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1 Introduction

The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromody-

namics (QCD) as the theory of strong interaction within the Standard Model of particle physics [2, 3].

Jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short dis-

tances [4,5].

The evolution of gluon and quark initiated jets is dominatedby soft gluon bremsstrahlung. Powerful

schemes, like the Double Logarithmic Approximation (DLA) and the Modified Leading Logarithmic Ap-

proximation (MLLA), which allow for the perturbative resummation of soft-collinear and hard-collinear

gluons before the hadronization occurs, have been developed over the past thirty years (for a review

see [6]). In the frame of high energy jets, one of the strikestpredictions of perturbative QCD (pQCD),

which follows as a consequence of Angular Ordering (AO) within the MLLA and the Local Parton

Hadron Duality (LPHD) hypothesis [7], is the existence of the hump-backed shape [8] of the inclu-

sive energy distribution of hadrons, later confirmed by experiments at colliders like the LEP [9, 10] and

the Tevatron [11]. Within the same formalism, the transverse momentum distribution, ork⊥-spectra of

hadrons produced inpp̄ collisions at center of mass energy
√
s = 1.96 TeV at the Tevatron [12], was well

described by MLLA [13] and next-to-MLLA (NMLLA) [14, 15] predictions inside the validity ranges

provided by such schemes, both supported by the LPHD. Thus, the study and tests of enough inclusive

observables like the inclusive energy distribution and theinclusive transverse momentumk⊥ spectra of

hadrons have shown that the perturbative stage of the process, which evolves from the hard scale or

leading parton virtualityQ ∼ E to the hadronization scaleQ0, is dominant. In particular, these issues

suggest that the hadronization stage of the QCD cascade do not affect pQCD predictions and therefore,

that the LPHD hypothesis is successful while treating one-particle inclusive observables.

The study of particle correlations in intrajet cascades, which are less inclusive observables, provide a

refined test of the partonic dynamics and the LPHD. In [16], the two-particle correlations inside quark

and gluon jets were first computed at DLA. In [17,18], this observable was computed for the first time at

MLLA for such particles, whose energy orx (energy fraction of the jet carried away by one parton) stays

close to the maximum of the one-particle distribution. In [19], the previous solutions were extended, at

MLLA, to all possible values ofx by exactly solving the QCD evolution equations. This observable was

measured by the OPAL collaboration in thee+e− annihilation at theZ0 peak, that is for
√
s = 91.2 GeV

at LEP [20]. Though the agreement with predictions presented in [19] turned out to be rather good for the

description of the data [20], a discrepancy still subsists pointing out a possible failure of the LPHD for

less inclusive observables. However, these measurements were redone by the CDF collaboration inpp̄

collisions at the Tevatron for mixed samples of quark and gluon jets [11]. The agreement with predictions

presented in [17, 18] turned out to be rather good, in particular for very soft particles (x ≪ 0.1) having

very close energy fractions (x1 ≈ x2). A discrepancy between the OPAL and CDF analysis showed up

and still stays unclear. That is why, the measurement of two-particle correlations at the LHC becomes

crucial.

By going one step beyond, in this paper we give predictions for three-particle correlations inside quark

and gluon jets. This observable together with two-particlecorrelations can be measured in equal footing

at the LHC. Such tests will provide further verifications of the LPHD for less inclusive observables

and shed more light on the role of confinement in jet evolution. Further issues on the importance of
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correlations versus single-particle distributions studies have been presented in [21,22].

The paper is organized as follows.

• in section 2 we recall the formalism of jet generating functionals and their evolution equations;

• the kinematics and the process for the inclusive productionof three particles inside the jet are

specified in subsection 2.1 and 2.1.1 respectively;

• in subsection 2.2, we obtain the MLLA exact system of integro-differential evolution equations for

the three-particle correlations and in subsection 2.3, thesingle logarithms (SLs) contributions are

obtained from the exact evolution equations;

• in subsection 2.4, we obtain the DLA solution of the evolution equations and study the shape and

overall normalization of this observable;

• in subsection 2.5 the evolution equations are solved iteratively and the solution are expressed in

terms of the logarithmic derivatives of the one-particle distribution and the two-particle correla-

tions;

• in subsection 2.6, we finally give the analytical predictions which will be displayed in order to

provide predictions for the Tevatron and the LHC;

• in subsection 2.7, the hump approximation is applied to thisobservable;

• in subsection 2.8, the region inx where the emission of three correlated particles becomes domi-

nant is discussed;

• in subsection 2.9, we give the analytical solution of the DLAfour-particle correlator and show

that including higher order corrections for differential higher rank correlators would become a

cumbersome task;

• in subsection 3, the predictions are displayed and the phenomenology is applied to the Tevatron

and the LHC;

• a conclusion summarizes this work; the appendices are written as complements of the main core

of the paper.

2 Formalism of the generating functional

A generating functionalZ(E,Θ; {u}) can be constructed [23] that describes the azimuth averagedparton

content of a jet of energyE with a given opening half-angleΘ; by virtue of the exact angular ordering

(MLLA), it satisfies the following integro-differential evolution equation [6]

d

d lnΘ
ZA (p,Θ; {u}) = 1

2

∑

B,C

∫ 1

0
dz Φ

B[C]
A (z)

αs

(

k2⊥
)

π
(

ZB

(

zp,Θ; {u}
)

ZC

(

(1− z)p,Θ; {u}
)

− ZA

(

p,Θ; {u}
)

)

; (1)
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in (1), z and(1 − z) are the energy-momentum fractions carried away by the two offspring in theA →
BC parton decay described by the standard one loop splitting functions [24]

Φq[g]
q (z) = CF

1 + z2

1− z
, Φg[q]

q (z) = CF
1 + (1− z)2

z
, (2)

Φq[q̄]
g (z) = TR

(

z2 + (1− z)2
)

, Φg[g]
g (z) = 2CA

(

1− z

z
+

z

1− z
+ z(1 − z)

)

, (3)

CA = Nc, CF = (N2
c − 1)/2Nc, TR = 1/2, (4)

whereNc is the number of colors;ZA in the integral in the r.h.s. of (1) accounts for 1-loop virtual

corrections, which exponentiate into Sudakov form factors. αs(q
2) is the running coupling constant of

QCD

αs(q
2) =

4π

4Ncβ0 ln
q2

Λ2
QCD

, (5)

whereΛQCD ≈ a few hundred MeV’s is the intrinsic scale of QCD, and

β0 =
1

4Nc

(11

3
Nc −

4

3
nfTR

)

(6)

is the first term in the perturbative expansion of theβ function,nf the number of light quark flavors.

If the radiated parton with 4-momentumk = (k0, ~k) is emitted with an angleΘ with respect to the

direction of the jet, one has (k⊥ is the modulus of the transverse trivector~k⊥ orthogonal to the direction

of the jet)k⊥ ≃ |~k|Θ ≈ k0Θ ≈ zEΘ whenz ≪ 1 or k⊥ ≈ (1 − z)EΘ whenz → 1, and a collinear

cutoff k⊥ ≥ Q0 is imposed.

In (1) the symbol{u} denotes a set ofprobing functions ua(k) with k the 4-momentum of a secondary

parton of typea. The jet functional is normalized to the total jet production cross section such that

ZA(p,Θ;u ≡ 1) = 1; (7)

for vanishingly small opening angle it reduces to the probing function of the single initial parton

ZA(p,Θ → 0; {u}) = uA(k ≡ p). (8)

To obtainexclusive n-particle distributions one takesn variational derivatives ofZA over u(ki) with

appropriate particle momenta,i = 1 . . . n, and setsu ≡ 0 afterwards;inclusive distributions are gener-

ated by taking variational derivatives aroundu ≡ 1. We introduce the n-particle differential inclusive

distribution, also known as parton densities, as [6]

x1 . . . xnD
(n)
A (x1, . . . , xn, Y ) = E1 . . . En

δn

δu(k1) . . . δu(kn)
ZA(k1, . . . , kn,Θ; {u(k)})

∣

∣

∣

∣

u=1

. (9)

Accordingly, we introduce the following notations for gluon and quark jetsA = G,Q, Q̄

A
(n)
1...n(z) ≡

x1
z
. . .

xn
z
D

(n)
A (

x1
z
, . . . ,

xn
z
, Y + ln z), A

(n)
1...n ≡ x1 . . . xnD

(n)
A (x1, . . . , xn, Y ), (10)

which we will use hereafter;xi corresponds to the Feynman energy fraction of the jet taken away by one

particle “i”. In the case of three-particle correlationsn = 3, the observable to be measured experimen-

tally reads

C(3)
A123

=
A

(3)
123

A1A2A3
.

3



2.1 Kinematics and variables

The probability of soft gluon radiation off a color charge (moving in thez direction) has the polar angle

dependence
sinΘ dΘ

2(1− cosΘ)
=
d sin(Θ/2)

sin(Θ/2)
≃ dΘ

Θ
;

therefore, we choose the angular evolution parameter to be

Y = ln
2E sin(Θ/2)

Q0
⇒ dY =

d sin(Θ/2)

sin(Θ/2)
; (11)

note that this choice accounts for finite anglesO(1) up to the full opening half-angleΘ = π, at which

YΘ=π = ln
2E

Q0
,

where2E is the center-of-mass annihilation energy of the processe+e− → qq̄. For small angles (11)

reduces to

Y ≃ ln
Q

Q0
, Θ ≪ 1,

d

dY
=

d

d lnΘ
, (12)

whereQ = EΘ, defined as the virtuality of the jet, is the maximal transverse momentum of a parton

inside the jet with opening half-angleΘ. Moreover, we make use of variables known from previous

works [19,25],

ℓ = ln
z

xi
, y = ln

xjEΘ1

Q0
, λ =

Q0

ΛQCD
, (13)

ℓi = ln
1

xi
, yj = ln

xjEΘ0

Q0
, ηij = ln

xi
xj
, Y = ℓi + yj + ηij . (14)

Since d
dy = d

d lnΘ1
, y could also be used as the evolution-time variable in forthcoming quark and gluon

jet evolution equations. Accordingly, the anomalous dimension, related to the coupling constant (5), can

be parametrized as follows

γ20(q
2) = 2Nc

αs(q
2)

π
⇒ γ20(ℓ+ y) =

1

β0(ℓ+ y + ηij + λ)
, (15)

such that,

• for one particle [6], the denominator in (15) is simplyℓ+ y + λ, with [26] ℓ = ln z
x , y = ln xEΘ

Q0
,

η = 0;

• for two-particle correlation [19,25],ℓ+ y + η12, with ℓ = ln z
x1

, y = ln x2EΘ1

Q0
, η12 = ln x1

x2
;

• for three-particle correlation,ℓ+ y+ η13, with ℓ = ln z
x1

, y = ln x3EΘ1

Q0
, η13 = η12 + η23 = ln x1

x3
.

2.1.1 Integration bounds for three-particle evolution equations

The production of three hadrons is displayed in Fig.1 after aquark or a gluon (A) jet of energyE,

half opening angleΘ0 and virtualityQ = EΘ0 has been produced in a high energy collision. The

kinematical variable characterizing the process is given by the transverse momentumk⊥ = zEΘ1 ≥ Q0

(or (1− z)EΘ1 ≥ Q0) of the first splittingA→ BC. The parton C fragments into three offspring such
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Figure 1: Three-particle yield and angular ordering insidea high energy jet.

that three hadrons of energy fractionsx1, x2 andx3 can be triggered from the same cascade following

the condition:

Θ0 ≥ Θ1 ≥ Θ2 ≥ Θ3, (16)

which arises from the exact AO in MLLA [6]. In particular, theconditionΘ0 ≥ Θ1 is kinematical rather

than supported by the AO; it states that every collinear gluon is emitted inside the jet of half opening

angleΘ0. The two variables entering the evolution equations arez andΘ1, such that

x1 ≤ z ≤ 1 ⇒ 0 ≤ ℓ ≤ ℓ1. (17)

From (16) and the initial condition at thresholdx3EΘ0 ≥ x3EΘ1 ≥ x3EΘ3 ≥ Q0, one has

Q0

x3E
≤ Θ1 ≤ Θ0 ⇒ 0 ≤ y ≤ y3. (18)

2.2 From single inclusive distribution and two-particle correlation to three-particle cor-
relation

The evolution equations satisfied by (9) are derived from theMLLA master equation for the generating

functionalZA(u(ki)) (1). In this case, one takes the firstδZA

δu(k1)
, second δ2ZA

δu(k1)δu(k2)
, and finally third

δ3ZA

δu(k1)...δu(k3)
functional derivatives ofZA(u(ki)) over the probing functionsu(ki) so as to obtain the

system of evolution equations for 3-particle correlations. Following from (1), after applying the oper-

ator δ3

δu(k1)...δu(k3)
to both members of the equation, according to (9) and (10) together with the initial

condition (7), it is straightforward to get the coupled system of evolution equations

Q(3)
y =

∫ 1

x1

dz
αs

π
Φg
q(z)

[

G(3)(z) +
(

Q(3)(1− z)−Q(3)
)

+G
(2)
12 (z)Q3(1− z) +G3(z)Q

(2)
12

+ G
(2)
13 (z)Q2(1− z) +G2(z)Q

(2)
13 +G

(2)
23 (z)Q1(1− z) +G1(z)Q

(2)
23

]

, (19a)

G(3)
y =

∫ 1

x1

dz
αs

π
Φg
g(z)

[

G(3)(z)− zG(3) +G
(2)
12 (z)G3(1− z) +G

(2)
13 (z)G2(1− z)

+ G
(2)
23 (z)G1(1− z)

]

+

∫ 1

x1

dz
αs

π
nfΦ

q
g(z)

[(

2Q(3)(z)−G(3)
)

+ 2Q
(2)
12 (z)Q3(1− z)

+ 2Q
(2)
13 (z)Q2(1− z) + 2Q

(2)
23 (z)Q1(1− z)

]

. (19b)

The l.h.s. of the equations (19a) and (19b) can be written in the convenient form

Â(3) = A(3) −A1A2A3 − (A
(2)
12 −A1A2)A3 − (A

(2)
13 −A1A3)A2 − (A

(2)
23 −A2A3)A1, (20)
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whereA = G,Q, Q̄ is the leading parton of the jet. Moreover, we have introduced the notationsA(n)
1...n =

A
(n)
1...n(1), where

A
(n)
1...n ≡ A

(n)
1...n(1) = x1 . . . xnD

(n)(x1, . . . , xn, Y ),

for the sake of simplicity. The evolution equations for the single inclusive distribution and the two-

particle correlation are written in [19] in the form

Qy =

∫ 1

x1

dz
αs

π
Φg
q(z)

[

(

Q(1− z)−Q
)

+G(z)

]

, (21a)

Gy =

∫ 1

x1

dz
αs

π

[

Φg
g(z)

(

G(z)− zG
)

+ nf Φq
g(z)

(

2Q(z)−G
)

]

, (21b)

and

(Q(2) −Q1Q2)y =

∫ 1

x1

dz
αs

π
Φg
q(z)

[

G(2)(z) +
(

Q(2)(1− z)−Q(2)
)

+
(

G1(z)−Q1

)(

Q2(1− z)−Q2

)

+
(

G2(z) −Q2

)(

Q1(1− z)−Q1

)

]

, (22a)

(G(2) −G1G2)y =

∫ 1

x1

dz
αs

π
Φg
g(z)

[

(

G(2)(z)− zG(2)
)

+
(

G1(z) −G1

)(

G2(1− z)−G2

)

]

+

∫ 1

x1

dz
αs

π
nfΦ

q
g(z)

[

2
(

Q(2)(z)−Q1(z)Q2(z)
)

−
(

G(2) −G1G2

)

+
(

2Q1(z)−G1

)(

2Q2(1− z)−G2

)

]

, (22b)

respectively. Making use of the equations (21a,21b) and (22a,22b), one can then construct the total

derivatives[A1A2A3]y,
[

(A
(2)
12 −A1A2)A3

]

y
,
[

(A
(2)
13 −A1A3)A2

]

y
,
[

(A
(2)
23 −A2A3)A1

]

y
as they ap-

pear in (20), which are to be subtracted, term by term from thesystem of equations (19a,19b). Therefore,

we get the equivalent system for the three-particle correlations inside quark and gluon jets:

Q̂(3)
y =

∫ 1

x1

dz
αs

π
Φg
q(z)

[

G(3)(z) +
(

Q(3)(1− z)−Q(3)
)

(23a)

+
(

Q
(2)
12 (1− z)−Q

(2)
12

)

(G3(z)−Q3) +
(

G
(2)
12 (z)−Q

(2)
12

)

(Q3(1− z)−Q3)

+
(

Q
(2)
13 (1− z)−Q

(2)
13

)

(G2(z)−Q2) +
(

G
(2)
13 (z)−Q

(2)
13

)

(Q2(1− z)−Q2)

+
(

Q
(2)
23 (1− z)−Q

(2)
23

)

(G1(z)−Q1) +
(

G
(2)
23 (z)−Q

(2)
23

)

(Q1(1− z)−Q1)

+ ((Q1 −G1(z)) (Q2(1− z)−Q2) + (Q2 −G2(z)) (Q1(1− z)−Q1))Q3

+ ((Q1 −G1(z)) (Q3(1− z)−Q3) + (Q3 −G3(z)) (Q1(1− z)−Q1))Q2

+ ((Q2 −G2(z)) (Q3(1− z)−Q3) + (Q3 −G3(z)) (Q2(1− z)−Q2))Q1] ,

Ĝ(3)
y =

∫ 1

x1

dz
αs

π
Φg
g(z)

[(

G(3)(z)− zG(3)
)

+
(

G
(2)
12 (z) −G

(2)
12

)

(G3(1− z)−G3) (23b)

+
(

G
(2)
13 (z)−G

(2)
13

)

(G2(1− z)−G2) +
(

G
(2)
23 (z)−G

(2)
23

)

(G1(1− z)−G1)

+ (G1 −G1(z))(G2(1− z)−G2)G3 + (G1 −G1(z))(G3(1− z)−G3)G2

+ (G2 −G2(z))(G3(1− z)−G3)G1] +

∫ 1

x1

dz
αs

π
nfΦ

q
g(z)

[(

2Q(3)(z)−G(3)
)

+ 2
(

Q
(2)
12 (z)−G

(2)
12

)

(Q3(1− z)−G3) + (2Q1(z)Q2(z)−G1G2)G3

+ 2
(

Q
(2)
13 (z)−G

(2)
13

)

(Q2(1− z)−G2) + (2Q1(z)Q3(z)−G1G3)G2

6



+ 2
(

Q
(2)
23 (z)−G

(2)
23

)

(Q1(1− z)−G1) + (2Q2(z)Q3(z)−G2G3)G1

+ (G1 − 2Q1(z))(2Q2(1− z)−G2)G3 + (G1 − 2Q1(z))(2Q3(1− z)−G3)G2

+ (G2 − 2Q2(z))(2Q3(1− z)−G3)G1] .

The system of evolution equations (23a,23b), which appearsas a consequence of the exact AO in intra-jet

cascades, provides the complete theoretical picture of thethree-particle correlations as a function ofxi
and the characteristic hardness of the jetQ; this is the first new result of this paper. However, since these

equations could only be solved numerically, we will extractthe SLs contributionsO(
√
αs) in order to

provide an approximated analytical solution in the following.

2.3 Approximate evolution equations

Let us start with equation (23a). We proceed to cast all SLs contributions corresponding to hard-collinear

parton splittings in the shower. In the hard parton fragmentation region one hasz ∼ (1−z) ∼ 1, such that

the second contribution in (23a) can be approximated through a Taylor series forln z ∼ ln(1− z) ≪ ℓ1,

written in the appendix A. Therefore, one obtains the simplified system of evolution equations

Q̂(3)
y =

∫ 1

x1

dz
αs

π
Φg
q(z)G

(3)(z), (24)

Ĝ(3)
y =

∫ 1

x1

dz
αs

π
(1− z)Φg

g(z)G
(3)(z) +

∫ 1

x1

dz
αs

π
nfΦ

q
g(z)

[(

2Q(3) −G(3)
)

+ 2
(

Q
(2)
12 −G

(2)
12

)

(25)

× (Q3 −G3) + (2Q1Q2 −G1G2)G3 + 2
(

Q
(2)
13 −G

(2)
13

)

(Q2 −G2) + (2Q1Q3 −G1G3)G2

+ 2
(

Q
(2)
23 −G

(2)
23

)

(Q1 −G1) + (2Q2Q3 −G2G3)G1 + (G1 − 2Q1)(2Q2 −G2)G3

+ (G1 − 2Q1)(2Q3 −G3)G2 + (G2 − 2Q2)(2Q3 −G3)G1] ,

where we have kept all terms of orderO(
√
αs), which contribute to MLLA. In addition, from the DLA

relationZA = Z
CA/Nc

G [27], and Eqs.(9-10), one has the useful expressions for thesingle inclusive

distribution, two- and three-particle correlations:

Qi =
CF

Nc
Gi, Q

(2)
ij =

CF

Nc
G

(2)
ij +

CF

Nc

(

CF

Nc
− 1

)

GiGj , i 6= j, (26)

Q(3) =
CF

Nc
G(3) +

CF

Nc

(

CF

Nc
− 1

)

(

G
(2)
12 G3 +G

(2)
13 G2 +G

(2)
23 G1

)

+
CF

Nc

(

CF

Nc
− 1

)(

CF

Nc
− 2

)

× G1G2G3, (27)

which in turn can be replaced in (25). The two expressions written in (26) are known from previous

works at DLA [16, 27], while (27) will be used for the first timein this context. After integrating over

the regular part of the splitting functions (2), (3) and (4),one obtains the integro-differential system of

equations (η13 = η12 + η23),

Q̂(3)
y =

CF

Nc

∫ ℓ1

0
dℓγ20(ℓ+ y3)G

(3)(ℓ, y3; η13)−
3

4

CF

Nc
γ20(ℓ1 + y3)G

(3)(ℓ1, y3; η13), (28)

Ĝ(3)
y =

∫ ℓ1

0
dℓγ20(ℓ+ y3)G

(3)(ℓ, y3; η13)− aγ20(ℓ1 + y3)G
(3)(ℓ1, y3; η13) + (a− b)γ20(ℓ1 + y3)(29)

×
[(

G
(2)
12 (ℓ1, y3 + η23; η12)−G1(ℓ1, y3 + η13)G2(ℓ1 + η12, y3 + η23)

)

G3(ℓ1 + η13, y3)

+
(

G
(2)
13 (ℓ1, y3; η13)−G1(ℓ1, y3 + η13)G3(ℓ1 + η13, y3)

)

G2(ℓ1 + η12, y3 + η23)

7



+
(

G
(2)
23 (ℓ1 + η12, y3; η23)−G2(ℓ1 + η12, y3 + η23)G3(ℓ1 + η13, y3)

)

G1(ℓ1, y3 + η13)
]

+ (a− c)γ20(ℓ1 + y3)G1(ℓ1, y3 + η13)G2(ℓ1 + η12, y3 + η23)G3(ℓ1 + η13, y3),

with the following hard constants,

a(nf ) =
1

4Nc

[

11

3
Nc +

4

3
nfTR

(

1− 2
CF

Nc

)]

nf=3
= 0.935, (30)

b(nf ) =
1

4Nc

[

11

3
Nc −

4

3
nfTR

(

1− 2
CF

Nc

)2
]

nf=3
= 0.915, (31)

c(nf ) =
1

4Nc

[

11

3
Nc +

4

3
nfTR

(

1− 2
CF

Nc

)3
]

nf=3
= 0.917, (32)

wherenf = 3 corresponds to the number of light active flavors of quarksu, d, s. As an example of such

procedure, one could write the example,

a(nf ) =

∫ 1

0
dz

[

(1− z)
(

2− z(1− z)
)

+
nfTR
2CA

(

z2 + (1− z)2
)

(

1− 2
CF

Nc

)]

.

The first integral terms of the equations in (28) and (29) are of classical origin and therefore, universal.

Corrections∝ −3
4 , a, (a − b) and(a − c), which areO(

√
αs) suppressed, better account for energy

conservation at each vertex of the splitting process, as compared with the DLA. Notice that the form of

the quark initiated jet equation (28) is universal at MLLA (see (80) and (82 in the appendix A.1 for the

single inclusive distribution and two-particle correlation respectively), that is, invariant with respect to

the number of particles considered in the cascade. In the equation for the gluon initiated jet (29), the

first and second constantsa(nf ) andb(nf ) were obtained in the frame of the single inclusive distribution

and two-particle correlations respectively [17, 18]. The third constantc(nf ) appears in this paper for

the first time for the three-particle correlation. In particular, notice that a certain recurrency shows up

in the coefficients combining the colour factors(−1)n−1
(

1− 2CF

Nc

)n
, as a function of the numbern of

particles considered in the shower.

2.4 DLA solution of the evolution equations

In this subsection we compute the leading order DLA contributions in order to provide general features

concerning the the shape and overall normalization of three-particle correlations. This procedure is

equivalent to cast the leading order (LO) solution of the equations (28,29). We differentiate (28) and

(29) with respect to “ℓ”, such that after setting hard corrections∝ 3/4, a, b, c = 0, the MLLA evolution

equations are reduced to the new DLA compact differential equation

[

Ã(3)
]

ℓy
=
CA

Nc
γ20G

(3), (33)

with
[

Â(3)
]

ℓy
=
{[(

C(3)
A123

− 1
)

−
(

C(2)
A12

− 1
)

−
(

C(2)
A13

− 1
)

−
(

C(2)
A23

− 1
)]

A1A2A3

}

ℓy
, (34)

after having setA(3) = C(3)
A123

A1A2A3 for the three-particle correlator andA(2)
ij = C(2)

Aij
AiAj for the two-

particle correlator. We fix the anomalous dimension to the characteristic hardness of the jetQ ≈ EΘ0

8



(γ20(EΘ0) = const) and solve this equation iteratively by derivating the r.h.s. of (34) with respect toℓ

andy, such that the solution of (33) reads
(

Ċ(3)
A123

− 1
)

−
(

Ċ(2)
A12

− 1
)

−
(

Ċ(2)
A13

− 1
)

−
(

Ċ(2)
A23

− 1
)

(35)

=
Nc

CA

(

Ċ(2)
A12

− 1
)

+
(

Ċ(2)
A13

− 1
)

+
(

Ċ(2)
A23

− 1
)

2 + ∆̃12 + ∆̃13 + ∆̃23

+
N2

c

C2
A

1

2 + ∆̃12 + ∆̃13 + ∆̃23

,

which have been written in terms of the logarithmic derivatives of the one-particle spectrum,

∆̃ij = γ−2
0

(

ψAi,ℓψAj ,y + ψAi,yψAj ,ℓ

)

, ψAi,ℓ =
1

Ai

∂Ai

∂ℓ
, ψAi,y =

1

Ai

∂Ai

∂y
(36)

and the DLA two-particle correlator [6,16] (for a review seealso [28])

Ċ(2)
Aij

− 1 =
Nc

CA

1

1 + ∆ij
. (37)

The dot overC(n) differentiates the DLA correlators from the MLLA correlators obtained below. In DLA

however, since the single inclusive distribution satisfiesQ = CF

Nc
G [27], one has

ψQi,ℓ = ψGi,ℓ ≡ ψi,ℓ, ψQi,y = ψGi,y ≡ ψi,y.

That is why, we will use the much simplest notationψGi,ℓ = ψi,ℓ, ψGi,y = ψi,y. It is worth giving the

order of magnitude of some quantities that will be considered in forthcoming calculations. In DLA, the

one-particle inclusive distribution can be written asAi(ℓ, y) ∝ exp
(

2γ0
√
ℓy
)

asymptotically for fixed

running couplingγ0 = const [27]. Though the solution with fixed coupling constant provides general

features of the single inclusive distribution, it is not enough for the description of a more realistic picture

at colliders. However, from its simplicity, it can be used togive the order of magnitude of terms involved

in the solution of the DLA and MLLA evolution equations. Therefore, making use of (36), one has

ψAi,ℓ = O(γ0), ψAi,y = O(γ0), ψAi,ℓℓ = O(γ20), ψAi,ℓy = O(γ20), ψAi,yy = O(γ20), (38)

∆̃ij = O(1), ∆̃ij,ℓ = O(γ20), ∆̃ij,y = O(γ20), (39)

whereψAi,ℓℓ, ψAi,ℓy andψAi,yy are double derivatives ofψAi
= lnAi(ℓ, y). The DLA solution (35)

describes the following picture: the first term(= −1) in the l.h.s. translates the independent or decor-

related emission of three hadrons in the shower like depicted by Fig.2a. After inserting the two-particle

correlator (37) in the l.h.s. of (35), terms∝ Nc

CA
correpond to the case where two partons are correlated

inside the same subjet, while the other one is emitted independently from the rest like in Fig.2b. Next, re-

placing (37) in the r.h.s. of (35) one obtains a contribution∝ N2
c

C2

A

described by Fig.2c, where two partons

are emitted independently inside the same subjet. The last term∝ N2
c

C2

A

depicted by Fig.2d, involves three

particles strongly correlated inside the same partonic shower and corresponds to the cumulant of genuine

correlations. Actually, this interpretation has been given after computing the color factors of such Feyn-

man diagrams describing the process, normalized byC3
A in the end. Notice that diagrams displayed in

Fig.2c and Fig.2d present the same color factors but different Lorentz structure. In both cases, the DLA

strong AOΘ ≫ Θ′ ≫ Θ′′ and strong energy orderingx1 ≫ x2 ≫ x3 are necessary conditions satisfied

by (33) [29].
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x1 x2
x3

x

x1

x3
x1

x2

x3

x3
x2

x1

2

a b c d
A AA A

Figure 2: Three particles emitted inside the shower with color factors for the square of the amplitudes:

C3
A, C2

ANc, CAN
2
c andCAN

2
c for a, b, c and d respectively.

Performing the steepest descent evaluation of the DLA single inclusive distribution from an integral

representation, which was written in Mellin space in the form [16,27],

G(ℓ, y) = (ℓ+ y + λ)

∫∫

dωdν

(2πi)2
eωℓ+νy

∫ ∞

0

ds

ν + s

(

ω(ν + s)

(ω + s)ν

)1/β0(ω−ν)

e−λs, Q =
CF

Nc
G. (40)

and which accounts for the running of the couplingαs, the energy of most particles inside the jet was

proved to be close to the maximum of the distribution, which shapes like a Gaussian in this region [27],

Ai(ℓi, Y ) ≃ exp

[

− 3√
β0

(ℓi − ℓmax)
2

Y 3/2

]

, ℓmax ≈ Y

2
. (41)

From this method [16], the expressions of the logarithmic derivative of the one particle distribution were

written as,

ψi,ℓ(µi, νi) = γ0e
µi , ψi,y(µ, ν) = γ0e

−µi . (42)

such that∆ij and the correlator were given in the form [16],

∆ij = 2cosh(µi − νj), Ċ(2)
Aij

= 1 +
Nc

CA

1

1 + 2 cosh(µi − µj)
(43)

respectively, where(µi, νi) were related to(ℓi, yi) through the 2x2 non-linear system of equations [16],

yi − ℓi
yi + ℓi

=
(sinh 2µi − 2µi)− (sinh 2νi − 2νi)

2(sinh2 µi − sinh2 νi)
,

sinh νi√
λ

=
sinhµi√
ℓi + yi + λ

. (44)

Therefore, the DLA three-particle correlator reads in thisapproximation

Ċ(3)
A123

= 1 +
(

Ċ(2)
A12

− 1
)

+
(

Ċ(2)
A13

− 1
)

+
(

Ċ(2)
A23

− 1
)

(45)

+
Nc

2CA

(

Ċ(2)
A12

− 1
)

+
(

Ċ(2)
A13

− 1
)

+
(

Ċ(2)
A23

− 1
)

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)

+
N2

c

2C2
A

1

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)
.

with Ċ(2)
Aij

extracted from (43). Taking| ℓi − ℓmax |≪ σ ∝ Y 3/2 for i = 1, 2, 3, one has in this

approximation (see appendix C.2)

∆ij ≈ 2 + 9

(

ℓi − ℓj
Y

)2

= 2 + 9

[

ln(xj/xi)

ln(Q/Q0)

]2

, (46)
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so that,

∆12 +∆13 +∆23 ≈ 6 + 9

(

ℓ1 − ℓ2
Y

)2

+ 9

(

ℓ1 − ℓ3
Y

)2

+ 9

(

ℓ2 − ℓ3
Y

)2

= 6 + 9

[

ln(x2/x1)

ln(Q/Q0)

]2

+ 9

[

ln(x3/x1)

ln(Q/Q0)

]2

+ 9

[

ln(x3/x2)

ln(Q/Q0)

]2

. (47)

Therefore, the shape of the three-particle correlator can be expected to be quadratic as a function of the

difference(ℓi − ℓj), as for the two-particle correlator. Thus, the correlator is strongest when particles

have the same energyx1 = x2 = x3.

Moreover, the decreasing behavior of the correlator as one parton gets much harder than the others

xi ≫ xj shows that QCD coherence effects dominate this region of thephase space as interferences

between such gluons occur. New kinds of contributions like the one in the first term of the r.h.s. of (35)

appear in this context.

The overall normalization of then-particle correlator is fixed by that of the same rank multiplicity-

correlator determining the multiplicity fluctuations inside the jet [16],

C(k)
A (x1, . . . , xk) ≤

〈n(n− 1) . . . (n − k + 1)〉
〈n〉k

.

Then, one has

C(2)
A (x1, x2)− 1 ≤ Nc

3CA
, C(3)

A (x1, x2, x3)− 1 ≤ Nc

CA
+

N2
c

4C2
A

. (48)

These bounds can also be obtained by setting∆(xi, xj) = 2 (for xi = xj) in (37) and (35) respectively.

Since DLA neglects the energy balance, it is not realistic and does not provide the real physical picture

of any jet process in the frame of jet calculus.

2.5 Iterative solution of the evolution equations

As we can see, the computation of three-particle correlations requires a mastering knowledge of the

one-particle inclusive energy distribution and two-particle correlations. The behavior of the two-particle

correlators as shown by these solutions was proved to be quadratic as a function of(ℓi−ℓj) and increasing

as a function of(ℓi+ ℓj) like in the Fong-Webber approximation [17,18]. However, the solutions (92,93)

(see appendix A.1) were shown to better account for soft gluon coherence effects, by describing the

flatting of the slopes as (ℓi + ℓj) increases. In [25], the solution was obtained by the steepest descent

evaluation of the spectrumGi(ℓ, y), while in [19], the evaluation was performed by taking the expression

of Gi(ℓ, y) given by (89) in the appendix A.1. In [19], the solution of theevolution equations for two-

particle correlation were obtained from the differential version of the equations (90,91) overℓ andy

written in the appendix A.1. Therefore, in this subsection,we will make some transformations in order

to simplify this cumbersome task without adding further information. In the appendix A.1, we briefly

summarize what should be known in order to complete the solution of the evolution equations for the

three-particle correlations.

Differentiating (28) and (29) with respect to“ℓ”, one has the differential system of evolution equations
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for three-particle correlations,

Q̂
(3)
ℓy =

CF

Nc
γ20G

(3) − 3

4

CF

Nc
γ20

(

G
(3)
ℓ − β0γ

2
0G

(3)
)

, (49)

Ĝ
(3)
ℓy = γ20G

(3)−aγ20
(

G
(3)
ℓ −β0γ20G(3)

)

+(a− b)γ20

{[(

G
(2)
12 −G1G2

)

G3 (50)

+
(

G
(2)
13 −G1G3

)

G2 +
(

G
(2)
23 −G2G3

)

G1

]

ℓ
−β0γ20

[(

G
(2)
12 −G1G2

)

G3

+
(

G
(2)
13 −G1G3

)

G2 +
(

G
(2)
23 −G2G3

)

G1

]}

+(a−c)γ20
[

(G1G2G3)ℓ−β0γ20G1G2G3

]

,

which is written in this paper for the first time. The equation(50) is self-contained and can be solved

iteratively like (33). For this purpose, one setsG(3) = C
(3)
G123

G1G2G3 andG(2)
ij = C

(2)
Gij
GiGj in the

left and right hand sides of (50), such that the solution obtained in the appendix B can be written in the

compact form

C(3)
G123

− 1 =
(

C(2)
G12

− 1
)

F
(2)
12 +

(

C(2)
G13

− 1
)

F
(2)
13 +

(

C(2)
G23

− 1
)

F
(2)
23 + F

(3)
123, (51)

where,

F
(2)
ij = 1 +

N
(2)
Gij

D
(2)
G

, F
(3)
123 =

N
(3)
G

D
(3)
G

, (52)

with

N
(2)
Gij

= 1− b
(

ψ1,ℓ + ψ2,ℓ + ψ3,ℓ − β0γ
2
0

)

− aζℓ + (a− b)χij
ℓ + ξij1 + δij2 − ǫ1 − ǫ2, (53a)

D
(2)
G = 2 +∆12 +∆13 +∆23 + aζℓ + 2aβ0γ

2
0 + ǫ1 + ǫ2, (53b)

N
(3)
G = 1− c

(

ψ1,ℓ + ψ2,ℓ + ψ3,ℓ − β0γ
2
0

)

− aζℓ + (a− b)(χ12
ℓ + χ13

ℓ + χ23
ℓ ) + (ξ121 + δ122 )(53c)

+ (ξ131 + δ132 ) + (ξ231 + δ232 )− ǫ1 − ǫ2,

D
(3)
G = D

(2)
G = 2 +∆12 +∆13 +∆23 + aζℓ + 2aβ0γ

2
0 + ǫ1 + ǫ2. (53d)

The solution (51) can be checked to recover the DLA result (35) inside a gluon jet, that is forCA = Nc.

Since DLA neglects recoil effects at each splitting inside the cascade, one should expect the DLA three-

particle correlation to be much larger than MLLA predictions and therefore to overestimate the data. We

introduce the following notations and give the order of magnitude of each contribution following from

(38) and (39),

ζ = ln Ċ(3)
G123

, ζℓ =
Ċ(3)
G123,ℓ

Ċ(3)
G123

= O(γ20), ζy =
Ċ(3)
G123,y

Ċ(3)
G123

= O(γ20), (54a)

χij
ℓ =

Ċ(2)
Gij ,ℓ

Ċ(2)
Gij

= O(γ20), χij
y =

Ċ(2)
Gij ,y

Ċ(2)
Gij

= O(γ20), (54b)

ξij1 =
1

γ20

[

χij
ℓ (ψ1,y + ψ2,y + ψ3,y) + χij

y (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ)
]

= O(γ0), (54c)

δij2 =
1

γ20

(

χij
ℓ χ

ij
y + χij

ℓ,y

)

= O(γ20), (54d)

ǫ1 =
1

γ20
[ζℓ(ψ1,y + ψ2,y + ψ3,y) + ζy(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ)] = O(γ0), (54e)

ǫ2 =
1

γ20
(ζℓζy + ζℓ,y) = O(γ20). (54f)
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The solution of the gluon evolution equation for the correlator can be either obtained numerically by

solving (50) or by performing the evaluation from the previous solution (51). However, in this paper,

we will directly compute the solution (51) from the steepestdescent method introduced in [25] and

make some approximations in subsection 2.6. Accordingly, the solution of (49) is also obtained in

the appendix B by settingQ(3) = C
(3)
Q123

Q1Q2Q3 andQ(2)
ij = C

(2)
Qij
QiQj in the l.h.s. of (49) and

G(3) = C
(3)
G123

G1G2G3 in the r.h.s. of the same equation, such that,

C(3)
Q123

− 1 =
(

C(2)
Q12

− 1
)

F̃
(2)
12 +

(

C(2)
Q13

− 1
)

F̃
(2)
13 +

(

C(2)
Q23

− 1
)

F̃
(2)
23 + F̃

(3)
123, (55)

where,

F̃
(2)
ij = 1 +

N
(2)
Qij

D
(2)
Q

, F̃
(3)
123 =

N
(3)
Q

D
(3)
Q

, (56)

with

N
(2)
Qij

= ξ̃ij1 + δ̃ij2 − ǫ̃1 − ǫ̃2, (57a)

D
(2)
Q = ∆̃12 + ∆̃13 + ∆̃23 +

∑

i

Qiℓy

γ20Qi
+ ǫ̃1 + ǫ̃2, (57b)

N
(3)
Q =

CF

Nc
C(3)
G123

[

1− 3

4

(

ψ1,ℓ + ψ2,ℓ + ψ3,ℓ + ζℓ − β0γ
2
0

)

]

G1G2G3

Q1Q2Q3
+ (ξ̃121 + δ̃122 ) (57c)

+ (ξ̃131 + δ̃132 ) + (ξ̃231 + δ̃232 )− ǫ̃1 − ǫ̃2,

D
(3)
Q =D

(2)
Q = ∆̃12 + ∆̃13 + ∆̃23 +

∑

i

Qiℓy

γ20Qi
+ ǫ̃1 + ǫ̃2, (57d)

where one find the list of corrections,

ζ̃ = ln Ċ(3)
Q123

, ζ̃ℓ =
Ċ(3)
Q123,ℓ

Ċ(3)
Q123

= O(γ20), ζ̃y =
Ċ(3)
Q123,y

Ċ(3)
Q123

= O(γ20), (58a)

χ̃ij
ℓ =

Ċ(2)
Qij ,ℓ

Ċ(2)
Qij

= O(γ20), χ̃ij
y =

Ċ(2)
Qij ,y

Ċ(2)
Qij

= O(γ20), (58b)

ξ̃ij1 =
1

γ20

[

χ̃ij
ℓ (ψQ1,y + ψQ2,y + ψQ3,y) + χ̃ij

y (ψQ1,ℓ + ψQ2,ℓ + ψQ3,ℓ)
]

= O(γ0), (58c)

δ̃ij2 =
1

γ20

(

χ̃ij
ℓ χ̃

ij
y + χ̃ij

ℓ,y

)

= O(γ20), (58d)

ǫ̃1 =
1

γ20

[

ζ̃ℓ(ψQ1,y + ψQ2,y + ψQ3,y) + ζ̃y(ψQ1,ℓ + ψQ2,ℓ + ψQ3,ℓ)
]

= O(γ0), (58e)

ǫ̃2 =
1

γ20

(

ζ̃ℓζ̃y + ζ̃ℓ,y

)

= O(γ20). (58f)

The order of magnitude of these terms follows from (38) and (39). Setting all corrections to zero, one

recovers the DLA solution (35) forCA = CF . The solutions (51) and (55) of the evolution equations en-

tangle corrections of orderO(γ0) andO(γ20), which are MLLA and NMLLA respectively. Furthermore,

every term in (51) and (55) can be associated to a Feynman diagram of Fig.2 as was explained in subsec-

tion 2.4. The functionsF (3)
123 andF̃ (3)

123 in (51) and (55) correspond respectively to the cumulant of genuine

correlations associated to the process displayed in Fig.1 and Fig.2d. These contributions, (54a-54f) and

(58a-58f) are small corrections arising from the iterativesolution of the evolution equations because one
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takes the derivatives over the functionsζ = ln Ċ(3)
G123

, ζ̃ = ln Ċ(3)
Q123

andχij = ln Ċ(2)
Gij
, χ̃ij = ln Ċ(2)

Qij
for

both quark and gluon jets. For the evaluation of such corrections one needs to take the DLA expressions

of Ċ(3)
A123

andĊ(2)
Aij

written in (35) and (37) respectively.

2.6 MLLA approximation and evaluation by the steepest descent method

In [19], the exact solutions of the two-particle evolution equations were compared with the MLLA so-

lutions from the steepest descent method for the one particle distribution. The agreement between both

approaches was successful and made possible the fast computation of the correlators from the steepest

descent. That is the reason for in this paper, we limit ourselves to this method. Making use of the ratio

(87), it is easy to demonstrate that,

ψQ,ℓ = ψℓ +O(γ20), ψQ,y = ψy +O(γ20), ∆̃ij
mlla
= ∆ij +O(γ20). (59)

Dropping corrections of orderO(γ20), which go beyond the MLLA approximation, we obtain for the

gluon jet

F
(2)
ij

mlla
= 1 +

1− b (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + ξij1 − ǫ1
2 + ∆12 +∆13 +∆23 + ǫ1

, (60)

F
(3)
123

mlla
=

1− c (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + ξ121 + ξ131 + ξ231 − ǫ1
2 + ∆12 +∆13 +∆23 + ǫ1

(61)

and for the quark jet

F̃
(2)
ij

mlla
= 1 +

ξ̃ij1 − ǫ̃1
3 + ∆12 +∆13 +∆23 − a (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + ǫ̃1

, (62)

F̃
(3)
123

mlla
=

N2
c

C2
F

C(3)
G123

[1− a (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ)] + ξ̃121 + ξ̃131 + ξ̃231 −˜̃ǫ1
3 + ∆12 +∆13 +∆23 − a (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + ǫ̃1

. (63)

The subtracted terms∝ −a in the denominators of (62) and (63) appear after having replaced (87) and

(88) in (57b) and (57c) respectively. Such simplified expressions are useful for the steepest descent eval-

uation that proved successful while describing the single inclusive distribution and two-particle correla-

tions in [25]. Except the MLLA correctionsǫ1 andξij1 , all the other corrections and functions appearing

in the solutions of the evolution equations were obtained in[25], which will allow for the straightforward

computation of the three-particle correlators in quark andgluon jets. We write some of these formulæ

for the evaluation in the appendix C. Integrating the equation (81) over “y”, the solution for the single

inclusive distribution is given by the following integral representation in Mellin space [25],

G(ℓ, y) = (ℓ+ y + λ)

∫∫

dωdν

(2πi)2
eωℓ+νy

∫ ∞

0

ds

ν + s

(

ω(ν + s)

(ω + s)ν

)1/β0(ω−ν)( ν

ν + s

)a/β0

e−λs. (64)

The integral representation (64) was estimated by the steepest descent method at smallx ≪ 1 and

high energy scaleQ ≫ 1; the approached solution was compared with the exact solution (89) (see

the appendix A.1) in the limiting spectrum (λ = 0) and beyond (λ 6= 0). In particular, (64) was also

demonstrated to be equivalent to (89) forλ = 0 [19]. The agreement between the approached and

exact solutions turned out to be good, such that the following expressions of the approached logarithmic
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derivatives from the steepest descent method were suited for the evaluation of the two-particle correlators

[25],

ψi,ℓ(µi, νi) = γ0e
µi +

1

2
aγ20

[

eµiQ̃(µi, νi)− tanh νi − tanh νi coth µi

(

1 + eµiQ̃(µi, νi)
)]

(65)

− 1

2
β0γ

2
0

[

1 + tanh νi

(

1 +K(µi, νi)
)

+ C(µi, νi)
(

1 + eµiQ̃(µi, νi)
)]

+O(γ20),

ψi,y(µ, ν) = γ0e
−µi − 1

2
aγ20

[

2 + e−µiQ̃(µi, νi) + tanh νi − tanh νi coth µi

(

1 + e−µiQ̃(µi, νi)
)]

− 1

2
β0γ

2
0

[

1 + tanh νi

(

1 +K(µi, νi)
)

− C(µi, νi)
(

1 + e−µiQ̃(µi, νi)
)]

+O(γ20), (66)

where the functions̃Q(µi, νi), C(µi, νi) andK(µi, νi) are defined in the appendix C. The term∝ a in

(65) and (66) accounts for energy conservation while that∝ β0 accounts for the running of the coupling

αs. The variables(µi, νi) are related to(ℓi, yi) through the same 2x2 non-linear system of equations (44).

After inverting (44) numerically,µi(ℓi, yi) andνi(ℓi, yi) can be plugged into (65) and (66) so as to get the

logarithmic derivatives of the single inclusive spectrum as a function of the original kinematical variables

ℓi andyi as it was done in [25]. The MLLA two-particle correlators involved in (51) and (55) are (108)

and (109) and are written in the appendix C. These expressions have been taken from reference [25].

Correctionsξij1 , ξ̃
ij
1 and ǫ1, ǫ̃1 are new for three-particle correlations. Such expressionsare explicitly

written in the appendix C.1 from the steepest descent evaluation of the single inclusive distribution

(64). They are small and decrease the three-particle correlator for ℓi 6= ℓj , that is when one parton

is much harder than the other. Notice that the steepest descent method constitutes the only way for the

disentanglement between MLLAO(
√
αs) and NMLLA O(αs) corrections appearing in the solution of

the evolution equations for the two and three-particle correlations. It makes also possible to distinguish

between corrections following from the energy balance and the running effects of the coupling constant

αs. Finally, this method also allows for the application of thehump approximation or Fong-Webber

expansion of the solutions with MLLAO(
√
αs) accuracy [17,18].

In this frame, the role of MLLA corrections should be expected to be larger than for the two-particle

correlations. Indeed, higher order corrections increase with the rank of the correlator, which is known

from the Koba-Nielsen-Olesen (KNO) problem for intra-jet multiplicity fluctuations [28,30,31]. For the

2-particle for instance one has∝ −b(ψ1,ℓ + ψ2,ℓ) and for the three-particle correlator one gets the larger

correction∝ −c(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ).

2.7 Hump approximation

From the steepest descent evaluation introduced in [25], near the hump of the single inclusive distribution

| ℓ − Y/2 |≪ σ ∝ Y 3/2 for i = 1, 2, 3, correctionsξij1 , ξ̃
ij
1 andǫ1, ǫ̃1 could be written in the symbolic

form (see appendix C.2),

ξij1 , ξ̃
ij
1 ≃

(

ℓi − ℓj
Y

)2

γ0 +O(γ20), (67)

ǫ1, ǫ̃1 ≃
(

ℓ1 − ℓ2
Y

)2

γ0 +

(

ℓ1 − ℓ3
Y

)2

γ0 +

(

ℓ2 − ℓ3
Y

)2

γ0 +O(γ20), (68)

such that both can be neglectedξij1 ≈ 0, ǫ1 ≈ 0 in this approximation, likeδij1 was also in [25]. In the

appendix C.2, following from the steepest descent method, the expressions of (53a-53d) are given and
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(57a-57d) expanded in
√
αs. In particular, the expressions (128e) and (128g), after being expanded in

γ0, can be demonstrated to recover the Fong-Webber results forthe two-particle correlations [17, 18].

Replacing the expressions (128a-128j) into (51,52) and (55,56), one finds those for the three-particle

correlators in the Fong-Webber approximation [17, 18]. This solution will be compared with that from

(61) and (63) after making use of (65) and (66) in subsection 3.

2.8 From two to three-particle correlations in the small x region

In [19], the sign of the two-particle correlator (C(2)
A − 1 ≥ 0) was studied as a function ofx in the region

of the phase space where the two partons (hadrons after assuming the LPHD) are strongly correlated.

From the previous inequality, it turned out that two partonswith ℓi & 2.6 (xi . 0.07) at LHC energy

scales (i.e.Q = 450 GeV, see subsection 3) are correlated as they are emitted from the same cascade

following the QCD AO. AsymptoticallyY → ∞, one hasℓi & 4.5 (xi . 0.011).

For three-particle correlations we study the sign of the cumulant of the genuine correlatorF (3)
123 > 0 and

determine the approximate region inx where diagrams displayed in Fig.1 and Fig.2d become dominant.

One has,

1− c (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + ξ121 + ξ131 + ξ231 − ǫ1 > 0.

However, correctionsξij1 , ǫ1 have been shown to be negligible and to vanish for particles having the same

energy momentum. Thus, we rather study the sign of

1− c (ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) > 0.

Making use ofψℓ = γ0

√

y
ℓ = γ0

√

Y−ℓ
ℓ for the sake of simplicity, one has,

1− 3cγ0

√

Y − ℓ

ℓ
> 0 ⇔ ℓ >

M

1 + M
Y

, M =
9c2

β0
= 10.1.

Thus, for LHC energyY = 7.5, the value ofℓ(x) where the cumulant becomes positive turns out to

be ℓ & 4.3, which in x corresponds tox . 0.014. AsymptoticallyY → ∞, one hasℓi & 10.1

(xi . 4.1 × 10−5). Therefore, there exists a range inx where the observableC(3)
123 is dominated by the

emission of two correlated partons emitted independently from the third one, that is0.014 . x . 0.07

for diagrams Fig.2b and Fig.2c; forx . 0.014, the process will be dominated by three particles emitted

from the same partonic cascade following the QCD AO described in Fig.2d. AsymptoticallyY → ∞,

one has4.1× 10−5 . x . 0.011 for diagrams Fig.2b and Fig.2c, andx . 4.1× 10−5 for Fig.2d. These

values will indeed justify our choices for the representation of the three-particle correlations as function

of (x1, x2, x3) in subsection 3.

2.9 Beyond three-particle correlations

It is worth reminding that the LPHD hypothesis has also been confronted to multi-particle factorial

moments up to the 5th order in the experimental studies ofep ande+e− collisions at HERA [34] and LEP

[35] respectively, where it was found that the LPHD hypothesis faces difficulties when it is applied to soft

multi-particle fluctuations. In this work the studies are carried out by using the momentum and transverse

momentum cuts in order to test the MLLA soft limit calculations [33]. The theoretical computation of
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multiplicity correlators or multiplicity fluctuations〈n(n− 1) . . . (n− k + 1)〉 was performed in [32] at

MLLA up to the rankk = 5 of the correlator.

However, performing these calculations for higher rank differential inclusive correlators, related to the

previous ones by the integral

〈n(n− 1) . . . (n− k + 1)〉A =

∫

dx1 . . . dxkx1 . . . xkD
(k)
A (x1, . . . , xk, Y )

becomes rather cumbersome. As an example, in this subsection, we display the DLA equation and

solution of the 4-particle correlator. The DLA equation reads,

Â
(4)
1234 =

CA

Nc
γ20G

(4)
1234, (69)

whereÂ has been defined in the appendix D in (129). The solution of (69) with the definition ofÂ (129)

reads,

C(4)
A −1=

Nc

CA
H1

(

Ċ(2)
)

+
N2

c

C2
A

H2

(

Ċ(3), Ċ(2)
)

+
N3

c

C3
A

H3

(

Ċ(3), Ċ(2)
)

3 + ∆12 +∆13 +∆14 +∆23 +∆24 +∆34
, (70)

where the functionsH1,H2 andH3 are written in the appendix D in (130), (131) and (132) respectively.

The solution (70) can also be interpreted in terms of Feynmandiagrams contributing to the emission of

four hadrons inside the jet. Accordingly, the term∝ Nc

CA
correspond to the caseA → 12(34) where

two offspring are correlated while the other two are emittedindependently; as a consequence it depends

only on the two-particle correlator. The second term∝ N2
c

C2

A

is associated to the casesA → (12)(34)

andA → (123)4, which translates into either emitting two sub-jets with two-particles correlated within

each, or emitting three correlated partons like in Fig.1 with another independent emission. Finally, the

term∝ N3
c

C3

A

after settingH3 = 1+ . . . corresponds to the full correlated emission of four offspring inside

the same shower. The inclusion of SLs corrections to (70) would be cumbersome and stays beyond the

scope of this paper. On the other hand, the computation of differential higher order rank (k) correlators

at MLLA would imply the failure of the perturbative approachbecause of the increasing size of higher

order corrections∝ (ψ1,ℓ+ . . . ψk,ℓ) = O(
√
αs). Hence, for higher orderk correlators, the smallx range

where MLLA predictions stay valid gets reduced even at high energy scales, such that (see subsection

2.8)

Mk =
k2ck
β0

, ℓk >
Mk

1 + Mk

Y

with

ck =
1

4Nc

[

11

3
Nc + (−1)k

4

3
nfTR

(

1− 2
CF

Nc

)k
]

.

3 Predictions for the LHC and phenomenological consequences

In this section, we perform theoretical predictions for three-particle correlations for the LHC. We display

the MLLA solutions (51) and (55) of the evolution equations (50) and (49) respectively. We compare

the DLA solution of the evolutions equations from section 2.4 with the MLLA solution from the steepest

descent evaluation of the one-particle distribution in subsection 2.6 and the solution from the hump

approximation in 2.7. Thus,
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• the DLA solution is computed by plugging (43) into (45);

• the MLLA solution from the steepest descent will be displayed by substituting the MLLA two-

particle correlators (108), (109) and the functions (60), (61), (62) and (63) into (51) and (55) for

gluon and quark jets respectively;

• the MLLA hump approximation will be displayed by plugging (128a)-(128j) into (52) and (56)

and finally (51) and (55).

In particular, the computation of the DLA and MLLA solutionsfrom the steepest descent needs the prior

inversion of the system of equations (44) in order to obtain(µi, νi) as functions of the original kinematical

variables (ℓi, yi). The correlators are functions of the variables(ℓi, yi) and the virtuality of the jet

Q = EΘ0. After settingyi = Y − ℓi with fixedY = ln(Q/Q0) in the arguments of the solutions (51)

and (55) the dependence can be reduced to the following:C(3)
G123

(ℓ1, ℓ2, ℓ3, Y ) andC(3)
Q123

(ℓ1, ℓ2, ℓ3, Y ).

3.1 Predictions for the limiting spectrum λ ≈ 0

In this subsection we give predictions within the limiting spectrumλ . 0.5 for charged hadrons mostly

composed by pions and kaons.

In Fig.3, the DLA (35), MLLA hump approximation from subsection 2.7 and MLLA (51) three-particle

correlators are displayed, as a function of the difference(ℓ1 − ℓ2) = ln(x2/x1) for two fixed values of

ℓ3 = ln(1/x3) = 4.5, 5.5, fixed sum(ℓ1 + ℓ2) = | ln(x1x2)| = 10 and finally fixedY = 7.5 (virtuality

Q = 450 GeV andΛQCD = 250 MeV), which is realistic for the LHC phenomenology [13]. Thevalues

ℓ3 = ln(1/x3) = 4.5, 5.5 (x3 = 0.011, x3 = 0.004) have been chosen according to the range of the

energy fractionxi ≪ 0.1, where the MLLA scheme can only be applied and in particular,the range

x . 0.014, where the cumulant correlatorF (3)
123 is dominant (see subsection 2.8).

In Fig.4, the DLA (35), MLLA hump approximation from subsection 2.7 and MLLA (51) three-particle

correlators are displayed, in this case, as a function of thesum (ℓ1 + ℓ2) = | ln(x1x2)| for the same

values ofℓ3 = ln(1/x3) = 4.5, 5.5, for x1 = x2 andY = 7.5. The range7.0 ≤ | ln(x1x2)| ≤ 13.0 has

been chosen according to the conditionx . 0.014 discussed in 2.8.

As expected in both cases, the DLA and MLLA three-particle correlators are larger inside a quark than

in a gluon jet. Of course, these plots will be the same and the interpretation will apply to all possible per-

mutations of three particles (123). As observed and writtenabove, the difference between the DLA and

MLLA results is quite important pointing out that overall corrections inO(
√
αs) are quite large. Indeed,

the last behavior is not surprising as was already observed on the treatment of multiplicity fluctuations

of the third kind, where [32]

〈n(n− 1)(n − 2)〉G
〈n〉3G

= 2.25 [1− (1.425 − 0.021nf )
√
αs] ,

〈n(n− 1)(n − 2)〉Q
〈n〉3Q

= 4.52 [1− (2.280 − 0.018nf )
√
αs] .

For instance, for one quark jet produced at theZ0 peak of thee+e− annihilation (Q = 45.6 GeV), one

hasαs = 0.134. Replacing this value into the previous formula for a quark jet multiplicity correlator,

one obtains a variation from 4.52 (DLA) to 0.83 (MLLA). That is one of the reasons for DLA has been
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Figure 3: Three-particle correlations inside a gluon jet (left) and a quark jet (right) as a function of

ℓ1 − ℓ2 = ln(x2/x1) for ℓ1 + ℓ2 = | ln(x1x2)| = 10, ℓ3 = ln(1/x3) = 4.5, 5.5, fixedY = 7.5 in the

limiting spectrum approximationλ ≈ 0.

known to provide unreliable predictions which should not becompared with experiments. From Fig.3,

the correlation are observed to be the strongest when particles have the same energyxi = xj for fixed

xk and to decrease when one parton is much harder the others. Indeed, in this region of the phase

space two competing effects should be satisfied: on one hand,as a consequence of gluon coherence and

AO, gluon emission angles should decrease and on the other hand, the convergence of the perturbative

seriesk⊥ = xiEΘi ≥ Q0 should be guaranteed. That is why, as the collinear cut-off parameterQ0

is reached, gluons are emitted at larger angles and destructive interferences with previous emissions

occur. Moreover, the observable increases for softer partons withx3 decreasing, which is for partons less

sensitive to the energy balance. In Fig.4 the MLLA correlations increase for softer partons, then flatten

and decrease as a consequence of soft gluon coherence, reproducing for three-particle correlations, the

hump-backed shape of the one-particle distribution. Because of the limitation of the phase space, one

hasC(3) ≤ 1 for harder partons. Finally, in Fig.5, we display the three-particle correlators as function

of the sum| ln(x1x2x3)|, for x1 = x2 = x3; when compared with Fig.4 and Fig.3, the correlators are

shown to be larger. That is why, and as expected, the correlations are the strongest for particles having

the same energy-momentumx1 = x2 = x3. In these figures, the MLLA hump approximation is seen

to become larger than the DLA correlator for smaller values of x than those close to the hump region,

which is unphysical. This is due to the fact that this approximation should not be trusted beyond the

hump region| ℓ− Y/2 |≪ σ ∝ Y 3/2, 3Y/2 = 11.25 in this case.

The MLLA hump approximation from subsection 2.7 is observedto be larger than the MLLA solution

from the steepest descent of the one-particle distributionbut one should bear in mind that this is only

an approximation made for the sake of clarity in the interpretation of the solutions. In particular, from

Fig.3 one can observe a smoother descent for the slope of the correlators in this case than that given from

the more exact steepest descent. This difference comes fromthe role played by the iterative corrections

displayed in Fig.8, which decrease the correlators away from the hump region when one of the partons

becomes harder than the others. Near the maximumxi = xj of the correlators, the difference between
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Figure 4: Three-particle correlations inside a gluon jet (left) and a quark jet (right) as a function of

ℓ1 + ℓ2 = | ln(x1x2)| for x1 = x2, ℓ3 = ln(1/x3) = 4.5, 5.5, fixedY = 7.5 in the limiting spectrum

approximationλ ≈ 0.

the two approaches isO
(

ℓ2
k

Y 2 γ0

)

and should decrease forxi → 1, according to (68).

3.2 Predictions beyond the limiting spectrum λ 6= 0

The approximated evaluation of the one-particle distribution from the steepest descent method made

possible the evaluation of the two-particle correlations beyond the limiting spectrum approximation, that

is for Q0 6= ΛQCD. Accordingly, it makes also possible the evaluation of the three-particle correlators

C(3)
G123

(ℓ1, ℓ2, ℓ3, Y ) andC(3)
Q123

(ℓ1, ℓ2, ℓ3, Y ) beyond this limitλ 6= 0. This parameter, also known as

hadronization parameter, guarantees in particular the convergence of the perturbative approachαs ≪ 1.

In Fig.6 and Fig.7 we display the same set of curves beyond thelimiting spectrum (λ = 1.5) as in

Fig.3 and Fig.4 in the limiting spectrum (λ ∼ 0), with the exception of curves coming from the hump

approximation. The value ofλ in this case was evaluated forQ0 ∼ 1 GeV, which corresponds to the

proton mass, andΛQCD = 250 MeV. As observed the correlation increases withλ and the range where

C(3) ≥ 1 becomes larger in this case.

4 Conclusions

In this paper we provide the first full pQCD treatment of three-particle correlations in parton showers

and a further refined test of the LPHD within the limiting spectrum approximation and beyond. The

evolution equations satisfied by this differential observable have been obtained for the first time and

the differential version of the equations has been solved iteratively. It has been possible to interpret

the analytical solution in terms of Feynman diagrams describing the process and to evaluate it from the

steepest descent method applied to the single inclusive distribution. The correlations have been displayed

in the rangex . 0.014, where the process is dominated by three particles emitted from the same partonic

cascade following the QCD AO described in Fig.1 and Fig.2d. Furthermore, four-particle correlations
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Figure 5: Three-particle correlations inside a gluon jet (left) and a quark jet (right) as a function of

ℓ1 + ℓ2 + ℓ3 = | ln(x1x2x3)| for x1 = x2 = x3, fixedY = 7.5 in the limiting spectrum approximation

λ ≈ 0.
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Figure 6: Three-particle correlations inside a gluon jet (left) and a quark jet (right) as a function of

ℓ1 − ℓ2 = ln(x2/x1) for ℓ1 + ℓ2 = | ln(x1x2)| = 10, ℓ3 = ln(1/x3) = 4.5, 5.5, fixedY = 7.5 in the

limiting spectrum approximationλ = 1.5.
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Figure 7: Three-particle correlations inside a gluon jet (left) and a quark jet (right) as a function of

ℓ1 + ℓ2 = | ln(x1x2)| for x1 = x2, ℓ3 = ln(1/x3) = 4.5, 5.5, fixedY = 7.5 in the limiting spectrum

approximationλ = 1.5.

have been computed at DLA so as to show that the inclusion of higher order corrections for more than

three particles would rather be a cumbersome task. The correlations have been shown to be strongest

for the softest hadrons having the same energyx1 = x2 = x3 in both quark and gluon jets, increasing

as a function ofln(xi/xj) and| ln(xixj)| whenxk softens, that is for partons being less sensitive to the

energy balance.

Coherence effects appear when one or two of the partons involved in the process is harder than the

others, thus reproducing for this observable the hump-backed shape of the one particle distribution.

Away from the maximum atxi = xi, because of limitation of the phase space, one hasC(3) ≤ 1.

Predictions beyond the limiting spectrum for heavier charged hadrons as compared with pions and kaons

show that the correlations should increase as the parameterQ0 equals the mass of such hadrons and the

range whereC(3) ≥ 1 has been enlarged beyond this limit. The last statement is not surprising because

soft gluon emission gets suppressed between the two scalesQ0 andΛQCD for λ 6= 0, thus decreasing

the particle yield inside the whole jet. This measurement would in particular provide an additional

and independent check of the LPHD for massive charged hadrons. As was shown in 2.4, the DLA

solution of the evolution equations provide general features of the observable showing its unreliability

to be compared with the experiment. That is why, the MLLA shape and overall normalization of this

observable should be compared with the data. In the case ofpp̄ collisions at the Tevatron, since diet

events consist of both gluon and quark jets, in order to compare data to theory, a parameterfg for mixed

samples of quark and gluon jets was chosen [11]. Inpp collisions at the LHC, the same procedure can be

applied so as to measure the two- and three-particle correlations. Furthermore, MLLA corrections have

been shown to be larger for three than for two particles, thatis to increase as the number of particles

increases.

As was the case for two particles, the three-particle correlations are larger inside a quark than in a gluon

jet. Same trends have been observed in HERA and LEP data for soft multi-particle fluctuations in [34,35].

Finally, we give the first analytical predictions for intra-jet three-particle correlations in view of forth-
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coming measurements by ATLAS, CMS and ALICE at the LHC.
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A MLLA approximation

In (23a), forln(1− z) ≪ lnx andln z ≪ lnx, we perform the following Taylor expansions:

Q(3)(1− z)−Q(3) ≈ ln(1− z)
dQ(3)

dℓ1
+O(αs), (71)

(

Q
(2)
ij (1− z)−Q

(2)
ij

)

(Gk(z) −Qk) +
(

G
(2)
ij (z)−Q

(2)
ij

)

(Qk(1− z)−Qk)

= ln(1− z)

[

dQ
(2)
ij

dℓ1
(Gk −Qk) +

(

G
(2)
ij −Q

(2)
ij

) dQk

dℓ1

]

+O(αs), (72)

(Qi −Gi(z)) (Qj(1− z)−Qj)Qk ≈ ln(1− z)(Qi −Gi)
dQj

dℓ1
Qk +O(αs). (73)

Since none of these terms contribute to MLLAO(
√
αs), they will be dropped hereafter. In equation

(23b), we perform the following approximations in the hard fragmentation region,

(

G
(2)
ij (z) −G

(2)
ij

)

(Gk(1− z)−Gk) ≈ ln z ln(1− z)
dG

(2)
ij

dℓ1

Gk

dℓ1
+O(αs), (74)

(Gi −Gi(z))(Gj(1− z)−Gj)Gk ≈ − ln z ln(1− z)
dGi

dℓ1

dGj

dℓ1
Gk +O(αs). (75)

Neither (74) nor (75) contribute to MLLA. The other terms in (23b) can be written as,

2Q(3)(z)−G(3) ≈ (2Q(3) −G(3)) + 2 ln z
dQ(3)

dℓ1
+O(αs) (76)

2
(

Q
(2)
ij (z)−G

(2)
ij

)

(Qk(1− z)−Gk) ≈ 2
(

Q
(2)
ij −G

(2)
ij

)

(Qk −Gk) (77)

+2 ln(1− z)
(

Q
(2)
ij −G

(2)
ij

) dQk

dℓ1
+ 2 ln z(Qk −Gk)

dQ
(2)
ij

dℓ1
+O(αs),

(2Qi(z)Qj(z)−GiGj)Gk ≈ (2QiQj −GiGj)Gk + ln z

(

Qi
dQj

dℓ1
+
dQi

dℓ1
Qj

)

+O(αs), (78)

(Gi − 2Qi(z))(2Qj(1− z)−Gj)Gk ≈ (Gi − 2Qi)(2Qj −Gj)Gk − 2(2Qj −Gj)Gk ln z
dQi

dℓ1
Gk
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+ 2(Gi − 2Qi) ln(1− z)
dQj

dℓ1
Gk +O(αs), (79)

such that only the first terms in (76), (77), (78) and (79) willbe kept in the following. Furthermore, we

make use of the identity [19]

∫ 1

dzΦg
g(z)

(

G(3)(z)− zG(3)
)

=

∫ 1

dz(1 − z)Φg
g(z)

(

G(3)(z) +
(

G(3)(z)−G(3)
))

,

such thatG(n)(z)− zG(n) can be replaced by,

G(n)(z)− zG(n) → (1− z)
[

G(n)(z) +
(

G(n)(z) −G(n)
)]

≈ (1− z)

[

G(n)(z) + ln z
dG(n)

dℓ1

]

,

(n = 1, 2, 3) in the r.h.s. of equations (21b), (22b) and (23b). Indeed, terms∝ ln z, ln(1 − z) provide

NMLLA correctionsO(αs) which improve energy conservation; however, their inclusion goes beyond

the scope of the present paper.

A.1 One and two particle distributions at small x

The MLLA integro-differential version of equations (21a,21b) and (22b,22a) is obtained after integrating

over the regular part of the splitting functions, such that [6,18,19]

Qi,y =
CF

Nc

∫ ℓ

0
dℓ′γ20(ℓ

′ + y)Gi(ℓ
′, y)− 3

4

CF

Nc
γ20(ℓ+ y)Gi(ℓ, y), (80)

Gi,y =

∫ ℓ

0
dℓ′γ20(ℓ

′ + y)Gi(ℓ
′, y)− aγ20(ℓ+ y)Gi(ℓ, y), (81)

with γ20(ℓ+ y) = 1
β0(ℓ+y+λ) , and the two-particle correlations (Â(2)

ij = A
(2)
ij −AiAj) [18,19],

Q̂
(2)
ij,y =

CF

Nc

∫ ℓi

0
dℓγ20(ℓ+ yj)G

(2)
ij (ℓ, yj , ηij)−

3

4

CF

Nc
γ20(ℓi + yj)G

(2)
ij (ℓi, yj , ηij), (82)

Ĝ
(2)
ij,y =

∫ ℓi

0
γ20(ℓ+ yj)G

(2)(ℓ, yj, ηij)− aγ20(ℓi + yj)G
(2)
ij (ℓi, yj, ηij)

+ (a− b)γ20(ℓi + yj)G(ℓi, yj + ηij)G(ℓi + ηij , yj), (83)

with γ20(ℓi + yj) =
1

β0(ℓi+yj+ηij+λ) , after accounting for hard correctionsO(
√
αs). After differentiating

(80,81) and (82,83) with respect to“ℓ”, one has [19]

Qi,ℓy =
CF

Nc
γ20Gi −

CF

Nc

3

4
γ20(Gi,ℓ − β0γ

2
0Gi), (84)

Gi,ℓy = γ20Gi − aγ20(Gi,ℓ − β0γ
2
0Gi), (85)

from where the following useful relations hold in MLLA [19],

Qi,ℓy

γ20Qi
=

[

1− 3

4
ψi,ℓ

]

CF

Nc

Gi

Qi
+O(γ20), (86)

Gi

Qi
=
Nc

CF

[

1−
(

a− 3

4

)

ψi,ℓ

]

+O(γ20), (87)

Qi,ℓy

γ20Qi
= 1− aψi,ℓ +O(γ20). (88)
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Corrections∝ β0 in (84) and (85), which are NMLLA, account for the running of the coupling constant

αs and those∝ 3
4 , a, (a − b) account for energy conservation in the hard parton splitting region. The

MLLA gluon inclusive spectrum is given by the solution of (85) [6] and can be written in the form [14]:

Gi(ℓ, y) = 2
Γ(B)

β0

∫ π
2

0

dτ

π
e−Bα FB(τ, y, ℓ), (89)

where the integration is performed with respect toτ defined byα =
1

2
ln
y

ℓ
+ iτ and with

FB(τ, y, ℓ) =









coshα− y − ℓ

y + ℓ
sinhα

ℓ+ y

β0

α

sinhα









B/2

IB(2
√

Z(τ, y, ℓ)),

Z(τ, y, ℓ) =
ℓ+ y

β0

α

sinhα

(

coshα− y − ℓ

y + ℓ
sinhα

)

,

B = a/β0 andIB is the modified Bessel function of the first kind. The formula in (89) corresponds

indeed to the so-called hump-backed plateau, which describes the energy spectrum of soft hadrons in the

limiting spectrum approximationQ0 = ΛQCD [6, 28]. This result is well known and constitutes one of

the strikest predictions of pQCD. The corresponding solution of (84) forQi(ℓ, y) can be obtained from

(87) with accuracyO(
√
αs). The system of differential evolution equations for two-particle correlations

follows from (82) and (83), such that [19]
[

Q
(2)
ij −QiQj

]

ℓy
=
CF

Nc
γ20G

(2)
ij − 3

4

CF

Nc
γ20

(

G
(2)
ij,ℓ − β0γ

2
0G

(2)
ij

)

, (90)
[

G
(2)
ij −GiGj

]

ℓy
= γ20G

(2)
ij −aγ20

(

G
(2)
ij,ℓ−β0γ20G

(2)
ij

)

+(a− b)γ20
[

(GiGj)ℓ − β0γ
2
0GiGj

]

. (91)

In [19], the system (82,83) was solved iteratively after replacing G(2)
ij = C

(2)
G,ijGiGj andQ(2)

ij =

C
(2)
Q,ijQiQj in (91) and (90) respectively. The MLLA solutions of (90) and(91), which are to be used in

the present paper read [19]

C(2)
Gij

− 1 =
1− δij1 − b (ψi,ℓ + ψj,ℓ)

1 + ∆ij + δij1
, (92)

C(2)
Qij

− 1

C(2)
Gij

− 1
=
Nc

CF

[

1 + (b− a)(ψi,ℓ + ψj,ℓ)
1 + ∆ij

2 + ∆ij

]

, (93)

which were evaluated by the steepest descent method over thesingle inclusive distribution in [25]. We

have introduced the following notations and functions [19],

∆ij = γ−2
0 (ψi,ℓψj,y + ψi,yψj,ℓ) = O(1); (94)

χij = ln Ċ(2)
Gij

= O(1), χij
ℓ =

∂χij

∂ℓ
= O(γ20), χy =

∂χij

∂y
= O(γ20); (95)

δij1 = γ−2
0

[

χij
ℓ (ψi,y + ψj,y) + χij

y (ψj,ℓ + ψi,ℓ)
]

= O(γ0), (96)

where, following from (38) and (39), we have evaluated the corresponding order of magnitude of these

quantities in powers of the anomalous dimensionγ0 ∝ √
αs. The solution is iterative with respect to

correctionsχ andδ1, which need the prior evaluation of the DLA solutionĊ(2)
Gij

of the equations.
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B Iterative solution of the evolution equations

Let us first solve the equation (50). For the sake of simplicity, it is much easier to solve the equivalent

equation:

Ĝ
(3)
ℓy = γ20G

(3)−aγ20
(

G
(3)
ℓ −β0γ20G(3)

)

+(a− b)γ20

{[

G
(2)
12 G3 +G

(2)
13 G2 +G

(2)
23 G1

]

ℓ
(97)

− β0γ
2
0

[

G
(2)
12 G3 +G

(2)
13 G2 +G

(2)
23 G1

]}

+ (2a− 3b+ c)γ20
[

(G1G2G3)ℓ−β0γ20G1G2G3

]

.

One has to substitute the following in the l.h.s. of the equation (97):

G(3) = C(3)
G123

G1G2G3, G
(2)
ij = C(2)

Gij
GiGj .

Thus, after normalizing byγ20G1G2G3, one finds,
[

(C(3)
G123

− 1)G1G2G3

]

ℓy

γ20G1G2G3
= C(3)

G123
(ǫ1 + ǫ2) + (C(3)

G123
− 1) [3 + ∆12 +∆13 +∆23 (98)

− a(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + 3aβ0γ
2
0

]

,

while for the other terms in the r.h.s. of the same equation one finds,
[

(C(2)
Gij

− 1)G1G2G3

]

ℓy

γ20G1G2G3
= (C(2)

Gij
− 1)

(

3
∑

i=1

Gi,ℓy

γ20Gi
+∆12 +∆13 +∆23

)

+ C(2)
Gij
ξij1 + C(2)

Gij
δij2

= (C(2)
Gij

− 1)
[

3 + ∆12 +∆13 +∆23 − a(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + 3aβ0γ
2
0

+ ξij1 + δij2

]

+ ξij1 + δij2 . (99)

The r.h.s. provides the following contribution

r.h.s.

γ20G1G2G3
= C(3)

G123
− aC(3)

G123
(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ + ζℓ − β0γ

2
0) + (a− b)

[

C(2)
G12

(χ12
ℓ + ψ1,ℓ + ψ2,ℓ

+ ψ3,ℓ) + C(2)
G13

(χ13
ℓ + ψ1,ℓ + ψ2,ℓ + ψ3,ℓ) + C(2)

G23
(χ23

ℓ + ψ1,ℓ + ψ2,ℓ + ψ3,ℓ)

− β0γ
2
0(C(2)

G12
+ C(2)

G13
+ C(2)

G23
)
]

+ (3b− 2a− c)(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ − β0γ
2
0). (100)

After adding (98) and (99) and equating with (100) together with some algebra in between, one finds the

solution written in (51). Following the same iterative procedure

Q(3) = C(3)
Q123

Q1Q2Q3, Q
(2)
ij = C(2)

Qij
QiQj; G(3) = C(3)

G123
G1G2G3,

for the quark jet evolution equation written in (49), one has,

(

C(3)
Q123

− 1
)

(

∆̃12 + ∆̃13 + ∆̃23 +
3
∑

i=1

Qi,ℓy

γ20Qi
+ ǫ̃1 + ǫ̃2

)

(101)

−
(

C(2)
Q12

− 1
)

(

∆̃12 + ∆̃13 + ∆̃23 +
3
∑

i=1

Qi,ℓy

γ20Qi
+ ξ̃121 + δ̃122

)

−
(

C(2)
Q13

− 1
)

(

∆̃12 + ∆̃13 + ∆̃23 +
3
∑

i=1

Qi,ℓy

γ20Qi
+ ξ̃131 + δ̃132

)

−
(

C(2)
Q23

− 1
)

(

∆̃12 + ∆̃13 + ∆̃23 +

3
∑

i=1

Qi,ℓy

γ20Qi
+ ξ̃231 + δ̃232

)
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=
CF

Nc
C(3)
G123

[

1− 3

4
(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ + ζℓ − β0γ

2
0)

]

G1G2G3

Q1Q2Q3

+(ξ̃121 + δ̃122 ) + (ξ̃131 + δ̃132 ) + (ξ̃231 + δ̃232 )− ǫ̃1 − ǫ̃2.

Finally by adding and subtracting(ǫ̃1 + ǫ̃2) in every term∝
(

C(2)
Qij

− 1
)

in the l.h.s. of (101) one finds

(55).

C Steepest descent evaluation: reminder from [25]

The evaluation of the integral representation by the steepest descent method at smallx ≪ 1 (or large

ℓ≫ 1) and very high energyY ≫ 1 leads to the result,

G(ℓ, y) ≈ N (µ, ν, λ) exp

[

2

β0

(

√

ℓ+ y + λ−
√
λ
) µ− ν

sinhµ− sinh ν
+ ν − a

β0
(µ− ν)

]

, (102)

where

N (µ, ν, λ) =
1

2
(ℓ+ y + λ)

(

β0

λ

)1/4

√

π cosh νDetA(µ, ν)
,

with

DetA(µ, ν) = β0(ℓ+ y + λ)3
[

(µ − ν) coshµ cosh ν + cosh µ sinh ν − sinhµ sinh ν

sinh3 µ cosh ν

]

.

The logarithmic derivatives of the spectrum given in (65) and (66) were derived from (102) and it was also

shown that (102) reproduces the Gaussian shape of the inclusive distribution near the humpℓmax ≈ Y/2.

From (102), one has indeed,

G(ℓ, y) ≈
(

3

π
√
β0[(ℓ+ y + λ)3/2 − λ3/2]

)1/2

exp

(

− 2√
β0

3

(ℓ+ y + λ)3/2 − λ3/2
(ℓ− Y/2)2

2

)

,

(103)

where the MLLAℓmax reads,

ℓmax ≈ Y

2
+

1

2

a

β0

(√
Y + λ−

√
λ
)

.

Settinga = 0 andλ = 0 in the previous expressions one recovers the DLA results, which are needed for

subsection 2.4. The functions entering as a function of (µ, ν) in (65) and (66) are the following,

Q̃(µ, ν) =
coshµ sinhµ cosh ν − (µ − ν) cosh ν − sinh ν

(µ− ν) cosh µ cosh ν + coshµ sinh ν − sinhµ cosh ν
, (104)

K(µ, ν) = −1

2
sinh ν

(µ− ν) coshµ− sinhµ

(µ − ν) cosh µ cosh ν + coshµ sinh ν − sinhµ cosh ν
, (105)

L(µ, ν) =
3

2
cothµ− 1

2

(µ− ν) cosh ν sinhµ+ sinh ν sinhµ

(µ− ν) coshµ cosh ν + coshµ sinh ν − sinhµ cosh ν
, (106)

C(µ, ν) = L(µ, ν) + tanh ν coth µ (1 +K(µ, ν)) . (107)

The expressions for the two particle correlations follow from (92) and (93) [25],

C(2)
Gij

= 1 +
1− bγ0(e

µi + eµj )− δij1

1 + 2 cosh(µi − µj) + ∆′(µi, νi, µj , νj) + δij1
, (108)

C(2)
Qij

= 1 +
Nc

CF

[

C(2)
Gij

− 1 +
1

2
(b− a)γ0

eµi + eµj

1 + cosh(µi − µj)

]

, (109)
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where,

δij1 = β0γ0
2 sinh2

(

µi−µj

2

)

3 + 4 sinh2
(

µi−µj

2

)

(

Q̃(µi, νi) + Q̃(µj , νj)
)

, (110)

and

∆′(µi, νi, µj , νj) = −aγ0
[

eµi + eµj − sinh(µi − µj)(Q̃i − Q̃j) + cosh µ1 tanh ν2 + cosh µ2 tanh ν1

− sinhµi tanh νj coth µj − sinhµj tanh νi coth µi

+ sinh(µi − µj)
(

tanh νi coth µiQ̃i − tanh νj coth µjQ̃j

)]

− β0γ0

[

coshµi − sinhµiCj + coshµj − sinhµjCi + sinh(µi − µj)(CiQ̃i −CjQ̃j)

+ cosh µi tanh νj(1 +Kj) + cosh µj tanh νi(1 +Ki)] . (111)

The solutions (108) and (109) are the ones to be used in this paper for the evaluations of the three-particle

correlations and will be directly inserted in the solutions(51) and (55) respectively.

C.1 Corrections ξij
1
, ξ̃

ij
1

and ǫ1, ǫ̃1

For the computation of these corrections, one only needs to take the DLA part of the logarithmic deriva-

tives of the one-particle distributionψi,ℓ = γ0e
µi andψi,y = γ0e

−µi , such that after replacement in (54c)

and (58c) one finds,

ξij1 =
1

γ0

[

χij
ℓ

(

e−µ1 + e−µ2 + e−µ3

)

+ χij
y (eµ1 + eµ2 + eµ3)

]

, (112)

ξ̃ij1 =
1

γ0

[

χ̃ij
ℓ

(

e−µ1 + e−µ2 + e−µ3

)

+ χ̃ij
y (eµ1 + eµ2 + eµ3)

]

, (113)

where

χij
ℓ = β0γ

2
0

tanh
µi−µj

2

1 + 2 cosh(µi − µj)

eµiQ̃i − eµj Q̃j

2
, χ̃ij

ℓ = −Nc

CF

Ċ(2)
Gij

Ċ(2)
Qij

χij
ℓ , (114)

χij
y = −β0γ20

tanh
µi−µj

2

1 + 2 cosh(µi − µj)

e−µiQ̃i − e−µj Q̃j

2
, χ̃ij

y = −Nc

CF

Ċ(2)
Gij

Ċ(2)
Qij

χij
y ; (115)

with

Ċ(2)
Gij

= 1 +
1

1 + 2 cosh(µi − µj)
, Ċ(2)

Qij
= 1 +

Nc

CF

1

1 + 2 cosh(µi − µj)
. (116)

Accordingly, replacingψi,ℓ = γ0e
µi andψi,y = γ0e

−µi in (54e) and (58e), one has

ǫ1 =
1

γ0

[

ζℓ
(

e−µ1 + e−µ2 + e−µ3

)

+ ζy (e
µ1 + eµ2 + eµ3)

]

, (117)

ǫ̃1 =
1

γ0

[

ζ̃ℓ
(

e−µ1 + e−µ2 + e−µ3

)

+ ζ̃y (e
µ1 + eµ2 + eµ3)

]

, (118)

whereζℓ, ζ̃ℓ andζy, ζ̃y should be found from the DLA expression ofC(3) written in (35), forCA = Nc in

a gluon jet andCA = CF in a quark jet. Introducing the parametrization in (µ, ν), one has respectively,

Ċ(3)
G123

= 1 +
(

Ċ(2)
G12

− 1
)

+
(

Ċ(2)
G13

− 1
)

+
(

Ċ(2)
G23

− 1
)

(119)

+
1

2

(

Ċ(2)
G12

− 1
)

+
(

Ċ(2)
G13

− 1
)

+
(

Ċ(2)
G23

− 1
)

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)
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+
1

2

1

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)
,

and

Ċ(3)
Q123

= 1 +
(

Ċ(2)
Q12

− 1
)

+
(

Ċ(2)
Q13

− 1
)

+
(

Ċ(2)
Q23

− 1
)

(120)

+
Nc

2CF

(

Ċ(2)
Q12

− 1
)

+
(

Ċ(2)
Q13

− 1
)

+
(

Ċ(2)
Q23

− 1
)

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)

+
N2

c

2C2
F

1

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)
.

Thus, in order to getζℓ andζy, one should start from (119,120) and make use of

∂µi
∂ℓ

− ∂µj
∂ℓ

= −β0γ20
eµiQ̃i − eµj Q̃j

2
,

∂µi
∂y

− ∂µj
∂y

= β0γ
2
0

e−µiQ̃i − e−µj Q̃j

2
.

Therefore, everything is ready for the computation of

ζℓ =
1

Ċ(3)
G123

Ċ(3)
G123,ℓ

, ζy =
1

Ċ(3)
G123

Ċ(3)
G123,y

; ζ̃ℓ =
1

Ċ(3)
Q123

Ċ(3)
Q123,ℓ

, ζ̃y =
1

Ċ(3)
Q123

Ċ(3)
Q123,y

. (121)

For instance,

Ċ(3)
G123,ℓ

= χ12
ℓ Ċ(2)

G12
+ χ13

ℓ Ċ(2)
G13

+ χ23
ℓ Ċ(2)

G23
+

1

2

χ12
ℓ Ċ(2)

G12
+ χ13

ℓ Ċ(2)
G13

+ χ23
ℓ Ċ(2)

G23

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)

− 1

2

(

Ċ(2)
G12

− 1
)

+
(

Ċ(2)
G13

− 1
)

+
(

Ċ(2)
G23

− 1
)

[1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)]
2

[

sinh(µ1 − µ2)

(

∂µ1
∂ℓ

− ∂µ2
∂ℓ

)

+ sinh(µ1 − µ3)

(

∂µ1
∂ℓ

− ∂µ3
∂ℓ

)

+ sinh(µ2 − µ3)

(

∂µ2
∂ℓ

− ∂µ3
∂ℓ

)]

− 1

2

1

[1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)]
2

[

sinh(µ1 − µ2)

(

∂µ1
∂ℓ

− ∂µ2
∂ℓ

)

+ sinh(µ1 − µ3)

(

∂µ1
∂ℓ

− ∂µ3
∂ℓ

)

+ sinh(µ2 − µ3)

(

∂µ2
∂ℓ

− ∂µ3
∂ℓ

)]

, (122)

and

Ċ(3)
Q123,ℓ

= χ̃12
ℓ Ċ(2)

Q12
+ χ̃13

ℓ Ċ(2)
Q13

+ χ̃23
ℓ Ċ(2)

Q23
+

Nc

2CF

χ̃12
ℓ Ċ(2)

Q12
+ χ̃13

ℓ Ċ(2)
Q13

+ χ̃23
ℓ Ċ(2)

Q23

1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)

− Nc

2CF

(

Ċ(2)
Q12

− 1
)

+
(

Ċ(2)
Q13

− 1
)

+
(

Ċ(2)
Q23

− 1
)

[1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)]
2

[

sinh(µ1 − µ2)

(

∂µ1
∂ℓ

− ∂µ2
∂ℓ

)

+ sinh(µ1 − µ3)

(

∂µ1
∂ℓ

− ∂µ3
∂ℓ

)

+ sinh(µ2 − µ3)

(

∂µ2
∂ℓ

− ∂µ3
∂ℓ

)]

− N2
c

2C2
F

1

[1 + cosh(µ1 − µ2) + cosh(µ1 − µ3) + cosh(µ2 − µ3)]
2

[

sinh(µ1 − µ2)

(

∂µ1
∂ℓ

− ∂µ2
∂ℓ

)

+ sinh(µ1 − µ3)

(

∂µ1
∂ℓ

− ∂µ3
∂ℓ

)

+ sinh(µ2 − µ3)

(

∂µ2
∂ℓ

− ∂µ3
∂ℓ

)]

. (123)

For derivatives with respect toy, it is enough to replaceℓ by y in the previous expressions. In Fig.8, we

displayǫ1(ℓ1, ℓ2, ℓ3, Y ) as a function of the sum| ln(x1x2)| and the difference(ℓ1 − ℓ2) = ln(x2/x1)

for two fixed values ofℓ3 = ln(1/x3) = 4.5, 5.5, x1 = x2 and fixed sum(ℓ1 + ℓ2) = | ln(x1x2)| = 10

and fixedY = 7.5. As expected, this correction decreases the correlations away from the hum region

and for harder particles.
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Figure 8: Correctionǫ1(ℓ1, ℓ2, ℓ3, Y ) as a function ofℓ1−ℓ2 = ln(x2/x1) for ℓ1+ℓ2 = | ln(x1x2)| = 10,

ℓ3 = ln(1/x3) = 4.5, 5.5, fixedY = 7.5 in the limiting spectrum approximationλ ≈ 0.

C.2 Hump approximation

In this approximation, we consider the energy of the three partons to be close to the maximum of the

single inclusive distribution| ℓ− Y/2 |≪ σ ∝ Y 3/2 for i = 1, 2, 3. In [25], it was demonstrated that,

ψi,ℓ

ℓi∼Y/2
≈ γ0(1 + µi +

1

2
µ2i ), ψi,y

ℓi,j∼Y/2
≈ γ0(1− µi +

1

2
µ2j), µi

ℓi∼Y/2
≈ 3

2

y − ℓ

y + ℓ
, (124)

for a, β0, λ = 0, which is DLA. In the same approximation one has the following for a, β0 6= 0 and

λ = 0,

∆ij

ℓi,j∼Y/2
≈ 2 + (µi − µj)

2 − aγ0(2 + µi + µj)− 2β0γ0, (125)

where

(µi − µj)
2
ℓi,j∼Y/2

≈ 9

(

ℓi − ℓj
Y

)2

, µi + µj
ℓi,j∼Y/2

≈ 3

(

1− ℓi + ℓj
Y

)

. (126)

Moreover,

δij1
ℓi∼Y/2
≈ 2

9
β0γ0(µi − µj)

2 = 2β0γ0

(

ℓi − ℓj
Y

)2

, (127)

sinceγ0
(

ℓi−ℓj
Y

)2
≪
(

ℓi−ℓj
Y

)2
, δ1 was neglected in this approximation.

Applying the previous expansions to (53a-53d) and (57a-57d), it is easy to find:

N
(2)
Qij

= 0, (128a)

N
(3)
G = 1− 3c√

β0

(

5

2
− | ln(x1x2x3)|

ln(Q/Q0)

)

1
√

ln(Q/Q0)
= 1− 3c

(

5

2
− ℓ1 + ℓ2 + ℓ3

Y

)

γ0, (128b)

D
(3)
G =D

(2)
G =8+9

[

ln(x2/x1)

ln(Q/Q0)

]2

+ 9

[

ln(x3/x1)

ln(Q/Q0)

]2

+ 9

[

ln(x3/x2)

ln(Q/Q0)

]2

− 6β0
√

β0 ln(Q/Q0)
, (128c)

− 3a√
β0

(

5− 2
| ln(x1x2x3)|
ln(Q/Q0)

)

1
√

ln(Q/Q0)
,

= 8+9

(

ℓ1−ℓ2
Y

)2

+9

(

ℓ1−ℓ3
Y

)2

+9

(

ℓ2−ℓ3
Y

)2

−6β0γ0−3a

(

5− 2
ℓ1+ℓ2+ℓ3

Y

)

γ0,
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N
(2)
Gij

= 1− 3b√
β0

(

5

2
− | ln(x1x2x3)|

ln(Q/Q0)

)

1
√

ln(Q/Q0)
= 1− 3b

(

5

2
− ℓ1 + ℓ2 + ℓ3

Y

)

γ0, (128d)

C(2)
Gij

= 1 +
1− b√

β0

(

5− 3
| ln(xixj)|
ln(Q/Q0)

)

1√
ln(Q/Q0)

3 + 9
[

ln(xi/xj)
ln(Q/Q0)

]2
− 2
√

β0

ln(Q/Q0)
− a√

β0

(

5− 3
| ln(xixj)|
ln(Q/Q0)

)

1√
ln(Q/Q0)

, (128e)

= 1 +
1− b

(

5− 3
ℓi+ℓj
Y

)

γ0

3 + 9
(

ℓi−ℓj
Y

)2
− 2β0γ0 − a

(

5− 3
ℓi+ℓj
Y

)

γ0

, (128f)

C(2)
Qij

= 1 +
Nc

CF

[

C(2)
Gij

− 1 +
1

4
(b− a)γ0

(

5− 3
| ln xixj|
√

ln(Q/Q0)

)]

(128g)

= 1 +
Nc

CF

[

C(2)
Gij

− 1 +
1

4
(b− a)γ0

(

5− 3
ℓi + ℓj
Y

)]

,

D
(3)
Q = 9 + 9

[

ln(x2/x1)

ln(Q/Q0)

]2

+ 9

[

ln(x3/x1)

ln(Q/Q0)

]2

+ 9

[

ln(x3/x2)

ln(Q/Q0)

]2

− 6β0
√

β0 ln(Q/Q0)
(128h)

− 9a√
β0

(

5

2
− | ln(x1x2x3)|

ln(Q/Q0)

)

1
√

ln(Q/Q0)
,

= 9+9

(

ℓ1−ℓ2
Y

)2

+9

(

ℓ1−ℓ3
Y

)2

+9

(

ℓ2−ℓ3
Y

)2

−6β0γ0−9a

(

5

2
− ℓ1+ℓ2+ℓ3

Y

)

γ0, (128i)

N
(3)
Q =

N2
c

C2
F

C(3)
G123

[

1− 3a√
β0

(

5

2
− | ln(x1x2x3)|

ln(Q/Q0)

)

1
√

ln(Q/Q0)

]

(128j)

=
N2

c

C2
F

C(3)
G123

[

1− 3a√
β0

(

5

2
− ℓ1 + ℓ2 + ℓ3

ln(Q/Q0)

)

1
√

ln(Q/Q0)

]

.

D DLA solution of the 4-particle correlations

Below, we display the expressions related to subsection 2.9. In the l.h.s. of the evolution equation (69),

we define

Â
(4)
1234 = A

(4)
1234 −

(

A
(3)
123 −A1A2A3

)

A4 −
(

A
(3)
134 −A1A3A4

)

A2 −
(

A
(3)
234 −A2A3A4

)

A1 (129)

−
(

A
(3)
124 −A1A2A4

)

A3 −
(

A
(2)
12 −A1A2

)(

A
(2)
34 −A3A4

)

−
(

A
(2)
13 −A1A3

)(

A
(2)
24 −A2A4

)

−
(

A
(2)
14 −A1A4

)(

A
(2)
23 −A2A3

)

+
(

A
(2)
12 −A1A2

)

A3A4 +
(

A
(2)
13 −A1A3

)

A2A4

+
(

A
(2)
14 −A1A4

)

A2A3 +
(

A
(2)
23 −A2A3

)

A1A4 +
(

A
(2)
24 −A2A4

)

A1A3

+
(

A
(2)
34 −A3A4

)

A1A2 −A1A2A3A4.

In the DLA solution (70) of the equation (69), we have introduced the expressions:

H1 =
(

Ċ(2)
12 − 1

)

+
(

Ċ(2)
13 − 1

)

+
(

Ċ(2)
14 − 1

)

+
(

Ċ(2)
23 − 1

)

+
(

Ċ(2)
24 − 1

)

+
(

Ċ(2)
34 − 1

)

, (130)

H2 =
(

Ċ(3)
123 − 1

)

+
(

Ċ(3)
124 − 1

)

+
(

Ċ(3)
134 − 1

)

+
(

Ċ(3)
234 − 1

)

+
(

Ċ(2)
14 − 1

)(

Ċ(2)
23 − 1

)

(131)

+
(

Ċ(2)
34 − 1

)(

Ċ(2)
12 − 1

)

+
(

Ċ(2)
13 − 1

)(

Ċ(2)
24 − 1

)

− 2
(

Ċ(2)
12 − 1

)

− 2
(

Ċ(2)
13 − 1

)

− 2
(

Ċ(2)
14 − 1

)

− 2
(

Ċ(2)
23 − 1

)

− 2
(

Ċ(2)
24 − 1

)

− 2
(

Ċ(2)
34 − 1

)

,
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H3 = 1 +
(

Ċ(3)
123 − 1

)

+
(

Ċ(3)
124 − 1

)

+
(

Ċ(3)
134 − 1

)

+
(

Ċ(3)
234 − 1

)

+
(

Ċ(2)
14 − 1

)(

Ċ(2)
23 − 1

)

(132)

+
(

Ċ(2)
34 − 1

)(

Ċ(2)
12 − 1

)

+
(

Ċ(2)
13 − 1

)(

Ċ(2)
24 − 1

)

−
(

Ċ(2)
12 − 1

)

−
(

Ċ(2)
13 − 1

)

−
(

Ċ(2)
14 − 1

)

−
(

Ċ(2)
23 − 1

)

−
(

Ċ(2)
24 − 1

)

−
(

Ċ(2)
34 − 1

)

.
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