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1 INTRODUCTION

1.1 CONCEPT OF CELL DEATH.

In an organism cell death occurs in essentially two different ways: accidental cell death
(ACD) or regulated cell death (RCD). ACD is consequence of severe damages and caused
by mechanical damages, hypoxia, complement-mediated cell lysis or highly toxic agents.
Uncontrolled cell swelling is showed at the end of this process. In RCD, cells die in
response to a specific stimulus and genetically encoded machinery initiates cell death. The
course of some ‘regulated cell death’ (RCD) variants can be influenced, at least to some
extent, by specific pharmacologic or genetic interventions. The term ‘programmed cell
death’ (PCD) is used to indicate RCD instances that occur as part of a developmental
program or to preserve physiologic adult tissue homeostasis. In 1842, Carl Vogt was the
first investigator who reported the appearance of physiological cell death during
development of the midwife toad. Then, histologists started to recognize cell death as a
natural process and different morphologies of cell death were described. Much of the
work in the 19™ century relied on the histological characterization of dying cells with
limited recognition of its importance and regulation (1).

In 1965, Lockshin and Williams used for the first time the concept of programmed cell
death (PCD) to define the loss of cells observed in insect metamorphosis following a
sequence of controlled steps towards their own destruction (2).

Apoptosis was first decribed by Kerr and collaborators in 1972 (3), who established
the morphological differences with necrotic cell death. Since 1970, several types of cell
death have been characterized such as autophagy, necroptosis or pyroptosis, each one
characterized by their own morphological and biochemical features (4). The increasing
number of cell death types has led to the creation of the Nomenclature Committee on cell
death (NCCD) to normalize the classification of different cell death processes. The actual
classification of cell death is not based on morphological features but on quantifiable
biochemical parameters (5). In the following sections the differential characteristics of
the main cell death forms will be described.

1.1.1 Apoptosis.

Once the apoptotic process was characterized by Kerr et al. in 1972, research focused to
determine the proteins involved in this process. However, our understanding of
mechanisms involved in apoptosis of mammalian cells experienced the biggest progress
in the 1990s when the genome of the nematode Caenorhabditis elegans (C. elegans) was
sequenced. On one hand, some results demonstrated that a fixed number of cells were
committed to die during development, and that this process was both, positively and
negatively, regulated by specific genes (6). On the other hand, the discovery of the
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linkage between the Bcl-2 gene (B-cell lymphoma 2) and some leukemia processes
demonstrated that Bcl-2 protein was able to produce tumoral processes by suppressing
cell death instead of promoting cell proliferation as usually happens with traditional
oncogenes. The studies on C. elegans programmed cell death led to the identification of
most of the intracellular proteins that mediate and regulate apoptosis (7). Subsequent
studies demonstrated that related proteins operate in similar ways in many other
metazoans, including humans (8).

A large set of proteins and cellular components are used as biochemical markers of
apoptosis. There is a family of cysteine proteases (named caspases) that execute cell
death by the cleavage of several intracellular substrates. Apoptosis is also regulated by a
group of proteins known as BCL-2 family proteins, which activate or inhibit the cell death
program. There are other relevant partners in the mammalian apoptotic process such as
IAPs (Inhibitors of Apoptosis Proteins), APAF-1 (Apoptosis Protease Activating Factor-
1), mitochondrial apoptogenic factors such as cytochrome-c (Cyt-c), members of the TNF
(Tumor Necrosis Factor) family and TNF receptors.

The apoptotic program shows a well-characterized serie of morphological changes in
cells that are committed to die. In the early state of apoptosis cells round-up and undergo
shrinkage and pyknosis, reducing their size (3). Pyknosis, the most characteristic feature
of apoptosis, is generated by chromatin condensation. The process continues with the
plasma membrane blebbing followed by nuclear fragmentation (karyorrhexis) and
separation of cell fragments into apoptotic bodies. The organelle integrity is still
maintained and plasma membrane remains intact. These bodies are phagocytosed by
macrophages and finally removed within phagolysosomes. There is essentially no
inflammatory reaction associated neither with apoptosis nor with the elimination of
apoptotic cells due to these cells do not release their cellular content into the surrounding
tissue; they are quickly phagocytosed by surrounding cells, avoiding secondary necrosis;
and the inflammatory response of engulfing cells is not activated. Hence, the term
apoptosis should be used exclusively in those cases of cell death wherein many of the
above described biochemical and morphological features are observed (9, 10).

Importantly, apoptosis is a homeostatic mechanism to maintain cell populations in
tissues and normally associated to development, aging (11) and defense mechanisms in
immune reactions or following cell damaged by disease or toxic agents (12). Although
there is a wide variety of stimuli and conditions, both physiological and pathological, that
can trigger apoptosis, not all cells will necessarily die in response to the same stimulus.

Alterations in the regulation mechanisms of cell death can generate a large variety of
diseases such as cancer (13), ischemia, neurodegenerative diseases (for example,

Parkinson, Alzheimer, and Huntington’s disease), Amyotrophic Lateral Sclerosis,
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autoimmune lymphoproliferative syndrome, and AIDS (14, 15). Some of them correlate
with insufficient apoptosis whereas others are due to excessive apoptosis. For example,
insufficient apoptosis correlates with the development of cancer and autoimmunity, while
excessive apoptosis is linked to neurological diseases, heart failure and stroke (16, 17).
For that reason, the study of the apoptotic mechanisms and the control of this cell death
program has been intensively studied in the last decades with therapeutic purposes.

1.1.2. Necrosis and necroptosis.

Morphologically necrosis refers to a gain in cell volume (oncosis), swelling of organelles
and plasma membrane permeabilization that produces cell rupture and subsequent loss of
intracellular content. Unlike apoptotic cells, the nuclei of necrotic cells remain largely
intact. Different organelles and cellular processes take part in necrotic cell death but the
relationships among them are still unclear. The cellular changes include mitochondrial
alterations (e.g., production of reactive oxygen species (ROS), and mitochondrial outer
membrane  permeabilization = (MOMP)), lysosomal (lysosomal membrane
permeabilization) and nuclear (hyperactivation of poly (ADP-ribose) polymerase-1)

changes, lipid degradation in plasma membrane and an increase of cytosolic calcium

(Ca2+) concentration that produce activation of non- caspase proteases like calpains and
cathepsins (18, 19). The necrotic pathways can activate inflammatory response by the
release of cytosolic molecules to the intercellular space through the damaged plasma
membrane; in apoptosis these products are isolated inside macrophages. Alterations of the
fine equilibrium between necrosis and apoptosis may be a key element in development of
some diseases (20).

Historically, necrosis has been considered an accidental or uncontrolled form of cell
death, but recent studies have postulated that necrotic cell death is a regulated process,
introducing terms ‘‘programmed necrosis’’ or ‘‘necroptosis’’ (18). Necroptosis is defined
as a type of cell death that can be avoided by inhibiting RIP1 kinase. Several components
have been implicated in necroptotic cell death, including death domain receptors (e.g.,
TNFRI1, Fas/CD95 and TRAIL-R) and Toll-like receptors (e.g., TLR3 and TLR4).
Interestingly, certain BCL-2 family members have been recently implicated in necroptosis
regulation (21).

1.1.3. Autophagic cell death.

Autophagy is morphologically defined as a type of cell death that occurs in the absence of

chromatin condensation but accompanied by massive autophagic vacuolization of the
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cytoplasm. It is considered a highly conserved degradation pathway for bulk cellular
components and is also generally agreed that autophagy is an important housekeeping
process for degrading and recycling damaged organelles, long-lived proteins and cellular
aggregates..

There are three different autophagy subclasses: macroautophagy, microautophagy and
chaperone-mediated autophagy. The most studied is macroautophagy, morphologically
known as the formation of double membrane autophagosomes, which take control of
damaged organelles or unwanted cellular components and deliver them to lysosomes for
degradation and recycling (22). The main difference with apoptotic cells is the absence of
phagocytosis.

Autophagy predominantly serves as a cell survival mechanism, via its suppressive role
in necrotic cell death, such as necroptosis and poly ADP-ribose polymerase-1 (PARP-1)-
mediated cell death. More importantly, the anti-necrosis function of autophagy has
relevant biological functions in various pathological processes and diseases, including
cancer and neurodegenerative diseases and metabolic disorders (23). Nonetheless, there is
a intense discussion around the dual role of autophagy in cell death and cell survival (24).
When analyzing relationships between autophagy and cancer, a common challenge is to
determine whether autophagy protects cell survival or contributes to cell death.
Autophagy is well known to be crucial for cell survival under extreme conditions, and
degradation of intracellular macromolecules provides energy required for minimal cell
functioning when nutrients are scarce (25). Consequently, autophagic activation can play
a protective role in early stages of cancer progression (26). On the other hand, autophagy
behaves as a tumour suppressor by activating pro-autophagic genes and blocking anti-
autophagic genes in oncogenesis. However, autophagy can also play the reverse part (a
pro-tumour role in carcinogenesis, named ‘Janus-faced’ effect) by regulating a number of
pathways involving Beclin-1, Class III and I PI3K, mTORC1/C2 and p53 (26).

Recent studies have also related some BCL-2 proteins with autophagic cell death
regulation (27). The most studied example is the autophagy-related Beclin-1 protein,
which contains a BH3-like region and has been found to interact with the anti-apoptotic
Bcl-2, Bel-xL and Mcl-1 proteins. Several BH3-only proteins or BH3 mimetics can elicit
autophagy by displacing Beclin-1 from Bcl-2/Bcl-xL/Mcl-1 proteins at the level of the
endoplasmic reticulum (ER) (28).

1.1.4. Other types of programmed cell death.

In addition to the pathways previously described, other programmed cell death
mechanisms have been uncovered (Table 1.I), including cornification (produced by the
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death and transformation of keratinocytes into corneocytes, providing structural stability,
mechanic resistance, elasticity to the skin); anoikis (caused by cellular detachment of cells
from the extracellular matrix or from other cells of surrounding tissue); pyroptosis (that
generates caspase-1 activation when macrophages are infected by specific pathogens );
paraptosis (characterized by increased mitochondrial size and the presence of vacuoles in
cytoplasm. This pathway is triggered by expression of the insulin-like growth factor
receptor 1); and mitotic catastrophe (characterized by micronucleation and
multinucleation and consequence of unproductive mitosis). The majority of these novel
cell death pathways are cell-type specific and still remain poorly characterized (4) (Table
L.I).

1.1.5. Interrelationships between different Programmed cell death pathways.

Apoptosis, autophagy and necrosis are different physiological processes with distinct
morphological characteristics. However, there still exist intricate interrelationships
between them. Under some circumstances, apoptosis and autophagy can exert synergistic
effects, whereas in other situations autophagy can be triggered only when apoptosis is
suppressed (29). Programmed necrosis is always triggered as a backup mechanism for
apoptosis when caspases are inactivated (for example, by a pharmacological treatment
with (zZVAD-fmk) (30). However, shikonin-induced necroptosis can revert to apoptosis in
the presence of necrostatin-1 (Nec-1), a specific necroptosis inhibitor. This death mode
switch is partially due to conversion from mitochondrial inner membrane permeability to
mitochondrial outer membrane permeability (MOMP) (31). Under certain conditions,
apoptosis and programmed necrosis are induced simultaneously and deficiency of both
apoptosis and necrosis can be found in some cancer cells (32). Moreover, programmed
necrosis is accompanied by autophagy, but the specific relationship between them
remains an enigma (19).

The mode of cell death is influenced by many factors. One of them is the intensity of
death stimulus. For example, low doses of cisplatin (CDDP) induce apoptosis, but higher
doses trigger necrosis in mouse renal epithelial cells (33). In a similar way, a continued
and weak signal of p53 usually promotes senescence; however, an intense p53 activation
promotes apoptosis (34). Another factor is the energy requirement of the cell. When a cell
is dying, bioenergetics consumption promotes necroptosis, since the apoptotic pathway
requires a high energy consume (ATP) for the apoptosome formation and caspase
cascade activation (35).
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Table 1.1. Functional classification of regulated cell death modes. Adapted from (4).

Type of cell death Biochemical features Caspase Inhibitory Mechanism
dependence
Anoikis Downregulation of EGFR YES Bcl-2 overexpression
Inhibition of ERK1 signaling Z-VAD-fmk administration
Lack of bl-integrin engagement
Overexpression of Bim
Caspase-3 (-6,-7) activation
Autophagic cell death MAPI1LCS3 lipidation NO 'VPS34 inhibitors
SQSTM1 degradation AMBRALI, ATG5, ATG7, ATG12
or BCNI1 genetic inhibition
Caspase-dependent intrinsic MOMP YES Bcl-2 overexpression
apoptosis Irreversible Dcyy, dissipation Z-VAD-fmk administration
Caspase-independent Release of IMS proteins NO Bcl-2 overexpression
intrinsic apoptosis Respiratory chain inhibition
Cornification Entosis Activation of transglutaminases YES Genetic inhibition of TG1, TG3 or
Caspase-14 activation TGS
Genetic inhibition of caspase-14
Entosis RHO activation NO Genetic inhibition of
ROCKI1 activation metallothionein 2A
Lysosomal inhibitors
Extrinsic apoptosis by death Death receptor signaling YES CrmA expression
receptors Caspase-8 (-10) activation Genetic inhibition of caspases (8
BID cleavage and MOMP (in type II and 3)
cells) Z-VAD-fmk administration
Caspase-3 (-6,-7) activation
Extrinsic apoptosis by Dependence receptor signaling YES Genetic inhibition of caspases (9
dependence receptors PP2A activation and 3)
DAPKI activation Genetic inhibition of PP2A
Caspase-9 activation Z-VAD-fmk administration
Caspase-3 (-6,-7) activation
Mitotic catastrophe Caspase-2 activation (in some instances) NO Genetic inhibition of TP53 (in some
TP53 or TP73 activation (in some instances) Pharmacological or
instances) genetic inhibition of caspase-2 (in
Mitotic arrest some instances)
Necroptosis Death receptor signaling NO Administration of necrostatin(s)
Caspase inhibition Genetic inhibition of RIP1/RIP3
RIP1 and/or RIP3 activation
Netosis Caspase inhibition NO Autophagy inhibition NADPH
NADPH oxidase activation oxidase inhibition
NET release (in some instances) Genetic inhibition of PAD4
Parthanatos PARPI-mediated PAR accumulation NO Genetic inhibition of AIF
Irreversible Ay, dissipation Pharmacological or genetic
ATP and NADH depletion inhibition of PARP1
PAR binding to AIF and AIF nuclear
translocation
Pyroptosis Caspase-1 activation YES Administration of Z-YVAD-fmk

Caspase-7 activation
Secretion of IL-1b and IL-18

Genetic inhibition of caspase-1

Abbreviations; BCNI1, beclin 1; Dcm, mitochondrial transmembrane potential; CrmA, cytokine response
modifier A; DAPKI, death-associated protein kinase 1; EGFR, epidermal growth factor receptor; ERKI,
extracellular-regulated kinase 1; IL, interleukin; MAPI1LC3, microtubule-associated protein 1 light chain 3;
MOMP, mitochondrial outer membrane permeabilization; NET, neutrophil extracellular trap; PADA4,
peptidylarginine deiminase 4; PAR, poly(ADP-ribose); PARP1, poly(ADP-ribose) polymerase 1; PP2A, protein
phosphatase 2A; ROCK1, RHO-associated, coiled-coil containing protein kinase 1; SQSTM1, sequestosome 1;
TG, transglutaminase; Z-VAD-fmk, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone; Z-YVAD-fmk, N-
benzyloxycarbonyl-Tyr-Val-Ala-DL- Asp-fluoromethylketone. A.
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1.2. MAIN APOPTOTIC PATHWAYS.

The mechanisms of apoptosis are highly complex and sophisticated, involving an energy-
dependent cascade of molecular events (Figure 1.1). There are two main apoptotic
pathways: the extrinsic or death receptor pathway and the intrinsic or mitochondrial
pathway. However, although the initial death signals are heterogeneous there is now
evidence that both pathways are linked and that molecules from one pathway can
influence the other (36). There is an additional pathway called perforin/granzyme that
induces apoptosis via granzyme A or B and involves T-cell mediated cytotoxicity. All
These pathways converge with the cleavage and activation of the executioner caspases-
3/7 that results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins,
formation of apoptotic bodies and finally elimination by phagocytic cells (14, 37).

1.2.1. Extrinsic apoptotic pathway.

This pathway is initiated by the interaction of specific ligands (FasL, TNF-a or
TRAILR) to the cysteine-rich extracellular domains of specific death receptors (FasR,
TNFR1 or TRAIL). Following this binding, the cytoplasmic domain of death receptors
(called the “death domain”) (38, 39) transmit the death signal from the surface to the inner
of the cell and then the cytoplasmic adapter proteins are recruited. FasL/FasR interaction
recruits the adapter protein FADD and TNF- oo /TNFR1 recruits TRADD, FADD and RIP
(40). Finally, “death-inducing signaling complex” (DISC) is formed by the interaction
between FADD and procaspase-8 when death effector domains dimerize. Caspase-8

and/or -10 are then activated generating the activation of executioner caspases-3/7 (41,
42).
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Figure 1.1. Extrinsic and intrinsic apoptotic pathways. In the extrinsic pathway, binding of the ligands to the
corresponding death receptor triggers the recruitment of death domain (DD)-containing adaptor proteins (repr-
esented by FADD), procaspase-8 and -10 forming the supracomplex named DISC. Then caspase-8 (or-10)
activates and promotes subsequent activation of executioner caspases-3 and -7, inducing apoptosis. The cleavage
of the BH3-only protein Bid to generate tBid can also activate caspase-8, which is related to the intrinsic
signaling pathway. In the mitochondrial pathway, mitochondrial outer membrane permeabilization (MOMP)
produces the release of cytochrome c¢ and other apoptogenic factors from mitochondria. In the cytosol the
apoptosome is formed, triggering a caspase cascade by caspase-9 activation. The balance between anti-apoptotic
BCL-2 proteins (represented by Bcl-2 and Bcel-xL) and pro-apoptotic BH3-only proteins (represented by tBid,
Noxa, Puma, Bim and Bad) regulate the Bax/Bak activation and then the MOMP process. Inspired by (43)

1.2.2. Intrinsic apoptotic pathway.

The large variety of stimuli that initiate the signaling pathways of intrinsic apoptosis can
behave in either a positive or negative manner. Negative signals correlate with the
absence of hormones, cytokines and some growth factors that produce a failure of death
programs suppression, thereby triggering apoptosis. Other stimuli generate apoptotic
activation such as radiation (UV and gamma), DNA-damage, toxins, hypoxia,
hyperthermia, viral infections, and free radicals (oxidative stress) (44).

All of these stimuli act directly on targets within the cell that promote changes in the

inner mitochondrial membrane, the loss of the mitochondrial transmembrane potential
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(Aym) (45), alterations in mitochondrial structure and function (46) and the opening of
the mitochondrial permeability transition (MPT) pore, finally triggering mitochondrial
outer membrane (MOM) permeabilization (MOMP). In vertebrates, this is usually
considered “the point of no return” of the apoptotic cascade (44). MOMP produces the
release of two pro-apoptotic groups of proteins (normally located in the intermembrane
space (IMS)) to the cytosol (47). The first group consists of cytochrome-c¢ (Cyt-c, 12 kDa),
Smac/DIABLO (25kDa), and the serine protease HtrA2/Omi (37kDa) (48). These
proteins activate the caspase-dependent mitochondrial pathway. Cyt-c¢ is loosely
associated to the mitochondrial lipid cardiolipin (CL) in the mitochondrial inner
membrane (MIM). When CL is oxidated upon MOMP, Cyt-c can diffuse to the cytosol,
wherein it promotes the assembly of the apoptosome platform that includes Cyt-c,
apoptosis protease activating factor (APAF-1), pro-caspase- 9 and ATP/dATP. This
multiprotein complex activates caspase-9 producing caspase cascade activation (48-50).
Smac/DIABLO and HtrA2/Omi are reported to promote apoptosis by inhibiting IAP
(inhibitors of apoptosis proteins) activity (51, 52), thus favoring caspase activation.

The second group of pro-apoptotic proteins, AIF (62 kDa) and endonuclease G (23
kDa) are released from the mitochondria during apoptosis, but this is a late event that
occurs after the cell has committed to die. Once released to the cytosol, both proteins
translocate to the nucleus and mediate chromatin condensation and DNA fragmentation
(53, 54). AIF and endonuclease G both function in a caspase-independent manner.

The control and regulation of the apoptotic mitochondrial events, especially MOMP,
is accomplished by the members of the Bcl-2 family of proteins (55). They govern
mitochondrial membrane permeability and can be either pro-apoptotic or anti-apoptotic,
establishing a complex interaction network within themselves and with other cellular
factors to determinate whether cells dye by apoptosis or abort the process (56, 57). The
main mechanism of action of the Bcl-2 family of proteins is regulation of Cyt-c release

from the mitochondria via alteration of mitochondrial membrane permeability.

1.3. THE BCL-2 PROTEIN FAMILY.

1.3.1. General classification.

There are approximately 20 proteins in the BCL-2 family, defined by their a-helical
composition of up to 4 BCL-2 homology domains (BH). Based on the cellular function
this protein family is divided into 3 different groups: the anti-apoptotic BCL-2 proteins
Bcl-2, Bel-xL, Bel-w, Mcl-1 Al and Bcel-b (Diva), the pro-apoptotic BCL-2 effectors Bax,
Bak and Bok and the pro-apoptotic BH3-only proteins Bid, Bik, Bim, Bmf, Noxa, Puma,

11
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Rambo, Bad and Hrk (56, 57)(Figure 1.2A). The presence of a BH3 motif defines all Bcl-
2 proteins (58). The BH3 domain is defined as a sequence that could form a four-turn
amphipathic alpha helix containing the sequence motif A-X-X-X-A-X-X-A-B-C-X-A,
wherein A represents a hydrophobic residue (one of these residues is an almost invariant

leucine), B represents a small residual, typically glycine, and C is Asp or Glu (59).

A
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Figure 1.2. BCL-2 structural and functional organization. (A) Three subfamilies of BCL-2 proteins. BCL-2
homology domains 1 to 3 constitute the BCL-2 structural core that forms the BCL-2 hydrophobic groove (the
binding site of the BH3 domains of BCL-2 pro-apoptotic proteins). The family is divided into anti- and pro-
apoptotic members. The anti-apoptotic members share homology in all 4 BCL-2 homology (BH) domains (BH1-
4) and include Al, Bcl- 2, Bel-xL, Bel-w, Mcl-1 and Diva. The pro-apoptotic members are subdivided into
“multidomain” proteins and “BH3-only” proteins. The multidomain proteins share homology domains 1 to 4,
whereas the BH3-only proteins contain only one BH domain, the BH3, which binds the anti-apoptotic proteins.
Many BCL-2 proteins also contain a hydrophobic transmembrane domain (TMD). In the BH3-only group, the
TMD is confirmed for Bid, Bik, Rambo and Hrk (marked as red). (B) The Bcl-2 core of Bel-xL (PDB:1MAZ)

and the respective locations of the four BH regions.

1.3.2. Structure of BCL-2 proteins.

The X-ray and NMR structures of BCL-2 members revealed that the multidomain anti-
apoptotic and effector BCL-2 proteins are globular proteins that share a conserved ‘‘BCL-
2 core’’ (Figure 1.2B). This core is also preserved in BH3-only proteins Bid and Bik,
even though they have the least structural homology to the folded members (60). The
BCL-2 core is structured by eight amphipathic alpha (o) helices that hide and bury a
central hydrophobic helix a5 (Figure 1.2B). In this structure, the hydrophobic groove (BC
groove) is the result of BH1 (04— a5), BH2 (07— a8), BH3 (a2) and a3 coalescence,
showing BC groove at the ‘‘front’” of the BCL-2 core.

Most of the structural studies used truncated forms that do not include the C-terminal
hydrophobic domain of the Bcl-2 proteins (61, 62). The elimination of the hydrophobic C-
terminal domain improves the solubility of these proteins, so they can be easily produced
in the high quantities required for structural studies, whereas full-length proteins are
difficult to produce. Only in the case of Bax and Bcl-w the structure of the full-lengh
protein has been determined by NMR (63, 64). In both cases the C-terminal domain
occupies the hydrophobic pocket responsible of the interactions with other BCL-2
proteins.

The three dimensional structure of Bcl-xL lacking the C-terminal segment (AC) (65),
showed that BH domains 1 to 3 are close in order to form the hydrophobic groove
wherein the BH3 domains of pro-apoptotic effectors (Bax, Bak and Bok) and BH3-only
family members are able to bind (65). Unusual features of Bcl-xL are the splicing forms
Bcel-xS and Bcel-xAK (66, 67) with pro-apoptotic functions when the BH3 domain is
absent. Moreover, the unstructured loop between « 1 and « 2 helices of Bcl-xL can be
cleaved by caspases triggering its conversion again into a Bax-like pro-apoptotic protein
(68). Bcl-2, Bel-xL, Al, and Mcl-1 show structural differences and similarities in the
BCL-2 cores structures, depending on the free and BH3 peptide-bound states. The BH3-
binding groove of Mcl-1 is flanked by regions of high positive electrostatic potential and
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helix 3 and 4 are not as closely packed as seen in Bel-xL (69). Moreover, the N-terminal
PEST region of Mcl-1 negatively modulates BH3 peptide access to the groove (70). In the
case of Al, the BH3 domain-binding groove has an acidic patch (71). For Bcl-2, the
exposed BH3-binding groove presents topological and electrostatic potential differences
respect to Bel-xL hydrophobic groove (72).

All together, the BC groove and al/a6 structural components compose the BCL-2
core and, in Bel-w, Bel-xL and Bax, the C-terminal helix binds and block this BC groove.
Such an arrangement of alpha helices is similar to that of the membrane translocation
domain of bacterial toxins, in particular diphtheria toxin and the colicins, and suggests
that the Bcl-2 family proteins may be capable of forming pores. Indeed, Bcl-xL, Bcl-2,
Bax, and Bid have been shown to possess ion channel activities in vitro in lipid bilayers or
liposomes. This activity should be related with the mitochondrial permeability regulating
function of these molecules (65) (73). The major differences between anti-apoptotic and
effector proteins are structural features of the individual BCL-2 cores, wherein the C-
terminal TM tail modulate interactions with the BH3-only proteins. In addition, many
BCL-2 family members use the C-terminal hydrophobic regions to target and/or anchor
them to intracellular membranes.

From an evolutionary point of view, differences in the structure as well as sequence of
the various BH3-only proteins suggest a diverse origin and evolution of these molecules.
This indicates that the BCL-2 family may be further divided into the core group (Bcl-2,
Bcl-xL, Bel-w, Mcl-1, Al, Bax, Bak, Bok, Bik and Bid) that shares both the sequence and
structure homology (common and ancient origin) and the group that differs in structure
and sequence, including Bim, Puma, Rambo, Diva, Bad, Bmf Hrk and Noxa. This may
further imply that non-conserved functions may be expected among these molecules (56,
74).

1.3.3. Anti-apoptotic BCL-2 proteins.

The main function of anti-apoptotic BCL-2 proteins is the blockade of pro-apoptotic
BCL-2 effectors (Bax and Bak) and BH3-only proteins to ensure MOM integrity. For that
reason, they are mainly located in MOM, but can also be found in endoplasmic reticulum
(ER) membrane and cytosol (75). All the members of this subfamily share the BH
domains 1 to 4 and the “BCL-2 core”. This subfamily include Al (Bcl-2-related gene
Al), Bcel-2, Bel-xL (Bcel-2-related gene, long isoform), Bel-w, and Mcl-1 (myeloid cell
leukemia 1).

Although these proteins are classified into one category the differences observed in the
solution structures of the anti-apoptotic proteins generate differences in the patterns of
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binding to BH3-only or BAX-like proteins in solution. For that reason, it is possible to
separate the anti-apoptotic members in two subgroups: one includes Bcl-xL, Bel-2 and
Bcl-w and the other is formed by Mcl-1 and A1 (59, 69).

Several studies, based on the genetic knockouts have revealed specific physiologic
roles for the different anti-apoptotic proteins. The Bcl-2 KO mouse shows a normal
development, but the adult mouse displays several dysfunctions in thymus, spleen and
kidney due to increased apoptosis (76). Bcl-xL KO mouse dies during embryonic
development due to massive apoptosis of hematopoietic and neuronal cells (77), while the
Bcl-w KO mouse has demonstrated its relevance in spermatogenesis (78). Loss of Mcl-1
blocked embryo implantation and is lethal in early embryonic stages (79). Moreover, Mcl-
1 deletion in the adult mouse revealed the requirement of this protein for hematopoietic
stem cell survival (80).

1.3.4. Pro-apoptotic BCL-2 effectors.

The pro-apoptotic BCL-2 effector subfamily includes: BCL2-related ovarian killer (Bok,
Matador) BCL-2 antagonist killer 1 (Bak) and BCL-2-associated X protein (Bax). They
are the responsible to permeabilize the MOM following apoptotic stimuli, therefore are
found in MOM, although Bax is also located in cytosol in absence of apoptotic signalling
(in normal healthy cells) and Bok and a fraction of Bak can be found in ER (81). BCL-2
effectors are composed by BH3 domains 1 to 3 (82) and contain “BCL-2 core” structure,
sharing sequence, domain, and structural homology (64, 65, 83) with anti-apoptotic
members. Bak (in MOM) and Bax (in cytosol) are monomeric in absence of apoptotic
stimuli. During apoptosis, both proteins undergo conformational changes at the MOM to
activate and promote homo- and hetero-oligomerizations between them to triger MOMP.
This fact has been largely corroborated in several studies using Bax/Bak KO mice,
wherein the experimental data showed the absence of MOMP upon apoptotic activation
(84). The majority of Bak /Bax DKO mice are embryonic lethal and the few mice that
survive to birth (<10%) display a variety of apoptosis-related phenotypes, including
interdigital webbing, splenomegaly, and lymphadenopathy. However, Bak KO and Bax
KO mice display less aggressive phenotypes compared to the combined DKO mice. While
the Bak KO (85) mice do not present any homeostatic or developmental defects, the Bax
KO (86) mice show reproductive abnormalities and T and B cell hyperplasia.
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1.3.5. Pro-apoptotic BH3-only proteins.

The BH3-only proteins promote MOMP (triggered by appropriate stimuli) when they bind
to and sequester anti-apoptotic BCL-2 family members, avoiding their association with
the multi-domain effectors (Bax and Bak) or when they bind directly to these apoptotic
effectors, activating them. They include Bid (BH3 interacting domain death agonist, Bim
(BCL-2-interacting mediator of cell death), Puma (p53 up-regulated modulator of
apoptosis), Bad (BCL-2 antagonist of cell death), Bik (BCL-2-interacting killer), Bmf
(BCL.2-modifying factor), PMAIP1 (Phorbol-12-myristate-13-acetate-induced protein)
commonly known as Noxa, Hrk (Activator of apoptosis harakiri), Rambo (BCL2-like 13)
and Diva (Bcl-b, BCL2-like 10). All members of this this subclass share the BH3 domain.

BH3-only proteins have been mainly classified as intrinsically unstructured proteins
due to their structures have been solved (e.g. Bim, Bmf, Puma and Bad) without their C-
terminal regions, and only after interation to multidomain BCL-2 member, BH3-only
proteins acquire a structured conformation. This correlates with the fact that synthetic
peptides representing BH3 domains of almost all BH3-only proteins have been
crystallized bound to anti-apoptotic members (60, 87). However, Bid protein is a globular
protein that contains the BCL-2 core structural motif with one central hydrophobic helix
(@ 6) surrounded by the remaining seven amphiphathic helices (88). Bid also contains a
consensus sequence for caspase-8 cleavage localized between helices « 2 and « 3 that
results crucial for Bid localization and interaction with Bax/Bak to promote MOMP (89).

The different BH3-only KO mice showed tissue- and/or stimulus-specific effects in
development and tissue homeostasis. Bid KO mice are developmentally normal and only
show resistance to induced liver injury (90). Bim KO mice have lymphoid and myeloid
cell hyperplasia (91). Hrk KO mice have defects in nerve growth factor withdrawal,
generating apoptosis in sensory neurons (92). However, Puma KO mice display a broader
role in ER stress, ischemia/reperfusion, bacterial/viral/ fungal infections, MOMP and
apoptosis (93), showing resistance against several stimuli like irradiation, cytokine
withdrawal and glucocorticoids.

Bad KO generates diffuse lymphomas in large B cell (94). The lymphocytes of Bmf
KO animals are resistent to apoptosis induced by glucocorticoids or histone deacetylase
inhibitors (95). Bik KO does not show any significant effect and only in combination with
Bim KO generate male infertility (96). Noxa KO shows mild resistance to etoposide in
MEFs and thymocytes (97). All these studies highlight the existence of different models
regarding the regulatory function of the BH3-only proteins.

BH3-only proteins can interact to anti-apoptotic proteins to block their pro-survival
function and/or can bind and activate Bax/Bak effectors directly. For that reason they are
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divided in two groups: sensitizers/de-repressors and direct activators. Direct activators
includes Bid, Bim, and Puma which are responsible (by direct interaction) for promoting
the active form of Bax and Bak by conformational changes to induce MOMP (98, 99).
This group of BH3-only proteins can also bind and inhibit the anti-apoptotic proteins.
Furthermore, triple-knockout mice for Bid, Bim, and Puma (100) showed a similar
phenotype compared to Bax/Bak KO mice, indicating their crucial role in BCL-2 effectors
activity and MOMP. Of note, the role of Puma as activator is controversial (100), and
Bid/Bim double-knockout generates a minor apoptotic phenotype,.

The sensitizers/de-repressors subclass of BH3-only proteins is composed by Bad, Bmf,
Hrk, and Noxa and their functions are associated to the blockade of anti-apoptotic BCL-2
members (by binding hydrophobic groove of these) to induce MOMP (101-105).
However, the precise mechanism(s) of interaction between BH3-only proteins and the
anti-apoptotic BCL-2 network to promote Bax/Bak activation and MOMP remains to be
elucidated.

Finally, some BH3-only proteins such as Bik, Rambo or Diva have different behavior
in comparison to the rest of the proteins present in this subgroup. Bik shares the BH3
domain and the C-terminal domain with other BCL-2 family proteins. It is predominantly
localized in the ER, interacts with Bcl-2, Bcl-xL, Bcl-w, Al and Diva, and induces
apoptosis through the mitochondrial pathway by selective activation of Bax, mobilizing
calcium from the ER to the mitochondria and remodeling the mitochondrial cristae. Bik
also induces non-apoptotic cell death in certain cell types by an unknown mechanism and
appears to be a critical effector in apoptosis induced by toxins, cytokines and virus
infection (106). Rambo shows high structural homology with the anti-apoptotic BCL-2
members containing the four conserved BH motifs and a c-terminal membrane anchor
region. Rambo does not interact with either anti-apoptotic (Bcl-2, Bel-xL, Bel-w, Al,
Mcl-1) or pro-apoptotic (Bax, Bak, Bik, Bid, Bim, and Bad) members of the Bcl-2 family.
In mammalian cells, Rambo is localized in mitochondria, and its over-expression induces
apoptosis that is specifically blocked by the caspase inhibitors, IAPs. Surprisingly, the cell
death activity promoted by Rambo is induced by its membrane-anchored C-terminal
domain and not by the BCL-2 homology region (107). Diva/Bcl-B is considered an anti-
apoptotic member of the BCL-2 family and interacts with Bim and Bik BH3-only proteins,
blocking apoptosis induced by Bax. However, Diva also acts as pro-apoptotic inducing
apoptosis independently of the BH3 region through direct binding to APAF-1, thus
preventing Bcl-xL from binding to the caspase-9 regulator APAF-1. For that reason, Diva
apparently can both promote and inhibit apoptosis depending on the cellular context. In
conclusion, the Figure 1.3 shows the interactions/relationships established between the
different members of the BCL-2 family. In this highly orchestrated context, the relevance
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of the cytosolic domain in the interaction network has been extensively studied. However,
the contribution of the TMD to this interaction network has been poorly investigated.

4_m|_| Bel-2 | [Bel-xL|| Bcl-w||Mcl-1 || Al |[ Diva |
I S —
R
<—| Bim [—|| Bel-2 |[Bel-xL| [ Bel-w | [Mel-1]| A1 || Diva ]
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Figure 1.3. Schematic representation of BCL-2 family interactions. Black and dark grey squares represent

pro-apoptotic effectors and BH3-only proteins, respectively. Light grey squares represent the anti-apoptotic
proteins. The arrows indicate an inducing effect, whilst the bars indicate an inhibitor/repressor effect.

1.4. BCL-2 FAMILY: MODELS OF MECHANISM OF ACTION.

All the models proposed for the apoptotic regulation of the BCL-2 family share some well
established points such as:
- BCL-2 anti-apoptotic proteins block the activation of the effectors Bax and Bak.
- Bax and Bak are inactive in healthy cells, and their activation triggers MOMP
and the release of the apoptogenic factors.
- BH3-only proteins activate Bax and Bak and avoid the action of the anti-
apoptotic members.

However, the mechanism of action for the different partners and the interaction
network among them is still controversial. During the last decades, several studies have
been developed to study the interaction networks between the different pro- and anti-
apoptotic members of the BCL-2 family, concluding that different models of MOMP
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regulation mediated by the BCL-2 proteins are possible. The different models propose
different binding partners and functions for both the BH3 and the anti-apoptotic family
members. All these models accumulate positive evidence from a variety of assays to
indicate that specific aspects of each model are correct, including co-immunoprecipitation
assays in transfected cells, binding of peptides to truncated proteins in vitro, and gene
knockout experiments in mice. In addition, the MOM itself also plays an important role in
BCL-2 family member interactions and functions. Thus, four non-mutually exclusive
models coexist to explain how interactions among the BCL-2 family proteins regulate
MOMP and apoptosis (Figure 1.4).

1.4.1. Initial models: rheostat, direct activation and de-repression.

The first model of Bcl-2 regulation called “Rheostat” was hypothesized when Bax protein
was discovered in 1993. This model is based on the ratio between anti-apoptotic members
and pro-apoptotic proteins like Bcl-2 and Bax, respectively (105, 108). When an excess of
Bax is generated compared to Bcl-2, apoptosis is triggered. Some years latter, when other
BCL-2 proteins were identified, two classical models were elicited: the “direct activation”

and “de-repression” models.

1.4.1.1. De-repression model.

This model (also called indirect activation model) postulates that Bax and Bak are
constitutively and structurally active in non-apoptotic conditions. Therefore, they need
continuous binding to anti-apoptotic proteins to repress their activity. In this situation, the
BH3-only proteins displace the anti-apoptotic proteins from Bax and Bak interaction to let
MOMP (Figure 1.4). Specific combinations of different BH3-only proteins, activated by
specific apoptotic signals, interact with different anti-apoptotic proteins and allow
Bax/Bak activation by highly regulated mechanisms (59). For example, Bid, Bim and
Puma show more pro-apoptotic effect than the rest of BH3 only proteins due to their
direct interaction with the anti-apoptotic members; Furthermore, Noxa interacts with Mcl-
1 and Al specifically while Bad only binds to Bcl-2, Bcel-xL, and Bel-w (Figure 1.3).
Only when Noxa and Bad are combinated cell death is induced (59). Of note, Bak is
inhibited not only by Mcl-1 and Bcl-xL but also by VDAC2 (109, 110).

However, the de-repression model does not explain that only a small fraction of
Bax/Bak can be co-immunoprecipitated with anti-apoptotic proteins in vivo, in contrast to

experimental data that suggest that all Bax/Bak needs to be neutralized for survival (111).
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Figure 1.4. Models of apoptotic regulation by the BCL-2 family. (Upper panel) In the “Rheostat” model, the
equilibrium between pro- and anti- apoptotic BCL-2 proteins is crucial to cell fate. De-repression (left) and
Direct Activation models (right) highlight the role of BH3-only proteins and anti-apoptotic proteins. (Bottom
panel) The Embedded Together model (right) and the Unified model (left) propose that BH3 proteins have to
activate Bax/Bak and the inhibition of MOMP by the BCL-2 anti-apoptotic proteins is produced by their
interaction with BH3 only proteins and/or Bax/Bak efectors.. The Embedded Together highlights the active role
of MOM in the interactions between BCL-2 family proteins. Adapted from (112).

1.4.1.2. Direct activation model.

The direct activation model postulates that Bax/Bak need to be activated to oligomerize
and promote MOMP. In this scenario, BH3 proteins behave as: activators, such as Bim,
Puma and tBid, binding of Bax/Bak directly (113); or sensitizers (Bad,Noxa, Bmf, Hrk),

20



1 INTRODUCTION

whose function is to block the anti-apoptotic proteins, releasing the BH3 activators from
the anti-apoptotic proteins to Bax and Bak to generate MOMP (99, 113). In this context,
several groups showed that tBID (BH3 activator) promotes MOMP by Bax/Bak activation
(98, 114).

The problem of this model is consequence of BCL-2 anti-apoptotic ability to bind and
inhibit directly the activation of Bax/Bak (115). In addition, another problem is the
difficulty to detect interactions between the BH3-only proteins and Bax/Bak. Moreover,
de-repression model and the direct activation model postulate that all these interactions
are unidirectional. The solution for these limitations was to propose a “hit-and-run”
mechanism for Bax/Bak activation by BH3-only proteins based on transient interaction
between BH3-only “ligands” and Bax/Bak “receptors” (99, 116).

1.4.2. The embedded together model: role of membranes in apoptotic

regulation.

In the models previously described, the active role of membranes in the functions of Bcl-2
family members is not considered. However, the BCL-2 proteins are mainly membrane-
inserted proteins via their C-terminal domain and the interactions between different Bcl-2
members take place generally in the MOM. Moreover, these BCL-2 proteins generally
have a different conformation when inserted in the mitochondrial membrane.

The membrane-Embedded Model highlights the role of the MOM in the BCL-2 family
protein interactions during apoptosis, mediating in these interactions rather than being
only the place where this interaction network occurs. The model suggests that the
association/insertion of BCL-2 proteins to the MOM promotes conformational changes in
these molecules that affect their binding interactions (117, 118). For example, Bax
undergoes conformation changes during activation when it translocates from a
cytoplasmic location to a protein with helices 5, 6 and 9 integrated in the membrane. This
conformational change is necessary to oligomerize with other Bax monomers to form a
pore in the MOM, and this event only take place when Bax is inserted in MOM (119).
Other example is Bid: Following caspase-8 cleavage, tBid targets MOM, undergoing
conformational changes that allows tBid to activate Bax and the recruitment of
cytoplasmic Bcl-xL (120). These tBid membrane interactions can be modulated by
membrane lipid composition and, interestingly, the membrane interaction between tBid
and Bax can promote redistribution of membrane lipids (121).

This model exposes that the activation of Bax/Bak at the membrane is the rate-limiting
step in MOMP. The BH3-only activators such as Bim, tBid and Puma can bind to MOM
spontaneously where they recruit Bax (and some antiapototic members as Bcl-xL),
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generating several conformational changes in Bax to induce oligomerization. Bak is
constitutively located to the membrane, so this first step is not necessary. Anti-apoptotic
proteins located in MOM bind to activator BH3 proteins (Bid, Puma and Bim) inhibiting
their pro-apoptotic function. However, in this context the activator proteins behave as
sensitizers because they also inhibit anti-apoptotic proteins. For that reason, this kind of
inhibition was called mutual sequestration (122).

Based on the idea of the mutual sequestration, the difference between activator and
inhibitor is more quantitative than qualitative and then the amount of anti-apoptotic and
BH3-only proteins in MOM determinates these equilibria.

Finally, this model introduces the concept of dominant negative of Bax/Bak that refers
to the inhibition of Bax/Bak activation and oligomerization induced by the binding of
BCL-2 antiapoptotic in the MOM context.

1.4.3. Unified model.

This model also takes into account the different modes of apoptotic inhibition and the role
of mitochondrial dynamics in apoptosis regulation (123). In MODE 1 the anti-apoptotic
proteins inhibit BH3-only activators (similar to mutual sequestration). MODE 2
represents the inhibition of Bax/Bak by anti-apoptotic proteins (equivalent to dominant
negative function of the anti-apoptotic proteins). Both mechanisms could inhibit MOMP,
but binding to Bax/Bak is considered more effective than binding BH3-only activators,
(123), due to once activated by a BH3-only protein, Bax and Bak can activate other
Bax/Bak molecules (124).

Thus, unlike the Unified model, the Embedded Together model proposes that the
dominance of MODE 1 vs MODE 2 depends on the membrane bound dynamics refers to
the amount of protein and post-translational modifications of the BCL-2 proteins. .

Finally, the lipid composition of the MOM determines the binding interactions and
functions of BCL-2 family proteins so “Lipid-Centric Model” has been also proposed
(125, 126), wherein apoptosis-related lipids modulate the activation and action of BCL-2
family members at the MOM level, either through a direct and stereoselective interaction
(125), or via a bilayer-mediated effect (126).
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1.5 MITOCHONDRIAL PORES: RELEVANCE OF
MITOCHONDRIAL OUTER MEMBRANE (MOM)
COMPOSITION IN ITS PERMEABILIZATION.

Upon apoptotic stimuli, the release of Cyt-c and other pro-apoptotic proteins from
mitochondria to cytosol involves different mechanisms represented in different models.
Some of them propose that the presence of Cyt-c¢ and other mitochondrial proteins in
cytosol is produced by the loss of MOM integrity, whereas other models suggest that the
formation of different types of channels produces an increase in MOM permeability,
generating the release of these mitochondrial proteins. However, none of the MOMP
models is able to integrate all the experimental data.

1.5.1. Bax/Bak activation and oligomerization to form mitochondrial pores.

The activation of Bax and Bak is ultimately regulated through complex protein-protein
interactions between the direct activator BH3-only proteins and Bax/Bak at the MOM.
However, the understanding of mechanisms leading to Bax/Bak activation is still
controversial. Bax and Bak could be activated by the exposure to MOM components, like
certain lipids (125) and by various physical factors as changes in pH and heat. However,
the most studied mode of Bax/Bak activation is through activator BH3-only proteins
binding (98, 116, 127). This interaction between BH3-only proteins and Bax/Bak is a
transient interaction (99) described as a “hit and run” mechanism. After binding to
activator BH3-only proteins, Bax/Bak undergo major conformational changes generating
several structural changes of the N-terminal region that contains the BH3 domain, and
helices 5, 6 and 9 (helix 9 only change its conformation in Bax) (Figure 1.5) (119, 127).
As a result of these structural arrangements, the affinity between Bax/Bak and BH3-only

proteins decreases, confirming the hypothesis of a ‘hit-and-run’ mechanism.
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Figure 1.5. Bax and Bak undergo a step-wise activation mechanism. (A) In healthy cells, Bax is mainly in
cytoplasmic conformation when apoptotic stimuli is absent. After apoptotic activation, Bax undergoes
conformational changes triggering the insertion of helices 5, 6 and 9 into the membrane. The activated form of
Bax generates the recruitment of more cytoplasmic Bax that oligomerizes promoting the MOMP. (B) Bak helix
9 is constitutively inserted in the MOM. Upon apoptotic signaling, BH3 activators bind to Bak to generate
conformational changes that trigger the insertion of helices 5, 6 into the membrane. Inspired by (112).

Bak is constitutively present in MOM through insertion of its helix 9 (TM). The high
affinity of Bak for membrane insertion may be due to the increased hydrophobicity of the
Bak TM region (AG= -0.735) compared to that of Bax (AG= 0.510), which facilitates its
binding to membranes rather than to the hydrophobic groove (128). Following activation
by BH3-only binding, conformational changes produced, the rearrangement of the N-
terminus, exposing Bak BH3 domain and inserting helix 5 and 6 into the MOM (129)
(Figure 1.5A). The exposure of the BH3 domain promotes the dimerization Bak, forming
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a “groove-to-groove” dimer, that can multimerize with other Bak dimers through an « 6-
a 6 interaction (130).

In contrast, the inactive form of Bax monomer is in continuous movement between the
cytoplasm and mitochondria in healthy cells (131). In this inactive conformation, the
hydrophobic helix 9 (TMD) is buried in the hydrophobic groove (132) to increase the
solubility of Bax in cytosol. Recent studies, have been demonstrated that Bcl-xL is the
responsible of Bax retro-translocation back from the MOM to the cytoplasm to avoid
apoptotic activation (133). This mechanism maintains low Bax levels in MOM. When a
BH3-only binds to Bax, the resulting arrangements produce the release of « 9 from the
hydrophobic groove (119), increasing Bax affinity to MOM and promoting its membrane
insertion. This process triggers the permeabilization of the MOM. In addition It is thought
that not only Bax « 9 inserts into the MOM but also « 5, « 6, and (Figure 1.5B) and that
activation of a single molecule of Bax can propagate the activation of other Bax
molecules via the exposed BH3 domain, which manages Bax oligomerization (Figure 1.6
(124)). Moreover, crystal structure of Bax, binded to Bid BH3 peptide showed that this
interaction mediated by the hydrophobic groove of Bax generates a relevant position
change of Bax helix 2 (134). Interestingly, this displacement debilitate the contacts
between Bid BH3 peptide and Bax and facilitate Bax/Bak oligomerization (134). Then, it
is thought that can be a credible explanation of “hit and run mechanism”.

1.5.2. MOMP: Bax/Bak pore formation in the MOM.

Although the fact that Bax and Bak are the executioners of MOMP is extensively
accepted, the way in which these proteins generate the pore to produce the
permeabilization process is still unclear. Several models have been proposed describing
the composition of the Bax/Bak pore (Figure 1.6). These models can be divided in two
groups: On the one hand, Indirect Activation Models postulate that the Bax and Bak
function is to modify the existing mitochondrial proteinaceous channels (see below)
permeabilizing MOM via a physical interaction with the components of the mPTP
(mitochondrial Permeability Transition Pore) found at mitochondrial contact sites (CS)
(135). For example, Bax may increase the permeability of the MOM by regulating
VDACI channels (Figure 1.7) (136).
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Figure 1.6. Mechanisms of Bax/Bak MOMP. (A) The protein-lipidic pore mechanism involves the
interactions of some lipids with Bax/Bak, regulating the pore formation. (B) In the Proteinaceus barrel-stave
channel, only the Bax/Bak oligomers are considered as components of the pore. (B1) In The symmetrical model
Bax/Bak oligomers are formed by the interaction of the BH3 domains into the canonical groove and a6 helix
interactions are the responsible of higher order oligomers. (B2) The asymmetrical model is based on the
interaction of Bax BH3 domain with another Bax molecule by the non canonical groove. Inspired by (112).

On the other hand, the Direct Activation Models postulate that the only partners
contributing to pore formation are Bax and Bak. The structure of these channels could be
a proteolipidic pore (Figure 1.6A) or a proteinaceous barrel-stave channel (Figure 1.6B).
These models are based on the structural similarities found between BCL-2 proteins and
bacterial pore-forming toxins (73) as well as the capability of activated Bax and Bak to

permeabilize lipid membranes in the absence of other mitochondrial components (137,
138).

1.5.3. MOMP: Other mitochondrial channels with capacity to release
apoptogenic proteins.

There are other mitochondrial channels different to Bax/Bak pore complex that promote
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different mechanism of release for Cyt-c and other pro-apoptotic molecules (Figure 1.6;
(139)). Some models suggest that MOM permeability is caused by proteins large enough
to form channels that cross the MOM to allow the permeabilization and the release of
proteins. However, other models consider that the efflux of the apoptogenic proteins is
due to disruption of MOM integrity. Some of the alternative channels proposed as
responsible of MOMP are described in this section.

B. VDACI-Bax C. Oligomeric .. D. VDACI closure
oligomer VDAC1 and MOM rupture

R

A. mPTP E. MAC channel
° ()
-VDACI
— (5]

@ Cytochrome ¢
H. Bax/Bak pore K Cardiolipin
' VDAC 1
(] 3 VDAC 1 closed
Cyclophilin D

G. Bax oligomer 4 . F. Ceramide channel

Figure 1.7. Release Models for the apoptogenic proteins from MIM space during apoptosis. (A)
Permeability transition pore (PTP) is formed by VDAC (MOM), ANT (MIM) and CypD (matrix). (B) Bax-
VDAC hetero-oligomers. (C) VDAC1 homo-oligomer (regulated by oxidative stress and Ca2") can also produce
the release of apoptogenic proteins. (D) MOM rupture produced by VDAC closure promotes a non-specific
release of apoptogenic proteins. (E) The mitochondrial apoptosis-induced channel (MAC) formation is
controlled by the apoptotic maquinery (BCL-2 proteins). (F) A lipid channel formed by the lipid ceramide.
(G)(H) Upon apoptosis induction, Bax and/or Bak activation and oligomerization promotes MOMP. Adapted
from (140).

The permeability transition pore. . The mPTP (permeability transition pore. Model A,
Figure 1.7) is a multi-protein complex present at mitochondrial contact sites (CS)(135)
composed by the adenine-nucleotide translocator (ANT, located in the MIM), the voltage-
dependent anion channel (VDAC, located in the MOM) and the cyclophilin-D (CyP-D,
located into the matrix surface of the MIM) (141-143). PTP opening produces an increase
of (Ca®") ions and water in the mitochondrial matrix, generating mitochondrial swelling,
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loss of membrane potential, and finally the loss of MOM integrity. PTP-induced cell
death is generally considered to be necrotic rather than apoptotic (144). CypD was found
to be essential for MOMP mediated by Ca>" overload and this CypD-dependent MOMP
regulates some forms of necrotic cell death but not apoptotic death (145).

Of note, the mechanisms responsible for PTP opening and its physiological function
are still unclear. Mitochondria isolated from animals models with ANT or VDAC KO
genes show PTP opening produced by oxidative stress (ROS) and an increase of Ca*’in
the mitochondrial matrix, suggesting that more components of the PTP complex have to
be uncovered (144, 146).

VDACI-Bax Hetero-oligomeric channel. Hetero-oligomers of VDACI and Bax form a
high conductance channel also proposed as a mechanism for Cyt-c release (Model B,
Figure 1.7; (147, 148)). Studies in VDACI-depleted cells, wherein cisplatin-induced
activation of Bax was inhibited (149), demonstrate that VDACI is involved in Bax-
mediated apoptosis. Furthermore, some proteins of the BCL-2 family, such as Bid, Bim,
Bcl-2, and specially Bel-xL interact with VDACI1, modulating the efflux mechanism of
apoptotic proteins through this channel (150). Bel-2 and Bel-xL interact with VDACI
reducing channel conductance and apoptosis. However, mutated forms of VDAC1 avoid
these interactions (151). It has been proposed that the interaction of Bax-Bim complex
with VDAC produces Cyt-c release, and Bcl-xL prevents this release (152).

Finally, other studies propose that Bax is the regulatory protein of oligomeric VDAC
channel, promoting Cyt-c release through this pore (153).

VDACI oligomerization. The single molecule VDACI pore diameter (2.5-3.0 nm) avoids
the efflux of folded proteins like Cyt-c. However, homo-oligomers of VDACI can form a
large protein-conducting channel following apoptosis stimuli to promote the release of the
apoptogenic proteins (Model C, Figure 1.7; (155)). However, the molecular mechanism
that trigger VDACI oligomerization upon apoptosis induction remains unknown.

Osmotic matrix swelling and MOM rupture leading to non-specific release from inter-
membrane proteins to the cytosol. The dysregulation of ATP/ADP exchange produced by
VDACI closure (Model D, Figure 1.7; (157)) generates a sudden increase in MIM
permeability, mitochondria swelling, rupture of the MOM and finally the release of IMS
proteins, such as Cyt-c, to the cytosol (158).

Mitochondrial apoptosis-induced channel. Mitochondrial apoptosis-induced channel
(MAC), a supramolecular high-conductance channel in the MOM, can be assembled
during early apoptosis and serve as the Cyt-c release channel regulated by BCL-2 family
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members (160, 161) Model E, Figure 1.7)). The complete molecular identity of MAC is
unknown but recently it has been proposed that Bax is an essential constituent of this
channel since depletion of Bax significantly diminishes MAC activity (162).

Ceramides and the release of cytochrome c. Ceramides, a family of waxy lipid molecules,
were postulated to form a pore in the MOM with a diameter large enough to
accommodate Cyt-c¢ (163). For that reason, this model suggests that a self-assembled
ceramide-based lipid channel is formed in the MOM to release Cyt-c (Model F, Figure
1.7; (163)). Ceramides can also promote the release of Cyt-¢ ¢ by altering MIM lipid
microdomains (164). In addition, ceramides in combination with low cholesterol
concentrations could generate mitochondrial membrane microenvironments to facilitate
Bax activation (165, 166). Finally, Bak (but not Bax) could activate ceramide synthesis.
The increase in ceramide levels would result in synergistic channel formation at the MOM
by ceramide and Bax/Bak, showing a different function of Bax and Bak in apoptosis (167).

Depending on the cell death stimulus and the cell type the mechanisms and models of
Cyt-c release proposed could co-exist within a single model of cell death (168).

1.5.4. Role of mitochondrial membrane lipids in MOMP regulation.

The involvement of lipids in MOMP has been suggested recently (169) since the lipid
composition of the MOM changes during apoptosis. Current theories support that
mitochondrial lipids are not only structural elements of the MOM but also display a
functional role. The function of these lipids would be either to produce changes in the
physical properties of the MOM and/or to interact specifically with some mitochondrial
proteins (170, 171).

The mitochondrial lipid composition is conserved among different cell types. This
underscores the potential role of lipid composition changes as an additional regulation
mechanism to control general processes as apoptosis. The lipid composition of the
mitochondrial membrane in healthy conditions is: 40% phosphatidylcholine (PC), 30%
phosphatidylethanolamine (PE), 5-10% Cardiolipin (CL), 15% phosphatidylinositol (PI),
whereas phosphatidic acid (PA) and phosphatydilserine (PS) comprise approximately 5%
(172).

The relevance of membrane composition in Bcl-2 family regulation started with the
importance of CL in liposome permeabilization process mediated by tBid-Bax interaction
(173) and the blockage of pores formation in MOM-like liposomes when this lipid was
absent (121). CL is a four-alkyl groups mitochondria-specific membrane lipid with
potentially two negative charges, localized predominantly to the inner mitochondrial
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membrane. Only a minor fraction of CL is located in the MOM (173). However, it was
observed that local CL concentrations at specific MOM domains known as the
mitochondrial membrane contact sites (CS) can be as high as =25% (174). Different
studies indicate that during apoptosis the total content of CL at the MOM increases.
Several reports have related CL and CS with Bid, indicating that CL can recruit Bid to
MOM and mitochondrial CS specifically (175). CL also promotes caspase-8 translocation
to mitochondrial localization, promoting then the activation of Bid (176). Of note, it has
also been described that other phospholipids such as PC, PG and PE (177) allow
membrane translocation of tBid. CL can also interact through its negatively charges with
the lipid-binding region of Bad BH3-only protein (178). However, the role of CL in the
apoptotic pathways is still controversial.

Despite of mitochondria contains only 5% of the total cellular cholesterol, this lipid
can also be relevant in apoptosis due to it regulates the fluidity of membranes in
mammalian cells (179). An increase of cholesterol concentration produces a decrease of
membrane fluidity that correlates to inhibition Bax-mediated MOMP (180) and resistance
to chemotherapy in cancer cells, whereas low levels of cholesterol are related to Bax
activation via p53 (181, 182). However, role of cholesterol in apoptotic control is not fully
characterized yet .

Inside the sphingolipid group, the ceramide has been largely analyzed by its relevance
in the MOMP and apoptosis (183). Increased amounts of ceramide at the mitochondria in
response to apoptotic stimuli (TNF-«, FAS ligand or DNA damage) promote Bax
translocation to the MOM, MOMP and apoptosis (183, 184). Nevertheless the molecular
mechanism by which ceramide promotes apoptosis is still controversial. In addition,
hexadecenal (a downstream metabolite of ceramide) induces Bax activation and pore
formation in liposomes where CL is not present (125).

Future studies will be needed to shed light on the role of lipids in MOMP and in the

mitochondrial membrane regulation during apoptosis.

1.6. BCL-2 TRANSMEMBRANE DOMAINS (TMDs):
SUBCELLULAR TARGETING AND ROLE IN THE APOPTOTIC
PATHWAY.

Most of Bcl-2 proteins are defined as tail-anchored proteins that have a single, highly
hydrophobic and helical C-terminal segment (known as transmembrane domain, TMD).

The TM segments of the tail-anchored proteins range from 15 to 22 amino acids in length
and are typically flanked by one to three positively charged residues. Protein folding in
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the cytoplasm of eukaryotic cells tends to occur co-translationally (Figure 1.8) (186) and a
number of ribosome-associated chaperones are available to mediate co-translational
folding. Hence, the N-terminal domains of tail-anchored proteins can fold, sequentially,
before the hydrophobic tail emerges from the ribosome to be inserted into the membrane.
This would prevent any unfavourable folding reactions that might otherwise occur
between the cytosolic domain and either the hydrophobic tail or the membrane surface.
Not surprisingly, since the N-terminus of the protein folds before the emergence of the
membrane anchor from the ribosome, the membrane-insertion of tail-anchored proteins
should occur post-translational. The length and the hydrophobicity of the TMD are
important for the post-insertional sorting to the correct membrane within the secretory
pathway and some works have postulated a relevant role of the flanking regions in
defining the membrane-specificity of the tail-anchored proteins (187).
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Figure 1.8. Stages of targeting tail-anchored proteins to mitochondria. Tail-anchored proteins can fold in the
cytoplasm co-translationally. The hydrophobic tail-segments interact with some proteins such as chaperones like
HSP70 (green) to keep the proteins soluble in the cytosol. (Left side) Tail-anchored proteins can also interact
with some subunits of the TOM complex (grey) to target to mitochondria. (Right side) Some Bcl-2 proteins can
fold themselves and target to mitochondria. Inspired by (188).

The BCL-2 family proteins are usually found not only in the mitochondria but also in
the cytosol, the endoplasmic reticulum (ER) and the nucleus (189) (Figure 1.9). Although
some Bcl-2 family members are targeted directly to the membrane on which they execute
their function via specific targeting sequences, others require a secondary level of
regulation allowing them to translocate to MOM in response to an apoptotic stimulus.
Moreover, BCL-2 members that are not targeted to MOM seem to regulate MOMP from
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the ER (190). This secondary level of regulation may act as a ‘safety switch’ preventing
premature activation or inactivation of these proteins. Several groups have studied the
mechanism used by the BCI-2 proteins target to mitochondria (191, 192) and they
propose: 1) Direct anchorage post-translation of the BCL-2 TMD into the MOM. 2)
Targeting mediated by the interaction with other BCL-2 members. 3) Interaction with
non-BCL-2 family proteins, such as TOM/TIM complexes (193). 4) Interacting with
mitochondrial lipids.

Among the BCL-2 family, some members have a well-defined TMD with all the
properties observed in the canonical tail-anchor sequences. These are the cases of the pro-
apoptotic proteins Bax and Bak, and the anti-apoptotic Bel-2, Bel-xL, Bel-w and Mcl-1.
For other BCL-2 proteins, such as Bok, Al, and some of the BH3-only proteins
hydrophobic sequences can be detected, but these regions do not accomplish all the
criteria established for the canonical TMDs. Furthermore, the targeting signals and
mechanisms by which BCL-2 proteins reach their final destination are still controversial.

14-3-3 Cytoskeleton
Apoptotic signaling l Caspase 8

Figure 1.9. Localization of Bcl-2 family proteins. BCL-2 proteins are present in the cytoplasm, ER and on the
MOM in healthy cells. Bak is constitutively found on the MOM. Bax inactive form is found in the cytoplasm
and translocates to MOM after apoptotic activation. Bcl-2 and Bcel-xL are mainly inserted into the MOM
interacting with Bax and Bak to inhibit apoptosis. Bcl-w and Mcl-1 can be present in cytosol or integrated into
the membrane. BH3-only proteins Rambo, Hrk are always present in MOM. The expression of Bim, Puma and
Noxa is up-regulated following apoptotic signals, whereas Bad, Bim and Bid BH3-only proteins target to MOM
following post-translationally modifications. Inspired by (194).
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1.6.1. Subcellular distribution and targeting of BCL-2 anti-apoptotic

proteins.

In healthy cells, the majority of endogenous Bcl-2 is located in the ER membrane and
associated with the nuclear envelope, and the remaining fraction (30%) is located on the
MOM (195, 196). Bel-xL and Bcl-w are both found in cytosolic form as membrane
inserted (63, 197, 198). During apoptosis, they translocate from the cytosol to
mitochondria. In the case of Bcl-w, its anchoring to the MOM is only triggered when a
BH3-only protein binds to its hydrophobic groove (199). When comparing the TMDs of
Bcl-2 and Bcel-xL, no great differences in length or in mean hydrophobicity were detected.
However, MOM-targeted proteins such as Bcl-xL show an increased hydrophobicity in
the C-terminal half of their TMD. On the other hand, proteins that are also targeted to the
ER/nuclear envelope, such as Bcl-2, are more hydrophobic in the N-terminal half of their
TMDs. In addition, the number of positive flanking residues of the TMD seems to play an
important role in the mitochondrial membrane specific targeting of Bcl-2 anti-apoptotic
proteins. High basicity surrounding the TMD usually leads to a more MOM-specific
targeting, whereas TMDs surrounded by fewer basic residues have a higher tendency to
be targeted to the ER membrane. In this sense, Bcl-xL can be specifically targeted to the
MOM by increasing the net positive charge at the very terminus of the protein.
Furthermore, a decrease in the number of basic residues at this region in Bcl-2 protein
causes a decrease in MOM-specificity, leading to an accumulation of this protein on the
ER/nuclear outer membrane.

It has also been proposed that cytosolic binding proteins or putative membrane
receptors can target the anti-apoptotic BCL-2 family members. For instance, it has been
shown that the mitochondrial FK506-binding protein 38 (FKBP38) interacts with both
Bcl-2 and Bcel-xL, probably by associating with members of the TOM machinery (200).

Finally, the subcellular localization of Mcl-1 depends on the physiological cellular
status and cell-type, Mcl-1 has been localized to the mitochondria, ER, the cytoplasm and
the nucleus (201).

1.6.2. Subcellular distribution and targeting of BCL-2 pro-apoptotic proteins.

Bax, Bak and Bok were initially described to be targeted to the MOM wherein they are
thought to exert their function. Recently, ER localization and, in consequence, ER
specific functions have been reported for these proteins (189) (202). In addition to its
membrane attached form, Bax is found up to 60% as a soluble protein in the cytosol in
healthy cells and it is proposed to translocate to and insert into the MOM during apoptosis
(132) . In contrast to Bax, Bak is inserted constitutively into the MOM and to a lesser
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extent into the ER membrane (203). Moreover, the higher hydrophobicity of the C-
terminal hydrophobic region of Bak in comparison with Bax may account for the stable
anchorage of the former but not the latter protein to the MOM.

Bok is described as either having a nuclear or mitochondrial distribution. The C-
terminus of Bok does not fit the consensus for a functional tail-anchored, as it contains
lysine and arginine residues within what should be the hydrophobic TMD. Whether or not
Bok has a functional TMD remains controversial (204).

1.6.3. Subcellular distribution and targeting of BH3-only proteins.

BH3-only proteins are located in the cytoplasm of healthy cells, but during apoptosis they
are targeted to the MOM, either alone or in association with the multidomain BCL-2
family members.

Following apoptotic stimuli, BH3-only proteins Noxa, Puma, Bim, and Hrk are
transcriptionally induced. In the cases of Bim, Bik, Bmf and Bad, are posttranslationally
modified and/or proteolytically processed in response to apoptotic stimuli (191, 205).
These modifications increase the affinity of BH3-only proteins for multidomain Bcl-2
family members, directing some BH3-only proteins to the MOM and ER membrane (206).
Alternatively, other BH3-only proteins seem to contain their own C-terminal TMD
regions, such as Bik (constitutively localized to the ER), Hrk, Rambo, (both in MOM) and
Bid targeting to MOM or ER directly or by protein-lipid interactions (207). In the case of
Bim, Puma, Noxa and Bmf the presence of a TMD region is still controversial. A recent
study postulates that the C-ternimal region of Noxa could be responsible of its
mitochondrial targeting (207). Bim and Bmf seem to be bound to cytoskeletal structures
under healthy conditions. During apoptosis, they are released from the cytoskeleton to
allow their translocation to the MOM and modulation of MOM-localized multidomain
BCL-2 proteins (104, 208, 209) Recent studies propose that Bim spontaneously inserts
into the MOM via its putative tail-anchor, and that binding to the MOM is crucial for
activating Bax. However, it is unlikely because the putative tail-anchor sequence of Bim
contains charged residues, which are normally incompatible with tail-anchored mediated
insertion into the membrane. Bid is located in the cytosol in an inactive form in healthy
cells. In response to apoptotic stimuli, Bid is cleaved by caspase-8 to form truncated Bid
(tBid), translocating from cytosol to MOM to interact with the BCL-2 family proteins
located in mitochondria. This targeting could be mediated by the interaction with the CL-
binding domains as in the case of Bad (210). In absence of apoptotic stimuli,
phosphorylated Bad is sequestered in the cytosol by its interaction with 14-3-3 scaffold
proteins and only after dephosphorylation is targeted to MOM (208).
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Table 1.I1. The TMD of the BCL-2 family.

BCL-2 TMD Predicted sequence Target Role

Bcl-2 Yes , ,FSWLSLKTLLSLALVGACITLGAYLGHK,,, ER,MOM,Nucleus Not clear

Bel-xLL Yes 203SRKGQERFNRWFLTGMTVAGVVMSRK233 MOM Apoptotic isoform, Form pores
Bel-w Yes  o,REGNWASVRTVLTGAVAL GALVTVGAFFASK,,, MOM Not clear

Mcll Yes  ,,,IRNVLLAFAGVAGVGAGLAYLIR,, - MOM,ER Apoptotic isoform
Bfl-1 Yes |, ,KSGWMTFLEV TGKICEMLSL_LKQYC175 MOM Form pores

Bel-B Yes 158ﬁKQLVQAFLSCLLTTAFIYLW@.19 4 MOM NM23-H2 interaction
Bax Yes 16eTWQTVTIFVAGVLTASLTIWKKMG,,, MOM Form Pores

Bak Yes 4 ILNVLVVLGVVLLGQFVVRRFFKS,,, MOM VDAC? interaction
Bok Yes . RSHWLVAALCSFGRFLKAAFFVLLPER,,, ER,Golgi,Nucleus Not clear

Bid Yes 12 4ETMLVLALLLAKKVA1 60 = MOM Destabilize MOM, Form pores
Bim N.C 1.,E,EEVILRLLRYIVEWRME198 MOM?? Not clear

Bmf N.C 157ﬁRVWWQILL]:"LHNLALNGEENRNGlso MOM?? Not clear

Puma N.C | ,,RHRPSPWRVLYNLIMGLLPLPRGHRAPEMEPN . MOM?? Not clear

Noxa N.C  , ,KLNFRQKLLNLISKLFCSGT,, MOM?? Not clear

Bad Yes  ,,TATQMRQSSSWTRVFQSWWDRNLGRGSSAPSQ, MOM?? Not clear

Bik Yes |, ,VLLALLLLLALLLPLLSGGLHLLLK,, ER Not clear

Hrk Yes lAPGALPTYWPWLCAAAQVAALAAWL_LGRRNLQ . MOM Form pores
Rambo Yes GKS ILLFGGAAAVAILAVAIGVALRKK_ MOM Not clear

457 485

Underlined residues represent the flanking regions of the transmembrane domain, which are important in the

subcellular targeting. The predicted sequences have been calculated using AG. Not confirmed (N.C).

1.7. ROLE OF BCL-2 TMDs IN THE CONTEXT OF FULL-
LENGTH PROTEINS AND RELEVANCE IN MOMP DURING
APOPTOSIS.

1.7.1. Anti-apoptotic BCL-2 proteins.

Bcl-2

The Bcl-2 C-terminal tail improves the anti-apoptotic effects of the protein, including cell
survival after IL-3 deprivation (211) and suppression of apoptosis caused by E1B-
defective adenovirus (212). Some authors have postulated that helices 5 and 6 of Bel-2 are
able to form pores in lipid membranes (213, 214). Bcl-2 protein exhibited pore-forming
activity with properties similar to those of the bacterial toxins, diphtheria toxin, and
colicins, showing a dependence on low pH and acidic lipid membranes. In planar lipid
bilayers, Bcl-2 formed two types of channels: discrete ion-conducting, cation-selective

channels, with a four-helix bundle structure arising from Bcl-2 dimers and a larger
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channel detected with progressively lower occurrence, implying the step-wise formation
of larger oligomers of Bcl-2 in membranes. The role of the Bel-2 C-terminus TMD in
these pores is still unclear (213, 214).

Bcel-w

Bcl-w C-terminus-deleted mutants lose their anti-apoptotic function, although they are
still able to bind BH3-only proteins, such as Bim and Bad, suggesting that C-terminal
residues modulate pro-survival activity by regulating the ligand access to the hydrophobic
groove by the BH3-only proteins (63). However, further studies have to be designed
focusing in the TMD specifically to evaluate the relevance of this TMD in apoptotic
regulation and interaction with other Bcl-2 proteins.

Bel-xL

Bcl-xL undergoes a conformational change from a cytosolic to a membrane bound state
promoted by its TMD (215). When the Bcl-xL TMD is removed, a decrease in membrane
insertion is observed. It has been demonstrated that Bcl-xL interacts with a Bak BH3
domain peptide in the presence of membranes. Under these conditions, the TMD of the
protein unfolds from the hydrophobic groove and inserts into the membrane (216).

Some localization studies for Bcl-xL TMD have fused the TMD of Bel-xL or the
complete Bel-xL to the yellow fluorescent protein (YFP) in order to investigate the
relevance of the TMD in the targeting of the protein. Both YFP-Bcl-xL and YFP-Bcl-xL-
TMD localized to the mitochondria. However, cells expressing YFP-Bcl-xL-TMD
showed increased autophagy and moderate cell death resistance in response to
staurosporine (a classical apoptotic inductor), suggesting the existence of a secondary
function of Bcl-xL mediated by the TMD (217). In contrast, YFP-Bcl-xL was diffusely
distributed in the cells, and its expression did not alter the mitochondrial morphology
compared with control cells. Recent studies have postulated that some isoforms of Bcl-xL
that contain the TMD are pro-apoptotic (66, 67, 218). This is the case for Bcl-xS that
contains BH4, BH3 and TMD domains (218). In constrast, Bcl-AK is constituted by BH4,
BH?2 and the TMD domain and does not interact with other Bcl-2 antiapototic proteins (66,
219). However, both isoforms promote different ways of caspase-dependent and caspase-
independent apoptosis. Interestingly, Bcl-xS can also disrupt the interaction between
VDAC?2 and the TMD of Bak, producing the caspase-dependent apoptosis (67).

Furthermore, it has been postulated that Bcl-xL homodimerizes by the TMD, which
could be related to its role in mitochondrial morphology alteration and apoptosis
inhibition (220). As described previosly, this Bcl-xL TMD is also important to mediate
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retrotranslocation of Bax from the mitochondria to the cytosol (221). Unexpectedly,
substitution of the Bcl-xL TMD by the corresponding Bax segment reverses the Bax
retrotranslocation activity of Bcl-xL, while Bel-xL shuttling is independent of interactions
with Bax or Bel-xL (221), Therefore, it is not clear how the retrotranslocation of Bcl-xL

to the cytosol is induced.

Bfl-1

The C-terminal domain of Bfl-1 (A1) significantly differs from Bcl-2, Bcl-xL, and Bel-w
TM sequences (222), and targets Bfl-1 specifically to mitochondria (see Table 1.IT). Bfl-1
may co-exist in two distinct conformational states: one with its C-terminal helix inserted
in the hydrophobic groove and another with its C terminus bound to the MOM (223). The
helix 9 of Bfl-1, and therefore the binding of Bfl-1 to mitochondria, is not essential for the
anti-apoptotic activity of Bfl-1.

A synthetic peptide called ATAP (amphipathic tail-anchoring peptide) derived from
the C-terminal domain of Bfl-1 produces the release of fluorescent molecules of the size
of Cyt-c from liposomes (224). In addition, although the pro-apoptotic activities of BH3
peptides are largely inhibited by over-expression of anti-apoptotic proteins (Bcl-2 or Bel-
xL) or the depletion of pro-apoptotic Bax and Bak in cells, the pro-apoptotic function of
ATAP is not affected by these cellular factors (223).

Mecl-1

It has been established that the C-terminal domain of Mcl-1 becomes pro-apoptotic as a
result of caspase-3 cleavage, and its physical interaction and cooperation with tBid, Bak,
and VDACI1 promoted mitochondrial apoptosis. However, in these studies, the C-terminal
domain included not only the putative TM segment but also by domain BH2 (225). For
that reason, the specific role played by the TM segment in these observations is not clear.

Bcl-B

Bcl-B is also known as Bc¢l-2L10 or Diva in the mouse. Bcl-B has anti-apoptotic function
in MOM, but interestingly it does not have BH3 motif (226). The deletion of the TMD in
Bcl-B decreases its anti-apoptotic function and its association with intracellular organelles
(227). Interestingly, it has been postulated that Bcl-B interacts with NM23-H2, a regulator
of the Bcl-B activity, via its TMD (228).
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1.7.2. Pro-apoptotic BCL-2 members.

Bax

Bax lacking the C-terminal domain is not functional and the insertion in MOM is blocked
(229) (230). There are three critical residues in the Bax TMD and its flanking regions:
G179, S184 and P168. G179E mutant abrogates the Bax activation mediated by ABT-199
antitumoral drug due to this mutation avoid its anchoring to the MOM (230). The
mutation of S184K led to the diffuse cytoplasmic localization of Bax after the cells had
received an apoptotic signal and the deletion of this residue produces a Bax mutant
constitutively localized in the mitochondria and more active than wild type Bax. P168
mutants lack pro-apoptotic activity.

Interestingly, the substitution of the C-terminus of Bax by that of Bcl-xL does not
affect its subcellular localization but abrogates its pro-apoptotic properties (231). In
addition, mutations in the C-terminal part of the Bax protein impaired the inhibitory effect
that anti-apoptotic Bcl-xL has on Bax insertion, suggesting that the conformation of the
TMD plays a significant role in the Bax/Bcl-xL interaction (232).

As previously described, the pore complex proposed by helices 5 and 6 of Bax can be
proteolipidic (134) but no conclusive evidences about the participation of the C-terminal
domain in this type of pores have been observed. In presence of phosphatidylglycerol in
model membranes, the C-terminal domain of Bax formed complexes with these lipids
(233). Moreover, a recent work suggests that the TMD of Bax could contribute to
oligomerization process in the MOM, by direct TMD interaction between different
molecules of Bax (234). In the same line, other studies have suggested that Bax TMD
could contribute the pore complex constitution. It was observed that Bax channels
reconstituted in vitro showed voltage gating. Then, two different Bax channels have been
proposed: Type A, which is homogeneous, small and voltage-gated; and Type B, which is
large and voltage-independent (235). It has been suggested that the TMD of Bax may be
involved in the formation of both. During apoptosis, changes in the lipid composition of
the MOM can influence orientation and exposition of the C-terminal of Bax within these
channels, modifying their organization.

Several studies using vesicles with encapsulated carboxyfluorescein have been
developed to determinate the role of the BCL-2 C-terminal domains in permeabilization
of membranes. Some synthetic peptides of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax
and Bak) TMDs were used (236). The results highlighted that addition of both peptides to
large unilamellar vesicles destabilized the vesicles and released encapsulated

carboxyfluorescein (CF) at different degrees. Moreover, it was observed that fluidity and
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the increase in negative curvature promoted this release. In general, Bcl-2 and Bax TMD
peptides produced the highest content release, with Bak TMD peptide close to these levels
of release. In comparison to pure phosphatidylcholine vesicles, the addition of
diacylglycerol produced an increase in the percentage of CF released in the case of Bak
TMD peptide. However, the addition of cholesterol reduced the membrane fluidity and
the TMD insertion (237, 238), reducing the capacity of the peptides to induce CF release.

Recent works have proposed a model for pores (radius of at least 13 A) based on the
Bax TMD peptide ('*VTIFVAGVLTASLTIWKKMG'%?) wherein eight peptide
molecules form an “«/f -ring” structure within the membrane. This peculiar pore
allowed the suggestion of a new mechanism through which Bax C-terminus can
efficiently perforate cell membranes, a mechanism that differs from that accepted until
now for other domains of Bax (239, 240). When this peptide is expressed intracellularly,
it is translocated to the mitochondria and kills cancer cells, so the Bax TMD peptide
represent a firm candidate for acting as molecular drug (241).

Bak

The hydrophobic C-terminal domain of Bak acts as a membrane anchor (242), promoting
the localization of Bak as an integral MOM protein (Figure 1.9). Several works when
replaced the C-terminal domain of Bak with Bax TMD (Bak/BaxCS), the chimeric protein
rescues the stability and the function of Bak, but resulted in a semicytosolic protein with
its hydrophobic TMD blocking its hydrophobic surface groove. Upon apoptotic signaling,
Bak/BaxCS translocated to the MOM where inserted its TMD (128).

On the other hand, some studies have found that the C-terminal domain of Bak
interacts with model phospholipid membranes, altering their physical properties and
making them leaky to carboxyfluorescein (243). The peptide is folded to adopt a
secondary structure in which o« -helix is predominant. These results suggest that this
domain may help to create a pore through the MOM.

It has been postulated that Bak interacts by the TMD (helix 9) with VDAC?2 protein in
the MOM. This interaction between TMD of Bak and VDAC2 suppresses the activation
of Bak in healthy cells. During apoptosis, the arrival of the BH3-only protein tBid to
MOM results in the release of Bak from VDAC2 (110).

Bok

Bok can also be classified as a tail-anchored protein (244). In fact, its C-terminal domain
has been described as a “tail anchor” specific for targeting the Golgi and the ER, wherein
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it develops its major pro-apoptotic functions (204). Interestingly, a splicing variant of Bok
called Bok-S, which contains only the BH1, BH2 and the TMD, does not dimerize with
anti-apoptotic proteins and forms mitochondrial channels to regulate apoptosis (245).
Because Bok-S does not interact with anti-apoptotic proteins, apoptosis mediated through
Bok-S may be important in situations when unwanted cells need to be eliminated quickly
despite the presence of anti-apoptotic proteins in the same cell. In the ovary and uterus
known to express high levels of Bok transcripts, Bok-S expression could provide a short
circuit to promote cell demise in hormone-dependent cell populations that express
abundant anti-apoptotic proteins (such as Mcl-1) but have to be removed swiftly because
of cyclic cell turnover during reproductive cycles (245).

1.7.3. BH3-only proteins.

Bid. In the case of Bid, it is postulated that helix 6 and helix 7 have the ability to insert
into the mitochondrial membrane (246). However, the capability of these regions to
destabilize the mitochondrial membrane and to form channels is still controversial.
Schendel et al. (247) described the channel forming activity of caspase-8 cleaved Bid or
Bid lacking 55 N-terminal residues in planar lipid bilayers at acidic and neutral pH.
Moreover, Kudla ef al (248) reported that p15 Bid (a truncated form of Bid from residue
Gly® to the end of the protein) permeabilizes liposomes at physiological pH. In addition,
recent studies postulate that CS interact with these helices and this interaction promotes
the remodeling of the inner membrane and the cristae structures of the mitochondria in a
Bax/Bak-independent manner (246). However, topology studies indicate that helices 6 to
8 do not span the lipid bilayer (249). Helices 3 to 5 are amphipathic, and none of them are
long enough to span the bilayer. These findings point to the existence of a mediator that
would relay the signal from the outer membrane where Bid is targeted to the inner
membrane. Furthermore, Terrones ef al. (121) reported that tBid alone does not form
pores in the membrane, but it activates Bax to form large lipic pores permeable to dextran
molecules of 10-70 kDa.

All these contradictory data expose that it is uncertain how the helices 6 to 8 might be
involved in channel formation or membrane destabilization, so further studies are

necessary to understand these phenomena.

Bad. Bad presents a C-terminal region with the capacity to bind to MOM, although this
tail is not homologous to the rest of the BCL-2 TMDs. As previously mentioned, Bad is
regulated by phosphorylation, association with 14-3-3 proteins, binding to membrane
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lipids and pore formation (178) (see section 1.6.3). Polzien et al. (250) demonstrated that
the C-terminal region of Bad presents a well-ordered structure and stable conformation in
aqueous solution, although the helical conformation increases in a lipid context. The
interaction of the C-terminal region of Bad with its isolated BH3 domain promotes the
formation of permanently open pores, although it is necessary the phosphorylation of
serine 118 within the BH3 domain for effective pore formation. In contrast, the
phosphorylation of serine 99 in combination with 14-3-3 association suppresses channel
formation (250).

Hrk. Hrk is inserted to the MOM through its TMD (251). Interestingly, the C-terminal
region of Hrk adopts a predominantly « -helical structure with a clear insertion
perpendicular to the plane of the membrane. These properties give Hrk C-terminal domain
the capability to form pores in the mitochondrial membrane. The percentage of helix and
its potential to destabilize membranes are modulated by phospholipid composition (252).

Rambo. The TMD of Rambo is responsible of the mitochondrial targeting of this protein.
It has also been demonstrated that Rambo causes apoptotic cell death independent of the
Bax-Bak pore complex and that the TMD of this protein is crucial for its pro-apoptotic
activity (107, 253). As described in Figure 1.3 Rambo does not interact with other BCL-2
members (107). A recent work proposed that Rambo interacts with ANT protein (253),
which is one of the components of the PTP in the mitochondrial membrane to generate
non-mediated Bax/Bak apoptosis. However, the role of the TMD in the apoptotic

activation is still controversial.

Bik. Bik presents a well-defined TMD that targets mainly to ER (106, 254), but more
studies need to be done to determinate the role of its TM region in the context of the full
lengh protein Bik.

Other BH3-only proteins

The presence of a TM region in the BH3-only proteins Puma, Noxa, Bim and Bmf is
currently under study. Some authors have recently concluded that these BH3-only
proteins present a TMD region to target mitochondria (207, 255, 256). However, the
presence of several polar residues inside their C-terminal sequence and the low

hydrophobicity of these regions generate controversy about this issue.
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1.8. APOPTOSIS AND DISEASE.

As well as a pivotal role during development, apoptosis and BCL-2 proteins regulation
are essential for homeostasis in mature tissues. For this reason, defects or abnormalities in
cell death regulation contribute to a range of pathologies: in some cases by insufficient
apoptosis, such as cancer and autoimmune lymphoproliferative syndrome (ALPS),
whereas in another situations by excessive apoptosis such as ischemia or
neurodegenerative diseases including Parkinson’s disease, Alzheimer’s disease,

Huntington’s disease, and Amyotrophic Lateral Sclerosis.

1.8.1. Importance of BCL-2 family proteins in cancer.

The balance between cell survival and cell death is a fine tuned process wherein slight
imbalances are responsible of several diseases. In fact, defective cell death mechanisms
are now recognized as one of the six hallmarks of cancer (257). The BCL-2 proteins, as
crucial modulators of the apoptotic process, have been implicated in the development of
several types of tumors. In general, dysregulation of the BCL-2 proteins could contribute
to cancer development and progression at different levels (258). They could be directly
implicated in the generation of the disease (drivers) but also could be involved in the
acquired resistance to antitumoral treatments. For that reason, apoptosis, cancer
development, and cancer therapy are closely associated. Impaired apoptosis is critical for
tumor development. Specifically, BCL-2 proteins play a crucial role as regulators in the
mitochondrial permeabilization process. Depending on Bcl-2 subfamily affected, cancer
cells have can be classified in: Class A cell death blockade is associated to loss of BH3-
only activator function. Class B is related to inactivation of Bax and Bak effectors, and
class C is the result of upregulation of Bcl-xL/Bcl-2/Mcl-1.

It is important to note that although alterations in BH3-only and Bax/Bak proteins
expression have been reported in several cancers, such as colon and lung cancer, this is
not a common phenotype. In contrast, the regulation of anti-apoptotic members is more
widely demonstrated in many cancer types. This may be a mechanism selected for tumor
cells to block the activity of several BH3-only proteins and Bax/Bak, along with
additional metabolic and survival advantages conferred by increased anti-apoptotic BCL-

2 protein expression.

1.8.1.1. Dysregulation of anti-apoptotic proteins.

Overexpression of the BCL-2 pro-survival proteins by itself has not demonstrated to be

related to highly tumorigenic profiles; however, in combination with additional alterations
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as mutations that enhance tumor growth generates a severe increase of malignancy (259)..

Bcl-2. High levels of BCL2 gene expression correlate with malignancy of human tumors
(260, 261). Bcl-2 upregulation correlates with poor prognosis and/or clinical response in
several cancers (262-264), and resistance to chemotherapy and radiation (260, 261).
Moreover, some tumor-associated viruses (for example, Epstein-Barr virus (EBV) and
Kaposi’s sarcoma-associated herpes virus (90)) encode homologue proteins of Bcl-2,
developing similar anti-apoptotic functions (265).

Bcl-xL. Bel-xL also produces resistance to several apoptosis pathways (266). An increase
of Bcl-xL expression is associated to multiple myeloma (MM) (267), pancreatic cancers
in combination with c-myc overexpression (267, 268), prostate cancers associated to Bcl-
2 upregulation (269) and apoptotic resistance produced by constitutive activation of
epidermal growth factor receptor (EGFR)(270)..

Mcl-1. Mcl-1 overexpression was observed in leukemia, ovarian cancer and human

cervical neoplasms patients (271, 272).

1.8.1.2. Inactivation of pro-apoptotic proteins.

In addition to upregulation of pro-survival genes, tumors also develop apoptosis
resistance by loss of function or downregulation of pro-apoptotic proteins Bax and Bak,
which are common in hematologic malignancies (273). Knockout or interference studies
of Bax and Bak proteins, in particular in human colorectal carcinoma cells (274),
demonstrated the role of these proteins in the apoptosis blockade of tumor cells. Bak
downregulation has been observed in skin and pancreatic cancer (275, 276) and it is
required for the transformation of intestinal epithelial cells to malignant cells, promoted
by the ras oncogene (277)..

In the case of Bax, it was observed during the tumor clonal evolution of gastric and
colon cancer cells that the clones with Bax inactivated and/or mutated showed a clear
advantage in comparison to the clones with normal expression of Bax (278). The work of
Manoochehri et al. concluded that Bax down-regulation could contribute as an important
factor during both colorectal carcinogenesis and cell resistance to antitumoral agent 5-
Flourouracil (279). Furthermore, the contribution of Bax downregulation to drug
responsiveness in cancer cells was also demonstrated when the resistance of no tumoral
cells, with normal expression levels of Bax and also Bid, was compared to cancer colon
cells with low or no expression of Bax and Bid (280). Of note, it was observed that a
single nucleotide polymorphisms (SNPs) of Bax, rs4645878, showed a significantly
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increased recurrence risk in gastric cancer correlated with a decrease of Bax expression
and functionality (281).

1.8.1.3. Mutations of BH3-only proteins.

Noxa and Puma. Since BH3-only proteins Noxa and Puma are transcriptional targets of
pS3, loss of p53 by itself suppresses apoptosis induced by these proteins (102, 282).
Frameshift mutations causing loss of expression and mutation of BH domains of pro-
apoptotic proteins that lead to loss of their function are also common in colon cancers and
result in apoptosis resistance (273).

Puma and Noxa can also be activated independently of pS53 and thus play a role in
p53-independent apoptosis. Puma can be transcriptionally upregulated by FoxO3a CHOP,
and E2F1 (283) in response to ER stress. This protein can also be negatively regulated
through phosphorylation; therefore several chemotherapeutic strategies are focused to
promote its proteasomal degradation (284). Interestingly, Puma KO mice and Noxa KO
mice have a normal phenotype during development and adult mice (93)(285).

Bim. Bim activity is transcriptionally (Foxo3a, CHOP transcription factors) and
posttranscriptionally (Phosphorylation via JNK and MAPK) regulated. Some of these
regulatory mechanisms are used as targets of chemotherapeutic drugs. Low levels of Bim
protein are associated with colon cancer and B cell lymphoma a (286). Bim KO mice
present a normal development with an excess of myeloid and lymphoid cells (287).

Bid. Caspase-2 produces Bid cleavage in response to ER stress (288). Furthermore, Bid
cleavage can be regulated posttranslationally by phosphorylation in response to apoptosis
DNA damage-induced (289). Bid KO mice show myeloproliferative and leukemic
disorders with age (291).

Bad. Some breast and prostate cancers can be iniciated by dysregulation of Bad
phosphorylation in PI3K/AKT pathway (293). If PTEN (an inhibitor of the pathway) is
blocked, S136 is constitutively phosphorylated and Bad remains inactive. Bad KO mice
experiments (94) demonstrated that this BH3-only protein acts as tumor suppressor in the
lymphocyte lineage.

Bmf. The role of Bmf in tumorigenesis still remains to be fully elucidated, but there have
been several reports suggesting that this protein plays a role in suppressing tumor
development. In Bmf KO mice, lymphocytes are protected against apoptosis induced by
glucocorticoids or histone deacetylase inhibition (95). It is important to note that in
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hematopoietic tumors the disruption of normal cell adhesion is due to the lack of Bmf
binding to some cytoskeletal components. Bmf upregulation promotes apoptosis in
mammary epithelial morphogenesis and anoikis (295). Moreover, histone deacetylase
inhibitors (HDAC), used as chemotherapeutic agents in tumoral cells, upregulates Bmf
expression due to the presence of CpG islands at its promoter.

1.8.2. Antitumoral treatments based on BCL-2 proteins.

The complex network between pro-apoptotic and anti-apoptotic members of the BCL-2
family plays a crucial role in cellular fate determination. From a therapeutical standpoint,
the process of apoptosis is intricately balanced, and then the recovery of this equilibrium
after the dysregulation promoted by a tumoral process should be the goal of cancer
therapy. Bcl-2 interfering strategies have been accepted as a potential approach to induce
apoptosis in cancer cells. There are three classical strategies to overcome the
cytoprotective effects of Bcl-2, Bel-xL and Mcl-1 in cancer: inhibiting gene transcription,
promoting mRNA degradation with antisense oligonucleotides, and directly blocking the
function of these proteins with small-molecule drugs or peptides (Table 1.III).

Recently, several studies focus on a new concept, the mitochondrial priming of a cell
that could be used in cancer therapeutics (see 1.8.2.2)

1.8.2.1. Pharmacological inhibition of bcl-2 proteins.

Antisense oligonucleotides (ASOs) and antibodies

This methodology is based on the introduction of a mRNA strand complementary to the
target sequence in Bcl-2, generating a DNA heteroduplex that can be degraded by RNAse
H and then silencing the target mRNA (296). One of the first drugs developed for
inhibiting the BCL-2 family was Oblimersen (G-3139), an antisense complementary to
the BCL2 gene. The problem of Oblimersen correlates to its limited effect over BCL-2
network, observed in several clinical studies (297), because is targeted only against Bcl-2.
Downregulation of Bcl-2 gene may generate upregulation of other anti-apoptotic BCL-2
proteins, reducing the effect of this antisense (298).

A similar strategy was used for Bel-xL ASOs (299). Bel-xL ASOs alone also have
similar problems as Oblimersen. However, combinated treatments of ASOs and
Oblimersen increase each other their anti-tumoral effect (300). Finally, Mcl-1 antisense
strategy showed interesting results in vitro in hepatocellular carcinomas (HCC) in
combination with cisplatin treatment (301).
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Other strategies based on the use of antibodies or ribozimes against Bcl-2 have been
tested, showing a significant effect in cotreatments with other chemotherapeutic agents in
breast and other cancers (302). The main problem of this methodology is the low stability
of antisense mRNA, limiting their use as therapeutic agents.

Peptide and peptidomimetics

Due to limitations of strategies based on anti-apoptotic BCL-2 downregulation, a new
methodogy was developed focusing on the control of anti-apoptotic BCL-2 function. For
example, Bax-BH3 peptide was designed to inhibit Bcl-xL protein specifically (304),
binding to its hydrophobic groove. The success of this study opened the field to the design
of short peptides based on the BH3 domain of several BH3-only proteins against the
hydrophobic groove of the different anti-apoptotic proteins.

BCL-2 C-terminal domain-derived peptides have also been designed as therapeutic
agents. One example is CT20p peptide derived from the C-terminal, alpha-9 helix of Bax
(241). CT20p contains hydrophobic and cationic residues (typically present in TM
domains) to associate with lipid membranes. Mitochondrial localization as well as the
capability to release calcein from mitochondrial-like lipid vesicles without disrupting
vesicle integrity were demonstrated (241). Moreover, CT20p amphipathic nature has let to
combine with nanoparticles (pharmaceutical vehicle). CT20p has been tested in colon and
breast cancer cells in vitro and in vivo, demonstrating its efficiency as tumoral cells killer
(241).

The pro-apoptotic activity of Bfl-1 peptide, based on its C-terminal domain, showed a
clear independency of BCL-2 proteins. For that reason, it has been used as an anti-cancer
drug in apoptosis-resistant tumors (224). .

Small molecule inhibitors (SMIs) targeting BCL-2 proteins

BH3 mimetics are organic molecules of low molecular weigths whose function is based
on the blockade of the hydrophobic groove of anti-apoptotic BCL-2 proteins, imitating the
mechanism of action used by BH3-only proteins to promote apoptosis. Some of these
SMIs are in clinical and preclinical phases (Table 1.11I):

One of the most succesfull BH3 mimetics is ABT-737, developed by Abbott
Laboratories. ABT-737 binds selectively to Bcl-2 (higher affinity), Bcl-xL and Bcl-w and
is based on the BH3 domain of Bad. However, this molecule was not effective promoting
apoptosis in Bax/Bak KO cells (305). Experimental data demonstrates that ABT-737
results effective against several types of lung cancer in vitro and in vivo (306), follicular
lymphoma and leukemia. However, tumoral cells with Mcl-1 upregulated showed
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resistance to ABT-737 treatment (308). ABT-263 is an oral derivative with longer half-
life than ABT-737 that also inhibits Bcl-2, Bel-xL and Bcel-w. This molecule has been
tested in clinical trials for small cell lung carcinomas (SCLCs) and leukemia (309).

Gossypol (BL-193) binds to the hydrophobic groove of Bc¢l-2 and Bel-xL (310) and is
a polyphenol derived from cottonseeds (311). This SMI has been modified several times
in different isoforms such as (—)-BL-193 (312), TW37 and Apogossypolone (ApoG2) to
increase its effectiveness against tumoral cells. Its mechanism of action is related to
induction of DNA breaks in the presence of metal ions (copper) (311). It is currently in
clinical trials as a single agent and in combinated therapies (Table 1.III). TW-37 has
higher affinity to Bcl-2, Bel-xL in comparison to other BH3 mimetics.. ApoG2 can also
bind to Mcl-1, results less toxic and then more specific than others BH3 mimmetics and it
has been tested in different types of lymphomas (315). (-)AT-101 is the negative
enantiomer of gossypol and has also been used in lymphomas (316). This molecule
interacts with Bcl-2, Bel-xL and Mcl-1, with a low IC50 (1-10 x M). Finally, One of the
last gossypol derivative is Sabutoclax that inhibits Bcl-xL (with low binding affinity) Bcl-
2, Mcl-1 and Bfl-1 (317). Interestingly, this molecule did not generate toxicity in KO
Bax/Bak KO MEFs and it had shown promising results in some types of lymphoma
resistant to ABT-737 (318).

Obatoclax is a synthetic molecule developed by Gemin X (GX015-070) that can
inhibit Bcel-2, Bel-xL, Bel-w and also Mcl-1 although the affinity values to Bcl-2 family
are lower than ABT-737 (319). However, some of the mechanisms involved in Obatoclax
function to promote cell death are not directly related to Bax/Bak effector proteins (321).
For example, low concentrations of Obatoclax are able to block cell-cycle in S/G2 phase
and can also trigger autophagy by Beclin-1 release from Mcl-1, or Atg7 dependent (322).
However, its high toxicity restrict the use of this BH3 mimetic in humans.
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Table 1.I11. Bel-2-family targeting drugs. Adapted from (323).

Class Name Target CSA Combination Tumor type CSC
Dacarbazene  Melanoma Phase IIT
ASO
Oblimersen sodium Bcl-2 Phase 111 Doxorubicin ~ Hepatocellular Phase I/IT
Docetaxel HR-Prostate cancer  Phase 11
Bcl-xL antisense Bcl-xL Preclinical
Mcl-1 antisense Mcl-1 Preclinical
BH3 Bim BH3 Bcl-2, Bel-xL,
peptides Bcl-w, Mcl-1
Cisplatin,
Preclinical Staurosporin, ~ Several, depending
Puma BH3 Bcl-2, Bel-xL, reetimeal - poxoribicin,  on the BH3 profile
Bel-w, Mcl-1 Etoposide
Noxa BH3 Mcl-1
Bad BH3 Bcl-2
MOM murine breast
TMD CT20p destabilization Preclinical cancer tumor
peptides model
Bfl-1 C-terminal MOM. L Preclinical
destabilization
Paclitaxel, Lymphoma Phase I
BH3 Carboplatin
mimetics
Cisplatin,
Gossypol (AT-101) Bcl-2, Bel-xL Phase IT Etoposide SCLC Phase I/II
Docetaxel, ,
Prednisone HR-Prostate cancer  Phase |
Bcl-2, Bel-xL, -
TW-37 Mcl-1, Bfl-1 Preclinical Lymphoma
Apogossypol Bcl-2, Bel-xL .
> Preclinical Lymphoma
(ApoG2) Mcl-1 ymp
(-) AT-101 f/ﬁ:ll__zl’ Bel-xL,  ppase B-cell lymphomas
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Sabutoclax Bel-2, Bel xL, Preclinical B-cell lymphomas
(BI-97C1) Mel-1, Bfl-1 ymp
ABT-737 Bcl-2, Bel-xL, Phase IV Platinum Ovarlarf cancer and  Phase
Be-w leukemia /111
ABT-263 Bel-2, Bel-xL,  ppase mm (SCLCs) and
Be-w leukemia
Extensive stage-
) SCLC MCL, Phase II
Obatoclax Bcl-2, Bel-xL, Phase 11 Etoposnde' Hodgkin’s or Non
(GX-15-070) Bc-w, Mcl-1 Bortezomib . Phase 1T
’ Hodgkins
Docetaxel Phase 11
Rituximab lymphoma, MM Phase II
NSCLC
Lymphoma
HA-14 Bcl-2, Bel-xL Preclinical ~ Cisplatin MDA-MB-231
breast cancer cells
Prostate, lung
Bcl-2, Bel-xL, .. cancer and
BI-97D6 Mel-1, Bfi-1 Preclinical lymphoma cell
lines
Lung
BH-3 M6 f/[ccll_ 21’ BelxL,  precliniclal adenocarcinoma

cell line A549

Clinical state combinated (CSC); Clinical state alone (CSA)

1.8.2.2. Mitochondrial priming.

To determine the threshold of apoptosis, regulation of the balance between pro- and anti-
apoptotic proteins is critical and depends on many factors. Cells express sufficient anti-
apoptotic proteins to bind and inactivate pro-apoptotic members and other pro-death
signals that are present under physiological conditions (324). However, the amount of
prosurvival proteins that a cell may dispose varies depending on the type of cell. Some
cells in the hematopoietic and immune systems maintain relatively small buffers of anti-
apoptotic proteins (324) to activate their elimination quickly when the situation is
required (325). However, highly specialized and fully differentiated cells with a longer
lifespan display high expression levels of anti-apoptotic proteins to survive against
stochastic fluctuations in cellular stress (324). These differences in the levels of anti-
apoptotic proteins can affect the outcome of chemotherapy treatments. These cells that
have a small reserve of unbound anti-apoptotic proteins are ‘primed’ for apoptosis
whereas cells with large reserves are ‘unprimed’ (Figure 1.10). When these two types of
cells are treated with equal doses of chemotherapy, the primed cell will be more sensitive
to apoptosis than the unprimed cell. The priming state of the mitochondria is important

because cells within tumors that have undergone treatment and then recurred are
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frequently less primed, making them less sensitive to subsequent rounds of chemotherapy
(324, 326). The selective pressure of chemotherapy likely culls primed cancer cells,
leaving only unprimed cells to repopulate the tumor (324, 326). These unprimed relapsed
tumors are frequently intractable.

To analyze the mitochondrial priming state of a cell line, a functional assay called
“BH3 profiling” has been developed to measure the apoptotic threshold in cancerous and
normal cells (113). The idea is to expose mitochondria to peptides and/or SMI derived
from the BH3 domains of pro-death BH3-only proteins and measure the concentration
necessary to induce MOMP (327). As an example, sensitivity of mitochondria to Bad
BH3 or Noxa BH3 peptides indicates a selective dependence on Bcl-2 or Mcl-1,
respectively (328, 329). In the case of Bim BH3 or Puma BH3 peptides, more
promiscuous to bind to anti-apoptotic proteins, sensitivity indicates a highly primed state,
with a low reserve of unbound anti-apoptotic proteins (324, 326, 329). Detection of
MOMP (Figure 1.9) is measured by mitochondrial potential, which occurs when the anti-
apoptotic reserve cannot avoid the Bax and/or Bak activation in response to a fixed
titration of pro-death BH3 peptides: the faster a cell is depolarized, or the lower
concentration of peptide required for MOMP, the more primed it is. As the activities of
the BCL-2 family proteins are regulated by several posttranslational modifications and
interactions with other proteins (330), the treatment with fixed doses of pro-apoptotic
peptides let to measure the integrated functional output of the BCL-2 family efficiently
(324).

It has been shown that increasing mitochondrial priming by treating cells with a drug,
which binds to anti-apoptotic factors, increases the response of a myeloid leukaemia cell
line to various cytotoxic agents (331). These studies raise the possibility that increasing
mitochondrial priming may be a useful adjunctive treatment to increase response to
cytotoxic therapies in human cancer treatments. Therefore, Bel-2 inhibition strategies also
represent a form of ‘synthetic lethality’ that selectively kills cancer cells addicted to Bcl-2

expression for survival.
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MOMP threshold
Cywdl"”me ¢ Cell death
Proapoptotic Mitochondrial release
protein outer membrane Mitochondrial Ca'spa.se -
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Mitochondrial priming ( = Y release Cell death
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Figure 1.10. Model of mitochondrial priming. (upper image) Unprimed cells have their, pro-apoptotic BH3
only proteins sequestered by anti-apoptotic proteins. In primed cells (down), the anti-apoptotic proteins are
blocked by treatments against their BH3 domain, releasing the pro-apoptotic proteins to decrease the MOMP
threshold when Chemotherapy is applied. For this reason, a cell primed for apoptosis is more likely to undergo
cell death in response to chemotherapy than an unprimed cell. Inspired by (324).

51



INTRODUCTION

52



OBJECTIVES






2 OBJECTIVES

Apoptosis is a common type of programmed cell death. This cellular process is centrally
regulated by the BCL-2 family proteins. Members of this family are found in the
cytoplasm, ER and MOM in healthy cells. However, during apoptotis most of the
interactions between these proteins occur at the membranes of intracellular organelles.
The general aim of this Thesis is to expand the knowledge of the mechanism of action of
the BCL-2 family proteins in the presence and absence of membranes. This aim was
approached with the following specific objectives:

*  Despite the fact most BCL-2 proteins exert their functions in the mitochondrial
membrane, the role of the TMDs in protein-protein interactions and apoptotic
modulation has been poorly understood. The first objective of this project has
been o determine the involvement of the BCL-2 TMDs in the interaction network
of the BCL-2 protein family. The importance of BCL-2 TMDs interactions in the
context of Bcl-2 full length proteins has also been studied, along with the
functional relevance of BCL-2 TMDs in the apoptotic pathways.

*  The capacity of BH3-only proteins to insert into the mitochondrial membrane is
controversial. Then, the second objective has been fto clarify the ability of
predicted BH3-only TMDs to insert into different biological membranes.

¢ The role of BCL-2 cytosolic domains such as MOMP sensitizers in
chemotherapy has been extensively studied. However, little is known about the
contribution of BCL-2 TMDs to this process. The third objective of this thesis
has been to investigate the contribution of BCL-2 TMDs-derived peptides to

mitochondrial outer membrane permeabilization (MOMP) process.

® This project also addresses the study of the different cell death pathways
activated in response to proapoptotic drugs, depending on the apoptotic

machinery available in the cell.

According to accomplish these objectives, the project has been divided in four chapters as
follow:

CHAPTER . Interactions between BCL-2 family members via their transmembrane
domain (TMD): Relevance in apoptotic control.

CHAPTER II. Insertion of BH3-only C-terminal domains into biological membranes.
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CHAPTER III. Peptides derived from the transmembrane domain of BCL-2 proteins as

potential mitochondrial priming tools.

CHAPTER 1V. BH3-mimetics and cisplatin-induced cell death proceeds through different
pathways depending on the availability of death-related cellular components.
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3 MATERIALS AND METHODS

3.1 CHAPTER 1.

3.1.1. Design and cloning of ToxRed BCL-2 TMD constructs.

Maltose-complementation assay was performed as described (332, 333) in order to
determine the correct orientation and insertion in the inner membrane of constructs
containing TM domains and to study transmembrane helix-helix associations in a natural
membrane environment. ToxR original plasmids were kindly provided from Prof.
William De Grado (UCSF School of Pharmacy). In this system, a putative transmembrane
(TM) sequence is cloned between a sequence encoding the transcription activator domain
of Vibrio cholerae ToxR and a sequence encoding the periplasmic domain of the E. coli
MBP (see Figure 4.1). To determine whether the putative transmembrane sequence
mediates transmembrane oligomerization, the ToxR-TM-MBP fusion proteins are
expressed in E. coli MM39. Membrane localization of the fusion protein is detected based
on complementation of a non-polar malE mutant E. coli MM39 strain. Insertion of the
ToxR-TM-MBP fusion protein into the inner membrane, such that the MBP domain
localizes to the periplasmic space, is detected by determining whether the bacteria are
able to transport maltose and thus grow on maltose-minimal medium. Dimerization of the
fusion protein is determined based on expression of the RFP gene, which is under the
control of the ctx promoter. Recognition of the promoter sequence only occurs when
ToxR dimerize, and this dimerization is only possible if BCL-2 TMDs interact and bring
closer the ToxR monomers to dimerize. The inactivating ToxR mutation R96K (ToxR*)
was chosen as a system control (334) by its capability to dimerize but not to recognize the
promoter sequence. GpA TMD was used as positive control of interaction, and the point
mutant GpA G831 was used as negative control.

oA sigual

POLI et mCherry TooR. TMHAMBP
s

SYE0 paby i A) wgmad

Figure 3.1. pGL3 plasmid adapted to ToxR system.
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To generate ToxR quimeric constructs, DNA oligonucleotides from BCL-2 TMD
were designed and cloned in pGL3 ToxR-HA-MBP plasmid. This plasmid contains a
sequence for ampicillin resistance and a polilinker site (Figure 3.1). Reverse and forward
BCL-2 TMDs primers (100 pM) were annealed with annealing buffer (20 mM Tris-HCI,
20 mM MgCl,, 500 mM NaCl), using Eppendorf 5331 Gradiant Master Cycler with a
multistep temperature protocol (95°C 10 min, 90°C 10 min and over night at 60°C).
HindIII/Xhol restriction sites were introduced in primers flanking the TMD sequence.
Annealed primers were treated 4 h with polynucleotide kinase (PNK, Roche) and ligated
overnight with T4 DNA ligase (Promega) at 16°C, using HindIlI/Xhol restriction
enzymes (Roche) to digest the ToxR plasmids for 2 h. Alkaline Phosphatase (Roche) was
used 2 h to remove the 5° phosphate in the ToxR vector.

All the constructs were transformed by heat shock (90 sec at 42°C) in E.coli DH5a.
competent cells and incubated in Lysogeny Broth (LB) for 30 minutes at 37°C, pelleted at
3000xg and plated directly onto LB agar petri dish containing ampicillin. After 24 h,
positive colonies were isolated and cultured on LB medium with ampicillin for 24 h at
37°C. Plasmid DNA was isolated with QIAprep Spin MiniPrep Kit (Qiagen) for
sequencing analysis.

Primers for mutagenesis were designed with GeneRuler software. All transmembrane
sequences were codon-optimized for E. coli. TMD mutants were cloned using standard
site directed mutagenesis with commercially available Stratagene Quikchange II kit
(Agilent, CA, USA). All molecular biology techniques were performed according to
standard procedures.

3.1.2. Expression of ToxR chimera.

ToxR-TMD-MBP constructs (200 ng) were transformed using of 200 plL MM39
competent cells with heat shock at 42°C for 90 sec and incubation on ice for two minutes,
followed by addition of 800 pL LB medium and incubation with shaking at 37°C for one
hour. The transformation mixture was pellet and plated in minimal-agar media in the
presence of ampicillin 100 pg/ml. After 48 h, MM39 cells containing ToxR-TM-MBP
plasmids were grown into LB with ampicilin for 6 h in triplicate. Then, cultures were
pelleted and incubated with shaking in 24-well plates (Thermo scientific) at 37°C for 36 h
into minimal media to grow to OD_ 0.8. RFP emission spectra were collected by Wallac

1420 Workstation with an excitation wavelength of 570 nm and emission wavelengths of
620 nm. All the results obtained for each ToxR-TMD-MBP were normalized according to
ToxR*-TMD-MBP basal fluoresecence signal and cell growth.
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3.1.3. Immunoblotting experiments of ToxR-TMD chimera.

MM39 cells were pelleted by centrifugation for 5 min at 3000xg, the supernatant was
removed and cell pellets were resuspended in 10x initial volume of FastBreak cell lysis
reagent (Promega). Then the cells were transfered to 1.5-mL Eppendorf tubes and the
mixture was incubated at room temperature with gentle agitation for 30 min. Samples
were centrifuged for 10 min and the spheroplasmic and periplasmic fractions were
separated and quantified by the BCA protein assay kit (Thermo Scientific). 50 pg of
protein from spheroplasmic fraction was dissolved in protein loading buffer (Tris-HC1 pH
6.8, 10% w/v SDS, 250 mM DTT, 0.03% w/v bromophenol blue, and 50% v/v glycerol),
boiled 5 min at 95°C and resolved by SDS-PAGE (acrylamide 12%). Then samples were
transferred to nitrocellulose membranes, blocked with 5% non fat milk, washed three
times with TBS-Tween 20 0.1% and incubated overnight at 4°C with a specific primary
antibody (MBP from New England Biolabs (#E8038S); HA C29F4 (#3724S) and c-myc
9B11 (#22768, from Cell Signaling). Membranes were washed with TBS-Tween 20 0.1%
and probed with the appropriate secondary antibody a-mouse (1:3000, A4937, Sigma) or
a-rabbit (1:3000,A0545, Sigma) conjugated to horseradish peroxidase for enhanced

chemiluminescence detection (Amersham Pharmacia Biotech).

3.1.4. Cell culture, treatments, transfections and chemicals.

ABT-263 and staurosporine (STS) were from Abbott Laboratories and Deltaclone,
respectively. The human cervix adenocarcinoma HeLa cell line was purchased from
ATCC and Human colorectal carcinoma HCT 116 Wt, KO Bax/Bak, KO Bax, and KO Bak
were kindly provided by Prof. Richard Youle and by Prof Bert Vogelstein. HeLa cell line
was grown in Dulbecco's Modified Eagle's Medium (DMEM) and HCT 116 cells were
grown in McCoy’s 5SA medium, both supplemented with 10% fetal bovine serum (FBS).
Cultures were maintained at 37°C in a 5% CO, atmosphere. Cell media and FBS were
purchased from GIBCO BRL Life Technologies. When indicated, cells were treated with
0.1-1 uM of staurosporine and 5-15 uM of ABT-263. When required, 5 pM zVAD was
administered 30 min after treatment addition, and cells were maintained in culture for 24
h. All cell lines were transfected using LipofectamineTM 2000 (Invitrogen) or Turbofect
Transfection Reagent (Thermo scientific) following the manufacturer’s protocol.

3.1.5. BiFC-TMDs assays.

BiFC (bimolecular fluorescence complementation) analyses were performed as previously
described (335-337). Venus protein (a green variant of the yellow fluorescent portein,
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YFP) can be separated in two fragments: BiFC-VN (1-155, with the point mutation 1152L
that decreases the signal noise and reduces false positive results) and BiFC-VC (155-238,
A206K). The BiFC system is based on the capability of these fragments to reconstitute
Venus protein when they are closer to each other. The transmembrane region of the
different BCL-2 proteins were fused to both VN/VC with a linker sequence between the
BCL-2 TMDs and the Venus fragments (see Figure 4.5A). When BCL-2 TMDs interact,
Venus protein will be restored and green fluorescence emission will be measured. The
nuclear proteins b-Jun and b-fos were used as positive control of interaction, as well as
the truncated form d-Afos that not interacts with d-jun to establish a negative control.

1\\ : 5 oy =

b, "Rk T

Figure 3.2. Plasmids encoding for N- and C- terminal Venus protein (https://www.addgene.com).

BiFC plasmids were adquired in Addgene (Figure 3.2, 27097 and 22011) and were
modified with a linker and restriction site sequences behind Venus fragments, in order to
clone the BCL-2 TMDs in the adequate topology. BCL-2 TMDs primers were then
designed flanked with Notl restriction site to insert the TMDs in the C-terminal of each
fragment of Venus. Reverse and forward BCL-2 TMDs primers (100 uM) were annealed
in the presence of annealing buffer (20 mM Tris-HCI, 20 mM MgCl,, 500 mM NaCl),
using Eppendorf 5331 Gradiant Master Cycler with a multistep temperature protocol
(95°C 10 min, 90°C 10 min and over night at 60°C). Annealed primers were treated 4 h
with polynucleotide kinase (PNK, Roche) and ligated overnight with T4 DNA ligase
(Promega) at 16°C, using Notl restriction enzymes (Roche) to digest the ToxR plasmids
for 2 h. Alkaline Phosphatase (Roche) was used 2 h to remove the 5’ phosphate in the
ToxR vector.

All the constructs were transformed by heat shock (90 sec at 42°C) in E.coli DH5a.
competent cells and incubated in Lysogeny Broth (LB) for 30 minutes at 37°C, pelleted at
3000xg and plated directly onto LB agar petri dish containing ampicillin. After 24 h,
positive colonies were isolated and cultured on LB medium with ampicillin for 24 h at
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37°C. Plasmid DNA was isolated with QIAprep Spin MiniPrep Kit (Qiagen) for
sequencing analysis.

BiFC-TMD point mutant constructs were obtained using standard site directed
mutagenesis with Stratagene Quikchange II kit (Agilent, CA, USA). Finally, constructs
were verified by sequencing.

HeLa and HCT 116 cells were maintained under conditions recommended by the
American Type Culture Collection. Cells were grown in six-well plates to 60%
confluence and transfected with 0.25 to 1 pg of the plasmids expressing the proteins
indicated in each experiment. Transfected cells were incubated at 37°C for 24 h and then
Venus fluorescence emission was measured in a Wallac 1420 Workstation at 535 nm

(using 500 nm as excitation wavelength).

3.1.6. Immunoblotting of BiFC-TMD chimera.

All cell extracts were prepared from 2x10° cells seeded in 6-well plates. After 24 h, cells
were treated and/or transfected as indicated. Cells were scraped, washed with PBS and
collected by centrifugation at 500xg 24 h later. Whole cell extracts were obtained by
lysing cells in a buffer containing 25 mM Tris-HCI pH 7.4, | mM EDTA, 1 mM EGTA,
1% SDS, plus protease and phosphatase inhibitors. Protein concentration was determined
by BCA protein assay kit (Thermo Scientific). Cell lysates were dissolved in protein
loading buffer (Tris-HCI pH 6.8, 10% w/v SDS, 250 mM DTT, 0.03% w/v bromophenol
blue, and 50% v/v glycerol), boiled 5 min at 95°C and resolved by SDS-PAGE
(acrylamide 12%). Then samples were transferred to nitrocellulose membranes, blocked
with 5% non fat milk, washed three times with TBS-Tween 20 0.1% and incubated
overnight at 4°C with a specific primary antibody. Membranes were washed again with
TBS-Tween 20 0.1% and probed with the appropriate secondary antibody conjugated to
horseradish peroxidase for enhanced chemiluminescence detection (Amersham Pharmacia
Biotech). Antibodies against HA C29F4 (1:1000, #3724S), c-myc 9B11 (1:1000, #2276S),
Caspase-3 (1:1000, #9662S) and Bax (1:1000, #2772) came from Cell Signaling. o-
tubulin antibody (#T8203) was from Sigma-Aldrich. Secondary antibodies a-mouse
(1:3000, A4937) and a-rabbit (1:3000, A0545) were provided by Sigma.

3.1.7. Determination of caspase activity upon transfection with BiFC-BCL-2
TMD construts in HCT 116 cells.

The purpose of this assay was to determine the activity of the apoptotic executioner
caspase-3 in cells treated with BCL-2 TMDs and/or pro-apoptotic treatments. All cell
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extracts were prepared from 2x10° cells seeded in 6-well plates. After 24 h, cells were
treated and/or transfected as indicated above. 24 h later, cells were then scraped, washed
with PBS and collected by centrifugation at 500xg. Pellets were resuspended in caspase
assay buffer (PBS 10% glycerol, 0.1 mM EDTA, 2 mM DTT) supplemented with
protease inhibitor cocktail (Sigma) and kept on ice for 5 min. Once pellets were frozen
and thawed three times in liquid nitrogen, cell lysates were centrifuged at 14000 rpm for 5
min and supernatants were collected. Quantification of total protein concentration was
performed using the BCA protein assay kit (Thermo Scientific). Total protein (50 pg) was
mixed with 200 pL of caspase assay buffer (PBS, 10% glycerol, 0.1 mM EDTA, 2 mM
DTT) containing 20 uM of the Ac-DEVD-afc (Figure 3.3) (Enzo Life Sciences) caspase-3
specific substrate. Caspase activity was continuously monitored following the release of
fluorescent afc at 37°C using a Wallac 1420 Workstation (Aexc 400 nm; Aem 508 nm).
Caspase-3 activity was expressed as the increase of relative fluorescence units per min
(A.U).
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Figure 3.3. AC-DEVD-AFC Structure.

3.1.8. Flow cytometry of BCL-2 TMDs in HCT 116 Wt and Bax/Bak KO.

After treatment and/or transfection, the cell culture medium was collected to retain
floating cells and attached cells were dislodged using 0.5% Trypsin-EDTA (GIBCO).
Floating and attached cells were combined and harvested by centrifugation at 400xg 10
min. Cell pellets were suspended in 100 pl binding buffer (10 mM HEPES pH 7.4, 140
mM NacCl, 2.5 mM CaCl,) and incubated with 10 pl FITC Annexin V (BD Biosciences)
and 10 pl of Propidium lodide (PI, 6 uM; BD Biosciences) for 10 min at 37°C. Staining
for Annexin V and PI was assessed by flow cytometry on a FC500 cytometer (Beckman
Coulter) followed by data analysis using FlowJo software (Tree Star Inc).

3.1.9. Immunofluorescence of BCL-2 TMD BiFC constructs in mitochondria.

For confocal microscopy, 2x10° cells were seeded on glass cover slips to reach 50%
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confluence next day. Cells were transfected as indicated in 3.1. To analyze the
mitochondrial localization of the BCL-2 TMDs, HCT 116 cells were incubated (37°C)
with Mitotracker dye 500 nM (Invitrogen) 30 min. Microscopic images of living cells
were taken 24 hours after transfection and colocalization was defined as completely
overlapping or partially overlapping signals.

For cytochrome c release assay, after cell attachment, spreading, and transfection with
the BiFC-TMD constructs, HeLa and HCT 116 cells were fixed with 4%
paraformaldehyde 20 min, following the treatment indicated in the corresponding figure.
After three washes with PBS, cells were permeabilized with 0.1% Triton X-100 10 min
and blocked in 2% gelatin PBS 30 min. Cells were then labeled with antibodies against
Cyt-c (1:200; SC13561; Santa Cruz) in 2% gelatin PBS followed by an anti-mouse 1gG-
Alexa 555 (1:400) secondary antibody also in 2% gelatin PBS (Invitrogen). Cover slips
were mounted on glass slides with 5 pL of Mowiol/Dapi (nuclear marker, 5 pg/ml)
(Sigma). Images were obtained using confocal microscopy (LSM 510) with a 63x
objective. Two hundred cells were counted and classified according to the localization of
Cyt-c in mitochondria (tubular morphology) or cytosol (diffuse pattern). Fluorescence
images were analyzed with ImageJ 1.461 “JACoP plugin” according to the provider’s
instructions. All background fluorescence was eliminated to avoid false-positives. All
experiments were repeated three times. At least 30 images of each sample were analysed.

3.1.10. Subcellular fractionation in HCT 116 cells.

To obtain mitochondrial and cytosolic fractions, cells were harvested and centrifuged at
1200xg for 5 min at 4°C. Cell pellet were re-suspended in SEM buffer (10 mM HEPES,
250 mM sucrose, pH 7.2) supplemented with protease inhibitors and homogenized with
30 strokes in tight douncer. Then, samples were centrifuged at 500xg for 3 min at 4°C to
remove nuclear fractions. The supernatant was transferred to a new tube and subsequently
subjected to a centrifugation step at 13 000xg for 30 min at 4°C. The supernatant of this
step, the cytosolic fraction, was ultracentrifuged at 100 000xg for 1 h at 4°C, followed by
an ultrafiltration step. Finally, cellular fractions were dissolved in protein Loading Buffer
(Tris-HCI pH 6.8, 10% w/v SDS, 250 mM DTT, 0.03% w/v bromophenol blue, and 50%
v/v glycerol), boiled 5 min at 95°C, separated by SDS-PAGE (12%) and subjected to
western blot analysis (see 3.1.6). Sedimented mitochondria were washed two times and
then analyzed by SDS- PAGE and subsequent western blotting. Tom 20 FL-145 (1:1000,
sc-11415, Santa Cruz) and GAPDH FL-335 (1:1000, sc-25778, Santa Cruz) were used as
mitochondrial and cytosolic markers, respectively. C-myc 9B11 (1:1000, #2276S),
antibody came from Cell Signalling. Secondary antibodies a-mouse (1:3000, A4937) and
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a-rabbit (1:3000, A0545) were provided by Sigma.

3.1.11. Cell toxicity assays LDH activity in HCT 116 cells.

Lactate dehydrogenase (LDH) release is commonly used as a marker for necrotic/oncotic
cell death. In this assay, release of the cytosolic enzyme lactate dehydrogenase from cells
with a damaged plasma membrane (indicating necrotic cell death) to the culture medium
is evaluated. Cytotox-ONE Homogeneous Membrane Integrity Assay Kit (Promega) was
used for evaluation of cellular integrity of the cell cultures, measuring the enzymatic
conversion of resazurin compound to resorufin fluorescent compound. The amount of
resorufin formed is directly proportional to the amount of LDH released into the medium
(Figure 3.4).

Figure 3.4. Lactate dehydrogenase (LDH) release. The amount of fluorescent resorufin is directly
proportional to the amount of LDH released from a leaky cell (https://www.lifetechnologies.com).

Briefly, cell cultures were plated and treated as described in section 3.1.4. After 24 h
of transfection and/or treatment, cultures were centrifuged at 1500 rpm for 5 min and
supernatants were recovered. 50 uL of the supernatant were mixed with 50 pL of
commercial substrate in black 96-well plates and incubated in darkness at room
temperature for 30min. Fluorescence was measured at a Aexc 560 nm and Aem 590 nm on
the Wallac Victor 1420 spectrofluorimeter. Each sample was analyzed in triplicate and
results were expressed as the percent of lactate dehydrogenase release for each sample
compared to the positive control (100% release) 0.1% Triton X-100 treatment.

3.1.12. Bioinformatic analysis of the BCL-2 sequences hydrophobicity.

Prediction of TMDs was done using three of the most common methods available online:
Dense Alignment Surface method in DAS server (http://www.sbc.su.se/~miklos/DAS/);
TransMembrane Hidden Markov Model at the TMHMM Server v. 2.0
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(http://www.cbs.dtu.dk/servicess TMHMMY/); while prediction of Gibbs Free Energy (AG)
was obtained with AG prediction server v1.0 (http://dgpred.cbr.su.se/) using standard
parameters in all cases. The entire protein sequences were obtained from UniProt

(http://www .uniprot.org).

3.1.13. Statistical analysis.

Bars represent the mean + s.d. of at least three independent experiments. Statistical
significance was determined by Dunnett's Multiple Comparison Test (95%CI) using the
Graph Pad software. p<0.05 was designated as statistically significant.

3.2 CHAPTERII

3.2.1. Enzymes and chemicals.

The plasmid pGEM1, the TnT coupled transcription/translation system, the RiboMAX
SP6 RNA polymerase system and rabbit reticulocyte lysate were from Promega (Madison,
WI). Dog pancreas microsomes were purchased from tRNA Probes (College Station, TX),.
GFP Plasmid was provided by addgene (#17999). [*>S] Met and '*C-labeled methylated
markers were from Perkin-Elmer. All the restriction enzymes were from Roche Molecular
Biochemicals. Proteinase K (PK) was from Sigma-Aldrich (St. Louis, MO). The DNA
plasmid, RNA clean-up, and PCR purification kits were from Qiagen (Hilden, Germany).
The oligonucleotides were from Thermo (Ulm, Germany).

3.2.2. Computer-assisted analyses of the BH3-only TMD sequences.

Prediction of TM helices was performed using some of the most common methods
available online described in 3.1.12.

3.2.3. DNA manipulations.

The BH3-only putative TMDs were introduced into the modified Lep sequence (Lep’, see
Figure 5.1A) from the pGEM1 plasmid (338, 339) between the Spel and Kpnl sites by
PCR amplification (Taq polymerase Pwo, dNTPs and PCR Buffer provided by Roche) of
the different TMD sequences containing appropriate restriction sites. For GFP-TMDs
cloning sites were Bg/Il and EcoRI. After PCR amplification, PCR products were purified,
digested, and ligated to the corresponding Lep or GFP vector digested with the
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appropriate enzymes using standard molecular biology protocols. All new constructs were
confirmed by DNA sequencing. The Lep’ construct carried one glycosylation acceptor
site in positions 3—5 of an extended sequence of 24 residues previously described (340).

3.2.4. In vitro transcription and translation of BH3-only TMDs in Lep’

constructs.

Full-length Lep constructs were transcribed and translated in the presence of reticulocyte
lysate (TnT Quick system (Promega)). 1 pg DNA template, 1 pL **S-Met/Cys (5 pCi) and
1 pL dog pancreas microsomes (341) (tRNA Probes) were added at the start of the
reaction, and samples were incubated for 90° at 30°C.

After translation, membranes were collected by ultra-centrifugation at 10,000xg 4°C
for 10 min using a TLA-45 rotor. Samples (pellets and supernatants) were dissolved in
protein loading buffer (Tris-HCI pH 6.8, 10% w/v SDS, 250 mM DTT, 0.03% w/v
bromophenol blue, and 50% v/v glycerol), boiled 5 min at 95°C and analyzed by sodium-
dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE, acrylamide 12%). Fuji
FLA3000 phosphorimager and ImageGauge software was used to visualize BH3-only
TMD insertion. For proteinase K protection assay, the translation mixture was
supplemented with 1 pL of 50 mM CaClz and 1 pL of proteinase K (4 mg/mL) and then
digested 40 min on ice. The reaction was stopped by adding 1 mM
phenylmethanesulfonylfluoride before SDS-PAGE analysis. Negative control experiments
were developed in absence of microsomes. Lep native TMD (fragment H2) was used as
positive control of insertion. All the experiments were repated at least three times.

3.2.5. Design and cloning of ToxRed BH3-only TMD constructs.

Maltose-complementation assay was performed as described in 3.1.1. (332, 333) in order
to determine the correct insertion/orientation of BH3-only TMD constructs in the E. coli

MM39 strain inner membrane.

3.2.6. Expression of ToxRed chimera.

ToxR-TMD-MBP constructs (200 ng) were transformed into 200 pL MM39 competent
cells with heat shock at 42 °C for 90 sec and incubation on ice for two minutes, followed
by addition of 800 pL LB medium and incubation with shaking at 37 °C for one hour. The
transformation mixture was pelleted and plated in minimal-agar media in the presence of
ampicillin (100 pg/ml) for two days to analyze the efficiency of the BH3-only TMD

insertion.
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3.2.7. Cell Lines and Cultures.

The human cervix adenocarcinoma HeLa cells were obtained from the ATCC. Cells were
grown in Dulbecco’s modified Eagle’s medium plus 10% FBS. GFP protein was fused at
the N-terminus of the putative TM regions of the different BH3-only proteins as described
in 3.2.3. GFP-TMD constructs were transfected into mammalian cells with
LipofectamineTM 2000 (Invitrogen) as indicated in 3.1.4.

3.2.8. Immunofluorescence of GFP BH3-only TMD constructs in HeLa cells.

Immunolocalization assays were performed following the protocol described in 3.1.9.
HeLa cells were labeled in the different assays with antibodies against Cyt-c (1:200;
SC13561; Santa Cruz) and Grp78 (1:400; ab21685; Abcam) followed by an anti-mouse
IgG-Alexa 555 secondary antibody (1:400; Invitrogen). Cover slips were mounted on
glass slides with Mowiol/Dapi (Sigma). Images were obtained using confocal
microscopy (LSM 510) with a 63x objective. Colocalization assays of the GFP-TMD
constructs and Mitotracker dye (500 nM, 20 min, 37°C, Invitrogen) was also developed ex
vivo. Microscopic images of living cells were taken 24 hours after transfection (green
channel, A 488 nm, Aqy 488 nm; Red channel, Ay 561 nm, Aey; 598 nm). The
experiments were reproduced three times. At least 30 images of each sample were
analyzed.

3.2.9. Immunoblotting and determination of caspase activity for BH3-only
TMD construts in HeLa cells.

After 24 h of GFP-TMD transfections, cells were treated as indicated in sections 3.1.6.
and 3.1.7., GFP (1:1000, ab13970, Abcam) and a-tubulin (1:1000, #T8203, Sigma-
Aldrich) antibodies were used for immunoblotting. Caspase-3 activity was expressed as
the increase of relative fluorescence units per min (A.U.). All assays were repeated at

least three times.

3.2.10. Statistical analyses.

Statistical analyses were performed as described above (3.1.13).
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3.3 CHAPTER III

3.3.1. Bioinformatic analyses of BCL-2 TMD-pepts.

The prediction of BCL-2 TMDs was performed as described in section 3.1.12.

3.3.2 BCL-2 TMD Peptides Synthesis.

Peptides were prepared by Fmoc (N-(9-fluorenyl) methoxycarbonyl)-based solid phase
synthesis in a 433A Applied Biosystems peptide synthesizer with a Rink Amide Resin as
reported previously (342, 343). Fmoc is a base-label protecting group for amines:
incoming amino acids require protection of their amino group in order to obtain coupling
to free amino attached to the resin. Elimination of Fmoc group was performed via base-
induced B-elimination. Then, dibenzofulvene and carbon dioxide are split off. Secondary
bases such as piperidine add to the former molecule whereas bases such as DBU do not
react with the dibenzofulvene, which has to be removed rapidly from the peptide resin or
scavenged by a secondary amine (piperidine) to avoid irreversible attachment to the
liberated amino group.

Peptides were synthesized with 2 or 3 lysines on both the N- and C-termini of the
selected sequences in order to improve solubility (see Table 6.I). Peptides were cleaved
from the resin by treatment with trifluoroacetic acid (TFA, 70%) and purified by
preparative/analitical RP-HPLC (Lichrospherl 100 C18, 10 mm) system up to 95% of
peptide purity using different acetonitrile gradients in aqueous 0.1 % TFA. Identity was
confirmed by MALDI-TOF mass spectroscopy. Stock solutions of the peptides were
prepared in Milli-Q water and the concentrations were determined by spectrophotometry
in NanoDrop 1000 (Thermo Scientific).

3.3.3. Circular Dichroism (CD) Measurements.

CD is a powerful tool for the analysis of secondary structure in proteins and peptides.
This methodology is based on light absorption spectroscopy that measures the difference
in absorbance of right- and left-circularly polarized light by a substance (Figure 3.5A). In
proteins, the chromophores of interest include the peptide bond (absorption below 240
nm), aromatic amino acid side chains (absorption in the range 260 to 320 nm) and
disulphide bonds (weak broad absorption bands centered around 260 nm). For all of that,
CD studies give information about secondary structure configuration (alpha helix, parallel
and antiparallel beta sheet and turn) of the peptide/protein analyzed (Figure 3.5B).
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Figure 3.5. Circular dichroism. (A) Scheme of circularly polarized light. (B) CD spectra of secondary
structures. (http://chemistry.rutgers.edu/grad/chem585/lecturel.html).

CD spectra were recorded between 190 and 250 nm at 25°C on a Jasco J-810
spectropolarimeter in quartz cells of 0.1-cm path length. Peptides were dissolved at 10
uM in phosphate buffer (50 mM, pH 7.0), and their ability to adopt a secondary
conformation was analyzed in pure 2,2,2-trifluoro-ethanol (TFE), 1% sodium dodecyl
sulfate (SDS), and methanol (MeOH, 50 and 100%), respectively. Each CD spectrum was
the average of 20 scans performed at 1 nm intervals. CD spectra were interpreted with the
K2D software provided by Dichroweb (available on the World Wide Web). Results are
expressed as mean molar residue ellipticities (degrees x cm? x dmol™). For measurements
with liposomes, 1 mM of extruded liposome solution (POPC:PE:PS:PI or POPC only)
prepared in 10 mM Sodium Phosphate 137 mM NaCl pH7.4 buffer was added to the
cuvette where peptide stocks (10mM HEPES 150 mM NaCl pH 7.4) were titrated in to
incrementally increase the peptide-liposome ratio. The ratios 1:201, 1:101, 1:51 and 1:31
were analysed to determine the effect of peptide concentration on structure. Calculation of
Molar Ellipticity (0) of the peptides and spectra smoothing was achieved using Jasco

instrument software.

3.3.4. Dynamic Light Scattering.

Malvern instruments Zetasizer Nano Z red (Malvern Laboratories Ltd. Malvern, UK) was
utilized to determine the size of liposome particles in the presence of peptide via DLS.
The relationship between particle size and Brownian motion (Stokes-Einstein
relationship) is utilized by the Zetasizer to determine the average size of a population of
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particles in solution. 0.1 mM POPC:PE:PS:PI (5:3:1:1) liposome was measured in a low
volume disposable cell initially followed by incremental addition of peptide to achieve the
same peptide-liposome ratios as in the CD measurements. Samples were incubated in the
Zetasizer at 20°C for a total of 10 min prior to reading to give sufficient time for
interaction between the peptide and the liposome and a consistent thermal gradient
throughout the sample. Each reading consisted of 12 scans each of 10 sec duration with
parameters set to measure size in a low volume disposable sizing cell. The equilibration
time was set to 60 sec and was included in the incubation time.

3.3.5 Dual Polarization Interferometry (DPI).

Dual polarization interferometry is a relatively new technique, which explores the
molecular layers adsorbed to the surface of a waveguide by means of an electromagnetic
evanescent wave of a laser beam; it measures the refractive index and the thickness of
very thin films, and is also used to study the protein adsorption at solid/water interface.
Furthermore, if the refractive index of the studied film is fixed, the birefringence can be
observed quantitatively so that the anisotropy of the film can be analyzed. DPI is a
quantitative and real-time technique with the dimensional resolution of the order of
angstroms. DPI then measures the increase of membrane mass due peptide
association/integration (represented in X axis) and the decrease of membrane order when
peptides are inserted into the membrane (Y axis) (Figure 3.6). DPI applications involve
membrane protein and lipid studies, analyzing the formation of lipid bilayer, the
understanding of lipid structures, affinity and kinetics of lipid-lipid and protein-lipid
interactions, structural changes taking place during interactions, and the structural nature
of protein—lipid complexes.

Liposome preparation for dual polarization interferometry. Thin lipid films of POPC
(PM-like) and two MITO-like mixtures, POPC:POPE:POPS:POPI (5:3:1:1) and
POPC:POPE:POPS:POPI/CL (4.8:2.8:1:1:0.4) were hydrated to 1 mM lipid concentration,
10 mM HEPES 150 mM NaCl pH 7.4 and buffer solution at 37 °C for 1 h with constant
vortexing. The hydrated lipid suspension was sonicated in a water bath for ~30 min at
37 °C and extruded before use through 50 nm polycarbonate membranes (19 times) using
an Avestin Lipofast extruder (Ottawa, Canada).
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Figure 3.6. Dual Polarization Interferometry (DPI) methodology. Birefringence (Y axis) is a measure of

membrane ordering. A decrease in birefringence indicates peptide insertion. Mass (X axis). Inpired by (344).

Deposition of supported lipid bilayer on sensor chips. Planar supported lipid bilayers
(SLBs) were prepared via in situ adsorption of liposomes to a silicon oxynitride
waveguide sensor chip (see Supporting information for detailed description). A fresh
bilayer was used for each individual peptide measurement and 160 pL of each
concentration was injected sequentially onto the SLB in increasing concentrations at a
flow rate of 40 pL/min with a total of 30 min equilibration time between injections.

Data acquisition was carried out using Analight200 version 2.1.0 software and
analyzed using AnaLight Explorer proprietary software (345, 346).

3.3.6. Small Unilamellar Liposomes (SUV) Preparation and Calcein Release
Assay.

Calcein release assay was performed to study the capability of the TMD-pepts to
destabilize mitochondrial membranes. Small Unilamellar Liposomes (SUV) with plasma
membrane and mitochondrial composition were designed.

Small unilamellar liposomes were prepared as previously reported (347)(Figure3.6).
Lipid samples were dissolved in a 2:1 (v/v) chloroform:methanol mixture and dried under
N, stream in order to remove residual organic solvents. The dried lipid was suspended by
vortexing in 150 mM Hepes buffer (pH 7.0) containing 90 mM of calcein. Lipid mixtures
were incubated for 20’ at a temperature above the phase transition of the major
phospholipid component of the liposome. The final phospholipid concentration was about
30 mM. Disruption of multilamellar vesicle (LMV) suspensions by sonication 5 min at
4°C with a probe tip sonicator produced small unilamellar vesicles (SUV) with diameters
in the range of 15-50 nm. SUV were composed of phosphatidylcholine (PC):CL (7:3,
mol:mol) as MITO-like and PC:cholesterol (7:3, mol:mol) as PM-like. The lipid
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suspensions, SUV were then centrifuged at 10000 rpm for 10’. Free calcein was removed
by passage of the dispersion through a column of Sephadex G-50 (Sigma-Aldrich). For
calcein release assays fluorescence measurements were made with a Jasco FP6600
Spectrofluorometer using 495 nm and 520 nm, as excitation and emission wavelengths

respectively.

lonizing radiation

TMD-pepts 30 min

Figure 3.7. Calcein Release Assay scheme. Composition of a small unilamellar vescicle.

3.3.7. Mitochondrial Isolation and cytochrome-c Release Assays in MEFs.

Mitochondria were freshly isolated from MEFs (mouse embryonic fibroblast) cells by
differential centrifugation steps as described previously (348). Cells were pelleted and
suspended in ice-cold 1B, buffer (125 mM KCIl, 5 mM KH2PO4, 2 mM MgCI2, 25 uM
EGTA, 5 mM succinate, 5 uM rotenone, and 10 mM HEPES-KOH (pH 7.2)). A Douncer
Tissue Grinder Homogenizer (Wheaton) was used for cell homogenization (20 strokes).
Consequently samples was centrifuged at 600xg for 10 min at 4°C; the supernatant was
recollected and centrifuged at 7,000xg for 10 minutes at 4°C. The pellet was washed and
resuspended with ice-cold IBc and centrifuged another time at 7,000xg for 10 minutes at
4°C. Mitochondria concentration was quantified with BCA Protein Assay Kit (Thermo
Scientific) and kept on ice. Isolated mitochondria (0,5 mg protein/ml) were then
incubated with the different TMD-pepts (50 uM) in IB, Buffer for 30 min at 30°C.
Reaction mixtures were centrifuged at 7,000xg for 10 min. Supernatant and pellet
fractions were solubilized in protein sample buffer, analyzed by SDS/PAGE (14% gel)
and transferred to nitrocellulose (BioRad). Membranes were developed against
cytochrome ¢ antibody (#4272, Cell Signaling), o-tubulin antibody (#T8203, Sigma-
Aldrich) and VDAC1/2/3 antibody (sc-98708, Santa Cruz).
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3.3.8 Mitochondria Swelling measurements.

Isolated mitochondria were suspended (final concentration 0,5 mg/ml) in 100 pl of
swelling buffer (120 mM KCl, 10 mM Tris-HCL, 5 mM MOPS, 5 mM KH,PO,, pH 7,4)
in a 96-well plate. A basal signal line was assessed for 5 min and then mitochondria were
treated with 50 pM of each TMD peptide and 100 uM CaCl,, respectively. Changes in
absorbance caused by swelling were monitored using a microplate reader at 540 nm every
5 min for 1 hour.
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Figure 3.8. Mitochondria Swelling scheme (349).
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3.3.9 Cell Lines and Cultures.

Mouse embryonic fibroblast (MEFs) Bax/Bak KO cell line was kindly provided by Dr.
Guido Kroemer (INSERM, University of Paris). The human cervix adenocarcinoma HeLa
cells were obtained from the ATCC. Wild type and Bax/Bak KO HCT 116 cells were
kindly provided by Professors Bert Vogelstein (Howard Hughes Medical Institute) and
Richard Youle (NIH, Bethesda). MEFs and HeLa were grown in Dulbecco’s modified
Eagle’s medium plus 10% FBS. HCT116 cells were grown in McCoy's SA Modified
Medium plus 10% FBS. Cells were incubated at standard conditions. Peptides were
transfected with LipofectamineTM 2000 (Invitrogen). Briefly, peptides were combined
with 2,5 pl of Lipofectamine and Opti-MEM® Reduced Serum Media (Invitrogen) for 30
min at room temperature. Then cells with confluency >70% were incubated 4 h at 37°C
with the transfection mixure. Finally, transfection mixture was discarded and CDDP
treated and non-treated cells were incubated at 37°C up to 24 hours.

3.3.10 Cell-based Caspase 3/7 Activation assays for BCL-2 TMD-pepts in
different cell lines.

All cell extracts were prepared from 2 x 10° cells seeded in 6-well plates. After 24 h,
cells were treated with a Lipofectamine/ peptide (3 or 10 uM) mixture for 4 h followed by
administration of 35 uM cis-diammineplatinum(II) dichloride (cisplatin, CDDP). After 24
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hours, cells were manipulated as described in 3.1.7. Western blot assay of caspase-3 was
developed as indicate in 3.1.6.

3.3.11. Flow Cytometry assays of BCL-2 TMD-pepts in different cell lines.

Cells were harvested by centrifugation, suspended in binding buffer (10 mM HEPES pH
7.4, 140 mM NaCl, 2.5 mM CaCl,) and incubated with 1 ul of tetramethylrhodamine
methyl ester perchlorate (TMRM; 1 uM). To measure apoptotic or necrotic cell death, the
FITC-Annexin V/PI kit (BD Biosciences) was used following manufacturer instructions
(see 3.1.8). To quantify the release of cytochrome ¢ from mitochondria, HeLa cells were
seeded at 1.5 10° cell/mL and after 24 h in presence of TMD-pepts, the InnocyteTM Flow
Cytometric cytochrome c¢ Release kit (Calbiochem) was used according to the
manufacturer’s recommendations. Staining was assessed by flow cytometry on a FC500
instrument (Beckman Coulter) followed by data analysis using FlowJo software (Tree
Star Inc).

3.3.12. Measurement of cellular ATP.

Relative cellular ATP content was measured by the ATPlite Kit (PerkinElmer) according
to manufacturer's protocol. Cells were plated in 96-well plates at 8,000 cells per well to
allow for attachment overnight. Cellular ATP content was measured using a luminescent

plate reader 4 h after peptide treatment.

3.3.13. Mitochondrial dysfunction assays (MTT) upon TMD-pepts treatment
in different cell lines.

MTT colorimetric assay is based on enzymatic reduction of a yellow tetrazolium salt, 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), generating a purple
formazan crystal in metabolically active cells (Figure 3.9). Formazan is then solubilized
producing a concentration related to colorimetric signal at 570 nm, proportional to the cell
number and activity. Cells were cultured in sterile 96-well microtiter plates at a seeding
density of 8000 cells/well for the HCT116 lines and 3000 cells/well for HeLa cells. After
seeding, cells were left to adhere to the plate overnight, and then they were treated with
the compounds and/or TMD-pepts of interest and incubated at 37°C for 24 h. MTT
reagent (5 mg/ml in PBS) was added to each well and plates were further incubated for 4
h at 37°C. Finally, the medium was removed and the precipitated formazan crystals were
dissolved in optical grade DMSO (dimethyl sulfoxide). Plates were read at 570 nm on a
Wallac 1420 workstation (Perkin Elmer).
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WIT Formazan

Figure 3.9. Reduction of the yellow MTT to the purple formazan.

3.3.14. Cell viability assays of TMD-pepts in different cell lines.

Cells were seeded in 96-well plates at a cellular density of 8000 cells/well for the
HCTI116 lines and 3000 cells/well for HeLa cells. After 24 h, cells were treated as
previously described. Cells were detached and 0.5% trypan dye blue was added in
solution. Live cells possess intact cell membranes that exclude the dye, whereas dead cells
do not. Unstained (viable) and stained (non-viable) cells were counted separately in a
hemacytometer and the total number of viable cells in the population was calculated.

3.3.15. Statistical analyses.

Statistical analyses were performed as described above (3.1.13).

3.4 CHAPTER 1V

3.4.1 Cell culture, treatments and chemicals.

ABT-737 and GX15-070 drugs were purchased from Abbott Laboratories and from
SelleckBio, respectively; cis-diammineplatinum(Il) dichloride (cisplatin, CDDP),
rapamycin and 3-methyladenine (3MA) were obtained from Sigma Aldrich. QM31 is a
perhydro-1,4-diazepine-2,5-dione whose general synthetic method has been recently
reported (350). The HeLa cell line was purchased from ATCC, and mouse embryonic
fibroblasts MEFs wt and KO Bax/Bak (84, 351)) were kindly provided by Dr. Guido
Kroemer (INSERM, University of Paris) and Dr. Francesco Cecconi (IRCCS Fondazione
Santa Lucia in Rome) (MEFs wt and KO Apaf-1). All the cell lines were grown in
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS). Cultures were maintained at 37°C in a 5% CO, atmosphere. Cell media and
FBS were purchased from GIBCO BRL Life Technologies. When indicated, cells were
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treated with 1 pM of GX50-070, 25 uM of ABT-737, 30 uM of rapamycin or 30 uM of
CDDP. When required, 10 mM MA (Methyl-adenine), 10 uM QM31 or 5 uM zVAD
were administered 30 min after treatment addition, and cells were maintained in culture

for 24 h. Assays were carried out between passage 6 and 10, in all cases.

3.4.2 Caspase activity expermiments for different pro-apoptotic treatments
in different cell lines.

The caspase 3/7 activity assay was developed as indicated in 3.1.7.

3.4.3 Flow cytometry assays for different drugs and cell lines.

After drug treatment, cells were collected and treated following the protocol described in
3.1.8. Cells were incubated with 10 uLL FITC Annexin V (BD Biosciences) and 10 puL of
DRAQ?7 (6 uM; Biostatus) for 10 min at 37°C.

3.4.4 (MTT) mitochondrial dysfunction assays in different cell types.

Mitochondrial functionality was measured following the protocol described in 3.3.13.
Cells were cultured in sterile 96-well microtiter plates at a seeding density of 1500
cells/well for the MEFs lines and 2000 cells/well for HeLa cells. Plates were read at 570
nm on a Wallac 1420 workstation.

3.4.5 Trypan blue exclusion assays with diverse pro-apoptotic drugs in
different cell lines.

Cells were cultured in sterile 96-well microtiter plates at a seeding density of 5000
cells/well for the MEFs lines and 3000 cells/well for HeLa cells. Trypan blue was used
(see 3.3.14) to determinate the percentage of viable cells.

3.4.6 Nuclei staining.

The cells cultured on coverslips were stained with 300 nM 4’-6-diamidino-2-phenylindole
(DAPI) solution. Morphology of the cell nuclei was observed using a fluorescence
microscope (Leica Vertical DM6000) at an excitation wavelength of 350 nm. Nuclei are
considered to have the normal phenotype when they glow blue brightly and
homogenously. Apoptotic nuclei can be identified by either the condensed chromatin
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gathering at the periphery of the nuclear membrane or a total fragmented morphology of
nuclear bodies.

3.4.7 Immunoblotting for the different pro-apoptotic treatments in different
cell lines.

Whole cell extracts were obtained as indicated in 3.1.6. The antibody against LC3
(#2775) came from Cell Signaling and a-tubulin antibody (#T8203) was from Sigma-
Aldrich.

3.4.8 Statistical analyses.

All the values represent the mean + s.d. of at least three independent experiments.
Statistical significance was determined by one-way ANOVA using the Graph Pad
software, p<0.05 was designated as statistically significant.
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4 CHAPTER 1

Interactions between the BCL-2 family members via their transmembrane domain (TMD): Relevance in the
apoptotic control.

4.1. Introduction

Protein—protein interactions among pro-apoptotic and anti-apoptotic members of the
BCL-2 family are crucial to determine the final fate of cells. However, the molecular
insights of that equilibrium remain poorly understood. The role of cytosolic domains from
BCL-2 proteins in the molecular network of interactions that controls MOMP have been
extensively studied (121), whereas TMDs have been traditionally considered as mere
membrane anchors (196, 352).

In recent years, it has been demonstrated that while some of the BCL-2 members
conserve their apoptotic function in the absence of their C-terminal TMDs, others need
them to modulate biological activity (63, 110, 221). Taking into account the existence of
these hydrophobic regions in almost all members of the BCL-2 protein family and the fact
that they exert their function within the membrane, it is reasonable to hypothesize an
active role for TMDs in regulation of apoptosis.

As a first step to understand TMD molecular function, our objective was to establish
the oligomerization state of these protein domains within the membrane and the
interaction network among TMDs from different members of the BCL-2 protein family.
All strategies have been performed maintaining proteins in its natural environment, the
membrane. This is of particular interest in membrane protein interaction studies due to the

existence of several interaction artifacts when proteins are extracted from the lipid bilayer.

4.2. Results and discussion

4.2.1. The oligomerization state of BCL-2 TMDs in membranes.

To test whether BCL-2 TMDs, together with soluble domains, participate in the equilibria
that govern MOMP, we have first analyzed the oligomeric state of these TMDs in live
cells. To address this question we have employed the prokaryotic ToxRed system (332,
353) to determine whether the TMDs of anti- (Bcl-xL, Bcl-2, Bel-w, Mcl-1 and Diva) and
pro-apoptotic (Bax, Bak, Bid, Bik, Rambo) BCL-2 proteins (Table 4.1) are sufficient to
cause self-association. In this assay, the TMD tested is inserted as an in-frame fusion
between the ToxR (an N-terminal transcriptional activation domain) and MBP (a C-
terminal maltose-binding protein that is targeted to the periplasm) (353). ToxR is in active
state when dimerizes thought BCL-2 TMD association, recognizing then the czx promoter
and activating the transcription of RFP gene (Figure 4.1). The level of fluorescence
emission at 615 nm indicates the strength/intensity of TMD-mediated self-association.
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Proper insertion into the membrane can be verified by the ability of periplasmic MBP to
restore the capability of E. coli MM39 mutant to grow on maltose as a sole carbon source
(332).

Table 1. BCL-2 TMD sequences cloned. The aminoacids underlined are cloned only in the BiFC constructs for
mitochondrial targeting. A G based on the Kyle and Doolittle algorithm.

BCL-2 Cloned sequence Length AG
Bel-2 FSWLSLKTLLSLALVGACITLGAYLGHK 23 -1.356
Bel-xL  SRKGQERFNRWFLTGMTVAGVVLLGSLFSRK 23 -0.355
Bel-w  REGNWASVRTVLTGAVALGALVTVGAFFASK 22 -0.418
Mcll IRNVLLAFAGVAGVGAGLAYLIR 23 -0.275
Bel-B FWRKQLVQAFLSCLLTTAFIYLWTRLL 21 0.689
Bax TWQTVTIFVAGVLTASLTIWKKMG 20 0.510
Bak ILNVLVVLGVVLLGQFVVRRFFKS 22 -0.735
Rambo  GKSILLFGGAAAVAILAVAIGVALRKK 21 -1.403
Bik VLLALLLLLALLLPLLSGGLHLLLK 24 -3.253
Bid KEKTMLVLALLLAKKVA 17 2.462

In each case fluorescence ratio between the ToxRed wt construct containing the BCL-
2 TM fragment (ToxR) and a ToxRed mutant construct (containing the TM domain of
interest but a non functional version of the transcription factor ToxR (ToxR*)) has been
included to account for basal cell fluorescence (Figure 4.1).

‘ ‘ ToxR|ToxR . ‘ OX‘;
B NN
-->RFP ctx--> RFP ﬁ

—|:|— _—

Figure 4.1. Schematic view of transmembrane interaction monitoring system (ToxR). The P1 construct
consists in the N-terminal DNA binding domain of ToxR (a dimerization-dependent transcriptional activator)
fused to a BCL-2 transmembrane domain and a monomeric periplasmic anchor (the maltose binding protein).
Association of the TMDs results in the ToxR-mediated activation of a RFP reporter gene. The level of
fluorescence indicates the strength of TMDs association. The fluorescent assay is standardized with a ToxR

mutant P2 construct unable to activate the expression of RFP reporter gene.

As a positive control of interaction we used the Glycophorin A TMD (GpA TMD:
EITLIHIFGVMAGVIGTILLISYGI) a well characterized homo-dimeric transmembrane
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protein (354, 355) and the point mutant G831 of GpA TMD as a negative control. All the
BCL-2 TMDs showed the capability to form homo-oligomers within the bacterial

membrane with the exception of Bid TMD. Interestingly, the TMD of apoptotic
executioner protein Bax causes the highest fluorescence. Western blots of whole cell
lysates detected with anti-MBP antibodies (Figure 4.2.B, bottom) demonstrate that the
levels of ToxR-(Bcl-TMD)-MBP are comparable, so the different fluorescence emission
levels can be interpreted to arise from differences in TMD self-association in the E. coli
inner membrane. We conclude that the BCL-2 TMDs with the exception of Bid associate

strongly in the E. coli inner membrane.
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GpA  GpA G831 GpA Bcl-2  Bel-xL  Bel-w
TOXR ToxR* ToxR  ToxR* ToxR  ToxR* ToxR ToxR* ToxR ToxR* ToxR ToxR*
HA -
Mcl-1 Bax Bak Bid Rambo Diva Bik
HA ToxR  ToxR* ToxR ToxR* ToxR ToxR* ToxR ToxR* ToxR ToxR* ToxR ToxR* ToxR ToxR*

Figure 4.2. The TMDs from BCL-2 family proteins are involved in protein homo-oligomerization. (A)
The formation of BCL-2 oligomers followed by the increase in fluorescence due to RFP expression mediated by
ToxR transcription factor. The results are represented by the normalized fluorescence signal (ToxR/ToxR*)
obtained with the ToxR system for the TMDs of the different BCL-2 proteins. Red bars represent positive
interactions and white bars represent negative interactions. GpA positive control and point mutant GpA G831 as
negative control of interaction are showed in the first and second column, respectively. All the results represent
the mean of three independent experiments. Dunnett's Multiple Comparison Test (95%CI) was used to compare
with a positive control Glycophorin A TMD. (B) Equivalent expression levels of all constructs were confirmed
by Western blot developed against HA antibody.

The ability of the isolated TMDs to self-associate suggests that this property may
underlie the previously observed functional importance of BCL-2 TMDs (356).
Inspection of their amino acid sequences and comparison with previously reported
interacting TM segments (357, 358) reveal glycines located roughly in the middle of TM
segments as potential sources for strong helix-helix interactions. We have tested the
sequence specificity of self-association using site-directed mutagenesis to find residues
that were relevant in the molecular interacting interface between these quaternary
structures (Figure 4.3). Several single point mutants were identified that partially disrupt
formation of BCL-2 TMD homo-oligomers without affecting expression or insertion of
the protein within the membrane (Figure 4.4A and B), demostrating existence of specific

molecular interfaces.

1. GpA Homo_sapiens co-Irr i EEVMARY - - Bl Lo BEE - - - - -

2. BNIP3 Homo_sapiens - F LV F l.IHL Ll A @il ¥ GHE - EEEEEE -
3. BID Homo_sapiens - - - - - MLVLAL-LLAN-EVA
4. BIM Homo_sapicns o g1 - vPLV s s Siteie
5. DIVA Homo_sapiens |
6. RAMBO Homo_sapiens, - -
7. BIK Homo_sapiens
8. BAK Homo_sapiens |- - - - - 1 l.\ LVVL
9. BAX Homo_sapiens |- - - 1l A
10. BCL2 Homo._ -upncm . L 4

11, BCLXL Homo_sapiens - F

13,
Figure 4.3. Multiple Transmembrane domain alignment for BCL-2 protein family (Homo sapiens) using

CLUSTALW algorithm in MEGA 5.0 (GpA TM like outgroup). The positions of the different point mutans are
highligthed in brown.
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Figure 4.4. TMD mutants from BCL-2 family proteins corroborate the specificity of the homo-
oligomerizations. (A) Decrease of fluorescence signal in the ToxR system induced by point mutations of BCL-
2 TMDs. The drop in the fluorescence signal denotes homo-oligomer disruption. Red bars represent positive
interactions and white bars represent negative interactions. GpA positive control and point mutant GpA G831 as
negative control of interaction are showed in the first and second column, respectively. (B) The equal expression

of all constructs was confirmed by Western blot developed against HA antibody.
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Altogether these results indicate that the BCL-2 TMDs populate the membrane in a
non isolated (non-monomeric) state, establishing specific interactions with other TMDs
that could be relevant for the function of full length BCL-2 proteins in a physiological

environment.

4.2.2. The oligomerization state of BCL-2 TMDs in the mitochondria.

Once it was demonstrated that BCL-2 TMDs have the ability to self-interact in bacterial
membranes, bimolecular fluorescence complementation (BiFC) assays were used to
analyze the intracellular distribution and self-association of fluorescent-protein-tagged
BCL-2-TMDs. BiFC assays permit the direct visualization of protein-protein interactions
(PPI) in living cells (336, 337). The principles of this methodology are illustrated in Fig
4.5A. Briefly, the proximity between two interacting molecules (BCL-2 TMDs) tagged
with two complementary halves of the Venus Fluorescent protein (VN and VC) facilitates
their maturation to a functional fluorescent protein, indicating oligomer formation. An
improved BiFC assay with a high signal-to-noise ratio was selected to avoid background
interferences (337). The system was adapted to clone BCL-2 TMDs at the C-terminal end
of Venus protein fragments, according to their natural topology in full length proteins.
Both, VN- and VC- BCL-2 TMD constructs were co-transfected in the HCT 116 colon
cancer cells and formation of oligomers was evidenced by reconstitution of Venus protein
and appearance of green fluorescence (Fig 4.5B). Co-expression of the positive PPI pair,
b-Fos and b-Jun proteins, used as a positive control of the system (359), rendered high
fluorescence whereas the mutant b-AFos and b-Jun fusion proteins produced low
fluorescence values (Fig 4.5B, + and - respectively)(337). BCL-2 TMDs were able to
reconstitute Venus fluorescent protein indicating the existence of homo-oligomers in live
eukaryotic cells (Figure 4.5B). Immunoblotting experiments against c-myc and HA tags
confirmed equivalent expression of both VN- and VC- constructs (Figure 4.5C). Then, the
different association levels, account for the different fluorescence values observed and
agree with the results obtained in the ToxR system (Figure 4.2A) where self-association
of pro-apoptotic protein Bax causes also the highest fluorescence.

88



4 CHAPTER 1

Interactions between the BCL-2 family members via their transmembrane domain (TMD): Relevance in the
apoptotic control.

CYFP Q NYFP
HA \|< c-myc¢
¥ <
+
B TM % 2 Bd T™
segment 2 § segment

15438

yazis]

BiFC Bcl-2 anti-apoptotic TMDs

S 200000
<
2 150000
g skkok
= 100000 ok
=
E skkk Hkk
£ 500004
&
=
D
7 0-
x ‘ v N Q e
& >~ Y O
RPN S
BiFC Bcl-2 pro-apoptotic TMDs
200000

1500004

1000004

50000+

Relative Fluorescence (A.U)

0-

O

x ‘ S Q-s"’ &F

¥ 3

,00

&
Figure 4.5. BCL-2 TMD Homo-oligomerizations in mammalian cells using BiFC strategy. (A) The
Bimolecular fluorescence complementation system (BiFC) is based on the reconstitution of fluorescence from
separate N- and C- terminal Venus protein fragments. This reconstitution depends on the establishment of
interaction between BCL-2 TMDs. (B) BCL-2 TMD homo-oligomerization assays measured by BiFC in the

HCT 116 cell line. The VC- and VN-Bcl constructs were transfected in the HCT 116 cell line and fluorescence
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was measured 24 hours later. Average fluorescence intensity of three independent experiments is represented.

Dunnett's Multiple Comparison Test (95%CI) was compare with negative control A Fos/Jun.

BCL-2 family members are targeted to the appropriate membrane either immediately
after their synthesis or in response to an apoptotic stimulus. Targeting to mitochondria has
been demonstrated to be mainly directed by the C-terminal region of these proteins (194,
197, 229). The role of TMDs in apoptosis modulation has been controversial.
Involvement of BCL-2 interactions in apoptosis modulation clearly requires oligomer
formation to occur in the mitochondrial membrane. In this context, to study the
intracellular distribution of BCL-2 TMD oligomers, microscopy studies of HCT 116 cells
overexpressing VC/VN TMD constructs were performed. Cells were incubated with
mitotracker dye to label active mitochondria. Confocal microscopy images showed a
reticular distribution of the green fluorescence for BCL-2 TMD homo-oligomers that
extensive colocalized with mitochondria (Figure 4.6A). Subcellular distribution of TMDs
was also corroborated by cellular fractionation studies (Figure 4.6B). In these experiments
c-myc antibody was used to detect VN BCL-2 TMD fusion proteins while the Tom 20
protein and the Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as
mitochondrial (M) and cytosolic (C) markers, respectively. All BCL-2 TMDs were
mainly localized in the mitochondrial fraction (M), in accordance with results obtained
from confocal studies.

A BiCF Bcl-2 TMD Mitotracker Merge

Bel-2 7
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Figure 4.6. BCL-2 TMD Homo-oligomerizations take place in the mitochondria. (A) Confocal images of
HCT 116 cells transfected with VC- and VN-BCL-2 constructs. The formation of homo-oligomers was observed
in the green channel. Cells were incubated with Mitotracker to stain mitochondria (red channel). Co-
localizations are shown in yellow. (B) Subcellular fractionation of HCT 116 cells transfected with VC- and VN-
BCL-2 constructs. C-Myc antibody was used to localize the BCL-2 TMD constructs. Mitochondrial fraction (M)
is monitored by the presence of Tom 20 mitochondrial protein and cytosolic fraction (C) by GAPDH.

Selected TM helix mutants, previously analyzed in the ToxR system, were also
analyzed by BiFC (Fig 4.7). Those mutations which destabilize BCL-2 TM helix
oligomerization faces in bacterial membranes rendered VC/VN BCL2 TMD constructs
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with lower fluorescence levels, corroborating the reduced oligomer formation capacity

and the relevance of these residues in the helix-helix packing interfaces.
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Figure 4.7. BCL-2 homo-oligomerizations also showed high specificity in eukaryotic cells. Decrease of
fluorescence signal in the BiFC system induced by point mutations of BCL-2 TMDs. The drop in the
fluorescence signal denotes homo-oligomer disruption. Green bars represent positive interactions and white bars
represent negative interactions. Average fluorescence intensity of three independent experiments is represented.

Dunnett's Multiple Comparison Test (95%CI) was used to compare with negative control Fos/ A Jun.

Alltogether results demonstrate the capability of the BCL-2 TMDs to form homo-
oligomers in the mitochondrial membrane of eukaryotic cells. Due to the relevance of the
BCL-2 family proteins for the MOMP, their structural organization within the
mitochondrial membrane should be relevant for the regulation of the mitochondrial

outcome.

4.2.3. The network of BCL-2 TMDs interactions.

Control of MOMP is accomplished by a complex network of interactions between
members of the BCL-2 family. For this reason, once the capability of BCL-2 TMDs to
homo-oligomerize was established our next question was whether hetero-
oligomerizations within the membrane were also possible between the different BCL-2
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TMD members.
The ToxRed system permits the study of hetero-oligomerization by setting a

competion through co-transforming bacterial cells with constructs carrying one BCL-2
TMD construct fused to the ToxR and a second TMD fused to the disabled ToxR* moiety,
unable to reconstitute the ToxR transcription factor (332, 353). Then, BCL-2 TMD cloned
in the wild type ToxR could exclusively homo-oligomerize itself, showing the maximum
level of fluoresecence (100%), or could also hetero-oligomerize with the other BCL-2
TMD fused to the disabled ToxR*, generating a fluorescence decrease (Figure 4.8).
Furthermore, the GpA-TMD, a non-BCL-2 related TMD, was used as a negative control
of hetero-dimerization.

L (W [T o o
o K p—— e

otx---> RFP

_—

Figure 4.8. Schematic view of TM interaction monitoring system (ToxRed) adapted to evaluate hetero-
oligomer formation. Co-transformation with ToxR fused to one BCL-2 TMD plasmid and a second plasmid
containing disabled ToxR* fused to a different BCL-2 TMD, renders up to three different types of oligomers:

fluorescent (ToxR/ToxR) combinations and non-fluorescent (ToxR/ToxR* and ToxR*/ToxR*) combinations.

Making use of this experimental procedure we studied the formation of hetero-
oligomers among TMDs from the different members of the BCL-2 protein family (Figure
4.9). The results of these studies reveal a complex network of interactions among them.
The network of TMD interactions obtained for the BCL-2 anti-apoptotic members reveals
for example that there are not TM interactions between Bcl-2 and Bel-xL (Figure 4.9A
and 9B). Bcl-w TMD interactions (Figure 4.9C) were consistently observed with Bcl-2
TMD and Bcl-xL TMD but not with Mcl-1 TMD (Figure 4.9C). Further, Mcl-1 TMD has
an interaction pattern completely different to these obtained for Bcl-2 TMD and Bel-xL
TMD, since these latter two members share a similar pattern of interactions (Figure 4.9A,
B and D).
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Figure 4.9. Specific hetero-oligomerization network among TMDs from BCL-2 family proteins.
Normalized fluorescence signal obtained with the ToxR system for the combination of ToxR construct of BCL-2
TMD with ToxR* constructs from the indicated BCL-2 proteins. Red bars represent positive hetero-
oligomerizations (the decrease in fluorescence indicates the formation of hetero-oligomers as described in
Figure 8. ToxR*. White bars represent negative hetero-oligomerizations. The ToxR control of BCL-2 TMD
(first column) represents the maximum of fluorescence (100% homo-oligomerization). GpA was used as an
outgroup and represents a negative hetero-oligomerization. The same experiments are shown for the ToxR-TMD
constructs of Bcl-2 (A), Bel-xl (B), Bel-w (C), Mcl-1(D) and Bax (E) cotransfected with ToxR* -TMD

constructs from the different BCL-2 proteins.

Regarding the pro-apoptotic members, it should be noticed the differences found for
Bak and Bax, while Bak TMD only interacts with Bcl-w and to a lesser extent with Bcl-
xL, Bax TMD interacts with all TMDs from the anti-apoptotic members tested with the
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exception of Mcl-1 TMD (Figure 4.9E).
Interestingly, we observed the formation of hetero-oligomers between the two pro-

apoptotic Bax- and Bak proteins (Figure 4.9E). These two proteins have been found to be
the main players in the formation of the mitochondrial pore (84, 127, 138). The relevance
of their cytosolic domains for membrane permeabilization has been extensively studied
but the contribution of their TMDs remains poorly understood. Our current data
demonstrating the existence of hetero-oligomers between these important components
could shed light onto the process of pore formation and regulation. The results obtained
in the hetero-dimerization experiments with all the BCL-2 TMDs led us to define the first
global network of TMD interactions among the members of the BCL-2 family (Figure
4.10).

Bcl-2 Bel-xL Bel-w  Mecl-1  Bax Bak Rambo Diva Bik Bid

No Interaction
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Figure 4.10. The interactome of BCL-2 TMDs. Integration of all the experimental data of homo- and hetero-
oligomerization from the ToxRed system led to the classification of four levels of interaction based on the

fluorescence signal, generating the interaction network map of the BCL-2 TMDs.

4.2.4. BCL-2-TMDs interactions in full-length proteins context.

Different protein domains jointly and collectively define the overall activity of a protein
(360). In this sense, the studies performed with isolated TMDs from BCL-2 proteins
during a stage in Dr. Frank Edlich lab in the Institute of Biochemistry and Molecular
Biology of Freiburg (Germany) had permitted us to separate the putative role of their
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membrane anchors from the contribution of cytosolic domains to their network of MOM
interactions. Once we demonstrated the existence of heterotypic interactions between
isolated anti- and pro-apoptotic TMDs from BCL-2 proteins, we went one step further to
understand their contribution to global protein function and analyzed hetero-dimerization
of TMDs with full-length proteins in mitochondria.

To perform these experiments self-interaction of VN/VC-BCL-2 TMDs, that
reconstitutes the Venus fluorescent protein, was challenged with anti- and pro-apoptotic
full length proteins (see scheme in Figure 411A). In this system a decrease of
fluorescence indicates formation of hetero-oligomers between the Venus fluorescent

protein and the appropriate full length protein.

g e
WA

Figure 4.11. Schematic view of the interaction between some BCL-2 Full length (FL) proteins with BiFC-
TMD constructs through the transmembrane region specifically. (A) Cells are co-transfected with VN/VC
BiFC-TMD constructs and different BCL-2 FL proteins. Interaction between BCL-2 FL proteins and TMD
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constructs produces a decrease of the fluorescence (Venus protein is not recovered). (B) In this case, the TMD
of Bax FL protein was replaced to the TMD of Bcl-xL to evaluate the role of the cytosolic region in the TMD

interactions.

Making use of this approach we observed that self-interaction of VN/VC-Bax TMD
was competed with Bax, Bcl-2 and Bel-xL full length proteins (Figure 4.12A). A full-
length Bax protein in which the hydrophobic tail was replaced by the one from Bcl-xL
(Bax-Bcl-xL tail) and the complementary Bel-xL-Bax tail mutant also competed with Bax
TMD self-interaction (Figure 4.11B). In all these experiments mitochondrial localization
of VN Bax TMD recombinant protein was corroborated by cellular fractionation (Figure
4.12B, right panel). These results agree with the interaction pattern determined for
isolated Bax TMD in the ToxR assay where Bax TMD interacted with TMDs from Bax,
Bcl-2 and Bel-xL (Figure 4.9E).

Interestingly, self-interaction of VN/VC-Bcl-2 TMD was only competed by Bcl-2 and
Bax full-length proteins, but no competition with Bel-xL full-length protein was observed
(Figure 4.12B). Moreover, the recombinant Bax-Bcl-xL tail protein showed decreased
competence when compared with the full-length Bax, whereas Bcl-xL-Bax tail protein
competed similarly with Bax with Bcl-2 TMD self-interaction. These results also validate
the TMD interaction pattern observed for isolated Bcl-2 TMDs (Figure 4.9A) in the
context of full-length proteins.

Altogether our results demonstrate that interaction patterns observed for isolated Bcel-2,
Bax, and Bcl-xL membrane anchor domains are mimicked in the presence of full-length
proteins, thereby underpinning the relevance of these membrane-spanning regions in the
modulation of MOM interactions among BCL-2 proteins.
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Figure 4.12. Specific interactions between BCL-2 Full-length (FL) proteins and BiFC-TMD constructs. A)
HCT 116 wt cell line was co-transfected with VN/VC BiFC Bax TMD constructs and different BCL-2 FL
proteins. Interaction between BCL-2 FL proteins and Bax TMD constructs produces a decrease of the
fluorescence (Venus protein is not recovered). Bel-xI FL with the TMD of Bax and Bax FL protein with the
TMD of Bcl-xl were also assayed to demonstrate the specificity of the interactions. B) The same design was
used for VN/VC BiFC Bcl-2 TMD assays. C) Subcellular fractionation of HCT 116 cells transfected with the
BCL-2 TMD protein BiFC constructs. C-myc was used to detect BiFC constructs. GAPDH and Tom 20 was
used as cytoplasmic and mitochondrial markers, respectively.

4.2.5. Relevance of BCL-2 TMDs in apoptosis.

According to the function of the BCL-2 proteins in the control of apoptosis, the role of
BCL-2 TMDs in this pathway was analyzed. Previous studies have demonstrated that
some BCL-2 TM regions are able to destabilize the outer mitochondrial membrane (217,
231) and/or generate pores to produce the release of apoptogenic proteins that induce
apoptosis (68, 240). For that reason, the capability of these TMD to induce apoptosis was
analyzed in HCT 116 Wt and HCT 116 DKO Bax/Bax. The results of caspase-3 activity
assay and Western blot indicated that some of the TMDs, specially Bax, Bak and Mcl-1
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were able to produce apoptosis (Figure 4.13A). To further explore the mechanism of
BCL-2 TMDs cell death induction we analyzed different markers of apoptosis and
necrosis. Increase on cytosolic lactate dehydrogenase (LDH) activity in the medium as a
consequence of cell lysis is considered a marker of necrotic cell death. LDH assays
showed a non-significant release of this enzyme to the extracellular media, confirming
that cell death was not due to necrosis (Figure 4.13B). The capacity of some BCL-2 TMD
to generate apoptosis was also evaluated by confocal microscopy, using the release of
Cyt-c as apoptotic marker (Figure 4.13C). Bcl-2, Bcel-xL and Bcel-w did not produce
apoptotic activation. On the contrary, cells transfected with Bax, Mcl-1 and Bak TMD
showed the cytosolic accumulation of Cyt-c, indicating apoptosis.

The exposure of phosphatidylserine (PS) molecules on the outer leaflet of the plasma
membrane is usually considered a hallmark of apoptosis (361). Thus, cell staining with
FITC-labeled AnnexinV, which binds to PS, is a marker of early apoptotic events
(AnnV+). Propidium iodide (PI) is a DNA intercalating agent that can be incorporated
into cells only after major cell membrane damages (PI+). Hence, the combination of
AnnV and PI cell staining is commonly used to distinguish apoptotic and necrotic cell
death. Flow cytometry analyses were performed to evaluate the apoptotic profile of these
TMDs (Figure 4.13D). Our results showed the characteristic profile of cells undergoing
apoptosis, as both AnnV+ PI- (early apoptotic) and AnnV+ PI+ (late apoptotic) profiles

were observed.
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Figure 4.13. Apoptotic effect of the BCL-2 TMD in HCT 116 Wt. (A) Caspase 3-like activity measured in the
HCT 116 Wt cells. Bars represent the mean of three experiments + s.d. (¥p <0.1; **p < 0.05; ***p <0.001. STS
0.5uM was used as apoptotic inductor. Western blot was developed against Caspase-3 antibody and a-tubulin
was used as load control. (B) LDH assay measured in HCT 116 Wt. Negative control represents cells transfected
with empty plasmid and Triton 9% was used as posivive control. (C) Confocal images of HCT 116 Wt cells
transfected with the different BiFC BCL-2 TMD constructs. Green fluorescence indicates TMD homo-
oligomerization. Release of Cyt-c¢ (red channel) from Mitochondria to cytosol was used as apoptotic marker.
Mitochondrial co-localizations were shown in yellow. (D) Cell death profile was analyzed by flow cytometry

with with FITC Annexin V and PIL. Third quadrant represents the apoptotic population.

Interestingly, the capability of these BCL-2 TMDs to induce apoptosis is independent
of the presence of Bax and Bak in the cell (Figure 4.14A, B and C).
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Figure 4.14. Apoptotic effect of the BCL-2 TMD in HCT 116 DKO Bax/Bak. (A) Caspase-3-like activity
measured in the HCT 116 DKO cells. Bars represent the mean of three experiments + s.d. (*p < 0.1; **p < 0.05;
***p < 0.001. STS 0.5uM was used as apoptotic inductor. Western blot was developed against Caspase-3
antibody and a-tubulin was used as load control. (B) LDH assay measured in HCT 116 Wt. Negative control
represents cells transfected with empty plasmid and Triton 9% was used as positive control. (C) Cell death
profile was analyzed by flow cytometry with with FITC Annexin V and PI. Third quadrant represents the
apoptotic population.

In Bax/Bak KO HCT 116 the apoptotic profile was exactly the same as that observed
for wild type cells. This result opens up two possible hypotheses:

BCL-2 TMDs promote destabilization of the outer mitochondrial membrane inducing
pores similar to that formed by Bax/Bak, and overcoming the absence of these proteins.
Interactions established by BCL-2 TMDs within the mitochondrial membranes modify
the balance between anti- and pro-apoptotic BCL-2 proteins, generating an alternative
pore complex induced by other membrane complexes previously described as responsible
of MOMP (362, 363).

In both cases if Bax TMD oligomerization is necessary for the formation of these
mitochondrial pores, introduction of a destabilizing point mutation in the TMD sequence
should therefore result in a decrease of apoptosis induction capability.

To test this hypothesis some of the Bax TMD point mutations identified as oligomer
disruptors were introduced in the full-length Bax protein and in the VN/Bax TMD
construct. HCT 116 cell were transfected with these mutants and caspase-3 activity at 24

104



4 CHAPTER 1
Interactions between the BCL-2 family members via their transmembrane domain (TMD): Relevance in the
apoptotic control.

hours after transfection was measured. A significant reduction of this enzymatic activity
was observed for the different mutants (when compared with their wt versions Figure
4.15 A-C).
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Figure 4.15. Selected point mutants of the BCL-2 TMD attenuate the apoptotic effect of the Bax FL and
selected Wt TMD in HCT 116 Wt. The maximum percentage of apoptotic induction (100%) represents the
caspase-3 activity referred to the wt Bax FL (A), VN/wt Bax TMD (B) and VN/wt Mcl-1. Bars represent the
mean of three experiments + s.d. (¥p <0.1; **p < 0.05; ***p <0.001).

105



4 CHAPTER 1

Interactions between the BCL-2 family members via their transmembrane domain (TMD): Relevance in the
apoptotic control.

Interestingly, when these TMD mutations where introduced in the Bax FL protein, the
pro-apoptotic activity was attenuated. Thus, a 30% decrease relative to the wild type Bax
FL pro-apoptotic activity was achieved. Reduction on the apoptosis induction capability
of Bax TMD was indeed higher (75%, Figure 4.15B). Furthermore, mutantions at the
Mcl-1 TMD also decreased the apoptotic induction promoted by wild type Mcl-1 TMD
(Figure 4.15C). These results demonstrate that BCL-2 TMDs, together with soluble
domains, participate in the equilibria that govern MOMP.

Despite the putative existence of alternative apoptosis pathways we were interested in
determining the relevance of BCL-2 TMDs in classical pathways of apoptosis induction.
To accomplish this objective two different assays were performed: On one hand, the
effect of some anti-apoptotic proteins (Bcl-2 and Bcl-xL) overexpressed in combination
with the TMD of Mcl-1, Bax and Bak was evaluated. On the other hand, the effect of
blocking anti-apoptotic proteins Bcl-2, Bcl-xL and Bel-w (309, 364) with the BH3
mimetic ABT-263, was also analyzed. Overexpression of anti-apoptotic Bel-xL or Bel-2
full-length proteins reduced the apoptosis induction promoted by VN/Bax TMD (Figure
4.16A). Likely, anti-apoptotic proteins impede the formation of Bax homo-oligomers by
competing through TMD hetero-oligomeric complexes that could account for the
observed reduction of Bax TMD induced pro-apoptotic activity. Conversely, VN/Bak
TMD apoptosis induction was not affected by the presence of these anti-apoptotic
members (Figure 4.16A). Interestigly, Bel-xL but not Bcl-2 FL protein specifically
abolishes the pro-apoptotic effect induced by VN/Mcl-1 TMD, (Figure 4.16B). These
findings highlight the exquisitely specific network of TMD interactions found in the
apoptotic events.

A
1001 —_
b *%
o= 80-
'E *kk
2
g o0 1
g
g 40
2
<«
N 204
0' T T

Mock BelxL FL  Bcel-2 FL Mock BelxL FL.  Bcl-2 FL

TMD-Bax TMD-Bak

106



4 CHAPTER 1

Interactions between the BCL-2 family members via their transmembrane domain (TMD): Relevance in the
apoptotic control.

B

100
&
£ 801
=
s
2 60
S
g 40 *kk
< 1
< 204

0' T

Mock Bel-xL FL.  Bel-2 FL

TMD-Mcl-1

Figure 4.16. Effect of the anti-apoptotic proteins overexpression in the apoptotic activation promoted by
the BCL-2 TMDs in HCT 116 Wt. The maximum percentage of apoptotic induction (100%) represents the
caspase-3 activity referred to the BiIFC VN Bax TMD (A), VN Bak TMD (A) and VN Mcl-1 TMD (B). Bars
represent the mean of three experiments + s.d. (*p <0.1; **p < 0.05; ***p < 0.001).

Apoptosis induction based on sequestration of anti-apoptotic proteins by ABT-263
showed that combination of VN Bax TMD and ABT-263 resulted in additive apoptotic
activation. In contrast, Mcl-1 and Bak TMD transfection combined with ABT-263
treatment produced a clear synergic behavior on apoptosis induction. Different behavior
of Bax, Mcl-1 and Bak TMDs probably reflect different networks of protein-protein
interactions established by their transmembrane anchors within the mitochondrial
membrane. Furthermore, Bid TMD does not generate apoptosis by itself and does not
modify the apoptotic activation promoted by ABT-263 (Figure 4.17).

Altogether these results underscore the necessity to conduct further studies regarding
the interaction network that regulates MOMP to properly understand and predict cellular

outcome upon anti or pro-apoptotic stimuli.
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Figure 4.17. Combined treatment of the BH3 mimetic ABT-263 and the BCL-2 TMDs in HCT 116 Wt.
Caspase-3 activity ((A.U) Arbitrary units) of BiIFC VN BCL-2 TMDs alone and in combination with BH3
mimetic ABT-263. Bars represent the mean of three independent experiments + s.d. (*p < 0.1; **p < 0.05; ***p
<0.001).

4.3. Concluding remarks.

Members of the BCL-2 family constitute the main players in the control of mitochondrial
outcome, developing a crucial role in the decision of the cellular fate (57, 191). In fact
several diseases, including cancer, result from an inadequate equilibrium of BCL-2
expression (365). Therefore, to gain in-depth knowledge about their interactions is the
first step in the development of new pharmacological strategies (323). There is
considerable evidence for implication of cytosolic domains from BCL-2 proteins in
MOMP control (123, 258). However, it has been unclear whether BCL-2 TMDs play also
a role in the permeabilization process, either by participation in the different models of
pore complexes or by regulation of interactions between anti- and pro-apoptotic members
of the BCL-2 family (366).

To answer some of these questions, this study has addressed the structural
organization of BCL-2 TMDs. Making use of bacterial and eukaryotic systems it was
demonstrated that most BCL-2 TMDs are non-isolated in membranes. On the contrary,
they are able to interact themselves and with other members of the BCL-2 family in a
highly specifical manner, generating a network of putative interactions that take place in
the mitochondrial membrane and presumably participate in MOMP. We have defined for
the first time a large network of BCL-2 TMD interactions. Recent works also suggest the

capability of particular BCL-2 TMDs to oligomerize in the membrane, corroborating
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some of the self-interactions obtained for Bax (367) and Bcl-xL (220) TMDs, as well as
the existence of Bax/Bcl-2 hetero-oligomers in mitochondria (368). Some of the

interactions observed in this work, as the Bax-Bak TMD hetero-oligomerization, could be
crucial in the process of the pore complex formation. In addition, it is also relevant the
different pattern of interactions observed for the anti-apoptotic Mcl-1 TMD when
compared to other TMDs derived from anti-apoptotic proteins (i.e. Bcl-2 and Bel-xL).
Despite all three proteins exert a pro-survival function in apoptosis, several studies have
demonstrated significant differences in their apoptotic behavior in different cellular
systems (55, 56, 369). The present interacting network established for these BCL-2
proteins in the MOM could provide clues about the role of the TMDs in the apoptotic
regulation mechanisms.

Furthermore, the work included in this chapter demonstrates the insertion of Bid TMD
into different biological membranes (ToxRed and BiFC data), although the interaction
map obtained shows that Bid TMD does not establish any direct interactions to any BCL-
2 derived TMD. Of note, some authors have postulated a role for cardiolipin for the
location of Bid at the lipidic contact sites (CS) present in mitochondria (116, 370), and
probably Bid TMD actively participates in this anchoring function.

Besides elucidate the BCL-2 TMD interaction network, the putative role of several
TMDs in apoptosis has been also investigated. Mcl-1, Bax and Bak TMD were able to
promote apoptosis by different mechanism (68, 138). Introduction of point mutations in
the TMD of Bax FL produces a decrease in the apoptosis induction capability of this
protein, indicating the relevance of this domain in the regulation of apoptosis. It has also
been demonstrated the capability of some BCL-2 TMDs to induce apoptosis in a genetic
background, where the apoptosis effectors Bax and Bak were absent, probably by the
activation of alternative MOM pores. However, the behavior of BCL-2 TMDs in a wild
type context, where the capability of full length anti-apoptotic BCL-2 proteins to interfere
with the TMD apoptosis induction has been demonstrated, supports the existence of
intricated regulatory crossroads in the mitochondrial membrane.

Altogether the results suggested a new role in apoptosis for BCL-2 TMDs beyond
serving as passive anchors. Our results are in good agreement with recent reports where,
for instance, it has been demonstrated that Bax ATM induces membrane destabilization
but the FL makes it with greater potency (371), or where it has been defined that the C-
terminal of Bax could be involved in forming channels (235, 236, 240). It has also been
described that Bax C-terminal mutants impaired the anti-apoptotic effect of Bel-xL over
Bax insertion (231, 232), or that the C-terminal deleted mutants of Bel-w lose their anti-
apoptotic function (63).

These results outline a mitochondrial membrane landscape where different BCL-2
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members interact with each other through their TMDs and the equilibrium of BCL-2
TMD interactions contributes to the final full length BCL-2 interaction network, thereby
defining the cellular fate, death or survival. In this scenario, in the same way that BH3
mimetics are being employed for cancer treatment (323), modulation of specific BCL-2—

TMD-interactions emerges as a new molecular target in cancer treatment.
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Insertion of the C-terminal domain of apoptotic BH3-only proteins into biological membranes.

5.1 Introduction.

Apoptosis is regulated by the BCL-2 family of proteins. Members of this family can be
divided in three groups, depending on their function and on the presence of different
BCL-2 homology domains, known as BH1-BH4. A type of pro-apoptotic BCL-2 family
proteins contains only the BH3 region and hence is referred to as BH3-only proteins.
Interaction of BH3-only proteins with other BCL-2 family members is critical for
understanding the core machinery that controls commitment to apoptosis by
mitochondrial outer membrane permeabilization. BH3-only proteins promote apoptosis by
both directly activating Bax and Bak and by suppressing the anti-apoptotic proteins in the
cytosol. To prevent constitutive cell death, BH3-only proteins are regulated by a variety
of mechanisms including transcription and post-translational modifications that govern
specific protein—protein interactions.

Some BH3-only proteins (like Bid, Bim and Puma) are termed activators, as they
directly induce Bax/Bak-dependent mitochondrial outer membrane (MOM)
permeabilization (372). Other BH3-only proteins (like Bad, Noxa, Bik and Bmf) are
termed as sensitizers, as they promote apoptosis by binding to anti-apoptotic proteins to
induce release of either activator BH3-only proteins (113) or activated Bax or Bak (373).
Several BCL-2 family members also contain a carboxyl-terminal (C-terminal)
hydrophobic domain to insert and anchor the BCL-2 proteins into different intracellular
membranes (356), such as the nucleus, endoplasmic reticulum (ER), and the MOM,
where they can promote release of apoptotic factors (374). Since interactions with the
membrane play an active role in the regulation of apoptosis by changing the affinities of
the interactions between partner proteins (375), it would be highly valuable to investigate
if BH3-only proteins may exist as integral membrane proteins via C-terminal tail-anchor
sequences. In particular, some reports have examined the anchoring capacity of BH3-only
proteins to the MOM, although the existence of a transmembrane (TM) region is still
unclear (207).

In this chapter we will study the ability of the TMDs from BH3-only proteins to insert

in different biological membranes.

5.2 Results and discussion.

5.2.1. Putative BH3-only TMDs insertion in biological membranes in vitro.
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To define the hydrophobic C-terminal region of human BH3-only proteins Bim, Puma,
Noxa, Bik and Bmf, their amino acid sequences were parsed by the AG Prediction Server
(http://dgpred.cbr.su.se/). Given the amino acid sequences, this algorithm provides a
prediction of the corresponding apparent free energy difference, AGapp, for insertion of
this sequence into the ER membrane by means of the Sec61 translocon (376). Table 5.1.
shows the predicted AGapp values for the BH3-only proteins analyzed. The negative
AGapp value for Bik C-terminal region predicts a TM disposition, whereas the positive
values computed for Bim, Noxa, Bmf and Puma predicted that these sequences do not
integrate into membranes.

Table 5.1.Analyzed proteins using AG Prediction Server v1.0 (http://dgpred.cbr.su.se/).

™ Sequence Pi Kapp AGexp pred AGapp
H2 WLETGASVFPVLAIVRSFIYEP 85.9 6.2 -1.1 2.2
Bik LLALLLLLALLLPLLSGGLHLLI 77.8 3.6 0.8 -2.9
Bim PRMVILRLLRYIVRLVWRM 23.2 03 0.7 2.5
Noxa LLNLISKLFCSGT 1.4 0.0 2.6 55
Bmf NRVWWOILLFLHNLALNG 60.4 1.5 0.3 2:1
Puma WRVLYNLIMGLLPLPRGHR 354 0.6 0.4 2.6

Subsequences with lowest AG marked in red. AG values are expressed in kcal/mol, both for the experimental
(third column) and the predicted data (376, 377) (forth column). Negative and positive AG values are shown in
green and red, respectively and denote spontaneous insertion or non-insertion, respectively. The probability of
insertion (P;) has been calculated from the experimental data as showed in Figure 5.1 and probabilities above

and below 50% are shown in green and red, respectively for consistency.AGe.y, (experimental); AG,,, (predicted).

Membrane insertion capability of these C-terminal regions was investigated using an
experimental system based on the Escherichia coli inner membrane protein leader
peptidase (Lep), which accurately reports the integration of TM helices into biological
membranes. Since BCL-2 family proteins are predominantly exposed to the cytosol and
anchored to intracellular membranes by a C-terminal sequence, in our experimental setup
we tested the candidate sequences according to its predicted topology (122). The Lep
construct used consists of two TM segments (H1 and H2) connected by a cytoplasmic
loop (P1) and a large C-terminal domain (P2), and inserts into ER-derived microsomal
membranes with both termini located in the lumen harboring engineered acceptor sites
each (Gl and G2) for N-linked glycosylation (Figure 5.1A). The BH3-only C-terminal
sequence analyzed (BH3-Ct) replaced the Lep H2 domain. The glycosylation site (G2)
located in the beginning of the P2 domain will be modified only if this C-terminus
domain is translocated across the membrane, while G1 site, embedded in an extended N-
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terminus sequence is always glycosylated. Single glycosylation (i.e., non-integration of
the tested sequence) results in an increase of molecular mass of ~2.5 kDa relative to the
observed molecular mass of Lep expressed in the absence of microsomes; the molecular
mass shifted ~5 kDa upon double glycosylation (i.e., membrane insertion of the tested
sequence). Proteinase K (PK) added to microsomal vesicles will digest the cytoplasmic
exposed, non-glycosylated form of the P2 domain (Fig. 5.1A, right), or will produce a
protected, glycosylated BH3 Ct/P2 fragment when the P2 domain is located in the lumen
of the microsomal vesicles (Fig. 5.1A, left).
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Figure 5.1. BH3 C-terminal insertion into microsomal membranes. (A) Schematic of the engineered leader
peptidase (Lep) model protein. (B), (C) and (D) In vitro translation in the presence (+) or absence (—) of rough
microsomes (RM) and PK. Non-glycosylated protein bands are indicated by an empty dot; single and double
glycosylated proteins are indicated by one or two black dots, respectively. The protected glycosylated H2/P2 or
BH3-Ct/P2 fragments are indicated by a black triangle.

The translation in the presence of membranes of constructs harboring the Bik C-
terminal region (constructed as previously described (339, 378)) clearly resulted in mainly
double glycosylated forms (Figure 5.1B, lane 5). PK treatment of this sample rendered a
protected glycosylated Bik-Ct/P2 fragment (lane 6), indicating membrane insertion of this
C-terminal region. Similar results were obtained when constructs harboring Bmf C-
terminal region were assayed (Figure 5.1C lanes 7-9). In this case, as opposite to its
prediction (Table 5.I), the C-terminal region of Bmf inserted efficiently into the
membrane (above 60% of the molecules were doubly glycosylated, quantifications were
performed as described previously (377)). Regarding Bim and Puma C-terminal regions
we found that one fourth of the molecules insert into the biological membranes (Figure
5.1B, lanes 7-9 and Figure 5.1D lanes 4-6). Finally, Noxa C-terminal region
transcription/translation assays in the presence of microsomal vesicles yielded singly-
glycosylated forms sensitive to PK digestion (Figure 5.1C, lanes 4-6), indicative of non-
TM disposition.

The dispersion of charged residues, especially in the case of Bim C-terminal sequence
would explain the predicted penalty to insert into the core of the bilayer (Table 5.1).
Nevertheless, the hydrophobic contribution of the neighboring residues in this sequence
may reduce the free energy of membrane integration, as observed previously for some
model hydrophobic/cationic sequences (339), thus allowing the low level of insertion
observed.

5.2.2. BH3-only TMD insertion in bacterial systems.

The microsomal in vitro system closely mimics the conditions of in vivo membrane
protein assembly. Bik, Bmf and, at a certain level, Bim and Puma C-terminal regions are
properly recognized by the translocon as TM segments out of its native context (Figure
5.1). However, the presence of Lep fused domains can influence its membrane insertion
capacity. Hence, we next sought to investigate whether these BH3-only C-terminal
regions could direct integration into biological membranes in the absence of any
membrane protein-derived domain. To this end, we used an assay for the insertion and
topology in E. coli that exploits the function of maltose binding protein (MBP) in the
maltose transport pathway. E. coli MM39 cells, which lack endogenous MBP, cannot
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transport maltose into the cytoplasm for metabolism, and consequently cannot grow on
media in which the only available carbon source is maltose (332). If the chimeric
ToxR(BH3-Ct)MBP are correctly inserted in the inner membrane (Figure 5.2A), the
periplasmic MBP domain will complement MM39 malE-deficient phenotype and support
growth on maltose (379). To demonstrate the requirement for periplasmic localization of
MBP in the complementation assay, constructs harboring Bax C-terminal (a9) TM
segment (380) or lacking a TM segment (ATM) were used as a positive and negative
controls, respectively. Those controls and constructs harboring BH3-only C-terminal
regions were transformed into MM39 cells and cultured on M9-maltose (a media that uses
maltose as an only carbon source). As shown in Figure 5.2B, cells expressing Bax, Bik
and Bmf C-terminal regions grow on M9-maltose.

A

@ oo maltose
oo oo C+

. C-term)
periplasm
Y
cytoplasm (N-term) Bmf
C

Dilutions:; 1/1 1110 1/100 1/1000

Figure 5.2. The maltose complementation assay for TM insertion and topology. (A) Schematic of the
engineered cytoplasmic ToxR and periplasmic MBP domains fused to BH3 C-terminal regions at the N- and C-
termini, respectively. (B) malE-deficient E. coli MM39 cells transformed with various expression constructs
were cultured on M9 agar. (C) Serial dilutions (10-fold) from exponentially growing cultures of the malE-
deficient strain (NT326) transformed with plasmids bearing the corresponding chimera were spotted on to M9
agar (minimal media) containing 0.4% maltose. C +, ToxR(Bax 0d9)MBP. C —, ToxR(ATM)MBP.
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Cells that lack a TM segment or contain Bim or Noxa C-terminal region fail to grow
(expression of all contructs was verified by growing the cells in complete media with the
appropriate antibiotic selection, Figure 5.3). These experiments demonstrate that both Bik
and Bmf C-terminal-containing chimerae anchor their MBP domains to the E. coli inner
membrane with its proper orientation, consistent with the insertion data obtained with the

microsomal system.

Figure 5.3. All the chimeric constructs are able to grow in LB Amp media.. malE-deficient E. coli MM39
(DE3) cells (araD lacAU1269, malEA444, str"; kindly supplied by W.F. DeGrado, University of Pennsylvania)
transformed with various expression constructs (ampicillin resistance plasmids) were cultured on complete agar
media (LB) in the presence of ampicillin as a selection marker. C +, ToxR(Bax a9)MBP. C —, ToxR(ATM)MBP.
Bik, ToxR(Bik-Ct)MBP. Bim, ToxR(Bim-Ct)MBP. Noxa, ToxR(Noxa-Ct)MBP. Bmf, ToxR(Bmf-Ct)MBP.

5.2.3. Subcellular localization and apoptotic activity of BH3-only TMDs in

human cells.

Emerging evidences indicate that the interaction of BH3-only proteins with membranes
regulates binding of other Bcl-2 family members, thereby specifying function. Targeting
and subcellular localization of the human BH3-only C-terminal regions were evaluated
using GFP-BH3-only-Ct fusion proteins. Mitotracker dye and Grp78 protein were used to
analyze the capability of the BH3-only-Ct to target GFP moiety to different cellular
organelles in eukaryotic cells (Figure 5.4A and B).

GFP/Bcl-2-Ct was used as control of mitochondrial targeting (Figure 5.4A). However,
some authors (195) postulated that a fraction of Bcl-2 is also localized in the ER

membrane, as we found in Figure 5.4B. Bik-Ct is not present in mitochondria and
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localizes exclusively in the ER membrane, which nicely correlates with the ER
distribution described for the full-length Bik protein (381). Similar results were obtained
in the case of Bim-Ct, therefore indicating that this C-terminal region is not enough to
target MOM, at least in absence of apoptotic stimuli. Surprisingly, Bmf-Ct displayed a
clear cytosolic pattern and neither mitochondrial nor ER localization was observed. This
BH3-only protein probably needs association (or activation to expose its C-terminal
hydrophobic upon apoptotic stimuli) with other proteins to move from the citosol to
MOM. Noxa-Ct fusions showed a reticular distribution that did not co-localize neither
with ER nor MOM. Some works (207, 255) have localized Noxa protein in mitochondria,
usually associated throught its BH3 domain with other BCL-2 family members.
Consistently, the C-terminal hydrophobic region of Noxa is not enough to target the GFP
fusions to the mitochondrial membranes. Finally, Puma-Ct fusions showed partial
insertion in MOM and ER, confirming the ability of this hydrophobic region to span ER
membranes (Figure 5.1). These studies highlighted the different functions of the C-
terminal hydrophobic regions of the BH3-only proteins, strongly suggesting that these
domains could have an important role in defining each BH3-only protein as sensitizers or
de-repressors.
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Figure 5.4. GFP/BH3-Ct targeting and insertion to different cellular organelles. Confocal images of HeLa
cells transfected with the different GFP/BH3-Ct constructs (green channel). Cells were incubated with
Mitotracker (A) and Grp78 (B) as mitochondrial and ER markers, respectively (red channel). Co-localizations

were shown in yellow.

Function of BH3-only proteins as promoters of apoptosis has been largery analized
(382). However, the role of the C-terminal hydrophobic regions of these proteins in the
process is still controversial. Previous studies have demonstrated that some BCL-2 TM
regions in the absence of the rest of the repective proteins are able to destabilize the outer
mitochondrial membrane (217, 231) and/or generate pores to produce the release of
apoptogenic proteins in order to induce apoptosis (68, 240). According to this, we
analized the capability of BH3-only C-terminal regions to induce apoptosis.
Overexpression of the GFP/BH3-Ct fusions in HeLa cells did not produce apoptosis
(Figure 5.5A). These observations were confirmed by immunolocalization assays. The
absence of Cyt-c release was observed in all BH3-only C-terminal regions analized in the
present study by confocal microscopy (Figure 5.5B).

These results indicate that despite the hydrophobic C-terminus of these proteins are
not directly related with the pro-apoptotic activity of the BH3-only proteins, they could

play a relevant role in protein targeting and membrane sorting.
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Figure 5.5. GFP/BH3-Ct fusions do not promote apoptosis activation. (A) Caspase-3-like activity measured
in the HeLa cells. Bars represent the mean of three experiments + s.d. (*p < 0.1; **p < 0.05; ***p < 0.001.
ABT-263 10 pM was used as apoptotic inductor. Western blot was developed against GFP antibody and o-
tubulin (load control). (B) Release of Cytochrome ¢ in HeLa cells. Confocal images from HeLa cells transfected
with different GFP/BH3-Ct constructs (green channel). Cells were fixed and incubated with Cyt-c antibody

(apoptotic marker, red channel). Co-localizations were shown in yellow.

4.3. Concluding remarks.

Structural and biophysical studies have been invaluable in deciphering the role of BH3-
only proteins (383), but gaps remain in our knowledge specially concerning the way BH3-
only proteins influences on Bax/Bak membrane association (207). BH3-only proteins are
crucial in the regulatory mechanism of apoptosis, inhibiting the anti-apoptotic BCL-2
members or activatying directly the pro-apoptotic effectors Bax and Bak. In this dual
action mechanism the subcellular distribution of BH3-only proteins, especially their
MOM localization can be of paramount relevance. The presence of C-terminal
hydrophobic region in BH3-only proteins can play a role in targeting and apoptotic
function of these proteins. Our results clearly show that Bik and Bmf C-termini and, to
some extent, Puma and Bim insert in biological membranes in vitro. Similar results were
obtained in the bacterial ToxR system, where Noxa C-terminal region again did not
display any insertion capacity in the bacterial membranes. However, when C-terminal
regions were tested in human cells some differences were observed. Insertion capacity
and subcellular localization of Bik C-terminus demonstrated proper targeting to the ER
membrane (106) and (Figure 5.4). Puma and Bim partially localized in the ER, altought
the presence of both fusions in MOM were also observed. This distribution correlates
with their apoptotic function as direct activators of Bax and Bak in MOM (100). The ER
localization of BH3-only C-terminus can be related to the ER-mitochondria associated
membranes (MAMs) contact sites between ER and MOM, where different ER and
mitochondrial proteins are switched (384, 385).

Cytosolic Bmf C-terminus distribution indicates that this BH3-only protein did not
contains MOM targeting information in its C-terminal hydrophobic region. In fact, this
BH3-only sensitizer protein could interact with the anti-apoptotic proteins in the cytosol

to be probably later carried to MOM, where the C-terminal hydrophobic region inserts.
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Noxa C-terminus did not show capability to insertion into any of the membranes
tested. However, the microscopy data indicated that the distribution of this fused protein
was reticular, although neither ER nor MOM localization was observed. Recently some
authors have described that the C-terminal tail of Noxa regulates the stability of
both Noxa and Mcl-1 (386). Reticular distribution observed for Noxa C-terminal region is
similar to that observed for some proteasome components and could be related with this
recently attributed function in protein turnover. Noxa C-terminal did not then behave as a
classical TM domain because did not show neither targeting neither insertion capacity to
subcellular membranes.

Overall, current data describe a non-mitochondrial distribution for BH3-only C-
terminal regions in clear contrast with the mitochondrial location found for the equivalent
region in other pro- and anti-apoptotic BCL-2 family proteins. BH3-only proteins have to
associate with other anti- or pro-apoptotic BCL-2 partners to exert their apoptotic
functions (387). Through these interactions, BH3-only proteins are probably targeted to
MOM only when the apoptotic machinery is activated.

The C-terminal regions of the BH3-only proteins analyzed have a moderate to low
hydrophobicity score (except for Bik C-terminus) that, however, do not preclude them to
insert into biological membranes. Interestingly, all the C-terminal regions analyzed lack
the flanking positives charges, which have been extensively described as a signal for
mitochondrial targeting (193). The ER is the preferred location for Bik, Bim and to some
extent Puma, whilst their MOM translocation will probably require the enrollment of
additional factors involved in mitochondrial targeting (194). For that reason, most of
BH3-only C-terminal regions analyzed do not reach MOM by themselves and remain at
the cytosol or inserted into the ER. Furthermore, a tight relation between the membrane of
ER and mitochondrial has been recently described through the MAMs regions. These
physical interaction sites between ER and mitochondria could have a role in the
transmission of apoptotic signals through BH3-only proteins (384, 385). Then, BH3-only
proteins could be transferred through the MAMs from the ER membrane to the MOM or
stablish interactions with some BCL-2 family members located in the MOM to switch to
mitochondria. In conclusion, BH3-only proteins exert their pro-apoptotic functions by

differents ways and, as a consequence, their C-terminal regions have diferent targeting
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and insertion capabilities in subcellular membranes. Further studies devoted to the
mechanisms that control BH3-only proteins-mediated apoptotic activation need to be

done in order to expand our knowledge of this puzzling and well orchestated process.
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Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools.

6.1 Introduction.

Traditionally, Bcl-2 TMDs were referred to as membrane inserting domains (388).
However, it is becoming apparent that the TMDs are more than mere insertion domains
and may play a key role in the function of the Bcl-2 proteins (389-391). Synthetic
peptides derived from such domains may thus represent useful analysis tools when
analyzed in the appropriate in vitro assays, as demonstrated for other membrane-related
biological disorders (392). Moreover, the sensitivity of tumor cells to MOMP when
challenged with BH3 domain-derived peptides was recently exploited to increase the
cellular response to chemotherapy (326, 393). This novel ‘mitochondrial priming’ concept
extended to targeted membrane perturbation may therefore provide new directions in the
pharmacological manipulation of cell death. We hypothesize that the BCL-2 derived
TMD plays a central role in the function of Bcl-2 proteins and that characterization of the
TMD membrane-binding properties will provide the initial step to understanding the
specific role of the mitochondrial membrane in the apoptosis pathway. The aim of this
chapter therefore was to perform a systematic evaluation of Bcl-2 TMD-derived peptides
(TMD-pepts) in complementary biophysical and cellular studies to provide new insight
into the role of the TMD in this prevalent cellular pathway.

6.2 Results and Discussion.

6.2.1. Peptide Design and Conformational Flexibility of Bcl-2 TMD-derived
Peptides.

In order to perform a comparative study of the biophysical properties and putative in
cellulo activity of the C-terminal region of Bcl-2 proteins, we designed and analyzed a
series of peptides identified as TMDs (TMD-pepts). To determine the most appropriate
sequence regions to synthesize, the entire sequence of anti-apoptotic (Bcl-2, Bel-xL, Bel-
w, Mcl-1) and pro-apoptotic (Bax and Bak) proteins were analyzed using several
transmembrane predicting algorithms (see Methods). The C-terminal residues of all
proteins were found to be the most hydrophobic and therefore highly probable TMD
segments. According to these results individual peptides were designed and N- and C-
terminal lysine residues were added to facilitate synthesis, purification and

characterization (Table 6.1).
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Table 6.1. CD characterization of Bcl2-derived peptides

Percentage of a-helix'

TMD-pepts Peptide sequence MW AG (keal/mol)* PO,” Buffer 50mM SDS 10mM
GpA Ac-KKEITLIIFGVMAGVIGTILLISYGIKK-NH2 33173 -1.150 13 36
Bcl-2 Ac-KKKTLLSLALVGACITLGAYLKKK-NH2 2601.8 -1.356 22 100

Bel-xLL Ac-KKRWFLTGMTVAGVVLLGSLFSRKK-NH2 2864.9 -0.355 8 78
Bel-w Ac-KKKRTVLTGAVALGALVTVGAFFAKKK-NH2 28439 -0.418 8 49
Mcll Ac-KKRNVLLAFAGVAGVGAGLAYLIRKK-NH2 2754.8 -0.275 7 79

Bax Ac-KKTWQTVTIFVAGVLTASLTIWKK-NH2 2760.6 0.510 12 40
Bak Ac-KKKILNVLVVLGVVLLGQFVVRRFFKKK-NH2 33113 -0.735 46 100

' Percentages of o-helical secondary structure obtained from the CD data interpreted with the K2D program of
Dichroweb (available on the World Wide Web).? Prediction of AG (394).obtained from AG prediction server 1.0
(http://dgpred.cbr.su.se) considering only the TMDs of the proteins without added flanking Lys (shown in
italics) (336)(394).

The native TMD sequence of each protein contain at least one positively-charged
amino acids and the insertion of additional terminal lysine residues have previously been
shown to not interfere with the interacting properties of the hydrophobic sequences of
many TMD core sequences (395, 396). Although the sequence alignment of the peptides
derived from the TMD revealed less than 25% sequence identity, all the original
sequences displayed a similar hydrophobicity profile with segregation of positive net
charge balance towards the N- and C-termini while the hydrophobic residues were located
in the central region (Table 6.I), a gradation of hydrophobicity statistically found in TM
segments of solved integral membranes protein structures (397).

The secondary structure of each peptide in different media was evaluated by circular
dichroism (CD) spectroscopy. A control peptide derived from the TMD sequence of the
well characterised plasma membrane protein glycophorin A (GpA) was also included. All
peptides analyzed showed conformational flexibility, adopting different secondary
structures in buffers and membrane-like environments analyzed. In phosphate buffered
saline (PBS), the CD spectra of the TMD-pepts showed characteristics of extended
conformation except for those derived from the pro-apoptotic protein Bak (TMD-Bak),
which showed a moderate percentage of secondary structure (Table 6.1 and Figure 6.1). In
order to initially examine the propensity of each peptide to adopt a defined secondary
structure, CD spectra were also recorded in the presence of TFE (100% vol/vol), a solvent
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known to induce helicity in single-stranded potentially a-helical polypeptides (398); in the
presence of methanol (MeOH), which can increase B-structure population (399); and at
the criticalmicellar concentrations (10 mM) of SDS (400), which may stabilize both a-
helical or B-sheet conformations depending on the intrinsic secondary structure propensity
of the polypeptide (401). In 100% TFE, the TMD-pepts adopted mainly o-helical
conformation, while TMD-Bcl-w and TMD-Mcl-1 adopted mixed random and helical
conformations (Figure 6.1). In the presence of both MeOH and 10 mM SDS, TMD-Bc¢l-2,
TMD-Bcl-xL and TMD-Bak exhibited a-helical structure; TMD-Bcl-w and TMD-Mcl-1
adopted mixed random and helical conformations, while TMD-Bax preferentially adopted
a B-sheet conformation (Table 6.1 and Figure 6.1).
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Figure 6.1. Circular Dichroism (CD) spectra of TMD derived peptides. CD spectra were measured between
190 and 240 nm at a temperature of 25° C using a Jasco J-810 spectropolarimeter. Each measurement was
recorded using 2,2,2 — Trifluoroethanol (TFE 100%), Methanol (MeOH 100%), and Sodium dodecyl sulfate
(SDS) 10 mM and Phosphate Buffer.

Overall, the solution CD data demonstrate that TMD-pepts, with similar hydrophobic
and charge distribution characteristics, exhibit different propensities to adopt a defined
secondary structure in membrane-mimetic environments suggesting conformational
flexibility (402). While TMD-Bax was the only peptide that exhibited B-sheet
conformation, overall, the a-helical conformation was predominant in membrane-like

environments for all TMD-pepts.

6.2.2. Membrane Binding Properties of TMD-pepts.

Bcl-2 family proteins are not commonly classified as integral membrane proteins but have
been recognized to act exclusively on the cytoplasmic face of mitochondria and/or ER
membranes (403), where they most probably insert via their C-terminal TMD. Bcl-2
proteins are synthesized by free ribosomes as full-length proteins (including the C-
terminus) in the aqueous cytosol before reaching any lipid bilayer, where C-terminal
TMDs are energetically more stable. This process entails selective TMD shielding from
the aqueous cytosol, targeting to the membrane surface and integration into the lipid
bilayer, most likely with the assistance of as yet undiscovered chaperones. In order to
evaluate the membrane affinity of the TMD of Bcl-2 proteins we analysed the binding of
each TMDpept to synthetic model lipid membranes. We used the mitochondrial model
membrane system (POPC/POPE/POPS/POPI/ 5/3/1/1 - Mito-like) that mimics the lipid
composition of the outer mitochondrial membrane. POPC/POPE/POPS/POPI/TOCL
4.8/2.8/1/1/0.4 (Mito-like+CL) was used to determine the effect of cardiolipin, a
mitochondrion-specific lipid (174, 404, 405), that is predominantly located in the inner
mitochondrial membrane but may also translocate to the outer mitochondrial membrane in
some circumstances (406). POPC was used as a model of the plasma membrane (PM-like).
The binding of TMD-pepts to each model membrane and the effect of peptide binding on
the membrane structure was analyzed by dual polarization interferometry (DPI) (407,
408) (see Methods) in collaboration with Prof. Aguilar’s laboratory. The structural
parameters of each supported bilayer formed via in-situ liposome deposition and
characterized by DPI are listed in Table 6.11.
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Table 6.I1. Properties of the lipid bilayers formed on the planar silicon oxynitride chip surface at 20°C. (Values
are averages of 12-14 repeats). Value error is one standard deviation.

Lipid Th(lxcll::)ess Birefringence (ng//l;s:lz)
PM-like

POPC 4.76 £0.03 0.0199+0.0005  4.76 +0.03
MITO-like

POPC/POPE/POPS/POPI (5:3:1:1) 4.48 +0.06 0.0176 + 0.0005 4.47+0.07

MITO-like+CL  popC/POPE/POPS/POPI/POCL

(4.8.2.8:1:1:0.4) 4.89+0.18 0.0198 + 0.0001 4.88+0.33

The accumulative binding of each TMD-pepts was characterized by the transmagnetic
(TM) and transelectric (TE) phase changes, which were subsequently resolved into the
mass of membrane-bound peptide and birefringence for each lipid bilayer. The overall
amount of bilayer-bound peptide at the end of the 20uM injection is plotted in Figure 6.2.
Relative to the PM-like bilayer, only Bcl-w and Bak showed a statistically significant
increase in mass bound to the Mito-like bilayer. However, there was a meaningful
increase in the total amount of peptide bound in the presence of cardiolipin for all
peptides except Mcl-1-derived TMD-pept. Globally, the binding experiments indicate that
all peptides interact more efficiently with the cardiolipin-containing Mito-like bilayers.
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Figure 6.2. TMD-pepts preferential binding to mitochondrial membrane-derived bilayers. The total mass
of TMD-pepts bound to the PM-like (POPC), Mito-like (POPC /POPE/POPS/POPI = 60:30:10:10) and Mito-
like+CL (POPC/POPE/POPS/POPI/TOCL = 58:28:10:10:4) obtained at the end of 20uM injection. Values
indicate mean values +/- S EE.M. (*: p <0.02, **: p <0.005 and ***: p <0.001).

Birefringence is a measure of membrane ordering that permits a systematic analysis of
changes in bilayer order (a measure of structure), and allows the impact of peptide
binding on the membrane structure (346, 408, 409) to be investigated. The changes in the
order of the PM-like and both Mito-like bilayers induced by the TMD-pepts
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(birefringence vs mass plots) are shown in Figure 6.3, which reflect the overall profile of
bilayer disordering during peptide binding. For each bilayer, injection of each peptide at
increasing concentrations resulted in increased mass bound to the bilayer. There was little
to no dissociation of any of TMD-pepts indicating that all peptides bound irreversibly
under the conditions used. Furthermore, These plots demonstrate that all peptides caused
minimal disruption to the PM-like membrane but reduced the ordering of both Mito-like

membranes.
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Figure 6.3. Changes in bilayer order induced by TMD-pepts. Dual Polarisation Interferometry. The
effect of peptides on membrane disordering is analyzed by the changes of birefringence (Dnf) as a function
of membrane bound-peptide mass, in POPC (PM-like, left panels), in POPC/POPE/POPS/POPI (5:3:1:1)
(MITO-like, central panels) and in POPC/POPE/POPS/POPI/POCL (4.8:2.8:1:1:0.4) (MITO-like/CL, right
panels). A decrease in birefringence corresponds to a decrease in bilayer order, while an increase in

birefringence reflects an increase bilayer ordering.

The dependence of both mass and birefringence on peptide concentration as shown in
Figure 6.4 allows further analysis of the effect of each peptide on the structure of the three
model membranes. On the PM-like bilayer, the membrane ordering increased slightly
(increase in birefringence) or decreased (drop in birefringence), reflecting small changes
in bilayer structure and demonstrating the ability of the PM-like bilayer to recover from
peptide binding. However, in comparison, the Mito-like bilayer exhibited a significant
degree of re-ordering to accommodate the bound peptide, which increased further in the
presence of cardiolipin. For the TMD-pepts derived from anti-apoptotic proteins (TMD-
Bcl-2, TMD-Bcel-xL, TMD-Bcl-w and TMD-Mcl-1),
mitochondrial membrane-derived bilayers approached a plateau at higher levels of bound

the birefringence of both

peptide (Figure 6.3 and 6.4). In contrast, the birefringence of the Mito-like bilayer
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continued to drop for the TMD-pept derived from pro-apoptotic protein Bak (Figure 6.3
and 6.4), suggesting a higher membrane perturbing effect on this mitochondrial
membrane-derived bilayer. As expected, the GpA-derived TMD-peptide, a protein that is
not associated with mitochondrial membranes, caused a much smaller drop in bilayer
order. In summary, the results indicate that a lower concentration of the TMD peptides is
required to induce a significant change in membrane order in both mitochondrial
membrane-derived bilayers, and suggests a potential role of cardiolipin for the differential
localization of the Bcl-2 proteins in membranes, especially for TMD-Bcl-xL and TMD-
Bak (Figure 6.4).
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Figure 6.4. Changes in bilayer order induced by TMD-pepts. Measurements of bilayer mass and
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(green line) and Mito-like+CL like bilayers (red line). A decrease in birefringence corresponds to a decrease

in bilayer order, while an increase in birefringence reflects an increase bilayer ordering.
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Next, we analyzed the influence of the membrane environment in the secondary structure
of TMD-pepts by means of CD spectroscopy. CD spectra were obtained in the presence of
synthetic liposomes at different lipid:peptide molar ratios (L:P). In the presence of PM-
like liposomes, TMD-pepts were found to populate random or B-sheet-like conformations
characterized by a minimum centered at 217 nm (Figure 6.5).

The CD spectra in the presence of Mito-like liposomes exhibited a minimum at 222-224
nm suggesting the coexistence of dynamic mixed structures characterized by the presence
of helical conformation. In addition, the 208 nm minimum characteristic of helical
conformations was less defined. The less defined double minima associated with a-helical
spectra is commonly observed for peptides that bind strongly to liposomes (410, 411).
TMD-Bax precipitated out from solution in the presence of Mito-like liposomes
precluding structural analysis by CD.

In contrast to the behavior in PM-like liposomes, all TMD-pepts caused Mito-like
liposome solutions to become turbid over time and dynamic light scattering (DLS) was
therefore utilized to understand this phenomenon. The size and distribution of particles
present upon addition of each peptide are shown in Figure 6.6. At low lipid:peptide (L:P)
ratios (red lines) we found a single species approximately 60 - 100 nm in size
corresponding to the expected size for liposomes produced by extrusion through a 100 nm
pore size filter. However, at higher L:P ratios, all peptides except TMD-Bax (which had
low solubility under the conditions) and TMD-GpA, caused the formation of larger
species in the range of 800—1000 nm and up to 5000 nm in diameter. Thus, the addition
of TMD-Bcl-2, TMD-Bcl-xL, TMD-Bcl-w, TMD-Mcl-1 and TMD-Bak all caused
changes in the properties of the model Mito-like membrane leading to liposome fusion.
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Figure 6.5. CD spectra of TMD-derived peptides in POPC (left panels) and POPC:POPE:POPS:POPI (5:3:1:1,
right panels) at two different lipid:peptide ratios, 1:51 (black) and 1:201 (blue).
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Figure 6.6. Analysis of the effect of TMD-derived peptides on liposome diameter in POPC and
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6.2.3. TMD-pepts promote calcein release from liposomes and Cytochrome ¢
Release from Isolated Mitochondria.

To determine whether membrane binding of TMD-pepts induced bilayer disruption,
membrane leakage was analyzed by dye release assays. We measured the rate of
liposome-encapsulated calcein release from model PM-like and Mito-like membranes.
The TMD-pepts were evaluated at the biologically active concentration of 10 pM (see
below) and all Bcl-2-derived peptides, except Bel-w, consistently induced higher calcein
release from Mito-like than from PM-like liposomes (Table 6.11I), suggesting a specific
role in the perturbation of mitochondrial membranes, especially for TMD-Bcl-xL, TMD-
Mcl-1, and TMD-Bax and TMD-Bak. Moreover, the control TMD-GpA peptide induced
more calcein leakage from PM-like than from Mito-like membranes and can therefore be
described as a mitochondrial inactive peptide. These results, together with the results
obtained from DPI, suggest that TMD-pepts derived from Bcl-2 proteins are poorly active

at plasma membranes inducing minor damage that can easily self-repair.

Table 6.I11 . TMD-pepts-induced calcein release from liposomes

a
% of released calcein

TMD-pept
PM-like Mito-like t-student
Bcl-2 28 +4 40 +7 ’
Bel-xL 4 +7 75 +16
Bel-w 20 £6 28+5 n.s.
Mecl-1 15 +6 53 £6
Bax 6 +8 52 +7
Bak 41 £12 88 +3
GpA 47 £ 12 11 £6 "

* The % of calcein release was calculated taken into account as total release that obtained when liposomes
were treated with the 10% Triton X-100. The TMD-pepts were evaluated at 10 pM.

140



6 CHAPTER III

Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools.

Interestingly, the damage that these peptides induce in mitochondrial membranes may
find application in the apoptotic activation of tumor cells by mitochondrial priming. We
then evaluated the potential biological activity of TMD-pepts in isolated intact
mitochondria purified from mouse embryonic fibroblasts (MEFs) cells. In control (N.T.,
non-treated) mitochondria, cytochrome ¢ (Cyt-c) was found in the pellet that contained
the mitochondrial fraction characterized by the presence of the mitochondrial voltage-
dependent anion selective channel protein 1 (VDAC 1) (412) (Figure 6.7a and b). A
similar result was found with the mitochondrial inactive peptide TMD-GpA. In contrast,
TMD-Bcl-xL, TMD-Bax and TMD-Bak induced the highest level of mitochondrial Cyt-c
release, while TMD-Mcl-1 was consistently the less active peptide (Figure 6.7a and b). In
order to further characterize the effect of TMD-pepts on the integrity of the isolated
mitochondria, we developed a mitochondrial-swelling assay. TMD-pepts did not induce
swelling when compared to Ca*"-only induced experiments (Figure 6.7c). Thus, although
TMD-pepts induced Cyt-c release, the molecular mechanism by which this occurs does
not disrupt mitochondrial integrity. These results correlate with previous studies,
suggesting that the molecular mechanism of full length Bcl-2 proteins-induced Cyt-¢
release specifically perturbed the mitochondrial outer membrane, while the inner
membrane and the ultra-structure of mitochondria remained unaffected (413). The
biophysical activity of TMD-pepts in synthetic membranes, together with the Cyt-c
release capacity from isolated mitochondria support the notion that TMD peptides not
only act as membrane anchoring domains but can also be considered as biologically active

agents in their own right.

a
c N.T.  TMD-GpA TMD-Bak TMD-BokxL TMD-Bo-2 TMD-Bax — TMD-Mcl-1 TMD-Bel-w
SN SN P SN P SN P SN P SN P SN P SN P SN P
Cytc R D A S o S ——— | T ——
VDAC 1 - s ... - e
b c
el
()
(2]
3
° g 06 —NT.
o Coa N, --- CaCl
= [l %, —— TMD-pepts
&) ©]
2 02
sl b dt it igbdEyY
0.0 4 T T v T T v
N N
& o‘? Q,o & o\s&\, o P 10 20 30 40 50 60
Ry Q> SO § § Time (min)
AP FWF A

141



6 CHAPTER III

Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools.

Figure 6.7. TMD-pepts promote cytochrome c release from intact isolated mitochondria. (a) VDAC and
Cyt-c immunoblotting from pure mitochondria fractions (Pellet). Data are representative of three independent
assays. (b) Western Blot quantification of Cyt-c release using ImageJ software. Experiments were performed
independently three times (N=3) (***p < 0.001, compared with NT). (c) Mitochondrial swelling of TMD-pepts

compared with CaCl, as positive control measured as absorbance change at 540nm.

6.2.4. Biological Activity of TMD-pepts on Human Cervix Adenocarcinoma
Cells.

To further characterize the marked effect of TMD-pepts in isolated mitochondria, their
biological activity in human cervix adenocarcinoma (HeLa) cells was evaluated. Firstly,
HeLa cells were incubated in the presence of TMD-pepts at 10 uM for 24h. In these
experimental conditions, cells were resistant to TMD-pepts and showed normal behavior.
In fact, the levels of free lactate dehydrogenase (LDH) in the media revealed that cells did
not lose permanent or transient membrane integrity due to TMD-pepts treatment (data not
shown). In addition, the TMD-pepts did not induce plasma membrane disruption-induced
cell death. As previously described (343, 414) Lipofectamine 2000 was used to facilitate
the access of the peptides to the cell cytosol through the plasma membrane. We found that
10 uM TMD-Bcl-2, TMD-Bcl-xL, TMD-Bax and TMD-Bak promoted a significant
increase in HeLa cell death percentages under these experimental conditions (Figure 6.8a).
As expected, compromised cell viability correlated with loss of mitochondrial
functionality (Figure 6.8b, Figure 6.9a), and a moderate release of Cyt-c from
mitochondria, in particular with TMD-Bcl-xL and TMD-Bak (Figure 6.8c). These two
highly active peptides also caused a significant drop in intracellular ATP levels in the
early stages of treatment when the effect of the apoptotic inducer (CDDP) was still not
apparent (Figure 6.8d). The drop in ATP was most probably caused by the TMD-pepts
induced mitochondrial destabilization. Furthermore, we found no evidence of caspase-like
activity in either case (Figure 6.8e, lanes 1-5). In this context the TMD-pepts drive cells to
necrotic rather than apoptotic cell death despite having a moderate amount of Cyt-c
released in the cytoplasm (415).
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Figure 6.8. Bcl-2-derived peptides effect on viability, mitochondrial membrane potential, Cyt-c release
and caspase 3/7 activity in HeLa cell cultures at TMD-pepts 10 uM. (a) Cell viability measured by trypan
blue exclusion assay of cultures transfected with peptides at 10 pM for 24 h. (b) Mitochondrial membrane
potential was measured by flow cytometry with TMRM. (c) Mitochondrial permeabilization was analyzed by
flow cytometry with Cyt-c FITC. (d) Measurement of intracellular ATP by luminescence, peptide treatment
decreased intracellular ATP levels compared with the not treated cells. Representative data are shown, bars
represent the mean of three independent experiments + s.d. (*p < 0.1; **p < 0.05; ***p < 0.001, compared with
NT). (e) Caspase 3-like activity measured in the HeLa cells. Bars represent the mean of three independent
experiments + s.d. (*p < 0.1; **p < 0.05; ***p < 0.001 compared with CDDP). Western blot developed against
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caspase 3 antibody using a-tubulin like load control. The fraction at 17 and 19 KDa represents the active form
of the enzyme. (f) Effect of Bcl-2 and Bel-xL Full length on cell death was assayed by flow cytometry with
FITC Annexin V and Propidium loride (PI). (g) Correlation Graph for HeLa cell line according to the results
showed in Figure 6.7, Figure 6.8 and Table 6.111.

Accordingly, when cell fate was monitored by the combined staining with the dye
Propidium iodide (PI, which is excluded from cells with intact plasma membranes) and
FITC-labeled Annexin V (AnnV, which binds to phosphatidylserine moieties exposed on
the surface of dying apoptotic cells) we found that the most active peptides TMD-Bcl-2,
TMD,Bcl-xL, TMD-Bax and TMD-Bak generate predominantly necrotic cell death
(Figure 6.9b, brown bars). Focusing on the most active peptides TMD-Bcl-xL and TMD-
Bak, it should be highlighted that their behavior correlates well with their biophysical
properties in the MOM. Nevertheless, their pro-death effect could not always be related to
that of the full-length protein; especially for TMD-Bcl-xL, which is an anti-apoptotic
member. Previous studies support the ability of Bel-2-derived TMDs, and other natural or
synthetic cytotoxic peptides (416-420) to permeabilize mitochondria, through possible
pore formation (421-423).

To better understand the functional correlation between TMD-pepts and full length
(FL) Bcl-2 proteins we have analyzed the effect of TMD-Bcl-xL and TMD-Bak in the
presence of the anti-apoptotic proteins Bcl-2 and Bcl-xL. Flow cytometry analysis
showed a slight decrease in cell death in the presence of the anti-apoptotic FL proteins,
while the necrotic pathway was not significantly affected (Figure 6.8f). This indicates that
anti-apoptotic proteins are able to partially block the residual apoptotic pathway promoted
by Cyt-c release due to the presence of TMD-peptides. Based on this result we can
speculate on the existence of a putative (direct or indirect) interaction among TMD-pepts
and the FL Bcl-2 proteins.

As shown in Figure 6.8g, there is a good correlation between the biophysical effects of
TMD-pepts on synthetic membranes and the outcome of their treatment in cell cultures.
The more they perturb model membranes the larger are the cellular consequences.
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Figure 6.9. Mitochondrial dysfunction of HeLa cells co-treated with CDDP and Bcl-2 TM domain
peptides (10 pM and 3 pM) measured by MTT. (a) Cells were treated with TM peptides at 10 uM for 24 h.
(b) Apoptotic cell death promoted by the TMD-pepts at 10 uM was analyzed by flow cytometry with FITC
Annexin V and PI. (c) Cells were treated with CDDP (40uM) for 12 h after transfection with TM peptides at 10
uM. (d) Cells treated with TM peptides at 3 uM for 24 h represented by white bars. Cells treated with CDDP
(40uM) for 12 h after transfection with TM peptides at 3 pM represented by black bars. All bars represent the
mean of three independent experiments + s.d. (¥p <0.1; **p < 0.05, ***p < 0.001).

6.2.5. Mitochondrial priming effect of TMD-pepts.

It has been proposed that mitochondrial priming, understood as the readiness of
mitochondria to actively engage the apoptotic program, inversely correlates with
resistance to chemotherapy (324, 326). Mitochondrial priming can be forced by
decreasing the cellular content of anti-apoptotic Bcl-2 proteins or by using BH3-mimetics
such as ABT-737 (326). We were therefore interested in the evaluation of TMD-pepts as
novel mitochondrial priming tools. Thus, we evaluated the sensitivity of HeLa cells to co-
treatment with the chemotherapeutic agent cisplatin (cis-diammineplatinum (II) dichloride,
CDDP) and TMD-pepts. Control cells treated with CDDP in the absence of TMD-pepts
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showed close to 50% apoptotic cell death (Figure 6.10a) characterized by mitochondrial
dysfunction (Figure 6.9¢), loss of mitochondrial membrane potential (Figure 6.10b), Cyt-c¢
release (Figure 6.10c) and caspase-3/7-like activity (Figure 6.10d). Interestingly, we
observed that a significant decrease in cell viability correlated with an increase in
apoptotic markers when CDDP treated cells where co-treated with TMD-Bcl-2, TMD-
Bcl-xL, TMD-Bax and TMD-Bak peptides (Figure 6-10).
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Figure 6.10. Co-treatment of TMD-pepts (10pM) with CDDP significantly enhances the effect of the
chemotherapeutic drug in HeLa cells. Cells were treated with CDDP (40 uM) for 12 h after peptides
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transfection protocol. (a) Viability measured by trypan blue assay. (b) Mitochondrial membrane potential was
measured by flow cytometry with TMRM. (c) Mitochondrial permeabilization was analyzed by flow cytometry
with anti Cyt-c FITC. (d) Caspase 3-like activity measured in the HeLa cells. Bars represent the mean of three
independent experiments + s.d. (*p < 0.1; **p < 0.05; ***p < 0.001 compared with CDDP). (e) Apoptotic cell
death was analyzed by flow cytometry with FITC Annexin V and PI. HeLa.

Moreover, the less mitochondrial active peptide, TMD-Mcl-1, and the mitochondrial
inactive peptide, TMD-GpA, did not increase the chemotherapeutic effect of CDDP
(Figure 6.10). It should be noted that the effect of the co-treatment on the caspase-3/7-like
activity is the result of a cooperative effect between the peptides and the drug, provided
that cell treatment with TMD-pepts in the absence of CDDP did not activate caspases
(Figure 6.9¢ lanes 2-4). The caspase-3 activity induced by the TMD-pepts in combination
with CDDP was abolished in the presence of the general caspase inhibitor zZVAD (Figure
6.11).

Caspase-3/7-like activity (A.U)

CDDP - + + + + + +
zVab - - - -+ + 4
NP\ NP\
FF

AP\ W\

&< RN

Figure 6.11. HeLa cells treated with TMD-Bcl-xL and TMD-Bak peptides and CDDP in presence of
Caspase inhibitor zVaD. Cells were transfected with the peptides at 10uM. zVaD (10uM) was added before
CDDP (40uM) treatment, 4 h later peptide transfection (total time 24h). (a) Apoptosis activation was measured
by Caspase 3-like activity measured in HeLa cells. All bars represent the mean of three independent experiments
+ s.d. (ns, no significant; *p <0.1).

Flow cytometry analyses showed that CDDP-induced apoptotic cell death (AnnV'/PI

and AnnV'/PI", light and dark gray bar segments) significantly increased in the presence
of the mitochondrial active peptides TMD-Bcl-2, TMD-Bcl-xL, TMD-Bax and TMD-Bak,
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but was not affected by the presence of the mitochondrial inactive peptide TMD-GpA
(Figure 6.10¢). These results also correlated with a change in the behavior of peptides,
observed by flow cytometry, from mainly necrotic when used alone (Figure 6.9b), to
mainly apoptotic when used in combination with CDDP (Figure 6.10e). Altogether, these
results indicate the existence of a switch from necrosis to apoptosis when TMD-pepts are
used in combination with CDDP.

To better define the cooperative behavior observed in the experiments described above
we studied the cell death properties at sub-lethal concentrations of TMD-pepts when used
in combination with CDDP.

We then evaluated the active TMD-pepts at 3 uM in HeLa cells. At this concentration,
all peptides by themselves, with the exception of TMD-Bak, showed less than 10%
reduction in cell viability (Figure 6.12a, white bars), and only a partial loss of
mitochondrial potential, as indicated by an increase in the number of cells with low
transmembrane potential (Figure 6.12b). Moreover, neither Cyt-c release nor caspase-3/7-
like activity was observed (Figure 6.12 panels ¢ and d, respectively). To explore whether
the priming exerted by the mitochondrial active TMD-pepts at sub-lethal concentrations
could increase the sensitivity of HeLa cells to chemotherapeutic agents, we used co-
treatment with CDDP (black bars). The mitochondrial priming resulted in a large increase
in CDDP-induced cytotoxicity (Figure 6.12a, Figure 6.9d) accompanied by an increase in
the percentage of cells with low mitochondrial transmembrane potential (Figure 6.12b), in
the Cyt-c released to the cytosol (Figure 6.12c) and in the caspase-3/7-like activity
(Figure 6.12d). Accordingly, CDDP induced apoptotic death significantly increased in the
presence of the TMD-pepts (see AnnV'/PI" and AnnV '/PI" population in Figure 6.12¢).
These results confirm the behavior observed at lethal concentrations of TMD-pepts and
strongly support their mitochondrial priming properties.

Interestingly, some TMD-pepts from anti-apoptotic proteins, such as Bcl-xL, show
pro-death function in the tumor cell lines analyzed. It has been previously demonstrated
that Bcl-xL is cleaved by caspase 3 and calpains, converting Bel-xL from an anti-
apoptotic to a pro-apoptotic factor (424).

148



6 CHAPTER III

Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools.

a b

100 T L - ’:;
g w 2
~ o
2 60 2
§ 40 _%

£

20

i 2
CDDP - - - - - - 4 + + + + + CDDP -
A RSO AP
SR FEY SR FEE
POSIANENR APPSR

r oo N
$ 8829

@
1=

% Cytosolic Cyt c
N
2

Caspase-3/7-like activity (A.U)

°. 3

(1]

Bl AnnV~PI* [ AnnV*PI* [ AnnV* PIT[] AnnV™PI™

100

Annexin V -PI

Figure 6.12. Mitochondrial priming by TMD peptides. A Sub-lethal TMDpepts doses induce a
mitochondrial priming effect in co-treatments with CDDP in HeLa cells. Comparison of the effect of
treatment with TMDpepts alone at 3 uM (white bars) or with co-treatment with CDDP at 40 pM for 12 h (black
bars). (a) Cell viability measured by trypan blue exclusion assay of cultures treated with peptides for 24 h. (b)
Mitochondrial membrane potential was measured by flow cytometry with TMRM. (c) Mitochondrial
permeabilization was analyzed by flow cytometry with anti Cyt-c FITC. (d) Caspase 3-like activity measured in
the HeLa cells. Bars represent the mean of three experiments + s.d. (*p < 0.1; **p < 0.05; ***p < 0.001 NT

(white bars) and CDDP (black bars)). (¢) Apoptotic cell death was analyzed by flow cytometry with FITC
Annexin V and PL.
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Here we show that the Bel-xL TMD could be the protein domain responsible for this
switch. This behavior could be explained taking into account the common evolutionary
origin of Bcl-2 proteins. The programmed cell death is executed with very few members
in invertebrates but new members appear with the genomic expansion of vertebrates. In
simpler systems, the same protein could be responsible for the final decision of cell death
or survival depending on post-translational modifications (425, 426). All these proteins
share one to four conserved Bcl-2 homology domains (BH) and most possess a C-terminal
hydrophobic amino acid. The divergent evolution of pro- and anti-apoptotic members
could be explained considering only the cytosolic regions of Bcl-2 proteins (425).
Therefore we speculate that the pore formation capability of TMD-pepts could be
modulated by the folding of their soluble regions. Overall, from these experiments we
conclude that TMD-pepts clearly enhance the cell apoptosis-inducing effects of the
chemotherapeutic agent CDDP in HeLa cells independently of their pro- or anti-apoptotic

origin.

6.2.6. Mitochondrial priming effect can be extended to other cancer cells.

In order to generalize our findings and to better understand their physiological relevance,
we analysed the behavior of the most active TMD-pepts in the human colorectal
carcinoma HCT116 and HCT116 Bax/Bak double knock out (DKO) cell lines (427, 428).

We observed that HCT116 cells had a similar behavior to HeLa cells although they
were slightly more resistant to TMD-pepts treatment. Hence, we characterized the effect
of these TMD-pepts at 20 pM (lethal) and 10 pM (sub-lethal) concentrations (Figure
6.13).

We examinated that for both cell lines, treatment at lethal concentrations provoked
loss of cell viability, which correlates with a decrease in ATP levels (Figure 6.13 a to d)
and an increase in mitochondrial destabilization (Figure 6.14 panels a and b). However,
there was no effect in caspase 3 activity in any case (Figure 6.13 e and f) as previously
described for HeLa cells. Interestingly, in the presence of CDDP, HCT116 wt cells also
showed the previously observed switch from necrosis to apoptosis (Figure 6.14c).
However, there were no changes in the necrotic populations when the co-treatments were
applied to the HCT116 DKO cell line (Figure 6.14d).
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Figure 6.13. HCT116 wt and DKO were treated with TMD-Bcl-xL and TMD-Bak peptides for 24h. Cells
were transfected with TMD-pepts (10 and 20 pM). (a, b) Viability was measured by trypan blue assay after 24h
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of peptide transfection. (c, d) Measurement of intracellular ATP/cell by luminescence, bars represent the mean
of three independent experiments + s.d. (¥*p < 0.1; **p < 0.05; ***p < 0.001, compared with NT). (e, f)
Apoptosis activation was measured by Caspase 3-like activity. Bars represent the mean of three experiments +
s.d. (*p <0.1; *¥*p < 0.05; ***p < 0.001 compared with NT (white bars) and CDDP (black bars)).
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Figure 6.14. HCT116 wt and DKO were treated with TMD-Bcl-xL and TMD-Bak peptides for 24h. Cells
were treated with TMD-pepts (20 pM) 4 hours after CDDP treatment. (a, b) Mitochondrial dysfunction was
measured by MTT assay after 24h of peptide transfection.(c, d) Apoptotic cell death was analyzed by flow
cytometry with FITC Annexin V and PIL.

Similar results were obtained when peptides were assayed at sub-lethal concentrations.
Under these sub-lethal conditions there was a slight effect of TMD-pepts in mitochondrial
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dysfunction (Figure 6.15 panels a and b), cell viability and ATP levels (Figure 6.13 a-d)
for both wild type and DKO cell lines. However, in the presence of CDDP, we observed a
notable increase in caspase 3 activity for HCT116 wild type cells (Figure 6.15 panels ¢
and e) but not for DKO cells (Figure 6.15 panels d and f). The absence of an apoptotic
switch in the HCT116 DKO cell line highlights the relevance of the Bcl-2 apoptotic
machinery in the TMD-pepts-mediated mitochondrial priming.
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Figure 6.15 Mitochondrial priming effect of TMD-pepts in HCT 116 cell lines wt and Bax/Bak KO. Cells
were treated with TMD-pepts at 10uM and CDDP is added at 20 pM. (a, b) Mitochondrial dysfunction was
measured by MTT assays 24h after peptide transfection. (c, d) Caspase 3-like activity measured in HCT 116
cell lines. Bars represent the mean of three experiments + s.d. (*p < 0.1; **p < 0.05; ***p < 0.001 compared
with NT (white bars) and CDDP (black bars)). (e, f) Apoptotic cell death was analyzed by flow cytometry with
FITC Annexin V and PL.

6.3. Concluding remarks.

The existing paradigm for Bcl-2 protein-mediated control of mitochondria and cell fate in
apoptotic signaling involves protein-protein interactions among Bcl-2 members mediated
by BH3 domains (123). However, there is increasing evidence the role of the membrane
(120, 429) and the interaction of Bcl-2 proteins within the membrane through their TMDs
(116, 196, 387, 388, 429, 430) must also be included. The present study has led to the
establishment of an activity-based classification of the Bcl-2 TMD-derived peptides.
Overall, both biophysical and cellular data point toward a clear correlation between
mitochondrial membrane insertion/perturbation capability and cellular activity (Figure
6.8g and Figure 6.16), sustaining an active role of these peptides in MOMP.
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Figure 6.16. Preferential TMD-pepts binding to mitochondrial membrane induces mitochondrial
membrane disruption. Schematic representation depicting the relatively low binding of TMD-pepts to the
plasma membrane compared to its higher binding to the mitochondrial membrane. This preferential binding

disrupts the mitochondrial membrane structure leading to Cyt-c release to the cytosol.

The control of apoptosis exerted by Bcl-2 proteins has led to the use of BH3-derived
peptides and BH3 mimetics as potential drugs to improve cancer treatments (307, 324,
326, 431). Targeting the BH3 domain of Bcl2 proteins to induce apoptosis in cancer cells
is not always effective and mostly depends on pro-survival Bcl2 members (393, 432, 433).
Therefore, combination treatments have emerged as novel pharmacological strategies to
avoid toxicities and increase efficacy of anti-tumor treatments (342, 394, 434). In this
scenario, we demonstrate that the combination of CDDP with sub-lethal dosages of TMD-
pepts, especially TMD-Bcl-xL and TMD-Bak, increases its pro-apoptotic activity,
exerting a mitochondrial priming effect. We speculate that TMD-pepts need direct or
indirect interactions with the Bcl-2 network to produce the apoptotic priming effect.

In light of the TMD-pepts effect in mitochondrial priming, we envisage that Bcl-2-
derived TMD-pepts have the potential to make significant contributions to our
understanding of apoptosis-induced clinical disorders and to establish a basis for the

design of new cancer therapeutics.
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7 CHAPTER IV

BH3-mimetics- and cisplatin-induced cell death proceeds through different pathways depending on the
availability of death-related cellular components.

7.1. Introduction.

Current anti-tumour treatments based in inducing apoptosis target cancer cells and rapidly
dividing normal cells as well as other especially sensitive differentiated cells. Therefore,
these treatments do not differentiate between malignant and normal cells. Chemotherapy
causes toxicity, leading to side effects like those reported for apoptosis-inducing and
DNA-damaging agent cisplatin (cis-diammineplatinum(II) dichloride, CDDP), which
induces ototoxicity (435) and alopecia (436). These undesirable effects may be
ameliorated by the discovery of new more specific cell death-inducing drugs (437), or by
selectively and locally inhibiting apoptosis in defined sensitive cells.

The proposal of developing BH3-mimetics as chemotherapeutic drugs originates from
understanding the role of the Bcl-2 protein family in regulating the intrinsic apoptotic
pathway by controlling mitochondria outer membrane permeability (MOMP). The small
molecule compounds developed as inhibitors of anti-apoptotic Bcl-2 proteins, generically
named BH3-mimetics such as ABT-737 (Abbott Laboratories) or obatoclax (GX15-070,
Gemin X Biotechnologies), release pro-apoptotic binding partners and suffice to induce
apoptosis. ABT-737 binds selectivity to anti-apoptotic Bcl-2, but has a low affinity to
Mcl-1 and A1 (307, 438). GX15-070 has been proposed to influence the activity of the
Bak/Mcl-1 and Bim/Mcl-1 complexes (320) to induce mitochondrial- mediated apoptosis,
which would imply Bax/Bak-mediated MOMP and apoptosome-mediated activation of
caspases. However, in some cell lines that are relevant for disease, GX15-070-treatment
has also been described to render phenotypic cell characteristics, which could be
associated with GX15-070 activities, including autophagy, independently of
mitochondrial-mediated apoptosis. The cytotoxic activity of GX15-070 and ABT-737 in
Bax/Bak double knockout cells has also been reported (305, 322), while the role of the
apoptosome (Figure 7.1) is unclear as it is still to be explored in detail. This is particularly
relevant for studying the activity of BH3-mimetics in cells with low Apaf-1 contents that
correlate with resistance to chemotherapeutic treatments (439, 440) and for preclinically
evaluating a new class of apoptosis inhibitors targeting the apoptosome (441, 442), which
are currently being evaluated as agents to locally prevent chemotherapy-induced
secondary effects. It would then be of interest to comparatively analyze the activity of
BH3-mimetics and CDDP (as a representative of established cytotoxic drugs) in cells in
which Apaf-1 has been genetically deleted and to also analyze whether apoptosome
inhibitors can inhibit BH3-mimetics-induced cell death.
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Figure 7.1. The structure of apoptosome complex. Cytochrome ¢ (showed in red) is released
from mitochondria when apoptotis is induced and it binds to the cytosolic protein Apaf-1 (blue)
to facilitate the formation of apoptosome in the presence of dATP (purple), the third component
of the complex. Once formed, the apoptosome can then recruit and activate the inactive pro-
caspase-9. Once activated, this initiator caspase can then activate effector caspases and trigger a
cascade of events leading to apoptosis. (http://www.rcsb.org/pdb/101/motm.do?momID=177)

7.2. Results and discussion.

7.2.1. Apaf-1 inhibitor QM31 reduces the activation of apoptosis promoted
by different apoptotic inductors.

The immortalisation process may affect the genetic background of mouse embryonic
fibroblasts (MEFs) cell lines and might be responsible for the differences observed in the
behavior of the different MEFs knock out (KO) Apafl cellular models. For this reason, it
was initially analysed the apoptotic response to ABT-737 of the embryonic fibroblast
wild-type (WT) MEFs and Apafl KO mouse (MEFs KO Apafl) cell lines, (351) which
were previously established by spontaneous immortalisation (SIM) or by infection with
SV40 antigen T (SV40IM) (443). ABT-737 treatment induced activation of caspase-3,
release of Cyt-c and death in SV40IM-MEFs WT. However in SV40IM-MEFs KO Apaf-
1 and SIM-MEFs, these parameters remain unaffected (Figure 7.2A,B and C) (444).
These results suggest that ABT-737 trigger signalling is not fully perceived by the Apaf-1
SIM-MEFs cells. Thus, the immortalisation process may affect the genetic background
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and might be responsible for the differences between both MEFs cellular models. For this
reason, we selected SV40IM-MEFs to evaluate the response of different cells lines

towards several apoptotic insults.
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Figure 7.2. ABT-737 treatment induces cell death in SV40IM WT MEFs but not SV40IM KO MEFs and
SIM MEFs. (A) Percentage of cell survival measured by the trypan blue exclusion assay in SV40IM and SIM
MEFs, WT and Apafl depleted, in the presence or absence of ABT-737 (20 uM) for 24 h. (B) Caspase-3 like
activity was measured under the same conditions described above. (C) Cells with Cyt-c released measured by
the flow cytometry analysis after incubation with ABT-737 (20 uM) for 24 h. In all cases, bars represent the
mean of three experiments + s.d.

MEFs from wild-type mouse (MEFs wt Apaf-1 and MEFs wt Bax/Bak) (351) were
treated with ABT-737, GX15-070 or cisplatin (cis-diammineplatinum(II) dichloride,
CDDP), either alone or in combination with apoptosome inhibitor compound QM31 (441,
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442), or with broad spectrum caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethylketone
(zVADfmk).
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Figure 7.3. Apaf-1 inhibitor QM31 prevents cell death in non tumor cells treated with both ABT-737
and CDDP, but not in cells treated with GX15-070. (A and D) Caspase 3-like activity was measured in
MEFs wt Apaf-1 and MEFs wt Bax/Bak treated with ABT-737 (25 pM), GX15-070 (1 uM) and CDDP (30
pM) in the presence or absence of QM31 (10 uM) and zVADfmk (5 pM). (B and E) Mitochondrial
dysfunction was measured by an MTT assay under the same conditions described above. Bars represent the
mean of three experiments + s.d. (**p,0.05). (C and F) Apoptotic cell death was determined by flow
cytometry with FITC Annexin V and DRAQ7. Data are representative results of three independent

experiments.
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Cultured cells were evaluated at 24 h post-treatment. ABT-737 and CDDP treatments
induced activation of caspase-3, which was inhibited by zVADfmk and by QM3l.
However, when cells were treated with GX15-070, only residual caspase-3 activity was
observed (Figure 7.3A and D). Cell viability was determined by MTT (Figure 7.3B and E)
to find that ABT-737- and CDDP-induced death (20% and 60%, respectively) was
inhibited by QM31, but not by zVADfmk, while the cell death induced by GX15-070
(around 50%) was not inhibited by either zZVADfmk or QM31. Annexin V/DRAQ?7 flow
cytometry assays corroborate viability and apoptotic cell death results (Figure 7.3C and F).

7.2.2. QM31 needs the presence of Apaf-1 and the Bax/Bak pro-apoptotic
effectors to block apoptosis. Obatoclax and CDDP induce cell death by
dependent and non-dependent apoptotic mechanism.

The same experiments were conducted in Apaf-1 knockout (KO) mouse embryonic
fibroblasts (MEFs KO Apaf-1) (351), in MEFs KO Bax/Bak (84) and in cervix
adenocarcinoma cells (HeLa). In MEFs KO Apaf-1 (Figure 7.4A) and MEFs KO Bax/Bak
(Figure 7.4D), none of the treatments induced caspase-3 activity, while cell viability was
unaffected by the ABT-737 treatment, but decreased with both GX15-070 and CDDP
treatments (Figure 7.4B and E). GX15-070- and CDDP- induced cell death in these cells
was not inhibited upon apoptosome or caspase inhibition. Consequently, treatments with
QM31 and zVADfmk did not significantly modify the percentage of Annexin V stained
cells (Figure 7.4C and F).
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Figure 7.4. GX15-070 and CDDP induce caspase 3 independent
deficient cells. (A and D) Caspase 3- like activity was measured in MEFs KO Apaf-1 and MEFs KO Bax/Bak
treated with ABT-737 (25 uM), GX15-070 (1 puM) and CDDP (30 uM) in the presence or absence of QM31
(10 uM) and zVADfmk (5 uM). (B and E) Mitochondrial dysfunction was measured by an MTT assay under
the same conditions described above. Bars represent the mean of three experiments + s.d. (C and F) Apoptotic
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cell death was analyzed by flow cytometry with FITC Annexin V and DRAQ7. Data are representative results

of three independent experiments.
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These results suggest that in the absence of key death-related cellular components,
such as the Bcl-2 proteins Bax and Bak and the apoptosome constituent protein Apaf-1,
ABT-737-triggering signaling is not fully perceived by the cell, while CDDP-depending
signaling found caspase- independent cell death pathways. CDDP-induced cell death was
partially recovered by necrostatin-1 (Nec), an inhibitor of RIPK1 in MEFs KO Apaf-1
and MEFs KO Bax/Bak (Figure 7.5A), suggesting that necroptosis (a form of
programmed necrosis that depends on activity of RIPK1) could participate in CDDP-
induced death in these cells. In fact, nuclear staining upon CDDP treatment showed non
apoptotic cell death in MEFs KO Apaf-1 and MEFs KO Bax/Bak cells (Figure 7.5B),
while treatment induced canonical apoptotic bodies in MEFs wt Apaf-1, indicating that
DNA damaging agents may activate alternative cell death pathways when the intrinsic

pathway of apoptosis is blocked.
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Figure 7.5. Non apoptotic cell death upon CDDP treatment in Apaf-1- and Bax/Bak-deficient cells.
(A) Cell survival was measured by trypan blue exclusion upon treatment with CDDP (30 puM) in the
presence or absence of necrostatin (Nec; 100 uM). Bars represent the mean of three experiments + s.d.
(**p,0.05). (B) MEFs wt Apaf-1, MEFs KO Apaf-1 and MEFs KO Bax/Bak were stained with DAPI upon
CDDP (30 uM) treatment. Nuclei are considered to have the normal phenotype when glowing bright and
homogenously. Apoptotic nuclei can be identified by the fragmented morphology of nuclear bodies. White
arrows indicate dying cells.
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In human cervix adenocarcinoma (HeLa) cells, rather than inducing caspase-3 activity,
GX15-070 induced a type of cell death that was not inhibited by zVADfmk or QM31
(Figure 7.6A, B and C), which correlates with the phenotypes observed in all the MEFs
cell lines. CDDP induced caspase-3 activation, which was inhibited in the presence of
QM31 or zVADfmk (Figure 7.6A), and also generated cell death (Figure 7.6B and C).
CDDP-induced death was partially prevented by QM31, but not by zVADfmk (Figure
7.6B and C). Nonetheless, the zVADfmk inhibition of ABT-737-induced cas- pase-3
activity was unable to protect cells from dying (Figure 7.6B and C). Interestingly, and
unlike the results found in the MEFs wt, apoptosome inhibition by QM31 did not inhibit
ABT-737-induced caspase-3 and cell death (Figure 7.6A and C).
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Figure 7.6. Apaf-1 inhibition does not protect tumor HeLa cells from death induced by ABT-737 and
GX15-070. (A) Caspase 3-like activity was measured in the HeLa cells treated with ABT-737 (25 uM),
GX15-070 (1 uM) and CDDP (30 uM) in the presence or absence of QM31 (10 pM) and zVADfmk (5 pM).
(B) Mitochondrial dysfunction was measured by an MTT assay under the same conditions described above.
Bars represent the mean of three experiments + s.d. (*p,0.1; **p,0.05). (C) Apoptotic cell death was analyzed
by flow cytometry with FITC Annexin V and DRAQ?7. Data are representative results of three independent

experiments.
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7.2.3. Obatoclax (GX15-070) acts as autophagy activator.

To proceed with an initial analysis of the cell death pathway induced by GX15-070 in the
MEFs wt Apaf-1, MEFs wt Bax/ Bak, MEFs KO Apaf-1, MEFs KO Bax/Bak, and HeLa
cells, we analyzed the expression of anti-apoptotic proteins Bcl-2, Bel-xL and Mcl-1 and
found no significant changes (data not shown). We also explored the induction of
autophagy. Autophagy is a catabolic process involving the formation of autophagosomes
and autolysosomes. Light chain 3 (LC3, a mammalian ortholog of yeast Atg8 (445)) is
essential for autophagosome formation and can be used as a reporter protein. When the
process of autophagy proceeds, LC3-I (the cytosolic form) is processed to the
autophagosomal membrane-bound LC3-II form (445). The LC3-II form increased
considerably with GX15-070 treatment (Figure 7.7A-E), suggesting that evaluated GX15-
070-induced cell death was mediated by autophagy activation in all the cell lines.
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Figure 7.7. GX15-070 promotes the activation of the autophagic pathway via LC3 in all the cell lines.
(A-E) LC3 detection in MEFs wt Apaf-1, MEFs wt Bax/Bak, MEFSs KO Apaf-1, MEFs KO Bax/Bak and
HelLa cells treated 24h with ABT-737 (25 uM), GX15-070 (1 uM), CDDP (30 pM ) and QM31 (10 pM).

The activity of III phosphoinositide 3-kinase (PI3K III) is important in Beclin-1 (the
human ortholog of yeast Atg-6)-induced autophagy (446), and 3-methyladenine (3MA, an
inhibitor of PI3K III) is commonly used to determine the dependence of Beclin-1 in
autophagy. 3MA did not modify GX15-070-induced LC3 processing (Fig. 7.8). Therefore,
GX15-070-induced autophagy in both MEFs wt and MEFs KO Apaf-1 is independent of
Beclin-1, as also reported for MEFs KO Bax/Bak and HeLa cells (322). As an internal
control, we induced autophagy by rapamycin and found that rapamycin-induced
autophagy was inhibited by 3MA in all four cell lines analyzed (Fig. 7.8A-D).
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Figure 7.8. GX15-070 activates Beclin-1 non-dependent autophagy in all the cell lines. (A-D) LC3
immunoblotting in the MEFs wt Apaf-1, MEFs KO Apaf-1, MEFs KO Bax/Bak and HeLa cell lines treated
with rapamycin (30 pM) and GX15-070 (1 uM) for 24 h in the presence or absence of 3MA (10 uM).

It has been reported that GX15-070 is able to induce apoptosis and autophagy in
several cell lines (447). Thus we performed a time-course analysis to examine whether
GX15-070-treatment induces both autophagy and apoptosis. We used LC3 conversion as
a marker of autophagy (Fig. 7.7) and caspase-3 activity as a marker of apoptosis. After 24
h we did not observe GX15-070-induced caspase-3 activation in the cell lines analyzed in
the present study (Fig. 7.9). At 48 h however, we noted that GX15-070- induced caspase-
3 activity in both MEFs wt and in HeLa cells.

GX15-070-induced apoptosis at 48 h was inhibited by apoptosome inhibitor QM31. In
contrast, GX15-070 did not induce apoptosis in MEFs KO Bax/Bak and in MEFs KO
Apaf-1 at 48 h. These results suggest that GX15-070 can induce multiple cell death
pathways, such as caspase-dependent apoptosis and autophagy. Nevertheless, GX15-070-
induced apoptosis is not only dependent in Bax/Bak, as previously demonstrated (322,
447), but also in Apaf-1.
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Figure 7.9. GX15-070 induces caspase 3-like activity after 48 h in HeLa and MEFs wt. Caspase 3-like
activity was measured at 24 h and 48 h upon treatment with GX15-070 (1 uM) in the presence or absence
of QM31 (10 uM) in HeLa, MEFs wt Apaf-1, MEFs KO Apaf-1, MEFs wt Bax/Bak and MEFs KO
Bax/Bak.

7.3. Concluding remarks.

In conclusion, the present study reveals that BH3-mimetic ABT-737 not only requires
Bax/Bak to exert its apoptosis-inducing effect, but also Apaf-1, indicating the exclusive
targeting of ABT-737 to Bcl-2 anti-apoptotic proteins. ABT-737 upon binding to Bcl-2
and Bcel-xL removes the anti-apoptotic activity of these proteins in pro-apoptotic Bax/Bak
and induces MOMP. However, MOMP-dependent signaling needs the components of the
apoptotic pathway downstream of mitochondria, such as the formation of the apoptosome,
to induce cell death. Hence, ABT-737 treatments to cancer cells would have less side
effects to differentiated cells containing low levels of Apaf-1, such as neurons and
cardiomyocytes (448, 449), than other treatments with lesser dependence of Apaf-1. In
contrast, BH3-mimetic GX15-070 and DNA damage-inducing CDDP induce cell death in
the absence of both Bax/Bak and Apaf-1. While GX15-070 induces mainly autophagy-
based cell death at 24 h, a cell fraction dies by apoptosis at longer times post-treatment
(48h). On the other hand, CDDP induces necroptosis when apoptosis signaling pathway is
not available. Our results extend findings by describing not only the sensitivity of
different cells to the cell-inducing agents explored, but also the behavior of current
apoptosis inhibitors, which could be useful in topical applications aimed to diminish
unwanted cell death. Non tumor cells, as demonstrated herein with MEFs wt, could be
protected from the cytotoxic effects of ABT-737 and CDDP by the chemical inhibition of
the apoptosome through QM31, which lowered caspase-3 activity and improved cell
survival, while the use of caspase inhibitors prevented caspase activation, but did not
improve survival. This scenario correlates with proposals in mammals that solely caspase
inhibition, downstream of MOMP delays, and in defined circumstances, modifies the
outcome rather than preventing cell death (450). However, the autophagy-based cell death
induced by GX15-070 was not prevented by QM31 or caspase inhibitors. These results
will be of interest when defining future combination therapies where the systemic
administration of cytotoxic agents, which aims to kill malignant cells, could be locally
counteracted by apoptosis inhibitors. For instance, dermatopic and intra-cochlear
administration of apoptosome inhibitors would probably find applications as anti-alopecia
and anti-ototoxic agents, respectively, for anti-cancer treatments based on ABT-7373 and
CDDP.
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The results of this Thesis show that BCL-2 TMDs are not isolated in the
mitochondrial membrane and establish for the first time the putative interaction
map of BCL-2 TMDs. In addition, the potential contribution of these TMDs to
apoptotic regulation has been demonstrated. BCL-2 TMDs, together with soluble
domains, participate in the equilibria that govern MOMP.

In the subfamily of BH3-only proteins, we have demonstrated that the predicted
TMDs of Bik, Puma and Bim are able to insert in cellular membranes efficiently.
These results open the field to study potential interactions with other Bcl-2
TMDs. In contrast, Noxa and Bmf TMD show low insertion capability in cellular

membranes.

The studies with Bcl-2 TMD derived peptides have demonstrated that some
TMD-pepts can integrate specifically into mitochondrial membranes. Moreover,
Bcl-2, Bel-xL, Bax and Bak TMD-pepts induce Cyt-c release. Consequently,
insertion of these peptides induces cell death or synergizes at sublethal

concentrations with chemotherapeutic treatments.

BH3-mimetic ABT-737 not only requires Bax/Bak to exert its apoptosis-
inducing effect, but also Apaf-1, while GX15-070 and CDDP induce different
modalities of cell death in the absence of Bax/Bak or Apaf-1. Apoptosome
inhibitor QM31 protects from the cytosolic effects of ABT-737 and partially
against CDDP but not against the autophagy-based cell death induced by GX15-
070.
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10 SUMMARY IN SPANISH

10.1. INTRODUCCION

La apoptosis ha sido definida clasicamente como un programa de muerte celular
programada esencial para el mantenimiento de la homeostasis de los tejidos, los
mecanismos inmunitarios asi como la reorganizacion tisular durante el desarrollo del
organismo. Este mecanismo de suicidio celular es ejecutado a través de la activacion de
una cascada de proteasas llamadas caspasas (3). Puede ser desencadenado a través de la
activacion de receptores de muerte celular situados en la membrana plasmatica (via
extrinseca) o a través de un proceso de sefalizacion celular originado desde la
mitocondria (via intrinseca) (38, 55). Principalmente la ruta intrinseca, aunque también la
extrinseca, esta regulada por una familia de proteinas llamadas BCL-2, cuya localizacion
es mayoritariamente mitocondrial (55).

La modulacion del proceso apoptético por parte de las proteinas de la familia BCL-2
tiene lugar mediante una compleja red de interacciones entre sus miembros que
desemboca en ultimo término en la permeabilizacion de la membrana mitocondrial
externa (MOM) o en evitar dicha permeabilizacion. Esta permeabilizacion de la MOM
resulta critica, ya que es considerada como el punto de no retorno para la activacion de la
apoptosis (48) . Una vez permeabilizada la MOM se produce la liberacion desde la matriz
mitocondrial al citosol de factores pro-apoptdticos tales como SMAC, Diablo y citocromo
c. Ya en el citosol, y en presencia de ATP, el citocromo ¢ interactiia con Apaf-1 y con
procaspasa-9 para formar el apoptosoma (49, 50) (ver Figura 7.1). En este complejo
macromolecular la proteasa procaspasa-9 es procesada y activada para a su vez activar
procaspasa-3, desencadenado una cascada de proteasas que genera la destruccion final de
la célula.

La familia de proteinas BCL-2 se caracteriza porque todos sus miembros comparten
homologia de secuencia en al menos una (el dominio BH3) de las cuatro regiones o
dominios de homologia de BCL-2 llamados BH1, BH2, BH3, y BH4. Ademaés, muchos de
los miembros de la familia poseen una region hidrofobica C-terminal cuya funcion es
anclarse a las membranas intracelulares. Atendiendo a criterios funcionales y estructurales
existen tres subgrupos dentro de esta familia de proteinas que son: proteinas anti-
apoptoticas (Bcl-2, Bel-xL, Mcl-1, Al, Bcl-w), pro-apoptoticas (Bax, Bak y Bok ) y
proteinas con un unico dominio BH3, llamadas BH3-only (Bim, Rambo, Bik, Bad, Bmf,
HRK (Harakiri) Puma y Noxa) (382)(Figura 10.1.1).
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Figura 10.1.1. Organizacion estructural y funcional de las proteinas de la familia BCL-2. Se divide en tres
subfamilias de proteinas con funciones anti y pro-apoptoticas. Los miembros anti-apoptdticos incluyen Al, Bcl-
2, Bel-xL, Bel-w, MCL-1 y Diva y comparten los 4 dominios de homologia de Bcl-2 (BH1-4). Los miembros
pro-apoptoticos se subdividen en proteinas "multidominio" y proteinas BH3-only. Las proteinas multidominio
también presentan dominios de homologia 1 a 4, mientras que las BH3-only contienen s6lo un dominio BH, el
BH3, que es el responsable de la unién a las proteinas anti-apoptéticas. La mayoria de las proteinas BCL-2
también presentan un dominio transmembrana hidrofébico (TMD). En el grupo BH3-only, el TMD esta
confirmado en Bid, Bik, Rambo y Hrk (marcadas en rojo).

A menudo el subgrupo de las proteinas BH3-only es dividido en dos dependiendo de
su capacidad para interactuar bien con las proteinas anti-apoptdticas, o bien con las
proteinas efectoras Bax y Bak. Uno de estos subgrupos esta formado por los denominados
activadores directos Bid, Bim y Puma, capaces de inhibir a las BCL-2 anti-apoptdticas,
pero también de unirse a las proteinas efectoras para activarlas y favorecer su
oligomerizacion entre si, desencadenando la permeabilizacion de la membrana
mitocondrial externa (MOMP). El segundo grupo estd integrado por las proteinas
sensibilizadoras/de-represoras (Bad, Bmf, Hrk y Noxa). Estas proteinas carecerian de la
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capacidad para activar directamente Bak o Bax. Sin embargo, son capaces de unirse e
inhibir a las proteinas anti-apoptdticas favoreciendo con ello la activacion de las efectoras
Bax y Bak, para promover el MOMP.

En células sanas no sometidas a ningln tipo de estrés, la proteina pro-apoptotica Bax
reside inactiva en el citosol, con su dominio C-terminal secuestrado dentro del llamado
surco hidrofobica (64). Tras la activacion de la cascada de sefializacion apoptodtica, Bax
pasa a su forma activa tras uno o varios cambios conformacionales derivados de su
interaccion con otros miembros de la familia BCL-2; estos cambios conformacionales
liberan el dominio C-terminal el cual dirige y ancla a Bax en la MOM. Una vez en la
membrana, las proteinas efectoras Bax y Bak homo- y hetero-oligomerizan formando
poros proteoliticos y/o proteolipidicos que promueven la permeabilizacion y la liberacién
de diversos factores apoptogénicos.

En cualquiera de los tipos celulares existentes en el organismo el delicado equilibrio
que se establece entre supervivencia o muerte es el que determina el destino celular. Por
tanto, ligeros desajustes que alteran este balance hacia un destino u otro son responsables
de un gran nimero de enfermedades. De hecho, las alteraciones que experimentan
algunos de los mecanismos de muerte celular han sido reconocidos como una de las seis
caracteristicas que definen los procesos tumorales (451). Por tanto, la desregulacion de las
proteinas de la familia BCL-2, que actian como moduladores cruciales del proceso de
apoptosis, han sido relacionadas con el desarrollo de varios tipos de tumores (258). Estas
proteinas podrian ser responsables directas de la enfermedad (conductores), aunque
también podrian estar implicadas en la resistencia adquirida a los tratamientos anti-
tumorales. Este es el motivo por el que tradicionalmente muchos de los farmacos
desarrollados contra el cancer, independientemente de su mecanismo de accion principal,
tengan como dianas las proteinas de la familia BCL-2, ya sean para tratar de activar a las
proteinas efectoras Bax y Bak (153) como para bloquear la accion de las anti-apoptoticas
que constituyen una forma de quimioresistencia intrinseca.

El papel de las proteinas BCL-2 ha sido demostrado en diversos tumores
hematologicos (260, 303). También se ha establecido la correlacion entre la elevada
expresion de la proteina anti-apoptotica Bcl-2 y el mal pronodstico en melanoma (452),
cancer de mama (262) y prostata (263). Por otro lado, la disminucion de la expresion de la
BH3-only Bim también se relaciona con varios tipos de cancer, incluyendo el linfoma de
células B y el cancer de colon (286, 453). Debido a la amplia implicacion de la familia
BCL-2 en los procesos tumorales existen numerosas lineas de investigacion en curso cuyo
objetivo es restaurar la sensibilidad de las células cancerosas a las sefiales pro-apoptdticas.

Uno de los primeros farmacos desarrollados para inhibir la acciéon de las proteinas

antiapoptéticas de la familia Bcl-2 se denomina Oblimersen. Se trata de un
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oligonucleotido antisentido modificado complementario al gen de la proteina Bcl-2 (298).
Sin embargo, la eficacia de este firmaco es todavia objeto de estudio y presenta algunos
problemas de toxicidad. Diversos estudios estructurales de las proteinas de la familia
BCL-2 mostraron que las interacciones citosolicas de estas proteinas se basan en la union
del dominio BH3 de miembros pro-apoptdticos con la region del surco hidrofébico
presente en las proteina anti-apoptdticas (59). Por este motivo uno de los puntos centrales
en el disefio de farmacos antitumorales se focaliz6 en imitar el dominio BH3 de las
proteinas BH3-only, surgiendo varias moléculas denominadas “miméticos de BH3” (305).
Estos "miméticos de BH3" se unen a uno o varios de los miembros anti-apoptoticos de la
familia BCL-2 para bloquear su accion pro-supervivencia, generando la liberacion de Bax
y Bak para crear poros en el MOM vy activar el proceso apoptético. Uno de los “miméticos
de BH3” mas eficientes hasta la fecha es un compuesto desarrollado por Abbott, llamado
ABT-737, y su variante de ingesta oral ABT-263 (307). Ambos son inhibidores de las
proteinas anti-apoptoticas Bel-xL, Bcl-w y Bcel-2. En ensayos clinicos, ABT-263 ha
mostrado prometedores resultados en algunos tipos de neoplasias linfoides (307, 454,
455). Una variante de estos compuestos llamada ABT-199, que actia especificamente
sobre la proteina Bcl-2, también muestra resultados prometedores en ensayos de leucemia
linfocitica crdnica, en la actualidad en fase I de desarrollo.

Aunque la aparicion de estos “miméticos de BH3” representa un gran avance en el
desarrollo de estrategias antitumorales, existen diversos tipos de cancer dependientes de
los niveles de proteinas BCL-2 que no responden al tratamiento con éstos compuestos.
Recientemente ha sido introducido el concepto de ‘cebado’ mitocondrial para referirse la
induccion de la permeabilizacion de las mitocondrias de células tumorales, lo conduciria a
su muerte. Dependiendo de los niveles de expresion de proteinas anti-apoptéticas y de su
presencia en la mitocondrias, las células tumorales seran mas o menos susceptibles a los
tratamientos antitumorales que tienen como diana a éstas BCL-2 anti-apoptoticas.

Durante los tltimos afios se han propuesto diferentes modelos para la formacion de
poros en la membrana mitocondrial externa (140): PTP (poro transitorio para la
permeabilizacion), MAC (canal mitocondrial inducido por apoptosis), oligomerizacion de
VDACI, de Bax y Bak, y de ceramidas. La evolucion de estos modelos ha provocado dos
cambios fundamentales, por un lado la relevancia que adquiere la red de interacciones que
se establecen entre las proteinas de la familia BCL-2 que regulan la formacion de la
mayor parte de estos poros mitocondriales; y por otro lado la inclusién de la propia
membrana mitocondrial como un participante activo en el mantenimiento del equilibrio de
esta red de interacciones que regulan todo el proceso apoptotico.

Actualmente existe un mapa bastante completo de la red de interacciones en la que se

comprende bien la contribucion de las regiones citosolicas de las proteinas de la familia
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BCL-2. Sin embargo, a pesar de que una gran parte de estas interacciones proteina-
proteina tienen lugar en el contexto de la membrana mitocondrial, la contribucién de los
regiones hidrofobicas de estas proteinas BCL-2 (BCL-2 TMDs) a esta red esta lejos de
estar resuelta. Ademads, existen evidencias que sugieren un papel relevante de estas
regiones transmembrana (TMD) en el control de la apoptosis. Estas y otras cuestiones que
implican a los BCL-2 TMDs son las que hemos abordado durante el transcurso de la
presente Tesis Doctoral.

10.2. OBJETIVOS

La apoptosis se define clasicamente como un tipo de muerte celular programada. La
activacion de este proceso estd mayoritariamente regulada por las proteinas de la familia
BCL-2. Los miembros de esta familia se localizan en citoplasma, ER y MOM en las
células sanas. Sin embargo, durante la apoptosis, la mayor parte de las interacciones entre
estas proteinas ocurren en las membranas de organulos intracelulares. El objetivo central
de esta Tesis Doctoral es ampliar nuestros conocimientos del mecanismo de accion de las
proteinas de la familia BCL-2 en presencia de membranas. Este objetivo general ha sido
abordado mediante los siguientes objetivos especificos:

* El primer objetivo de este trabajo ha sido determinar la participacion de los
BCL-2 TMDs en la red de interacciones que establecen los diferentes miembros
de la familia BCL-2. Asi mismo, Se ha estudiado la importancia de las
interacciones de los BCL-2 TMDs en el contexto de las proteinas BCL-2
completas asi como la relevancia funcional de estos TMDs en las rutas
apoptoticas.

* La capacidad de inserciéon en la membrana mitocondrial de las proteinas BH3-
only es actualmente muy controvertida. Por ello, el segundo objetivo de esta tesis
ha sido investigar la capacidad de las regiones hidrofobicas del extremo C-
terminal de proteinas BH3-only para insertarse en diferentes membranas
biologicas.

* El papel de los dominios citosOlicos de las proteinas BCL-2 como
sensibilizadores de la permeabilizacién mitocondrial (MOMP) en quimioterapia
ha sido ampliamente estudiado. Sin embargo, poco se sabe acerca del papel de
los BCL-2 TMDs en este proceso. Asi, el tercer objetivo de esta tesis ha sido
investigar la contribucion de péptidos sintéticos derivados de BCL-2 TMDs en el
proceso de permeabilizacién de la membrana mitocondrial externa (MOMP).
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* Este trabajo también aborda el estudio de las diferentes rutas de muerte celular
que son activadas en respuesta a diferentes farmacos pro-apoptdticos,

dependiendo de la maquinaria apoptética disponible en la célula.

10.3. MATERIAL Y METODOS

10.3.1. Metodologia utilizada para el estudio de las interacciones entre
dominios transmembrana de las proteinas de la familia BCL-2.

Durante la realizacion de esta Tesis Doctoral se han abordado diferentes estrategias para
el estudio y analisis de las regiones TM de las proteinas de la familia BCL-2. En lo
referente a la determinacion de posibles interacciones entre los diferentes TMDs se han
realizado los analisis utilizando dos tecnologias que permiten estudiar interacciones
proteina-proteina en célula vivas. En primer lugar se ha utilizado el sistema de
complementacion ToxRed en bacterias para la realizacion de un rastreo de interacciones
entre los diferentes TMDs. En segundo lugar, se ha empleado la metodologia de BiFC
basada en complementacion bimolecular de fluorescencia con el objetivo de analizar las
interacciones en células eucariotas y determinar su localizacion subcelular.

10.3.1.1. Diseiio, clonaje, expresion y analisis de los BCL-2 TMD en el sistema
ToxRed.

El ensayo de complementacion de maltosa (Figural0.3.1) fue realizado de acuerdo a un
protocolo previamente descrito (332, 333). El objetivo de los experimentos realizados en
este sistema fue determinar la correcta orientacion, la capacidad de insercion asi como la
habilidad de los dominios TM de las proteinas BCL-2 de establecer asociaciones hélice-
hélice para formar homo y/o hetero-oligdmeros en la membrana interna de las bacterias de
la cepa MM39 de E. coli. Los plasmidos ToxR originales fueron proporcionados por el
laboratorio del Profesor William De Grado (UCSF). En estas construcciones la clonacion
de las diferentes secuencias correspondientes a los TMD estudiados se llevo a cabo entre
la secuencia que codifica para el dominio de activacion del factor de transcripcion de
Vibrio cholerae ToxR y la secuencia que codifica para el dominio periplasmico del
translocador de maltosa (MBP). Para determinar si las proteinas de fusion ToxR-TM-
MBP estaban correctamente insertadas y orientadas en la membrana bacteriana, se realizo
el crecimiento de MM39, transformadas con las diferentes construcciones, en un medio
que contenia maltosa como Uunica fuente de carbono. La cepa MM39 presenta
deleccionado el gen malE que codifica para la MBP, de tal forma que solo aquellas
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bacterias que expresen las construcciones ToxR-TM-MBP y que las tengan correctamente
insertadas y orientadas en su membrana interna (de tal manera que el dominio MBP quede
en el espacio periplasmico), podran captar maltosa del medio y por ello seran capaces de
crecer en este medio restrictivo. La capacidad de homo- y hetero-oligomerizacion de las
diferentes proteinas de fusion se determind mediante la expresion del gen RFP que
codifica la proteina de fluorescencia roja (RFP), el cual se encuentra bajo el control del
promotor ctx que es a su vez reconocido por el factor de transcripcion ToxR. No obstante,
el reconocimiento de la secuencia del promotor soélo tiene lugar cuando ToxR se
encuentra en forma de dimero, y esta dimerizacion solo es posible si los segmentos TM
ensayados interaccionan y acercan los mondmeros de ToxR. Como control de este sistema,
se realizaron las mismas construcciones con el mutante de ToxR R96K (ToxR*), que
permite la dimerizacion del factor de transcripcion pero no su unién al promotor ctx , por
lo que RFP no se expresa (334) (Figura 10.3.1).

9. & &

‘ ’ ToxR ToxR
ctx /%('\\Q I

-->RFP ot-->RFP
o __ ge>RPP ¢

Figura 10.3.1. Vista esquematica del sistema ToxR para el anilisis de interacciones TM. Las construcciones

estan formadas por el activador transcripcional dependiente de dimerizaciéon ToxR, un dominio TM BCL-2 y el
translocador de maltosa MBP. La interaccion de los TMDs produce la activacion mediada por ToxR de un gen
reportero, en este caso RFP. El nivel de fluorescencia indica la afinidad de la asociacion entre los TMDs. Este
ensayo de fluorescencia ha sido normalizado con una construccion mutante ToxR* incapaz de activar la

expresion del gen reportero.

Para generar las diferentes construcciones quiméricas de ToxR, se disefiaron
cebadores con las secuencias completas de los TMDs flanqueadas por los sitios de
restriccion Hindl11/Xhol presentes en el plasmido ToxR (Tabla 10.1.). Una vez hibridados
los cebadores, fueron tratados con polinucledtido quinasa para afiadir los grupos fosfato y
posteriormente se ligaron con la ligasa del bacteriofago T4 (Promega). Para facilitar la
insercion de los TMD en los plasmidos ToxR se utilizé fosfatasa alcalina (Roche) para
eliminar el fosfato 5’ en el vector de ToxR sin inserto.

Para confirmar la especificidad de las interacciones, se disefiaron mutantes puntuales
de cada BCL-2 TMD estudiado utilizando el kit Stratagene Quikchange II disponible
comercialmente (Agilent, CA, EE.UU.).
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Tabla 10.1. Secuencia de los BCL-2 TMD clonados. Los aminoacidos subrayados fueron afiadidos en la
clonacion para el sistema BiFC por su relevancia en el direccinamiento de los TMD a mitocondria. AG
representa una medida de hidrofobicidad en las secuencias analizadas, valores negativos son indicativos de

insercion en membranas biologicas.

BCL-2 Cloned sequence Length AG
Bel-2  FSWLSLKTLLSLALVGACITLGAYLGHK 23 -1.356
Bel-xL  SRKGQERFNRWFLTGMTVAGVVLLGSLFSRK 23 -0.355
Bel-w  REGNWASVRTVLTGAVALGALVTVGAFFASK 22 -0.418
Mcll IRNVLLAFAGVAGVGAGLAYLIR 23 -0.275
Bcl-B FWRKQLVQAFLSCLLTTAFIYLWTRLL 21 0.689
Bax TWQTVTIFVAGVLTASLTIWKKMG 20 0.510
Bak ILNVLVVLGVVLLGQFVVRRFFKS 22 -0.735
Rambo  GKSILLFGGAAAVAILAVAIGVALRKK 21 -1.403
Bik VLLALLLLLALLLPLLSGGLHLLLK 24 -3.253
Bid KEKTMLVLALLLAKKVA 17 2.462

Las construcciones ToxR-TM-MBP (200 ng) fueron transformadas en células
competentes MM39 mediante choque térmico a 42°C durante 90 seg. Tras crecer las
células en agitacion 1 h en LB, fueron sembradas en medio minimo con agar y ampicilina
100 mg/ml. Tras 48 h, las células MM39, que expresaron las proteinas quiméricas ToxR-
TM-MBP fueron cultivadas medio LB con ampicilina durante 6 h. Los cultivos fueron
sedimentados y se incubaron con agitaciéon a 37°C durante 48 h en medio minimo hasta
obtener una ODg, 0,8. Las mediciones de fluorescencia de RFP se realizaron utilizando el
espectrofotometro Wallac 1420 con una longitud de onda de excitacion de 570nm y
longitud de onda de emision de 620nm en placas de 24 pocillos (Thermo Scientific).

Para evaluar los niveles de expresion de todas las construcciones ToxR-TM-MBP | las
células MM39 se sedimentaron por centrifugacion durante 5 min a 3000xg, se eliminé el
sobrenadante y los sedimentos celulares se resuspendieron en 10x del reactivo de lisis
FastBreak (Promega). A continuacion, la mezcla se incubd a temperatura ambiente en
agitacion suave durante 30 min y posteriormente las muestras se centrifugaron durante 10
min para separar la fracciones esferopldsmica y periplasmicas. Se cuantificaron todas las
muestras con el kit de cuantificacion de BCA (Thermo Scientific). 50 pg de proteina total
de cada muestra fueron cargados en geles SDS-PAGE de acrilamida al 12%, se
transfirieron a membranas de nitrocelulosa, se bloquearon con leche en TBS-Tween 20
5%, y se incubaron durante la noche con el anticuerpo primario correspondiente (MBP de
New England Biolabs (#E8038S ); HA C29F4 (#3724S) y c-myc 9B11 (#2276S) de cell-
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signalling). Las membranas se incubaron con el anticuerpo secundario apropiado
conjugado con peroxidasa para la deteccion de la cantidad de proteina por
quimioluminiscencia (Amersham Pharmacia Biotech).

A modo de ejemplo se muestran los resultados que se obtuvieron siguiendo esta
metodologia para los TMD de Bcl-2, Bel-xL y Bax (Figura 10.3.2). En todos los ensayos
realizados se utilizdo como control positivo de homo-oligomerizacion el fragmento TM de
glicoforina (GpA), cuya dimerizacion ha sido ampliamente demostrada en la bibliografia
(332). En la misma linea, el mutante de GpA G831 fue empleado como control negativo.
Ademas, la sefial de fluorescencia obtenida fue normalizada respecto a la sefial obtenida
por respectivas las construcciones ToxR*.

Los resultados obtenidos muestran que los TMDs de Bcl-2, Bel-xL y Bax homo-
oligomerizan (Figura 10.3.2A). Mas aun, estas interacciones entre hélices TM presentan
una elevada especificidad, dado que encontramos mutantes puntuales de las superficies de
interaccion TMD-TMD capaces de romper estas homo-oligomerizaciones (10.3.2B).
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Figura 10.3.2. Los TMDs de las proteinas de la familia BCL-2 son capaces de homo-oligomerizar. (A) La
formacion de oligomeros entre BCL-2 TMDs produce un aumento de la fluorescencia debido a la expresion RFP
mediada por el factor de transcripcion ToxR. Los resultados representan la sefial de fluorescencia normalizada
(ToxR / ToxR *). (B) Disminucion de la sefial de fluorescencia en el sistema ToxR inducida por mutaciones
puntuales de BCL-2 TMDs. La caida de la sefal de fluorescencia indica que los TMD no homo-oligomerizan.
Las barras rojas representan las interacciones positivas y barras blancas representan las interacciones negativas.
GpA actuia como control positivo y el mutante puntual GpA G831 negativo. Todos los resultados representan la
media de tres experimentos independientes. Se utilizo el test de comparacién multiple de Dunnett (CI 95%) para

la comparacién con el control positivo glicoforina A TMD.

Para analizar las interacciones entre diferentes BCL-2 TMDs se modifico la
metodologia descrita para el sistema ToxR en el caso de las homo-oligomerizaciones
desarrollandose un ensayo de competencia (Figura 10.3.3B). Se transformé la cepa
MM39 con dos construcciones: por un lado ToxR-TMD1-MBP, capaz de oligomerizar y
de activar la expresion de RFP; por otro ToxR*-TMD2-MBP, capaz de oligomerizar pero
no de reconocer la secuencia del promotor ctx. De esta forma, si consideramos que los
TMD1 y TMD2 hetero-oligomerizan, la interaccion de estas construcciones no producira
la expresion de RFP, ya que es necesario que ambos ToxR sean completamente
funcionales para unirse al DNA del promotor. Por ello, se producirda un descenso en la
sefial de fluorescencia roja correspondiente a RFP. Si por el contrario no existe
interaccion, la construccion ToxR-TMD1-MBP interaccionara tinicamente consigo misma
y se mantendra la sefial de fluorescencia al mismo nivel que en el caso de las homo-
oligomerizaciones.

Siguiendo el ejemplo para los TMDs de Bcl-2, Bel-xL y Bax podemos observar que
tanto Bcl-2 como Bcl-xL son capaces de hetero-oligomerizar con el TMD de Bax (Figura
10.3.3B, C y D). Sin embargo los TMD de Bcl-2 y Bcl-xL no interaccionan entre si como
se observa en la figura 10.3.3B y C. En estos ensayos el TMD de GpA es usado como
control negativo de interaccion ya que no presenta ninguna relacion con los TMD

analizados.
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Figura 10.3.3 hetero-oligomerizaciones entre TMDs de las proteinas de la familia BCL-2. (A) Vista
esquematica del sistema ToxR adaptado para evaluar la formacion de hetero-oligomeros. La cotransformacion
de una construccion ToxR de un BCL-2 TMD y ToxR * de otro TMD , genera tres posibles oligémeros
diferentes: combinaciones fluorescentes (ToxR / ToxR) y no fluorescentes (ToxR / ToxR * y ToxR * / ToxR
*).(B,C y D). El control de la construccion ToxR del TMD analizado en cada caso (primera columna) representa
la maxima sefial de fluorescencia (100% homo-oligomerizacion). Las barras rojas representan hetero-
oligomerizaciones positivas. La disminuciéon de la fluorescencia indica la formacion de hetero-oligémeros con
las construcciones ToxR* evaluadas. Las barras blancas representan hetero-oligomerizaciones negativas. GpA es
una proteina no relacionada y se utiliz6 como control negativo de hetero-oligomerizacion. los experimentos se
realizaron para las construcciones ToxR-TMD-MBP de Bcl-2 (B), Bel-xL (C) y Bax (D) cotransfectadas con
ToxR*-TMD-MBP de las diferentes proteinas BCL-2.

10.3.1.2. Diseiio, clonaje, expresion y analisis de segmentos TM en el sistema BiFC.

Toda la metodologia basada en el sistema de complementacion bimolecular de
fluorescencia (BiFC) ha sido realizada como se describié previamente en la bibliografia
(335, 456). El objetivo de estos ensayos ha sido el analisis de la capacidad de interaccion
entre los TMD de las proteinas BCL-2 en células eucariotas, asi como la localizacion
subcelular de estas interacciones. Estos experimentos estan basados en la idea de que la
proteina Venus (un mutante de la proteina YFP que emite fluorescencia verde en lugar de
amarilla) puede ser dividida en dos fragmentos: VN, que comprende la region desde el
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aminoacido 1 al 155, y que ademas presenta la mutacion 1152L que disminuye
considerablemente el ruido de fondo inespecifico, y VC (155-238, A206K). Cuando estos
fragmentos se encuentran lo suficientemente proximos en el interior de la célula son
capaces de reconstituir la proteina completa, que emite fluorescencia verde (Figura
10.3.4). Esta propiedad permite que al fusionar a cada fragmento diferentes proteinas,
podamos determinar si interaccionan dependiendo de si se produce o no la emision de
fluorescencia derivada de la reconstitucion de la proteina fluorescente. Por ello, hemos
fusionado tanto a VN como a VC cada uno de los TMDs de las proteinas BCL-2. Dado
que la topologia de los TMD en todas las BCL-2 es C-terminal, han sido clonados tras las
regiones VN y VC de Venus, separandose de ellas por medio de una serie de aminoacidos
que actuan a modo de espaciadores. Como control positivo de oligomerizacion se utilizo
la interaccién conocida de las proteinas nucleares b-Jun y b-fos, asi como una forma

truncada de b-fos que no se asocia a b-jun para establecer un control negativo.
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Figura 10.3.4. Representacion esquematica del sistema de complementacién bimolecular de fluorescencia
(BiFC) en células de mamifero para el analisis de interacciones TM de proteinas de la familia BCL-2. El
sistema esta basado en la reconstitucion de la fluorescencia a partir de los fragmentos VN y VC en los que se ha

sido dividida la proteina Venus. Esta reconstitucion depende del establecimiento de la interaccién entre los
TMDs.

Para la clonacion de las diferentes construcciones de BiFC se disefiaron cebadores con
las secuencias completas de los TMDs flanqueadas por el sitio de restriccion Nofl,
presente en la region C-terminal de los plasmidos de BiFC. Una vez hibridados los
cebadores (95°C 10 min, 60°C 8 h), fueron tratados con polinucledtido quinasa para
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afiadir los grupos fosfato y posteriormente se ligaron con T4 DNA ligasa (Promega). Para
facilitar la insercién de los TMD en los plasmidos BiFC se utilizoé fosfatasa alcalina
(Roche) para eliminar el 5’ fosfato.

Para confirmar la especificidad de las interacciones en este sistema, se utilizaron
aquellos mutantes puntuales de cada BCL-2 TMD que rompieron la interaccion en el
sistema ToxR. Se utilizé de nuevo el kit Stratagene Quikchange II (Agilent, CA, EE.UU.).
Finalmente, todas las construcciones fueron verificadas por secuenciaciéon del DNA.

La lineas celulares utilizadas para todos los ensayos fueron HeLa y HCT 116 que
fueron mantenidas en las condiciones recomendadas por la American Type Culture
Collection. Los ensayos se realizaron en placas de seis pocillos al 60% de confluencia
celular y se cotransfectaron usando Lipofectamine 2000 (Invitrogen) o Turbofect (Thermo
scientific) con cantidades desde 0,25 a 1 pg de cada plasmido VN/VC. Las células
transfectadas se incubaron a 37°C durante 24 h y a continuacion fue medida la emision de
fluorescencia de Venus a 535 nm, excitando a la longitud de onda de 500 nm utilizando
el espectrofotometro Wallac 1420.

Para evaluar los niveles de expresion de todas las construcciones VN/VC BiFC-TMD
se obtuvieron extractos celulares mediante lisis celular en un tampoén que contiene: Tris-
HCI 25 mM pH 7,4, EDTA 1 mM, EGTA 1 mM, 1% SDS, asi como inhibidores de
proteasas. La concentracion de proteina se determind utilizando el kit de cuantificacion de
BCA (Thermo Scientific). 60 pg de cada lisado celular se resolvieron mediante
electroforesis SDS-PAGE y se transfirieron a membranas de nitrocelulosa. Tras la
transferencia, las membranas se bloquearon utilizando 5% de leche en polvo en TBS-
Tween 20 y se incubaron durante la noche con el anticuerpo primario correspondiente.
Tras tres lavados con TBS-Tween 20, las membranas se incubaron con el anticuerpo
secundario apropiado conjugado con la enzima peroxidasa para la deteccion de proteina
por quimioluminiscencia (Amersham Pharmacia Biotech). Los anticuerpos contra el
epitopo de VC HA C29F4 (# 3724S), de VN c-myc 9BI11 (# 2276S) , Bax (#2772) y
caspasa-3 (# 9662S) proceden de Cell Signalling y a-tubulina (# T8203) de Sigma-
Aldrich.

Para determinar la localizacion subcelular de todas esta red de interacciones mediadas
por los BCL-2 TMDs, se llevaron a cabo ensayos de localizacion subcelular e
inmunolocalizaciéon por microscopia confocal de las construcciones de BiFC. Las células
fueron sembradas y transfectadas sobre cubreobjetos de vidrio y tras la expresion de las
construcciones durante 24 h, se lavaron repetidas veces en PBS para eliminar los restos
celulares y de medio de cultivo. El proceso de fijacion se realizo con paraformaldehido al
4% durante 20 min. Después de tres lavados con PBS, las células se permeabilizaron con
0,1% de Triton X-100 y posteriormente se llevo a cabo el bloqueo en 2% de gelatina en
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PBS. Para el ensayo de liberacion de citocromo ¢, las células se incubaron con el
anticuerpo contra Cyt-c (1: 200; SC13561; Santa Cruz) durante 12h a 4°C seguido de una
incubacion con el anticuerpo secundario anti-IgG de raton-Alexa 555 (1: 400)(Invitrogen)
durante 2 h. Los cristales fueron montados en portaobjetos de vidrio con Mowiol/DAPI
(Sigma). Las imagenes se obtuvieron utilizando un microscopio confocal LSM 510 con
un objetivo de 63x. Cada experimento fue repetido al menos tres veces. Se analizaron al
menos 30 imagenes de cada muestra. Para la determinacion de salida de citocromo c¢ se
contaron doscientas células y se clasificaron de acuerdo a la localizacion de Cyt-c en las
mitocondrias (morfologia tubular) o citosol (patron difuso). Las imagenes de
fluorescencia se analizaron y cuantificaron por colocalizacion con el software Imagel. La
colocalizacion de las construcciones BiFC-TMD vy la sonda Mitotracker (500 nM, 20 min,
37°C, Invitrogen) o el anticuerpo Grp78 (1:1000, Abcam, revelado con Alexa555 1:400)
se defini6é como la superposicion parcial o total de las sefales verde y roja.

Como aplicacién de toda esta metodologia pondremos dos ejemplos: la interaccion y
localizacion subcelular de los BCL-2 TMDs de Bcl-2, Bel-xL y Bax (Figura 10.3.5); y un
trabajo realizado en el transcurso de esta tesis doctoral con el TMD de la proteina SP-C
del surfactante pulmonar que no ha sido incluido en la misma debido a que la tematica

abordada se aleja del tema principal de esta tesis.

A B

VN/VC Bel-2 TMD  Mitotracker Merge
VN/VC BCL-2 TMDs

2000004

1500004

1000004

500004

Relative Fluorescence (A.U)

0

Figura 10.3.5. Homodimerizacién de los segmentos transmembrana de Bcl-2, Bel-xL y Bax en células
HCT 116 usando el sistema BiFC. (A) Medida de fluorescencia de BiFC para los TMDs de Bcl-2, Bel-xL y
Bax. Las construcciones VC y VN se transfectaron HCT 116 y la fluorescencia (A.U. unidades relativas) se
midi6 a las 24 h. Las Barras representan La intensidad media de fluorescencia de tres experimentos

independientes. El test de comparacion multiple de Dunnett (CI 95%) se utilizo para comparar la sefial media
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con el control negativo de fluorescencia Jun /AFos (control positivo Jun/Fos). (B) Imagenes de microcopia
confocal en células HCT 116 transfectadas con construcciones VC y VN para Bcl-2, Bel-xL y Bax TMD. La
formaciéon de homo-oligomeros se observa en el canal verde. El canal rojo (Mitotracker) corresponde al

marcador mitocondrial. La colocalizacion se muestra en amarillo.

El surfactante pulmonar se compone en un 90-95% de lipidos (80% fosfolipidos y 5%-
10% lipidos neutros, en particular el colesterol), y un 8%-10% de proteinas. Estas
proteinas son especificas de esta pelicula biologica, e incluyen a la proteina surfactante
Al (SPA1), SPA2, SPB, SPC y SPD. Las SPA y SPD son hidrofilicas y las SPB y SPC
(proteina del sulfactante pulmonar C) directamente afectan las propiedades biofisicas de
los lipidos que constituyen el surfactante. La alteracion tanto a nivel génico como
proteico de alguna de éstas proteinas es la responsable de diferentes patologias
respiratorias.

SPC humana es un péptido de 35 aminoacidos altamente hidrofobico que se sintetiza
como una proteina precursora mucho mayor de 21 kD. La SPC adopta una
conformacional en hélice a con capacidad de insercion en las membranas alveolares (457).
Alteraciones en la proteina SPC se asocian al sindrome de distress respiratorio en infantes
prematuros y a la proteinosis alveolar pulmonar. Por este motivo resulta de gran
importancia el estudio de la dinamica de membranas en la cual la dimerizacion de la SPC
juega un papel esencial, asi como su capacidad de asociacion a otras proteinas y a los
lipidos de la membrana alveolar.

La figura 10.3.5. describe la capacidad de homo-oligomerizacion de la region TM de
la proteina SPC en células humanas. Esta interaccion es ademas especifica ya que no se
asocia con otros fragmentos TM como el de Bel-2 (Figura 10.3.5A). SPC se localiza
normalmente en el reticulo endoplasmatico y como se observa en los resultados de
microscopia confocal es en este organulo donde tiene lugar la dimerizacion (Figura
10.3.5B).

40+
304

204

Average intensity (A.U)

Jun-Fos Jun-AFos SPC SPC-Bcl-2 Bcl-2
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VN/VC SPC
Grp78

VN/VC Jun-Fos

VN/VC Bcl-2
Grp78

Figura 10.3.6. Homodimerizacién de segmentos TM de SPC en células HeLa usando el sistema BiFC. (A)
Medida de fluorescencia de BiFC para los TMDs de SPC y Bcl-2. Las construcciones VC y VN se transfectaron
HeLa y la fluorescencia (A.U. unidades relativas) se midié a las 24 h. Las Barras representan La intensidad
media de fluorescencia de tres experimentos independientes. El test de comparaciéon multiple de Dunnett (CI
95%) se utilizo6 para comparar la sefial media con el control negativo de fluorescencia Jun /AFos (control
positivo Jun/Fos) . (B) Imagenes de microcopia confocal en células HeLa transfectadas con construcciones VC 'y
VN para SPC y Bcl-2. La formaciéon de homo-oligémeros se observa en el canal verde. El canal rojo

corresponde al marcador de reticulo endoplasmatico Grp78. La colocalizacion se muestra en amarillo.

10.3.2. Metodologia utilizada para el estudio de la funcién apoptética de los
dominios TM de las proteinas de la familia BCL-2.

La funcién principal de las proteinas de la familia BCL-2 es el control de la ruta
apoptodtica. Por tanto, uno de los objetivos de esta Tesis fue determinar la relevancia de
los BCL-2 TMD en apoptosis. Para ello, se emplearon diferentes estrategias y protocolos
de medicion de la activacién apoptodtica entre los que destacaremos aqui el ensayo de
actividad enzimatica para la proteasa ejecutora caspasa-3 y los experimentos de salida de

citocromo ¢ en mitocondrias aisladas.

10.3.2.1 Determinacion de la actividad de caspasa-3 frente a diferentes tratamientos.

Esta metodologia se basa en la extraccion del contenido citosélico de células sometidas a
diferentes tratamientos, para incubarlos posteriormente en presencia de un sustrato
fluorogénico especifico de caspasa-3, la cual sélo se encuentra activa en el citosol cuando
ha sido procesada por la maquinaria apoptotica. Los extractos celulares se prepararon a
partir de 2x10° células sembradas en placas de 6 pocillos. Después de 24 h, se llevaron a
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cabo los tratamientos farmacologicos pertinentes segin el disefio del ensayo. Tras el
tratamiento, las células fueron recogidas con tripsina, lavadas con tampén salino (PBS) y
sedimentadas por centrifugacion a 400 g 5 min. Los sedimentos se resuspendieron en
tampon de extraccion (PIPES 50 mM, KC1 50 mM, EDTA 5 mM, MgCl, 2 mM, DTT 2
mM) suplementado con un cdctel de inhibidores de proteasas (Sigma) y se mantuvieron
en hielo durante 5 min. A continuacion se congelaron y descongelaron tres veces en
nitrogeno liquido para facilitar la lisis celular. Los lisados celulares se centrifugaron a
14.000 rpm durante 5 min y se recogieron los sobrenadantes, que corresponden al extracto
citosolico. La concentracion de proteina total fue cuantificada utilizando el kit de proteina
BCA (basado en el acido bicinconinico, Thermo Scientific). 60 ng proteina total se
mezclaron con 200 pL de tampon de ensayo de caspasa (PBS 10% de glicerol, EDTA 0,1
mM, DTT 2 mM) que contenia 100 uM del sustrato especifico de caspase-3 (Ac-DEVD-
AFC (Enzo Life Sciences)). Finalmente la actividad caspasa-3 fue medida mediante
liberacion del grupo fluorescente AFC del sustrato a 37°C de forma continua utilizando
un Wallac 1420 Workstation (Aexc 400 nm; Aem 508 nm). La actividad de esta proteasa
se expres6 como el incremento de unidades de fluorescencia relativa por minuto (AU).

A modo de ejemplo se muestran los resultados obtenidos en las lineas celulares MEFs
Wt Apaf-1 y Wt Bax/Bak del capitulo IV frente a diferentes tratamientos antitumorales
(Figura 10.3.7.)

3 MEFS wt Apaf-1 MEFS wt Bax/Bak

% i3

? i,

9 4 .

i i

amM aMmir - 4+ - - - - - - -
VAD - - 4 - - - -4 - -4 MDD - - 4 - - - - - -
ARITY) - - = ¢ 40 - - - - - - ANITY? - - - .- - - - - - -
G50 -~ - - - - - - . - - - Gx15om - - - - - + . - - -
wer . - . - - - - - - - e o . - - - - - - - - - e

Figura 10.3.7. Actividad caspasa-3 en MEFs Wt de Bax/Bak y Apaf-1. QM31 evita la apoptosis en células
no tumorales tratadas tanto con ABT737 como con CDDP, pero no en las tratadas con GX15-070. La actividad
caspasa-3 se midié en MEFs sometidas a los siguientes tratamientos: ABT737 (25 pM), GX15-070 (1 uM) y
CDDP (30 uM) en presencia o ausencia de QM31 (10 pM) y zVADfmk (5 uM). Las barras representan la media

de al menos tres experimentos independientes = sd (** p, 0,05).
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10.3.2.2 Liberacion de citocromo ¢ en mitocondrias aisladas tratadas con diferentes
péptidos derivados de los TMD de proteinas BCL-2.

Para realizar estos ensayos las mitocondrias fueron aisladas a partir de células MEFs
mediante diferentes etapas de centrifugacion como ha sido previamente descrito (348).
Brevemente, 6x10° células por placa de 150 mm fueron sembradas dos dias antes de
realizar el experimento. A continuacion, fueron recogidas con tripsina y tras tres lavados
con PBS se centrifugaron a 600 g 10 min a 4°C. Descartado el sobrenadante, los
sedimentos fueron resuspendidos en 3 ml de tampén IB¢ (125 mM KCl, 5 mM KH2PO4,
2 mM MgCl2, 25 uM EGTA, 5 mM de succinato, rotenona 5 uM, y 10 mM HEPES-KOH
(pH 7.2)). La lisis celular se llevo a cabo mediante rotura mecanica, utilizando el douncer
adecuado y entre 20-30 golpes. Los lisados se centrifugaron a 600 g 10 min a 4°C para
eliminar las fracciones nucleares. El sobrenadante fue centrifugado a 7000 g 10 min a 4°.
Se descartd el sobrenadante y se resuspendio el sedimento en IB¢ para volver a
centrifugar a 7000 g 10 min a 4°. Volvimos a quedarnos con el sedimento que fue
finalmente resuspendido en 20 pL de IBc. Una vez aisladas, las mitocondrias fueron
incubadas con los diferentes TMD-pepts (50 uM) sintetizados quimicamente en el tampdn
IB¢ durante 30 min a 30°C. A continuacion se centrifugaron a 14.000 g durante 10 min.
Las fracciones mitocondriales del sobrenadante y del sedimento fueron cuantificadas y
analizadas por Western blot utilizando anticuerpos contra citocromo c¢ (#4272, Cell
Signalling), a-tubulina (#T8203,Sigma-Aldrich) y VDAC 1/2/3 (sc-98708, Santa Cruz),
siendo estos dos ultimos marcadores de citosol y mitocondria, respectivamente. Su
utilidad reside en servir como referencia para mostrar la pureza de las diferentes
fracciones obtenidas.

La presencia de citocromo c¢ en la fraccion citosolica es indicativa de un proceso de
desestabilizacion/permeabilizacion mitocondrial, por lo que aquellos TMD-pepts que
promuevan este fendmeno tendran funciones pro-apoptoéticas. Como puede observarse a
modo de ejemplo en la figura 10.3.8., algunos de los BCL-2 TMD-pepts son capaces de
generar una desestabilizacion en la MOM que produce la salida de citocromo c,
especialmente en el caso de Bcl-xL y Bak. En otros casos como Mcl-1 y Bel-w, estos
TMD-pepts no producen una permeabilizacién mitocondrial significativa, lo que ademas
nos indica que los BCL-2 TMD-pepts no son fragmentos hidrofobicos genéricos, sino que
existe una especificidad en su secuencia para ejercer una funciéon determinada. Como
control negativo de la permeabilizacion mitocondrial se utilizé el péptido de GpA, cuyo
TMD no tiene afinidad por las membranas mitocondriales ni funciones apoptoticas

conocidas.

220



10

SUMMARY IN SPANISH

C N.T. TMD-GpA  TMD-Bak TMD-Bcl-xL TMD-Bcl-2 TMD-Bax ~ TMD-Mcl-1  TMD-Bcl-w

g SN P SN P SN P SN P SN P SN P SN P SN P
Cytc WD D E S o W | e o——— T — —
VDAC 1 - - s e aE - il |

Figura 10.3.8. Liberacién de citocromo ¢ en mitocondrias aisladas. (A) Las mitocondrias aisladas fueron

tratadas con 50 pM del TMD-pept que se indica en la parte superior durante 30 min a 30°C. E1 Western blot de

las diferentes fracciones mitocondrias purificadas fue revelado contra los anticuerpos de VDAC 1/2/3, utilizado

como marcador mitocondrial, y citocromo ¢ para determinar la permeabilizacion mitocondrial ejercida por los

diferentes TMD-pepts. GpA TMD-pept fue utilizado como control negativo al tratarse de una proteina no

relacionada con apoptosis y sin funciones mitocondriales descritas. Los datos son representativos de tres ensayos

independientes.

10.4. CONCLUSIONES

Los resultados de esta Tesis muestran que los dominios TM de las proteinas
BCL-2 no se encuentran aislados en la membrana mitocondrial sino que son
capaces de asociarse entre ellos. Los estudios de hetero-oligomerizaciones nos
han permitido establecer por primera vez el mapa de interacciones de los TMD
de las proteinas BCL-2. Ademas, se ha demostrado la contribucion potencial de
estos TMD a la regulacion del proceso apoptotico. Por todo ello, concluimos que
los BCL-2 TMDs, junto con los dominios solubles, participan en el delicado
equilibrio que regula la permeabilizacién de la membrana mitocondrial (MOMP).

En la subfamilia de las proteinas BH3-only hemos demostrado que las regiones
hidrofobicas C-terminales de Bik, Bim y Puma son capaces de insertarse en las
membranas celulares de manera eficiente. Estos resultados abren un campo de
estudio sobre las posibles interacciones con otros Bcl-2 TMDs. Por el contrario,
las regiones C-terminales de Noxa y Bmf muestran una capacidad de insercion

baja en las membranas celulares.

Los estudios con péptidos derivados de los BCL-2 TMD han demostrado que
algunos TMD-pepts pueden integrarse de manera especifica en las membranas
mitocondriales. Por otra parte, los TMD-pepts de Bcl-2, Bel-xL, Bax y Bak
inducen la liberacion de citocromo c¢. En consecuencia, la introduccion de estos

péptidos induce muerte celular o bien establecen sinergismos con tratamientos
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quimioterapéuticos cuando son empleados a concentraciones subletales, lo que

les capacita para su potencial uso terapéutico.

El BH3 mimético ABT737 no sélo requiere Bax/Bak para inducir apoptosis, sino
también Apaf-1, mientras que GX15-070 y CDDP inducen diferentes
modalidades de muerte celular en ausencia de las proteinas pro-apoptdticas Bax
y Bak o Apaf-1. Por otro lado, el inhibidor del apoptosoma QM31 protege a la
célula de los efectos derivados del tratamiento con ABT737 y parcialmente de
los de CDDP, pero no logra bloquear la inducciéon de muerte celular por
autofagia inducida por GX15-070.
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Supp. Figure $1. Circular Dichrolsm (CD) spectra of TMD derived peptides. CO spectra
were measured between 190 and 240 nm at a temperature of 25° C using a Jasco J4810
spectropolarimeter. Each measurement was recorded using 222 - Trifluorcethanol (TFE
100%), Methanol (MeOH 100%), and Sodium dodecyl sulfate (SDS) 10 mM and Phosphate
Bufer.
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Supp. Figure S2: Dual Polarisaton Interferomatry. Mass (black) and birefrngence (An) (red)
versus me for each TMD derived peptide on POPC (PM like) , POPC.POPE POPS.POPI
(5:3:1:1)(Mito like) and POPC:POPE POPS.POPITOCL (4.8:2 8:1;1:0.4) (MaoCL lke),
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Supp. Figure $2 continued.
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» B Miode
1 | Micie+CL

Bc3-2 Bekxl BokW MCL-1 BAK  BAX  Gpa

Supp. Figure S3 . TMD-pepts preferential binding to mitochondrial membrane-derived
bilayers, The total mass of TMD-pepts bound to the PM-ike (POPC), Milo-lke (POPC
POPEPOPSIPOPI = 60:30:10:10) and Mio-ike+CL (POPC/POPEPOPSIPOPNTOCL =
58.28:10:10:4) oblanad at the end of 20uM injection. Values indicale mean values +/- SEM

(mp<002 ™ p<0005and " p < 0.001) nd = not determined
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Supp. Figure S4a. Changes in bikayer order induced by TMD-pepts. Dual Polansaton
Imarferometry. The eflect of peptides on membeane disarderng Is analyzed by the changes
of birefringence (And) 88 a function of membrane bound-peptide mass, n POPC (PM-ike, leh
panels), In POPCPOPEPOPSPOP (53:1:1) (MITOdke, cortral panels) and in
POPC/POPEPOPSPOPITOCL (4.82.8:1:1:0 4) (MITOSKe/CL. right paneis). A decroase in
bEainngance COMasSpPOnds 10 a detrease in bilayer order, whils an increase n biredringence
reflacts an increase biliyer ordering,
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Supp.Figure S5: CO spectra of TMD-derived peptides In POPC (et panels) and

POPC:POPERPOPS:POPI (5:3:1:1, right panels) at two different bpid peptide ratios, 1:51

(blue) and 1:201 (red).
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e 12 e
Supp. Figure S6: Analysis of e effect of TMD-gerived peplides on liposome diameter in
POPC and POPC:POPE POPSIPOPI (5:3:1:1), at four cifferant lipid.peptide ratios, 1:31,
1:51, 1:101 and 1:201,
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Supp. Figure S7. Mitochondrial dysfunction of Hela cells co-treated with CODP and
Bel-2 TM domain peptides (10 pM and 3 pM) measured by MTT. (a) Cells were trealed
with TM peptdes al 10 uM for 24 h. (D) Apoplotic cell death promoted by the TMD-pepts
10 yM was analyzed by Now cytometry with FITC Annexin V and Pl (¢) Cels were treated
with CODP {40pM) for 12 h after transfection with TM peptides at 10 yM. (d) Cells treated
with TM peptides at 3 pM for 24 h represented by white bars. Cells treated with CODP
(40uM) for 12 h after transfection with TM peptides at 3 pM represented by black bars, All
bars represant the mean of three ndependent experiments £ sd. ("p < 0.1, *“p <005, ***p <

0.001).
10
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Supp. Figure S8. Hela cells treated with TMD-8cl-xL and TMD-Bak peptides and CODP
in presence of Caspase inhibitor zVaD. Cells were transiected with the peptides at 10 M
2VaD (10uM) was added belore CODP (40uM) treatment. 4 h later pepbdea lransfection (lotal
tme 24h). (8) Apoptosis activation was measured by Caspase 3-lke activly measured in
Hola calls. Al bars represent the mean of three iIndependent expenments ¢ sd. (ns. no
signficant, *p<0.1)
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Supp. Figure $9. HCT1168 wt and DKO were treated with TMD-Bcl-xL and TMD-Bak
peptides for 24h, Cells were transfected wah TMD-papts (10 and 20 uM). (3, b) Viabslity was
measured by trypan biue assay after 24h of peptide transfection (¢ d) Measurement of
Intraceliular ATPicell by luminescence, bars reprosent the mean of three independent
expariments £ s.d ("p < 0.1; **p < 005 ***p < 0.001, compared with NT). (e, 1) Apoplosis
activation was measured by Caspase 3-fke actwily. Bars represent the mean of theee
expenments £ sd. ("p < 0.1. *p < 0.05; ***p < 0001 compared with NT (whie bars) and
CDOP (black bars)),

13

250



11 APPENDIX I

HCT 116 wt HCT 116 DKO
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Supp. Figure $10. HCT116 wt and DKO were treated with TMD-Bel-xL and TMD-Bak
peptides for 24h. Cells were treated with TMD-pepts (20 pM) 4 hours after CODP treatment
(8, b) Mtochondnal dysfunction was measured by MTT assay afer 24h of peplide
transfection. (c, d) Apoptotic cell death was analyzed by fow cytometry with FITC Annexin V

and P
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Thickness Mass
e (am) Brebingence {rg/men’)
PMdlke POPC 476+003 00199200005 4762003

MITOdike POPC/POPE/POPSPORPI(5:3:1:1) 4484008 001762000058 4472007

MITOdike FPOPC/POFE/POPSFPORPVTOCL
+CL (4.8 281:104) 4894018 00198200001 488+033

Supp. Table S1. Properties of tha lipid bilayers formed on the planar siicon oxyrtride chip
suface at 20°C. (Values are averages of 12-14 repeats). Value eror is cne standard
daeviation
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Supplemental Methods

Peptide Synthesis. Peptides were prepared by Fmoc (N«{S-Nucremyl)
mathoxycarbonyl)-based sodd phase synthesis n a 433A Appled Blosystems peptide
syntheszer with a Rink Amede Resin as reported previously (64). Peptides were synthesized
with 2 or 3 lysines N- and C-lerminal of the sequences in oeder 10 improve solubility.
Purification was performed in a8 C18 preparative RP-HPLC system up 1o 95% of peptide
purity as determined by analytical RP-HPLC., Identity was confirmed by MALDI-TOF mass
spectroscopy. Stock solutions of the peptides were prepared in MINQ water and the
concentrations were determined by spectrophotometry in 8 NanoDrop 1000 (Thermo
Scientific).

Circular Dichroism (CD) Measurements. CD spectra were recorded between 150
and 250 nm a1t 25 "C on a Jasco J-810 spectropolarimeler in quartz cells of 0.1-cm path
length. Peptides were dissolved at 10 yM in phosphate buffer (50 mM. pH 7.0), and their
abdity to adopt a secondary conformation was analyzed with a 2.2 2-riflucro-ethancl (TFE).
sodium dodecy! sulfate (SOS) 1% and methanol (MeOH, 50 and 100%). respectvely, Each
CD spectrum was the average of 20 scans performed at 1 nm intervals. CD spectra were
interpeetad with the K2D software provided by Dichroweb (avalable on the World Wide
Web) The results are expressed 8s mean molar residue eliptcities (degrees x cm’ x dmol ')
For the measuremants with iposomes. 1mM of extruded iposome solution (POPC.PE PSP
or POPC only) prepared in 10mM Sodium Phosphate 137mM NaCl pHT 4 buffer was added
10 the cuvetie where paplide stock (10mM HEPES 150mM NaCl pH 7.4) was ttrated in 1o
incrementally increase the peptde-iposome ratio. The rabes 1:201, 1101, 151 and 1:31
were analysed 10 determing the effect of peptide concentration on structure, Calkculation of
Motar Elipticity (8) of the peptides and spectra smoothing was achieved using Jasco
instrument software.

16

253

APPENDIX I



11 APPENDIX I

Dynamic Light Scattering. Malvern instruments Zetasizer Nano Z red (Mahem
Laboratories Lid, Malvern, UK) was utdised 10 determina the size of liposome pamcles in the
prosence of peptde via DLS. The relationship between particle size and Brownian motion
(Stokes-Einstein relstionship) i utilised by the Zetasizer to determine the average size of a
population of paricles in solution. 0.1mM POPC.PE:PSPI (5:3:1:1) iposome was measured
n a low volume disposable cell mtially followed by incremental addson of peptide to achiove
the same peptide-lipcsome ratios as in the CO measurements. Samples were incubated in
the Zetasizer at 20°C for a total of 10 minutes prior 1o reading to give sufficent Sme for
inléeraction between the peplide and the liposome and & consislert thermal gradient
theoughout the sample. Each reading consisted of 12 scans each of 10 seconds durabion with
parameters 5ot 10 measure 5@e in a low volume disposabie szing cell. The equitbration time
was set to 80 seconds and was included in the incubation time.
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* Andreu-Fernandez V, Genovés A, Messeguer A, Orzédez M, Sancho

M, Pérez-Paya E. “BH3-mimetics- and cisplatin-induced cell
death proceeds through different pathways depending on the
availability of death-related cellular components” Plos One,
2013. doi: 10.1371/journal.pone.0056881.

All the results of this publication are contained within this thesis. Vicente
Andreu has performed the majority the experiments and contributed to
their design and to the writing of the manuscript.
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e Sancho M, Gortat A, Herrera AE, Andreu-Fernandez V, Ferraro E,
Cecconi F, Orzdez M, Pérez-Payd E. “Altered mitochondria
morphology and cell metabolism in Apafl-deficient cells” Plos
One, 2014. doi: 10.1371/journal.pone.0084666.

These results are part of the background of this thesis. Vicente Andreu
contributed by performing the experiments required by the referees of the
journal (results labeled as “Supplementary” in the publication).
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Supplemental Information

Supporting Figure 1
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Figure S1. ABT737 treatment induces cell death in SVA0IM WT MEFS but not SVA0IM XO MEFS and SIM
MEFS. (A) Percentage of ool survival measured by the trypan blue exclusion assay n SVA0IM and SIM MEFS,
WT and Apafl depleted, in the presence or absence of ABT737 (20 uM) for 24 h. (B) Caspase-3 like activity was
measured under the same conditions described above. (C) Cells with Cyt ¢ released measured by the flow
cytometty analysis after incubation with ABT?37 (20 uM) for 24 h, In all cases, bars represent the mean of three
experiments ¢ s.d.

277



13

APPENDIX III







