as the parafgtequals the mass of such hadrons and the
range wher&(®) > 1 has been enlarged beyond this limit. The last statementtisutprising because
soft gluon emission gets suppressed between the two s@glasad Agcp for A # 0, thus decreasing
the particle yield inside the whole jet. This measurementildion particular provide an additional
and independent check of the LPHD for massive charged hadrés was shown i 2.4, the DLA
solution of the evolution equations provide general fesgwf the observable showing its unreliability
to be compared with the experiment. That is why, the MLLA shapd overall normalization of this
observable should be compared with the data. In the cagg obllisions at the Tevatron, since diet
events consist of both gluon and quark jets, in order to coengata to theory, a parametgy for mixed
samples of quark and gluon jets was cho$en [11pploollisions at the LHC, the same procedure can be
applied so as to measure the two- and three-particle coome$a Furthermore, MLLA corrections have
been shown to be larger for three than for two particles, &b increase as the number of particles
increases.

As was the case for two particles, the three-particle catimis are larger inside a quark than in a gluon
jet. Same trends have been observed in HERA and LEP dataffonsiti-particle fluctuations in [34,35].

Finally, we give the first analytical predictions for infjgt-three-particle correlations in view of forth-
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coming measurements by ATLAS, CMS and ALICE at the LHC.
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A MLLA approximation

In (23a), forln(1 — z) < Inz andln z < In z, we perform the following Taylor expansions:

dQ®)
dty

Q¥(1 -2 -Q¥~In1 - 2) +O(a), (71)

(@51 =2 - Q%) (Gr(2) — Qi) + (6(2) - Q) (@i(1 - ) — Qu)

do®
=In(1 - 2) [ ffgf (G- Qo+ (6 - @) T2 | +ofa,) (72)
(Qi — Gi(2)) (Q;(1 — 2) — Q) Q ~ In(1 — 2)(Qi — G»%@k + 0(ay). (73)

Since none of these terms contribute to MLICX | /a;), they will be dropped hereafter. In equation
(238), we perform the following approximations in the harabimentation region,

a? a2\ (6L Gy) ~ In 2 In(1 1G.J Gy 0] 74

(69) - 6) (@1~ 2) ~ Gi) m (1 - )= 2K 1 Oa) (74)

(Gi —Gi(2)(Gj(1 —2) = Gj)Gr = —Inzln(1 — 2) C;sz %Gk + O(a). (75)
1 1

Neither [74) nor[(75) contribute to MLLA. The other terms[#80) can be written as,

dQ®

2Q)(z) - G® ~ (2Q®) — GB)) 4 21n 2 2+ 0(a) (76)
1
2(QP(:) - 6 (Qu1 - 2) — G ~2(QF - 6T ) (@i - Gy) (77)
do®?
+2In(1 — 2) (QS) - GZ(-?)) % +2In 2(Qr — Gy) 2251] + O(as),
(2Qi(2)Q; () — GiG,; ~ 0 — GG Q5 | dQi
7 Z)Q](Z) GZG])Gk ~ (2Q2Q] GZG])Gk +Inz Qz d£1 + d€1 Qj + O(as)7 (78)

(61— 20:(2)(2Q;(1 - 2) ~ G))G = (61—~ 200)(2Q; — Gy)Gi — 2(20; — G)Grln 252G

23



+2(G; —2Q;) In(1 — 2) dz] G+ O(as), (79)

such that only the first terms in (76], (77). {78) ahdl (79) Wwélkept in the following. Furthermore, we
make use of the identity [19]

/ 1 dz®Y(2) (G(3)(z) - zG<3>) = / 1 dz(1 — 2)®Y(2) <G(3)(z) + (Gc’»)(z) - G(?»))) :

such thatG(™(z) — 2G™ can be replaced by,

(n)
G () = 26 (1= 2) [ (2) + (G(2) = G )| =~ (1= 2) |G (2) + m 2|
dly
(n = 1,2,3) in the r.h.s. of equation§ (2Lb), (22b) ahd (23b). Indeednsoc In z,In(1 — z) provide
NMLLA corrections O(«;) which improve energy conservation; however, their indosgjoes beyond

the scope of the present paper.

A.1 Oneand two particledistributions at small =

The MLLA integro-differential version of equatioris (2120 and[(221h,22a) is obtained after integrating
over the regular part of the splitting functions, such t&s1E[ 19]

o Cr ¢ 120 Ny F_2 )
Qiy= E /0 Al +y)Gi(ly) — ZF{;% L+ y)Gi(L,y), (80)
l
Giy = / AR+ 9)Cily) — ad (€ + y)CiL,y), (81)
0

with 2(¢ +y) = m and the two-particle correlationsii(f.) = Ag.) — A;A;) [18]19],

. Cp [t
Q=5 [ aeb(e+ 16 € usmg) - 5Bl + )G ). (€2)

c JO c

L;
Gﬁf)y = /0 W+ )G, y5,mi5) — ard (€ + yj)Gz('yz') (4is yj:mij)
+ (@ = b)y5 (4 + y;)G (s, ys + nis )G + i, y5), (83)

with /2(4; +y;) = W after accounting for hard correctiof¥ ,/as). After differentiating
(80[81) and[(82.83) with respect t6”, one has/[[19]

Crp Cr3
Qipy = N, %G — N1 5 (Gie — Bovs Gi), (84)
Gz’,ey ’YoG - G’Yo( 50’)’0(; ) (85)

from where the following useful relations hold in MLLA [19],

Qi,é CF G 9
’Y(%Qi |: 1/}2 Z:| N Qz + 0(70)7 (86)
Gi N,
o (e= 2w + 00 @7)
% — 1= avis + O(2). (89)
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Correctionsx 3y in (84) and[(85), which are NMLLA, account for the running bétcoupling constant
as and thosex %, a, (a — b) account for energy conservation in the hard parton sgiittegion. The
MLLA gluon inclusive spectrum is given by the solution bf §g6] and can be written in the form [14]:

) P(B) 2 d_T —Ba T
Gz(g )_2 ,80 /O T e -FB( 7y7£)7 (89)

where the integration is performed with respect tefined by = % In % + 7 and with

B/2

cosh o — y sinh «

+ £
]:B(Tayag) = g_‘_y o IB(2 Z(T7y7£))7

Bo sinh

_ lty  « y—4L .
Z(t,y,0) = 5, smho <cosha y+£smha>,

B = a/fy and I is the modified Bessel function of the first kind. The formuwia(89) corresponds
indeed to the so-called hump-backed plateau, which desctite energy spectrum of soft hadrons in the
limiting spectrum approximatio)y = Agcp [6,28]. This result is well known and constitutes one of
the strikest predictions of pQCD. The corresponding soiutf (84) for@;(¢,y) can be obtained from
(87) with accuracy)(,/a5). The system of differential evolution equations for twatjzde correlations
follows from (82) and[(883), such that [19]

0 - @iQ)], = SEade - 255 (6 - sidal?). (90)

@ _ Aol 20@ p2n(2) N2 TN RA2
|:Gij GszLy —VOGU a%o <Gij7g 50'70Gij >—|—(a b)g [(GZGJ)g 50'70GZGJ] . (91)

In [19], the system[(82,83) was solved iteratively afterlaemg ngz.) = C’g)ijGiGj and Qg) =
Cg)ijQ,-Qj in (@1) and [(9D) respectively. The MLLA solutions 6f {90) a@dl), which are to be used in
the present paper read [19]

_ 89 _ 4 .
CgZ)J 1= 1 51 b (1/}2,5 ‘;%,Z)’ (92)
1+ Aij + 51
= Lt (b= a) (¢ + )5 p (93)

C(z) -1 CF 2+Aij

i
which were evaluated by the steepest descent method ovsingjle inclusive distribution in_[25]. We
have introduced the following notations and functidns [19]

Aij =702 Wiy + Viytse) = O(L); (94)
g . i OxY oY

XT =l =00), X/ =G5 =008, x=" =000 (©9)

5? =% [Xg (sz,y + 1, y) + X (¢] ¢+ Y Z)] = O(), (96)

where, following from[(3B) and (39), we have evaluated theesponding order of magnitude of these
guantities in powers of the anomalous dimensignx ,/a;s. The solution is iterative with respect to
correctionsy andé;, which need the prior evaluation of the DLA squtidéi)j of the equations.
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B Iterative solution of the evolution equations

Let us first solve the equatioh (50). For the sake of simplidgitis much easier to solve the equivalent
equation:

Gy =206 —ard (G A3 C?) +a—bg { |61 Gs + GG + GG ©7)
— Bod |:G§22)G3 +G0Gy + G%)Gl] } + (2a — 3b + c)7g [(G1G2G3)— By G1G2Gs] .
One has to substitute the following in the I.h.s. of the eiguaf97):
3 2 2
GO =) GGGy, G =) GiGj.
Thus, after normalizing bngngGg, one finds,

(€)  —1)G1GaG
12G1G2Gs

by _ Cg’) (€1 + €2) + (Cg’l)23 —1)[3+ A2+ Az + Agg (98)

123
— a(10 + Yo+ ¥30) + 3aBo3)

while for the other terms in the r.h.s. of the same equatianfinus,

(C(Gg)j - 1)G1G2Gs 3
i Ly (2) Gi,éy @) vij @) cij
= (Coy =V 2 o B2+ A+ Ag |+C c?s
1%5G1G2G3 Ca, )<ZZ:; 2G; TRt A 23>+ G810 €03
= (C5) = 1) [B+ Ava + Arg + Dy — a(thr ¢ + Va0 + ¥s0) + 3007
+ & + o |+l + oy, (99)

The r.h.s. provides the following contribution

r.h.s.
2G1GaGs = g’fzg - an’f% (Y1, + 20 + P30 + G — Bovg) + (a —b) [Cgll(x%? + Y10+ Yoy
0

+ P3.0) + C(GZBS(X%‘% + 10+ Yo+ Y3e) + C(GZZ)S(X§3 + 1,0 + Yo+ P30)
= BB (CE), + €3+ CEL)| + (8b = 2a = &) (W + Yo + e — Boad).  (200)

1 23

After adding [98) and (99) and equating wifth (100) togethiéh wome algebra in between, one finds the
solution written in[(51). Following the same iterative pedare

QY =Y 010:Qs, QF = Qi G =Cf) G1GaGs,

for the quark jet evolution equation written [n {49), one has

(c5, —1) <A12 + As + Ags + 23: %éy &+ g2> (101)
i=1 ¢
— (Cgl)Q - 1) <A12 + Az + Aoz + 23: %—Q&/ + 5%2 + 5§2>
i=1 !
— (Cgl)g — 1) <A12 + 513 + 523 + 23: %Zéy + 5%3 + 5§3>
i=1 v
— (Cg% — 1) <A12 + 513 + 523 + 23: %Zéy + 5%3 + 5§3>
i=1 v
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CF G1G2G3

(3)
C Q1Q2Q3

3
o [1 - Z(%,@ + o+ 30+ G — 5073)]
+( 2L+ @+ + @) -

Finally by adding and subtracting@; + €2) in every termcx (Cg)] - 1) in the Lh.s. of[(I01) one finds
G3).

C Steepest descent evaluation: reminder from [25]

The evaluation of the integral representation by the swepescent method at small< 1 (or large
£ > 1) and very high energy” > 1 leads to the result,

G(f,y)%/\/(u,vkexp[ (x/f+y+ )#Jrv—%(u—w, (102)

sinh y — sinh v

(3)"

/7 coshvDetA(u,v)’

where

Nv,3) = 504y + )

with

DetA(p,v) = Bo(f +y + N)? [(M —v) COShucoshV—Fcosh,usinhy—sinh,usinhy} '

sinh® yi cosh v

The logarithmic derivatives of the spectrum giveriinl (65 €8) were derived froni (102) and it was also
shown that{(102) reproduces the Gaussian shape of theiirectlistribution near the huny,, .. ~ Y/2.
From [102), one has indeed,

Gl,y) ~

3 V2 2 3 (t—Y/2)
<7TV50[<€+?/+A)3/2—A3/2]> o <_\/50 EH N 2
103

where the MLLAY,,,,.. reads,

fmamwy 250 (\/Y+ \/X>

Settinga = 0 and X = 0 in the previous expressions one recovers the DLA resultigshndre needed for
subsection 2]4. The functions entering as a function.of) in (65) and[(66) are the following,

cosh psinh pcosh v — (u — v) coshv — sinh v

) = 104
Qp.v) (1 — v) cosh p cosh v + cosh psinh v — sinh p cosh v’ (104)
1. (1 — v) cosh p — sinh p

K = ——sinh 105
(:v) g SRV (1 — v) cosh p cosh v + cosh psinh v — sinh p cosh v’ (105)

3 1 (1 — v) cosh vsinh p + sinh v sinh p
L = —cothy — = 106
(:v) g COHHT S (1 — v) cosh p cosh v + cosh psinh v — sinh p cosh v’ (106)
C(p,v) = L(p,v) + tanhvcoth p (1 + K (u,v)) . (107)

The expressions for the two particle correlations folloanir(92) and[(93) [25],
1—09 i iy — §i
c? =14 Yo(eM +eM) = 0y (108)
& 1 + 2 cosh(u; —uj) + A (i, viy g, vj) + 67
N e)u'i _|_ e:u‘j

¢ =1+ =2 {C —1+ (b 109
Qij * Cr 3 ( 0 1 + cosh(p; — 1) (109)
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where,
2 sinh? ( 2’“)

3 + 4sinh? <“i;“j

5? = Bo7o ) (Q(ﬂu vi) + Q(/‘jv Vj))’ (110)

and

A (i, viy g, vi) = —avo [e’“ + " — sinh(p; — uj)(Qi — Q~]) + cosh p1 tanh s + cosh ps tanh v
— sinh y; tanh v; coth p; — sinh i tanh v; coth ;
+ sinh(u; — pj) < tanh v; coth 14;Q; — tanh vj coth ,uj@y)]
— Boo [cosh i — sinh p;C; + cosh p1j — sinh p1;C; + sinh(p; — ,uj)(C’Z-@Z- — C’ij)
+ cosh p; tanh v (1 + K;) + cosh pj tanh v (1 + K5)] . (111)

The solutions[(108) and (1D9) are the ones to be used in thér far the evaluations of the three-particle
correlations and will be directly inserted in the solutidgd) and[(5b) respectively.
C.1 Corrections&? €9 and eq, &

For the computation of these corrections, one only needskmthe DLA part of the logarithmic deriva-
tives of the one-particle distributiany; , = yoe/* andy; ,, = y0e™*i, such that after replacement [n_(54c)
and [58t) one finds,

. 11 . .
- = [ij (671 4+ e7H2 4 e7H3) 4 xH (1 4 b2 6#3)] 7 (112)
o 1 . .
- = [5(2] (€71 4 e7H2 4 e7H3) 4 Y (M 4 et e”f’)] , (113)
where 2
tanh £ et Q; — e Q; g N, Cé;
(= e _ua 114
= o 1+ 2cosh(ul 145) 2 X Cr Cé?) Xe (114)
ij
Z‘y tanh Hi— H’J e /J"LQ —e —Hj Q] Nij N Cé) 2] 115
Xy - _/80'70 1+ QCOSh(,uZ ,Uy) 2 ) Xy - _C_C 2) Xy7 ( )
ij
with ) N )
c? —1 @ gy e . 116
Gij * 1+ 2cosh(p; — pj)’ Qi + Cr 1+ 2cosh(p; — p15) (116)
Accordingly, replacing); = et andy; , = e * in (64€) and[(58e), one has
1
€1 = 7_ [Q (e—ul e M2y e—us) + Cy (e“l 4et2 6“3)] , (117)
0
1 7= -
€= — |:Cg (e_“1 +e M2 4 6_“3) + (y (e! el + 6“3)] , (118)
o

where(,, ¢ and(,, fy should be found from the DLA expression@) written in (38), forCy = N, in
a gluon jet and”4 = C'r in a quark jet. Introducing the parametrization jin £), one has respectively,

C, =1+ (€8, = 1)+ (5, —1) + (¢, - 1) (119)

L (e (e ) (e )

21+ cosh(py — p2) + cosh(uy — pg) + cosh(ug — ps)
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1 1
+ 5 )
21+ cosh(pg — p2) + cosh(uy — pg) + cosh(ug — ps)

and
CS?% = (681)2 o 1) + (C’g)‘s o 1) + <Cg2)s o 1) (120)
N, (Cé221)2 ) (681)3 > + (ngs a 1)
2]6’5 1+ cosh(py — p2) + coshg,ul — p3) + cosh(pg — p3)
4

2C% 1 + cosh(py — pg) + cosh(py — p3) + cosh(pg — p3)”
Thus, in order to gef, and(,, one should start froni (119,120) and make use of

O _ Oy _ g 2e"Qi—eliQy  Omi Oy _ g aeTMQi— Oy
or ot 0 2 oy oy 2
Therefore, everything is ready for the computation of
L 53 5(3) .(3) - 1 e
Co = C(3) Gi23,0? Cy (3 G123,y’ Co = 53) CQ1237£7 Cy = 3 CQ123,y' (121)
Gz G Q123 Q123
For instance,
2
XPCG, + ngc(Gl)g + XZ?’C(G2)3

1
6O 1) | e | ass) | 1
Gzt = XCCGu T XCCG1 FXE G T 57T cosh(p1 — p2) + cosh(u1 — p3) + cosh(pg — pi3)

5(2) 5(2) (2 _
(¢ —1) + (8 —1) + (e 1) cinh(is — g) <0u1 8#2)
- |- gl YH2
2 [1 + cosh (1 — pg) 4 cosh(u1 — ps) + cosh(pg — p3))”

ol ol

. Our  Ous Opz 8#3 ]
+ sinh(p — p3) < 2 20 ) + sinh(u2 — p3) < 51 8_€ |
1 1 sinh(si1 — pio) <% _ %)
2[1 + cosh(uy —a,ug) + (éosh(,ul us) + cosh(,uga— 13)) o ol ol
; _ gm 93 _ 9k _ 93
+ sinh(p; — p3) < 2 2 ) + sinh(u2 — p3) < 50 5% ) , (122)
and
5(2) 13 (2) 23(2)
9 e | gD | B Ne Xi*Cauy + Xe"Cay + Xi°Coy
Quast — Xt LQi Qu T 2CF 1+ cosh(py — p2) + cosh(ul u3) + cosh(ug — psg)
(2) 2 _ 5(2) _
N (¢6—1) + (cgn—1) + () - ) (s — ) (O Oz
; [sinhu - pa)
2CF [1 + cosh(py — p2) + cosh(u1 — p3) + cosh(pz — p3)] ot ot
. opr  Ous . Opa  Ous
= sinh(un = ps) { 5 = % > sinhlue =) | 7 = 55 _
L ! sinh(p1 — p2) <% - %>
2C% [1+ cosh(uy — pia) + cosh(py — pg) + cosh(pg — pr)]? | ot ot
- Opr Ous . Ope O3
+ sinh(u1 — ps) < 5% 5% > + sinh(pe — p3) 5% 2 )| (123)

For derivatives with respect tg it is enough to replacéby y in the previous expressions. In Fig.8, we
displaye; (41, 02, ¢3,Y") as a function of the suiin(x;22)| and the differencél; — ¢5) = In(xzy/z1)
for two fixed values ofs = In(1/z3) = 4.5, 5.5, 21 = x2 and fixed sun{¢; + ¢2) = | In(x;22)| = 10
and fixedY = 7.5. As expected, this correction decreases the correlatimay &om the hum region
and for harder patrticles.
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Y=7.5;A=0.1; Ln(x,/x,)=0 Y=7.5;A=0.1; |Ln(xx,)I=10
0.7 T T T T T 0.45 T T T

——— Ln(1x,)=45 0.4
0.6 3 1
— Ln(l/x3)=4.5

- - Ln(l/x3)=5.5

- - -Ln(lix)=55

0.5
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03r
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|Ln(x1x2)| Ln(lexl)

Figure 8: Correction; (¢1, {2, ¢3,Y") as afunction of; — ¢y = In(zo/x1) for {1 +42 = |In(x129)| = 10,
ls =1In(1/z3) = 4.5, 5.5, fixedY = 7.5 in the limiting spectrum approximatiok = 0.

C.2 Hump approximation

In this approximation, we consider the energy of the thretopa to be close to the maximum of the

single inclusive distribution ¢ — Y/2 |< o o« Y3/2 fori = 1,2, 3. In [25], it was demonstrated that,

0;~Y)2 G j~Y)2

1 1
Vi R (), iy R (-t ),

£~Y/2 3y — /4
A - — 124
2y+ 0’ (124)

for a, By, A = 0, which is DLA. In the same approximation one has the follayfor a, 5y # 0 and

A =0,

0 Y2 )
i~ 24 (i — pg)” — avo(2 + pi + ) — 28070, (125)
where )
Li,j~Y/2 b; — 1 L ;~Y /2 b + 4
(mi —py)* =9 <Tj> s pitp; o~ 3 <1 - Tj> : (126)
Moreover, )
Z"Zz"‘Y/22 EZ—E
6 = 55070(!% — 15)* = 2Bo0 < v j> , (127)

2 2
sinceyy (%) < (Zi;éj) , 01 was neglected in this approximation.
Applying the previous expansions fo (H3a-63d) dnd|(578-57s easy to find:

Ng., =0, (128a)
@3 _,_ 3¢ <§ B |ln(:E1:E2333)|> 1 o <§ b+ +g3>
Vo == U5 2 /ey ) Umo) e\ 3 % Y0, (128b)
G _ @ _ 1n(wz/w1)}2 [ln(x3/$1)}2 [1n(w3/w2)}2__ 650
Pe = Lo 8+9[1H(Q/Q0) ine/an] T lne/an]  Vamaay 2%
_3_a<5_2|1n(3:13:2:n3)|> 1
VBo In(Q/Qo) /) /In(Q/Qo)’

B G—0a\? (U= l\? (la—l3)\? 01 +0o+ L5
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N(Q) -1 3b § . ’111 1‘11‘2%3 ‘ 5 61 +€2 +€3
G =" VB

27 W(@Q/Qo) )m_ ‘3b<§‘ %

|In(z;z;) 1
50 (5 31“ (Q/Qo) > \/ln(Q/Qo

> 70, (128d)

Cg_)j_l-i- Y - e ) (128e)
R n(x;/x; n(x;x; 1
3+9 [111(62/@3)} ~2\/mian — 7 (5 3wy ) o o
v/In(Q/Qo)
1—b( €+é )’YO
—14 (128f)
3+9<Zi;€j) —25070—a<5 3hith >
N, |In 22| ]
[ c<>—1+ (b — a)y B bkl LN (128g)
@ Cp | @ \/ln (@Q/Q0) ) |
N, 1 b+ ¢
:1+C—F{c§;—1+z(b—am<5 3 ; )}
2 2
(3) ln(xg/:nl)] [ln x3/x1) ] [ln x3/x2) ] 650
DS =949 |———F—=| +9 - 128h
@ [IH(Q/QO) In Q/Qo In(Q/Qo) | BoIn(Q/Qo) (1280

9a <§ B |ln(:c1w2333)|>
2 In(Q/Qo) IH(Q/QO)

NS
01—0\?% (01 —05\2 ly—05\ 2 01+ 0o+0 _
=9+9< = 2) +9< = 3) +9< = 3) —6ﬂo’yo—9a<g - %)m (128i)
N cc(3) _ 3a <§ B |1n($1$2333)|> 1 128
@ Tzt 1T U \2 T @/ ) Vn@ian) (128)
_& (3) B 3a <§_fl+€2+€3> 1
- O3 G VB \2  In(Q/Qo) m(Q/Qo) |

D DLA solution of the 4-particle correlations

Below, we display the expressions related to subsettidni2.®e |.h.s. of the evolution equatidn {69),
we define

Ay = Ay — (AL — A1 4245) Ay — (A - A1 4341) Ay — (AR — ApdsAi) 4 (129)
— (A - A4z 4) 45— (A - A145) (Ag24> — AgAy) - (A - A,44) (Ag24> ~ Ay Ay)
— (A - Avay) (4R - A545) + (AF) - A145) A34, + (A%) — A1As) Ar Ay
+ (A - Ar4r) 4,45+ <A< )~ ApAg) AyAs + (A - As44) A1y
+ (Ag24> _ A3A4> AL Ay — AL Ay As A,

In the DLA solution [[70) of the equation (69), we have introdd the expressions:
H = (6 = 1)+ (€8 - 1)+ (¢ —1) + (¢ —1) + (¢ —1) + (¢ -1) . (a30)
Hy = (C%—1) + (CBh 1) + (¢ —1) + (cBh—1) + (¢ 1) (¢ -1)  @ay
(e 1) (e — 1)+ () - 1) (¢ 1) —2(e —1) —2(cf 1)

—9 (c'ﬁ) ~1) -2 (cgg) —1) =2 - 1) - 2(¢F 1),
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=1+ (65 1) + (¢ 1) + (€ -1) + (1) + (62 1) (6 1) oo
+ (c’éﬁ’ -1) (c'g) —1) + (e 1) (e - 1) = (e - 1) - (¢ —1)

— (e 1) = (¢ —1) - (¢ —1) - (¢ ).
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