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1 Introduction

The observation of quark and gluon jets has played a crudgi@lin establishing QCD as the theory of
strong interaction within the standard model of particlggits. The jets, narrowly collimated bundles of
hadrons, reflect configurations of quarks and gluons at digietnces. Powerful schemes, like the double
logarithmic approximation (DLA) and the modified leadingdoithmic approximation (MLLA), which
allow for the perturbative resummation of soft-collineaddard-collinear gluons before the hadroniza-
tion occurs, have been developed over the past 30 years (éoreav seel[l]). One of the most striking
predictions of perturbative QCD, which follows as a consgme of angular ordering (AO) within the
MLLA and the local parton hadron duality (LPHD) hypothes, [is the existence of the hump-backed
shapel([l] of the inclusive energy distribution of hadromged confirmed by experiments at colliders.
Indeed, the shape and normalization of single inclusiviidigions are compared with an experiment;
a constanC°", which normalizes the number of soft gluons to the numbehafged detected hadrons
(mostly pions and kaons), turns out to be close to urii§*(~ 1), giving support to the similarity be-
tween parton and hadron specfra [1]. Thus, the study ofshabservables like the inclusive energy
distribution and the transverse momentimspectra of hadrons][3] has shown that the perturbative stage
of the process, which evolves from the hard scale or leadanigpp virtuality@ ~ E to the hadronization
scaleQ)y, is dominant. In particular, these issues suggest thatatishization stage of the QCD cascade
plays a subleading role and, therefore, that the LPHD hygsihis successful while treating one-particle
inclusive observables.

The study of particle correlations in intrajet cascadesicvlare less inclusive observables, focuses
on providing tests of the partonic dynamics and the LPHD 4] fhis observable was computed for
the first time at smalk (energy fraction of the jet virtuality taken away by one pajtin MLLA for
particles staying close to the maximum of the one-partigséridution. In [5], the previous solutions
were extended, at MLLA, to all possible valueszoby exactly solving the QCD evolution equations.
This observable was measured by the OPAL Collaboratiart #m annihilation at theZ® peak, that is,
for /s = 91.2 GeV at LEP[[6]. Though the agreement with predictions pressbm [5] was improved,

a discrepancy still subsists pointing out a possible failof the LPHD for less inclusive observables.
However, these measurements were redone by the CDF Cdatadyom pp collisions at the Tevatron for
mixed samples of quark and gluon jets$ [7]. The agreement pvigdictions presented inl[4] turned out
to be rather good, especially for particles having veryelesergy fractionsa(; ~ x5). A discrepancy
between the OPAL and CDF analysis showed up and still stagieam Therefore, the measurement of
the two-particle correlations at higher energies at the ldgd€omes crucial. Furthermore, going one step
beyond, in this article we give predictions for the threetipke correlations inside quark and gluon jets.
This observable and the two-patrticle correlations can basored on equal footing at the LHC so as to
provide further verifications of the LPHD for less inclusivieservables.

2 Kinematics and evolution equations

A generating functionak (E, ©; {u}) can be constructed|[1] that describes the azimuth averaatohp
content of a jet of energyr with a given opening half-angl®; by virtue of the exact AO (MLLA),
which satisfies an integro-differential system of evolntisquations. In order to obtaiexclusive n-
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Figure 1: Three-particle yield and angular ordering insidégh energy jet.

particle distributionsDX‘)(k,-, E) one takes variational derivatives of/ 4 overu(k;) with appropriate
particle momenta; = 1...n, and setsu = 0 afterwards;inclusive distributions are generated by
taking variational derivatives around= 1. Let us introduce the-particle differential correlations for
A=G,Q,Q jets as,

A () =2 2D <7 Zn Q%) (1)
together WithAYf?n = Ag’f)ﬁ(l) for later use;zr; corresponds to the Feynman energy fraction of the jet
taken away by one particle™and z is the energy fraction of the intermediate parton. For imsta for
three-particle correlations = 3, the observable to be measured re@d S, Aﬁ%éx:i. The production

of three hadrons is displayed in Kib.1 after a quark or a glubnjet of energyE with half opening
angle ©y and virtuality @ = EOg has been produced in a high energy collision. The kinematica
variable characterizing the process is given by the trasevemomentunk; = zE©; > Qo [or (1 —
2)EO1 > Qo] of the first splittingA — BC. The partonC' fragments into three offspring such that
three hadrons of energy fractions, x5, andxzs can be triggered from the same cascade following the
condition®, > ©1 > ©5 > O3, which arises from exact AO in MLLA |1]. We make use of variedl
(=lnZ,y=m=E% g =l y =Bz g, = ¥, Y = £+ y; + 0 = n(Q/Qo)
and\ = In(Qo/Agcp). The two variables entering the evolution equationsaesd ©;, such that

1 <z<1=0</</¢. Accordingly, the anomalous dimension related to the dogptonstant can

be parametrized as

O‘S(Qz) 1

2 2\ _
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wherefy = 1~ (5 Ne — 3nTr), With Tg = 1/2 andn the number of light quark flavors. From
AO and the initial condition at thresholds F©y > x3E0, > z3EO©3 > (g, one has the bounds
g—OE <01 <0y = 0<y < y;forthe integrated evolution equations. The evolution éigua satisfied
by (1) are derived from the MLLA master equation for the gatiag functionalZ 4 (E, ©; u(k )) For
three-particle correlations, one takes the fg.%%g—), secon% and finally thll’dm
functional derivatives of 4 (F, O; u(k;)) over the probing functionsg(k;) so as to obtain the differential



system of evolution equations:

53) _ CF 20(3) _3CF 2 (o3 _ 5 203)
Qfy = 6 - 3 (6 - pndc®), )
Gy = 2BG0 —ard (617 =B0dGD) + (a—b)f | (G Ga+ G G2+ GP7G1) - (@)

— Bog ( §2)G3+G§3)G2 +GC )QSGl)} + (a—)75 [(G1G2G3)o— o1 G1G2Gs)

whereAl? =AY — 4;4; andA®) = A®) — 4, 4,45 — AT) A5 — AY) 4, — AT) A, The subscripts

¢ andy in Egs. [2) and[(3) denotg/od¢ and 9/dy, respectively The first terms of Eqd.] (2) and (3)
are of classical origin and, therefore, universal. Coivestx —2, a, (a — b), and(a — ¢), which are
O(y/as) suppressed, better account for energy conservation atveaisx of the splitting process, as
compared with the DLAD(1). The hard constants are obtained after integration overetihdar part of
the DGLAP splitting functions [1] as performed in [4, 5]. Inetequation for the gluon initiated jéf] (3),
the first and second constant®:; = 3) = 0.935 andb(ny = 3) = 0.915 were obtained in the frame of
the single inclusive distribution and two-particle coaténs respectively [4]. The third constariis)
appearing for the first time in this frame reads

1|11 4 C —3
ns) = 17 [ N, + =nsTr (1—2%) ] " 0.917.

3 3 c

21 MLLA and DLA solutionsof the evolution equations

Equation [[B) is self-contained and can be solved iterativsl setting G®) = Cg’)Q G1G>G3 and
G(2) = C( )G G, in the left- and right-hand sides dfl(3). Accordingly, thduson of (2) is also
obtained by setting)®®) = CQ123Q1Q2Q3 and Qij = CQZ_J,Q,QJ in the left-hand side of {2) and

GB) = Cg’l)%GngGg in the right-hand side of the same equation such that thatitersolutions can
be written in the compact form

®3) () (2) () (2) (2) (2) Nz (3)
CA123 (CAl >F (CA13 a 1) (CAzs )FAzs + EFAHS (4)

The MLLA two-particle correlatoriéfﬁi)2 will be taken from [5] for the computation «ﬁf’l)%. Moreover,

(2) 1—-0bV,+ 5? —€
Y = 1+ , 5
Gij 24+ A+ A3+ Aoz + ¢ ( )
R T o
G123 24+ Ajg + A3+ Ags + €1
and for the quark jet
@) ﬁj — €1
F? =14 —, 7
Qij 3+ A+ A3+ Az —aV,+ € %
Lo o —aW) +ER 4 - ©
Q123 3+ A9+ A3+ Ags —aVy + €
whereW, = 9 ; + a0 + P3¢ = O(70) andy = In[G (¢, y)]. Higher order corrections arising from the

solution of the system of EqEl 2 and 3 have been neglectéd).inn(4his case(= (¢, y) is the inclusive



energy distribution, which will be inserted from the stestfpgiescent method presented ih [5]. The other
functions appearing ifi{5) andl (6) ate; = o 2 (Vi.ejy + Vi) = O(1) and

o &

o 123, 2 _ 123,Y 2
CZ - C(g) - 0(70)7 Cy TE)) - 0(70)7
G123 G123
ij ijst 2 ] Gijy _ 2
XZJ = C-(QJ) = 0("); ij = C(—zj) = 0(%);
Gij Gz‘j

2

Vo= (X?‘Py +x§f\Ife) = 0(),
e = 72 Gy + ¢Te) = O(0),

with ¢ = In Cg323 andy = In Cg). The set of functions appearing {0 (7) and (8) is obtainedhftbe
previous by replacing — ¢, x — %, & — &, C(GZ)] — C'gi)j andC'(G?’i)j — C'g’i)j where the dotted’ﬁi)j and
6(3) are the DLA solutions of the two- and three-particle cotmls that is why this solution is said to

be iterative. Moreover, correctiors, ¢, and¢, £/ are very small and do not play a significant role in
the shape and normalization of the three-particle coiogiat

The DLA two-patrticle correlators are taken from [8] and thieADexpression for(ffi)j can be obtained
from (4) by setting all MLLAO(~y,) corrections to zero:

C-(Q) B N, 1

Ay — L= C_ATAU; 9)
(¢f-1) = (efn-1)- (e 1) - (e ) (10
v (G (ER )R we 1
T Ca 2+ Az + A1z + Agg C22+ A+ Az + Agy’

The solutions have the following simple physical interatiein: the first term(= —1) in the left-hand
side translates the independent or decorrelated emistihinee hadrons in the shower. After inserting
the two-particle correlator with color factor o @) in the left-hand side of (10), terms g—A corre-
spond to the case where two partons are correlated insidgathe subjet, while the other one is emitted
independently from the rest. Next, replacihg (9) in the tilghnd side of_(1I0), one obtains a contribution
descrlblng the independent emission of two partons ingidesame subjet. The last temanT
mvolves three particles strongly correlated inside thees@artonic shower as depicted in Elg.1. ThIS
term is indeed the cumulants of genuine correlations, fls&ined in this article for this observable.

The evaluation of[{(4), which is expressed in terms of theritiyaic derivatives of the single inclusive
distributionn[G (¢, y)], will be performed using the steepest descent method tordeteG(¢, y) [5,8].
Thus, the MLLA logarithmic derivatives were written in [53] the form:

1 ~ -
Yio(pi, vi) = yoet + §a'yg [e“iQ(ui, v;) — tanh v; — tanh v; coth p; (1 + e Q (i, 1/,))] (12)

1 .

- 55073 [1 + tanh Vz'(l + K (s, Vz')) + C(pi, vi) (1 + e Q (1, Vi))] +0(%),

1 ~ -
Vi (p,v) =yoe " — 5078 [2 + e " Q(pi, vi) + tanhv; — tanh v; coth pu; (1 + e Qs Vz'))}

1 L

— 56098 [1+ tanh vy (1 4+ K () ) = Clui ) (1 + €7 Qui ) ) | + 03), (12)



where the function®) (11, v;), C(us, vi) and K (1, ;) are defined in[[5] andy;, v;) are expressed as
functions of the original variabled;, y;) by inverting the nonlinear system of equations [8]:

i — 4 (sinh 2p; — 2p;) — (sinh 2v; — 21;)

b + i 2(sinh? y1; — sinh? ;)

sinhv; sinh p;

VA Vhituitx

In particular, this method allows for the estimation of tHeservable for particles with energies near
the maximum or hump/(,., = Y/2) of the one-particle distribution¢ — Y/2 |< o o Y3/, which
applied to the three-particle correlations will appear fio@hcoming paper. For instance, at DLA one
hasA;; = 2cosh(u; — 1) with such a parametrization of the logarithmic derivatiséshe inclusive
spectrum. Close to the hump one eg ~ (¢; — ¢;)?; thus the correlations are expected to be quadratic
as afunction of/;—¢;) and to have a maximum for particles with the same eneygy x;. In this frame,
the role of MLLA corrections should be expected to be lardgeemtfor the two-particle correlations.
Indeed, higher order corrections increase with the ranketbrrelator, which is known from the Koba-
Nielsen-Olesen problem for intrajet multiplicity fluctias [S]. For the two-particle correlations, for
instance, one has —b(v1 ¢ + 1) and for the three-particle correlator one has the largeecton

o —c(P1,e + Pae + P30).

)

2.2 Phenomenology and comparison with existing et e~ and pp data

The study ofn-particle correlations is very important because, beinfindd as then-particle cross
section normalized by the product of the single inclusiwrdiution of each parton

o A,

AL AL A
the resulting observable becomes independent of the eurista, thus providing a refined test of QCD
dynamics at the parton level. Since our study of three-glartiorrelations depends on previous results
for two-patrticle correlations, we briefly review recentuks about this observable. The MLLA evolution
equations for two-particle correlations, quite similathose leading to the hump-backed plateau, were
solved iteratively in terms of the logarithmic derivativefs= (¢, y) [5]. That is how, the result previously
obtained by Fong and Webber In [4], only valid in the vicinitithe maximuny,,,... of the distribution,
was extended to all possible valueszofConsequently, as displayed in Eig.2, the normalizatiothef
more accurate solution of the evolution equations is lowet eproduces some features of the OPAL
data at theZ® peak@ = 91.2 GeV of theeTe™ annihilation, like the flattening of the slopes towards
smaller values af [5]. Qualitatively, our MLLA expectations agree better wévailable OPAL data than
the Fong—Webber predictions| [5]. There remains howevegmifsiant discrepancy, markedly at very
smallz. In this region nonperturbative effects are likely to be enpronounced. They may undermine
the applicability to particle correlations of the LPHD catesations that were successful in translating
parton level predictions to hadronic observations in theeaaf more inclusive single particle energy
spectral[l].
These measurements were redone by the CDF Collaboratigip foollisions at center of mass energy
/s = 1.96 TeV for mixed samples of quark and gluon jet$ [7]. For congmariwith CDF data, the
two-patrticle correlator was normalized by the correspogdhultiplicity correlator of the second rank,
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Figure 2: Two-particle correlations in two quark je{t@ =1+ %Cé?) [5] in the process e~ — gg as
a function ofly + ¢y = | In(zx9)| for £1 — o = In(z/z1) = 1.0 (left) and?¢y — €5 = |In(xy/24)]| for
b1+ by = ln(xlxg) = 6.0 (right).

which defines the dispersion of the mean average multipliogide the jet. In this case, the MLLA
solution by Fong and Webber|[4], the more accurate MLLA soiuf5], and the NMLLA solution|[[3]
were compared with the CDF data. The Fong-Webber preditiomed out to be in good agreement
with CDF data in a range from large to smallalso covering the region of the phase space where MLLA
predictions should normally not be reliable, that is, for 0.1 (see Fid.B). As these figures were taken
from [7], different notations have been used in this caseintance/ = £ = In(1/x), A = £ — &naa
(Emaz = lmaz = 3 10(Q/Qo)) such thatA&y + A&y = 01 + € — In(Q/Qo) and A&y — A&y = 4 — L.
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Figure 3. Two-particle correlations in a mixed sample ofogitand quark jets imp collisions as a
function of A& + A& = |1D(ZL'1£L'2)| - ID(Q/Q()) for A& = A& (left) and A& — Aé = |1H(3§‘2/:L’1)|
for A& = — A& (right).

As observed in Figl3 (left), the data are well described lgythiiee cases in the intervalé; + A&y >
—0.5, that is, at very smalk. However, the Fong and Webber’s solution also describeslale for
A& + A& < —0.5, that is, for larger values of where the MLLA is no longer valid. QCD color
coherence for Figl3 (left, the peak At; + A& = —1.5 is due to numerical uncertainties) should be
observed if the analysis is extendedAg; + A&, > 2.5. Moreover, the NMLLA solution([3] extends,



like for thek, spectra, the region of applicability of such predictionsléoger values of. In [7], it was
concluded that despite the disagreement with the OPAL d&f#&i2, the LPHD stays successful for the
description of less inclusive energy-momentum corretetiol herefore, in this paper we encourage the
analysis of these observables by other collaborationsAIMEE, ATLAS, and CMS in order to clarify
this mismatch.
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Figure 4: Gluon jet 3-particle correlator as a functior bf(x,25)| for 1 = x9 andln(1/z3) (left) and

as a function ofn(zy/z1) for fixed | In(z;x2)| andln(1/x3) (right).

3 Predictionsfor three-particle correlations and phenomenology

Finally, in order to extend the applicability of the LPHD tdager domain of observables, we per-
form theoretical predictions for three-particle correas in the limiting spectrum approximatio®( ~
Agcp). This observable and two-particle correlations can besores on equal footing at the LHC.
We display the MLLA solutiong {4) of the evolution equatiq@3 and [3). The correlators are functions
of the variable</;, y; and the virtuality of the jet) = E©,. After settingy; = Y — ¢; with fixed

Y = In(Q/Qo) in the arguments of the solutioris (4), the dependence caedueed to the following:
) (b1, 02, 03,Y) andCy) (01,0, 03, Y).

In Fig.[4, the DLA [10) and MLLA[(%) three-particle correlasdfor A = G andA = Q, Q,

(@ _ G oo _ Qi

125 G1GaGs @25 Q1Q2Q3

are displayed, respectively, as a function of the diffeeeff¢ — (o) = In(z2/x1) for two fixed values
of /3 = In(1/z3) = 4.5, 5.5, fixed sum(¢; + ¢2) = |In(z1z2)| = 10, and, finally, fixedY = 7.5
(virtuality @ = 450 GeV andAgcp = 250 MeV), which is realistic for LHC phenomenologyl[5]. The
representative valugg = In(1/x3) = 4.5, 5.5 (z3 = 0.011, 23 = 0.004) have been chosen according
to the range of the energy fractiofy < 0.1, where the MLLA scheme can only be applied.

In Fig.[5, the DLA [10) and MLLA[(#%) three-particle correlasofor A = G andA = @, Q are depicted,

in this case as a function of the suify + ¢3) = | In(z;22)| for the same values d = In(1/z3) =
4.5, 5.5, for x1 = xo andY = 7.5. As expected in both cases, the DLA and MLLA three-particle
correlators are larger inside a quark than in a gluon jet. ddfse, these plots will be the same and the
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Figure 5: Quark jet 3-particle correlator as a functionlof{(x;z2)| for x; = x2 andln(1/x3) (left) and
as a function ofn(zy/z1) for fixed | In(z122)| andln(1/x3) (right).

interpretation will apply to all possible permutations bfde particles (123). As remarked above, the
difference between the DLA and MLLA results is quite impottan pointing out that overall corrections
in O(\/a;) are large. Indeed, the last behavior is not surprising aastalready observed in the treatment
of multiplicity fluctuations of the third kind given bfgs = 4.52 [1 — (2.280 — 0.018n),/c,| [10].

For instance, for one quark jet produced at#geak of the=* e~ annihilation () = 45.6 GeV), one has

as = 0.134. Replacing this value into the previous formula for the gjat multiplicity correlator, one
obtains a variation from 4.52 (DLA) to 0.83 (MLLA). Becausktlois, DLA has been known to provide
unreliable predictions which should not be compared witheeixnents. From Figl4, the correlation is
observed to be the strongest when particles have the sangyearal to decrease when one parton is
harder than the others. Indeed, in this region of the phaseestwo competing constraints should be
satisfied: as a consequence of gluon coherence and AO, ghissien angles should decrease and on
the other hand, the convergence of the perturbative series x; F©; > @y should be guaranteed. That
is why, as the collinear cutoff parametgy is reached, gluons are emitted at larger angles and deggruct
interferences with previous emissions occur. This effectearly observed in Figl 4; the steep fall of the
distribution is more pronounced in the quark jet than in theg jet. Moreover, the observable increases
for softer partons withrs decreasing, which is for partons less sensitive to the grimtance. In Figls
the MLLA correlations increase for softer partons, thendlatand decrease as a consequence of soft
gluon coherence, reproducing for three-particle cori@tatthe hump-backed shape of the one-particle
distribution. Because of the limitation of phase space, s (®) < 1 for harder partons.

4 Summary

In this paper we provide the first full perturbative QCD treant of three-particle correlations in parton
showers, provide a further test of the LPHD within the limgtispectrum approximation, and briefly
revise the comparison of two-particle correlations withtXDRRnd CDF data. The correlations have been
shown to be strongest for the softest hadrons having the saergyz; = xo = x3 in both quark and
gluon jets, increasing as a functionlaf{z;/x;) and| In(z;z;)| whenz;, softens, that is for partons less
sensitive to the energy balance. This result becomes trerehiversal fom-particle correlations.



Coherence effects appear when one or two of the partonsvetvoh the process are harder than the
others, thus reproducing for this observable the humpdihskape of the one-particle distribution. Also,
the two- and three-particle correlations vani€?{ — 1) when one of the partons becomes very soft,
thus describing the hump-backed shape of the one-parigtigbdtion. The reason for that is dynamical

rather than kinematical: radiation of a soft gluon occursaege angles, which makes the radiation
coherent and thus insensitive to the internal parton stradaf the jet ensemble.

We give the first analytical predictions of this observableriew of forthcoming measurements by AT-
LAS, CMS, and ALICE at the LHC. Further information from thengparison with forthcoming data

may also help to improve Monte Carlo event generators in dffteregion of the phase space in intrajet
cascades, where PYTHIA, ARIADNE and HERWIG face difficudtighile reproducing the data [11].
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