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1 Introduction

The observation of quark and gluon jets has played a crucial role in establishing QCD as the theory of

strong interaction within the standard model of particle physics. The jets, narrowly collimated bundles of

hadrons, reflect configurations of quarks and gluons at shortdistances. Powerful schemes, like the double

logarithmic approximation (DLA) and the modified leading logarithmic approximation (MLLA), which

allow for the perturbative resummation of soft-collinear and hard-collinear gluons before the hadroniza-

tion occurs, have been developed over the past 30 years (for areview see [1]). One of the most striking

predictions of perturbative QCD, which follows as a consequence of angular ordering (AO) within the

MLLA and the local parton hadron duality (LPHD) hypothesis [2], is the existence of the hump-backed

shape [1] of the inclusive energy distribution of hadrons, later confirmed by experiments at colliders.

Indeed, the shape and normalization of single inclusive distributions are compared with an experiment;

a constantKch, which normalizes the number of soft gluons to the number of charged detected hadrons

(mostly pions and kaons), turns out to be close to unity (Kch ∼ 1), giving support to the similarity be-

tween parton and hadron spectra [1]. Thus, the study of inclusive observables like the inclusive energy

distribution and the transverse momentumk⊥ spectra of hadrons [3] has shown that the perturbative stage

of the process, which evolves from the hard scale or leading parton virtualityQ ∼ E to the hadronization

scaleQ0, is dominant. In particular, these issues suggest that the hadronization stage of the QCD cascade

plays a subleading role and, therefore, that the LPHD hypothesis is successful while treating one-particle

inclusive observables.

The study of particle correlations in intrajet cascades, which are less inclusive observables, focuses

on providing tests of the partonic dynamics and the LPHD. In [4], this observable was computed for

the first time at smallx (energy fraction of the jet virtuality taken away by one parton) in MLLA for

particles staying close to the maximum of the one-particle distribution. In [5], the previous solutions

were extended, at MLLA, to all possible values ofx by exactly solving the QCD evolution equations.

This observable was measured by the OPAL Collaboration ine+e− annihilation at theZ0 peak, that is,

for
√
s = 91.2 GeV at LEP [6]. Though the agreement with predictions presented in [5] was improved,

a discrepancy still subsists pointing out a possible failure of the LPHD for less inclusive observables.

However, these measurements were redone by the CDF Collaboration inpp̄ collisions at the Tevatron for

mixed samples of quark and gluon jets [7]. The agreement withpredictions presented in [4] turned out

to be rather good, especially for particles having very close energy fractions (x1 ≈ x2). A discrepancy

between the OPAL and CDF analysis showed up and still stays unclear. Therefore, the measurement of

the two-particle correlations at higher energies at the LHCbecomes crucial. Furthermore, going one step

beyond, in this article we give predictions for the three-particle correlations inside quark and gluon jets.

This observable and the two-particle correlations can be measured on equal footing at the LHC so as to

provide further verifications of the LPHD for less inclusiveobservables.

2 Kinematics and evolution equations

A generating functionalZ(E,Θ; {u}) can be constructed [1] that describes the azimuth averaged parton

content of a jet of energyE with a given opening half-angleΘ; by virtue of the exact AO (MLLA),

which satisfies an integro-differential system of evolution equations. In order to obtainexclusive n-
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Figure 1: Three-particle yield and angular ordering insidea high energy jet.

particle distributionsD(n)
A (ki, E) one takesn variational derivatives ofZA overu(ki) with appropriate

particle momenta,i = 1 . . . n, and setsu ≡ 0 afterwards;inclusive distributions are generated by

taking variational derivatives aroundu ≡ 1. Let us introduce then-particle differential correlations for

A = G,Q, Q̄ jets as,

A
(n)
1...n(z) ≡

x1
z
. . .

xn
z
D

(n)
A

(

x1
z
. . .

xn
z
, ln

zQ

Q0

)

, (1)

together withA(n)
1...n ≡ A

(n)
1...n(1) for later use;xi corresponds to the Feynman energy fraction of the jet

taken away by one particle “i” and z is the energy fraction of the intermediate parton. For instance, for

three-particle correlationsn = 3, the observable to be measured readsC(3)
A123

=
A

(3)
123

A1A2A3
. The production

of three hadrons is displayed in Fig.1 after a quark or a gluon(A) jet of energyE with half opening

angleΘ0 and virtualityQ = EΘ0 has been produced in a high energy collision. The kinematical

variable characterizing the process is given by the transverse momentumk⊥ = zEΘ1 ≥ Q0 [or (1 −
z)EΘ1 ≥ Q0] of the first splittingA → BC. The partonC fragments into three offspring such that

three hadrons of energy fractionsx1, x2, andx3 can be triggered from the same cascade following the

conditionΘ0 ≥ Θ1 ≥ Θ2 ≥ Θ3, which arises from exact AO in MLLA [1]. We make use of variables,

ℓ = ln z
x1

, y = ln x3EΘ1
Q0

, ℓi = ln 1
xi

, yj = ln
xjEΘ0

Q0
, ηij = ln xi

xj
, Y = ℓi + yj + ηij = ln(Q/Q0)

andλ = ln(Q0/ΛQCD). The two variables entering the evolution equations arez andΘ1, such that

x1 ≤ z ≤ 1 ⇒ 0 ≤ ℓ ≤ ℓ1. Accordingly, the anomalous dimension related to the coupling constant can

be parametrized as

γ20(Q
2) = 2Nc

αs(Q
2)

π
, γ20(ℓ+ y) =

1

β0(ℓ+ y + ηij + λ)
,

whereβ0 = 1
4Nc

(

11
3 Nc − 4

3nfTR
)

, with TR = 1/2 andnf the number of light quark flavors. From

AO and the initial condition at thresholdx3EΘ0 ≥ x3EΘ1 ≥ x3EΘ3 ≥ Q0, one has the bounds
Q0

x3E
≤ Θ1 ≤ Θ0 ⇒ 0 ≤ y ≤ y3 for the integrated evolution equations. The evolution equations satisfied

by (1) are derived from the MLLA master equation for the generating functionalZA(E,Θ;u(ki)). For

three-particle correlations, one takes the firstδZA

δu(k1)
, second δ2ZA

δu(k1)δu(k2)
, and finally third δ3ZA

δu(k1)...δu(k3)

functional derivatives ofZA(E,Θ;u(ki)) over the probing functionsu(ki) so as to obtain the differential
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system of evolution equations:

Q̂
(3)
ℓy =

CF

Nc
γ20G

(3) − 3

4

CF

Nc
γ20

(

G
(3)
ℓ − β0γ

2
0G

(3)
)

, (2)

Ĝ
(3)
ℓy = γ20G

(3)−aγ20
(

G
(3)
ℓ −β0γ20G(3)

)

+ (a− b)γ20

[(

Ĝ
(2)
12 G3+Ĝ

(2)
13 G2 + Ĝ(2)23G1

)

ℓ
(3)

− β0γ
2
0

(

Ĝ
(2)
12 G3+Ĝ

(2)
13 G2 + Ĝ(2)23G1

)]

+ (a−c)γ20
[

(G1G2G3)ℓ−β0γ20G1G2G3

]

,

whereÂ(2)
ij = A

(2)
ij −AiAj andÂ(3) = A(3) −A1A2A3 − Â

(2)
12 A3 − Â

(2)
13 A2 − Â

(2)
23 A1. The subscripts

ℓ andy in Eqs. (2) and (3) denote∂/∂ℓ and∂/∂y, respectively. The first terms of Eqs. (2) and (3)

are of classical origin and, therefore, universal. Corrections∝ −3
4 , a, (a − b), and(a − c), which are

O(
√
αs) suppressed, better account for energy conservation at eachvertex of the splitting process, as

compared with the DLAO(1). The hard constants are obtained after integration over theregular part of

the DGLAP splitting functions [1] as performed in [4, 5]. In the equation for the gluon initiated jet (3),

the first and second constantsa(nf = 3) = 0.935 andb(nf = 3) = 0.915 were obtained in the frame of

the single inclusive distribution and two-particle correlations respectively [4]. The third constantc(nf )

appearing for the first time in this frame reads

c(nf ) =
1

4Nc

[

11

3
Nc +

4

3
nfTR

(

1− 2
CF

Nc

)3
]

nf=3
= 0.917.

2.1 MLLA and DLA solutions of the evolution equations

Equation (3) is self-contained and can be solved iteratively by settingG(3) = C
(3)
G123

G1G2G3 and

G
(2)
ij = C

(2)
Gij
GiGj in the left- and right-hand sides of (3). Accordingly, the solution of (2) is also

obtained by settingQ(3) = C
(3)
Q123

Q1Q2Q3 andQ(2)
ij = C

(2)
Qij
QiQj in the left-hand side of (2) and

G(3) = C
(3)
G123

G1G2G3 in the right-hand side of the same equation such that the iterative solutions can

be written in the compact form

C(3)
A123

=
(

C(2)
A12

−1
)

F
(2)
A12

+
(

C(2)
A13

−1
)

F
(2)
A13

+
(

C(2)
A23

−1
)

F
(2)
A23

+
N2

c

C2
A

F
(3)
A123

. (4)

The MLLA two-particle correlatorsC(2)
A12

will be taken from [5] for the computation ofC(3)
A123

. Moreover,

F
(2)
Gij

= 1 +
1− bΨℓ + ξij1 − ǫ1

2 + ∆12 +∆13 +∆23 + ǫ1
, (5)

F
(3)
G123

=
1− cΨℓ + ξ121 + ξ131 + ξ231 − ǫ1
2 + ∆12 +∆13 +∆23 + ǫ1

(6)

and for the quark jet

F
(2)
Qij

= 1 +
ξ̃ij1 − ǫ̃1

3 + ∆12 +∆13 +∆23 − aΨℓ + ǫ̃1
, (7)

F
(3)
Q123

=
C(3)
G123

(1− aΨℓ) + ξ̃121 + ξ̃131 + ξ̃231 − ǫ̃1

3 + ∆12 +∆13 +∆23 −aΨℓ + ǫ̃1
, (8)

whereΨℓ = ψ1,ℓ + ψ2,ℓ + ψ3,ℓ = O(γ0) andψ = ln[G(ℓ, y)]. Higher order corrections arising from the

solution of the system of Eqs. 2 and 3 have been neglected in (4). In this case,G(ℓ, y) is the inclusive
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energy distribution, which will be inserted from the steepest descent method presented in [5]. The other

functions appearing in (5) and (6) are∆ij = γ−2
0 (ψi,ℓψj,y + ψi,yψj,ℓ) = O(1) and

ζℓ =
Ċ(3)
G123,ℓ

Ċ(3)
G123

= O(γ20), ζy =
Ċ(3)
G123,y

Ċ(3)
G123

= O(γ20),

χij
ℓ =

Ċ(2)
Gij ,ℓ

Ċ(2)
Gij

= O(γ20), χ
ij
y =

Ċ(2)
Gij ,y

Ċ(2)
Gij

= O(γ20),

ξij1 = γ−2
0

(

χij
ℓ Ψy + χij

y Ψℓ

)

= O(γ0),

ǫ1 = γ−2
0 (ζℓΨy + ζyΨℓ) = O(γ0),

with ζ = ln Ċ(3)
G123

andχ = ln Ċ(2)
G . The set of functions appearing in (7) and (8) is obtained from the

previous by replacingζ → ζ̃, χ → χ̃, ξ → ξ̃, Ċ(2)
Gij

→ Ċ(2)
Qij

andĊ(3)
Gij

→ Ċ(3)
Qij

where the dotteḋC(2)
Aij

and

Ċ(3)
Aij

are the DLA solutions of the two- and three-particle correlators; that is why this solution is said to

be iterative. Moreover, correctionsǫ1, ǫ̃1 andξij1 , ξ̃
ij
1 are very small and do not play a significant role in

the shape and normalization of the three-particle correlations.

The DLA two-particle correlators are taken from [8] and the DLA expression forĊ(3)
Aij

can be obtained

from (4) by setting all MLLAO(γ0) corrections to zero:

Ċ(2)
Aij

− 1 =
Nc

CA

1

1 + ∆ij
; (9)

(

Ċ(3)
A123

−1
)

−
(

Ċ(2)
A12

−1
)

−
(

Ċ(2)
A13

−1
)

−
(

Ċ(2)
A23

−1
)

(10)

=
Nc

CA

(

Ċ(2)
A12

−1
)

+
(

Ċ(2)
A13

−1
)

+
(

Ċ(2)
A23

−1
)

2 + ∆12 +∆13 +∆23
+
N2

c

C2
A

1

2 + ∆12 +∆13 +∆23
.

The solutions have the following simple physical interpretation: the first term(= −1) in the left-hand

side translates the independent or decorrelated emission of three hadrons in the shower. After inserting

the two-particle correlator with color factor∝ Nc

CA
(9) in the left-hand side of (10), terms∝ Nc

CA
corre-

spond to the case where two partons are correlated inside thesame subjet, while the other one is emitted

independently from the rest. Next, replacing (9) in the right-hand side of (10), one obtains a contribution

∝ N2
c

C2
A

describing the independent emission of two partons inside the same subjet. The last term∝ N2
c

C2
A

involves three particles strongly correlated inside the same partonic shower as depicted in Fig.1. This

term is indeed the cumulants of genuine correlations, first obtained in this article for this observable.

The evaluation of (4), which is expressed in terms of the logarithmic derivatives of the single inclusive

distributionln[G(ℓ, y)], will be performed using the steepest descent method to determineG(ℓ, y) [5,8].

Thus, the MLLA logarithmic derivatives were written in [5] in the form:

ψi,ℓ(µi, νi) = γ0e
µi +

1

2
aγ20

[

eµiQ̃(µi, νi)− tanh νi − tanh νi coth µi

(

1 + eµiQ̃(µi, νi)
)]

(11)

− 1

2
β0γ

2
0

[

1 + tanh νi

(

1 +K(µi, νi)
)

+ C(µi, νi)
(

1 + eµiQ̃(µi, νi)
)]

+O(γ20),

ψi,y(µ, ν) = γ0e
−µi − 1

2
aγ20

[

2 + e−µiQ̃(µi, νi) + tanh νi − tanh νi coth µi

(

1 + e−µiQ̃(µi, νi)
)]

− 1

2
β0γ

2
0

[

1 + tanh νi

(

1 +K(µi, νi)
)

− C(µi, νi)
(

1 + e−µiQ̃(µi, νi)
)]

+O(γ20), (12)
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where the functions̃Q(µi, νi), C(µi, νi) andK(µi, νi) are defined in [5] and(µi, νi) are expressed as

functions of the original variables(ℓi, yj) by inverting the nonlinear system of equations [8]:

yi − ℓi
ℓi + yi

=
(sinh 2µi − 2µi)− (sinh 2νi − 2νi)

2(sinh2 µi − sinh2 νi)
,

sinh νi√
λ

=
sinhµi√
ℓi + yi + λ

.

In particular, this method allows for the estimation of the observable for particles with energies near

the maximum or hump (ℓmax = Y/2) of the one-particle distribution| ℓ − Y/2 |≪ σ ∝ Y 3/2, which

applied to the three-particle correlations will appear in aforthcoming paper. For instance, at DLA one

has∆ij = 2cosh(µi − µj) with such a parametrization of the logarithmic derivativesof the inclusive

spectrum. Close to the hump one has∆ij ≃ (ℓi− ℓj)2; thus the correlations are expected to be quadratic

as a function of(ℓi−ℓj) and to have a maximum for particles with the same energyxi = xj. In this frame,

the role of MLLA corrections should be expected to be larger than for the two-particle correlations.

Indeed, higher order corrections increase with the rank of the correlator, which is known from the Koba-

Nielsen-Olesen problem for intrajet multiplicity fluctuations [9]. For the two-particle correlations, for

instance, one has∝ −b(ψ1,ℓ + ψ2,ℓ) and for the three-particle correlator one has the larger correction

∝ −c(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ).

2.2 Phenomenology and comparison with existing e
+
e
− and pp̄ data

The study ofn-particle correlations is very important because, being defined as then-particle cross

section normalized by the product of the single inclusive distribution of each parton

C(n)
A1...n

=
A

(n)
1...n

A1 . . . An
,

the resulting observable becomes independent of the constant Kch, thus providing a refined test of QCD

dynamics at the parton level. Since our study of three-particle correlations depends on previous results

for two-particle correlations, we briefly review recent results about this observable. The MLLA evolution

equations for two-particle correlations, quite similar tothose leading to the hump-backed plateau, were

solved iteratively in terms of the logarithmic derivativesofG(ℓ, y) [5]. That is how, the result previously

obtained by Fong and Webber in [4], only valid in the vicinityof the maximumℓmax of the distribution,

was extended to all possible values ofx. Consequently, as displayed in Fig.2, the normalization ofthe

more accurate solution of the evolution equations is lower and reproduces some features of the OPAL

data at theZ0 peakQ = 91.2 GeV of thee+e− annihilation, like the flattening of the slopes towards

smaller values ofx [5]. Qualitatively, our MLLA expectations agree better with available OPAL data than

the Fong–Webber predictions [5]. There remains however a significant discrepancy, markedly at very

smallx. In this region nonperturbative effects are likely to be more pronounced. They may undermine

the applicability to particle correlations of the LPHD considerations that were successful in translating

parton level predictions to hadronic observations in the case of more inclusive single particle energy

spectra [1].

These measurements were redone by the CDF Collaboration forpp̄ collisions at center of mass energy
√
s = 1.96 TeV for mixed samples of quark and gluon jets [7]. For comparison with CDF data, the

two-particle correlator was normalized by the corresponding multiplicity correlator of the second rank,

5
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Figure 2: Two-particle correlations in two quark jets
(

R = 1
2 + 1

2C
(2)
Q

)

[5] in the processe+e− → qq̄ as

a function ofℓ1 + ℓ2 = | ln(x1x2)| for ℓ1 − ℓ2 = ln(x2/x1) = 1.0 (left) andℓ1 − ℓ2 = | ln(x2/x1)| for

ℓ1 + ℓ2 = ln(x1x2) = 6.0 (right).

which defines the dispersion of the mean average multiplicity inside the jet. In this case, the MLLA

solution by Fong and Webber [4], the more accurate MLLA solution [5], and the NMLLA solution [3]

were compared with the CDF data. The Fong-Webber predictions turned out to be in good agreement

with CDF data in a range from large to smallx, also covering the region of the phase space where MLLA

predictions should normally not be reliable, that is, forx > 0.1 (see Fig.3). As these figures were taken

from [7], different notations have been used in this case, for instance,ℓ ≡ ξ = ln(1/x), ∆ξ = ξ − ξmax

(ξmax ≡ ℓmax = 1
2 ln(Q/Q0)) such that∆ξ1 +∆ξ2 = ℓ1 + ℓ2 − ln(Q/Q0) and∆ξ1 −∆ξ2 = ℓ1 − ℓ2.
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C(
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Figure 3: Two-particle correlations in a mixed sample of gluon and quark jets inpp̄ collisions as a

function of∆ξ1 +∆ξ2 = | ln(x1x2)| − ln(Q/Q0) for ∆ξ1 = ∆ξ2 (left) and∆ξ1 −∆ξ2 = | ln(x2/x1)|
for ∆ξ1 = −∆ξ2 (right).

As observed in Fig.3 (left), the data are well described by the three cases in the interval∆ξ1 + ∆ξ2 >

−0.5, that is, at very smallx. However, the Fong and Webber’s solution also describes thedata for

∆ξ1 + ∆ξ2 < −0.5, that is, for larger values ofx where the MLLA is no longer valid. QCD color

coherence for Fig.3 (left, the peak at∆ξ1 + ∆ξ2 = −1.5 is due to numerical uncertainties) should be

observed if the analysis is extended to∆ξ1 + ∆ξ2 > 2.5. Moreover, the NMLLA solution [3] extends,
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like for thek⊥ spectra, the region of applicability of such predictions for larger values ofx. In [7], it was

concluded that despite the disagreement with the OPAL data in Fig.2, the LPHD stays successful for the

description of less inclusive energy-momentum correlations. Therefore, in this paper we encourage the

analysis of these observables by other collaborations likeALICE, ATLAS, and CMS in order to clarify

this mismatch.
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Figure 4: Gluon jet 3-particle correlator as a function of| ln(x1x2)| for x1 = x2 andln(1/x3) (left) and

as a function ofln(x2/x1) for fixed | ln(x1x2)| andln(1/x3) (right).

3 Predictions for three-particle correlations and phenomenology

Finally, in order to extend the applicability of the LPHD to alarger domain of observables, we per-

form theoretical predictions for three-particle correlations in the limiting spectrum approximation (Q0 ≈
ΛQCD). This observable and two-particle correlations can be measured on equal footing at the LHC.

We display the MLLA solutions (4) of the evolution equations(2) and (3). The correlators are functions

of the variablesℓi, yi and the virtuality of the jetQ = EΘ0. After settingyi = Y − ℓi with fixed

Y = ln(Q/Q0) in the arguments of the solutions (4), the dependence can be reduced to the following:

C(3)
G123

(ℓ1, ℓ2, ℓ3, Y ) andC(3)
Q123

(ℓ1, ℓ2, ℓ3, Y ).

In Fig. 4, the DLA (10) and MLLA (4) three-particle correlators forA = G andA = Q, Q̄,

C(3)
G123

=
G

(3)
123

G1G2G3
, C(3)

Q123
=

Q
(3)
123

Q1Q2Q3

are displayed, respectively, as a function of the difference (ℓ1 − ℓ2) = ln(x2/x1) for two fixed values

of ℓ3 = ln(1/x3) = 4.5, 5.5, fixed sum(ℓ1 + ℓ2) = | ln(x1x2)| = 10, and, finally, fixedY = 7.5

(virtuality Q = 450 GeV andΛQCD = 250 MeV), which is realistic for LHC phenomenology [5]. The

representative valuesℓ3 = ln(1/x3) = 4.5, 5.5 (x3 = 0.011, x3 = 0.004) have been chosen according

to the range of the energy fractionxi ≪ 0.1, where the MLLA scheme can only be applied.

In Fig. 5, the DLA (10) and MLLA (4) three-particle correlators forA = G andA = Q, Q̄ are depicted,

in this case as a function of the sum(ℓ1 + ℓ2) = | ln(x1x2)| for the same values ofℓ3 = ln(1/x3) =

4.5, 5.5, for x1 = x2 andY = 7.5. As expected in both cases, the DLA and MLLA three-particle

correlators are larger inside a quark than in a gluon jet. Of course, these plots will be the same and the
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Figure 5: Quark jet 3-particle correlator as a function of| ln(x1x2)| for x1 = x2 andln(1/x3) (left) and

as a function ofln(x2/x1) for fixed | ln(x1x2)| andln(1/x3) (right).

interpretation will apply to all possible permutations of three particles (123). As remarked above, the

difference between the DLA and MLLA results is quite important in pointing out that overall corrections

in O(
√
αs) are large. Indeed, the last behavior is not surprising as it was already observed in the treatment

of multiplicity fluctuations of the third kind given byR3 = 4.52
[

1− (2.280 − 0.018nf )
√
αs

]

[10].

For instance, for one quark jet produced at theZ0 peak of thee+e− annihilation (Q = 45.6 GeV), one has

αs = 0.134. Replacing this value into the previous formula for the quark jet multiplicity correlator, one

obtains a variation from 4.52 (DLA) to 0.83 (MLLA). Because of this, DLA has been known to provide

unreliable predictions which should not be compared with experiments. From Fig.4, the correlation is

observed to be the strongest when particles have the same energy and to decrease when one parton is

harder than the others. Indeed, in this region of the phase space two competing constraints should be

satisfied: as a consequence of gluon coherence and AO, gluon emission angles should decrease and on

the other hand, the convergence of the perturbative seriesk⊥ = xiEΘi ≥ Q0 should be guaranteed. That

is why, as the collinear cutoff parameterQ0 is reached, gluons are emitted at larger angles and destructive

interferences with previous emissions occur. This effect is clearly observed in Fig. 4; the steep fall of the

distribution is more pronounced in the quark jet than in the gluon jet. Moreover, the observable increases

for softer partons withx3 decreasing, which is for partons less sensitive to the energy balance. In Fig.5

the MLLA correlations increase for softer partons, then flatten and decrease as a consequence of soft

gluon coherence, reproducing for three-particle correlations the hump-backed shape of the one-particle

distribution. Because of the limitation of phase space, onehasC(3) ≤ 1 for harder partons.

4 Summary

In this paper we provide the first full perturbative QCD treatment of three-particle correlations in parton

showers, provide a further test of the LPHD within the limiting spectrum approximation, and briefly

revise the comparison of two-particle correlations with OPAL and CDF data. The correlations have been

shown to be strongest for the softest hadrons having the sameenergyx1 = x2 = x3 in both quark and

gluon jets, increasing as a function ofln(xi/xj) and| ln(xixj)| whenxk softens, that is for partons less

sensitive to the energy balance. This result becomes therefore universal forn-particle correlations.
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Coherence effects appear when one or two of the partons involved in the process are harder than the

others, thus reproducing for this observable the hump-backed shape of the one-particle distribution. Also,

the two- and three-particle correlations vanish (C(2) → 1) when one of the partons becomes very soft,

thus describing the hump-backed shape of the one-particle distribution. The reason for that is dynamical

rather than kinematical: radiation of a soft gluon occurs atlarge angles, which makes the radiation

coherent and thus insensitive to the internal parton structure of the jet ensemble.

We give the first analytical predictions of this observable in view of forthcoming measurements by AT-

LAS, CMS, and ALICE at the LHC. Further information from the comparison with forthcoming data

may also help to improve Monte Carlo event generators in the soft region of the phase space in intrajet

cascades, where PYTHIA, ARIADNE and HERWIG face difficulties while reproducing the data [11].
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