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Antonio Llombart-Bosch4, Isidro Machado4, Piero Picci5, Pancras C. W. Hogendoorn6,

Nicholas A. Athanasou7, J. Alison Noble2, A. Bassim Hassan1*

1 CR-UK, Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, 2 Institute of

Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, United Kingdom, 3 Institute

of Pathology, Heinrich-Heine University, Medical Faculty, Düsseldorf, Germany, 4 Pathology Department, University of Valencia, Valencia, Spain, 5 Research, The Rizzoli

Institute, Bologna, Italy, 6 Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands, 7 Nuffield Department of Orthopaedics, Rheumatology

and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom

Abstract

Driven by genomic somatic variation, tumour tissues are typically heterogeneous, yet unbiased quantitative methods are
rarely used to analyse heterogeneity at the protein level. Motivated by this problem, we developed automated image
segmentation of images of multiple biomarkers in Ewing sarcoma to generate distributions of biomarkers between and
within tumour cells. We further integrate high dimensional data with patient clinical outcomes utilising random survival
forest (RSF) machine learning. Using material from cohorts of genetically diagnosed Ewing sarcoma with EWSR1
chromosomal translocations, confocal images of tissue microarrays were segmented with level sets and watershed
algorithms. Each cell nucleus and cytoplasm were identified in relation to DAPI and CD99, respectively, and protein
biomarkers (e.g. Ki67, pS6, Foxo3a, EGR1, MAPK) localised relative to nuclear and cytoplasmic regions of each cell in order to
generate image feature distributions. The image distribution features were analysed with RSF in relation to known overall
patient survival from three separate cohorts (185 informative cases). Variation in pre-analytical processing resulted in
elimination of a high number of non-informative images that had poor DAPI localisation or biomarker preservation (67
cases, 36%). The distribution of image features for biomarkers in the remaining high quality material (118 cases, 104 features
per case) were analysed by RSF with feature selection, and performance assessed using internal cross-validation, rather than
a separate validation cohort. A prognostic classifier for Ewing sarcoma with low cross-validation error rates (0.36) was
comprised of multiple features, including the Ki67 proliferative marker and a sub-population of cells with low cytoplasmic/
nuclear ratio of CD99. Through elimination of bias, the evaluation of high-dimensionality biomarker distribution within cell
populations of a tumour using random forest analysis in quality controlled tumour material could be achieved. Such an
automated and integrated methodology has potential application in the identification of prognostic classifiers based on
tumour cell heterogeneity.
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Introduction

Tumours arise in somatic tissues and differ by site of origin,

histological appearance and mechanistic hallmarks [1]. Inter-

tumoural heterogeneity (between individuals) at the genomic,

epigenomic and proteomic level, can be quantified by whole

genome massively parallel (deep) sequencing and quantitative

proteomics [2,3]. Single cell sequencing data have recently also

highlighted the significant intra-tumoural heterogeneity (between

cells of a tumour), the fundamental clonal basis to the often rapid

emergence of resistance to therapies [4–9]. Intra-tumoural

heterogeneity is also modified by cellular and micro-environment

context. Such contexts appear critical to tumour behaviour, but

are generally less well understood, despite the evidence suggesting

that tissue dependent niches established by stromal cell popula-

tions may substantially alter signalling responses and behaviours of

tumour cells [4,10]. In the clinical situation, patients are often

stratified into different clinical cohorts. Further sub-classifications

are either based on outcomes (e.g. survival), by genome wide

analysis and the differential response to drugs, adding further

heterogeneity at the clinical level [11,12]. Despite the complex
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genomic heterogeneity between single cells in different regions

within the same tumour, it remains unclear what the prognostic

significance of these observations are without clinically applied and

unbiased approaches to quantify associated biomarkers of cellular

heterogeneity functional in situ [6,13]. Moreover, ‘omics’ tech-

nologies generate large numbers of quantifiable features that

greatly exceed the numbers of subjects in studies. Such high-

dimensional data thus requires novel approaches to bio-informat-

ics analysis. For cancer, one of the major general problems

remains the unbiased integration of the high dimensional

heterogeneity (distribution) data into predictive, prognostic and

personalised tools that may have genuine clinical utility.

At the level of proteomic localisation in tissues, clinically useful

tissue based proteomics is still largely based on localisation of

protein antibody epitopes in formalin fixed material. For example,

biomarker assessments using immunohistochemistry often remain

semi-quantitative (+1, +2, +3), and lack the cellular localisation

afforded by immunofluorescence and confocal imaging [14]. Use

of MALDI based mass spectrometry [15–18], automated quanti-

tative analysis (AQUA) [19] and multiple-ligand epitope cartog-

raphy (MELC) [20,21] offer significant technical advances, but

they remain prone to bias and fail to address the quantification of

heterogeneity at the resolution of each cell. Advances in unbiased

image analysis, both in 2 and 3 dimensions, have facilitated the

segmentation of regions and cells of tumours, and offer significant

benefits in parallel with developments in fluorescent confocal

microscopy. By high content image analysis, it is now possible to

quantify biomarkers and their distribution in tumours, even

though there are fundamental on-going problems with the

interpretation of thresholds or ‘cutpoints’, in addition to the

emerging quality control problems relating to tissue pre-analytical

processing [19,22–25]. Despite some of these technical limitations,

the more basic application of virtual microscopy and image

analysis to diagnostic pathology have lead to more widespread

technology adoption, and so supports the impetus for the further

development of novel computer algorthims, as for example those

utilised in content retrieval [26,27].

Here, we developed an integrated analysis pipeline to address

the quantification of image feature heterogeneity with clinical

prognostic outcome in a rare but genetically diagnosed tumour.

Ewing sarcoma family of tumours (ES) are rare high-grade

tumours of young adults with an incidence of 0.13 per 100,000

[28]. Diagnostic methodology developments have improved ES

diagnoses, such that current standardisation also identifies the 20%

of cases that arise in soft tissue rather than the more frequent

primary site in bone. ES diagnosis is confirmed by an in situ
hybridisation test based on the EWSR1 gene break-apart probes

(EWS-FLI1, t(11;22)) with histological features of small round cells

and anti-CD99 antibody cytoplasmic labelling [29]. In parallel

with improved molecular diagnosis, combined modality treatment

protocols have also been developed. These treatments incorporate

dose intensive chemotherapy, surgery and radiotherapy and result

in a 60–70% 5-year survival. Patient survival in ES correlates well

with a number of clinical features, such as the good prognosis in

small volume localised tumours with good histological response to

primary treatment [29,30]. There are no prognostic tissue

biomarkers currently in use in ES that have been prospectively

validated, even though ES provides an ideal starting point as these

tumours correlate with a characteristic genotype. There is also

remains a lack of biomarker related studies aiming to either stratify

patients for standard treatments in the clinic, or to be incorporated

into new prospective clinical trials or to be applied in experimental

early phase protocols [31–33]. To date, the Ki67 proliferative

biomarker has been shown to be of potential prognostic

significance in some large series of ES patients using semi-

quantitative single antibody immunohistochemistry [34]. More-

over, biomarker assays to potentially select the 5–15% of patients

more likely to respond to novel IGF pathway intervention remain

unavailable, with drug development programmes curtailed as a

result [35,36].

We sought to develop an unbiased tissue image segmentation

algorithm to quantify downstream signaling biomarkers of

receptor tyrosine kinase activation, detected with antibodies to

signaling proteins and fluorescent probes, and imaged with multi-

spectral confocal microscopy. Using this method to validate

antibody probes firstly in ES cell lines, and then in ES tumour

tissue, we obtained quantification of the distribution of biomarkers

within the nucleus and cytoplasm of each cell within tumour

biopsies assembled on a tissue microarray (TMA). We analysed the

high dimensional distribution data in relation to patient overall

survival using machine learning (random survival forest, RSF) and

utilised the internal validation process in RSF to identify a

prognostic classifier.

Methods

Cell culture
Cells were obtained from ATCC or different partner institutes

of EuroBoNeT (Table S1) [37]. All EWSR1 translocation

confirmed Ewing sarcoma (ES) cell lines used in this study were

grown in RPMI 1640 (PAA Laboratories GmbH, Austria)

supplemented with 1% Penicillin-Streptomycin (PAA Laboratories

GmbH, Austria) and 10% Foetal Calf Serum (Biosera, UK). Three

cell lines (STA-ET 2.1, STA-ET10, WE-68) needed to be

cultivated in gelatine-coated culture flasks to allow cells to attach.

For growth factor experiments cell lines were grown on coverslips

(d = 13 mm) in 24-well plates (Costar, USA) with 46104 cells per

well. Poorly attaching cell lines (e.g. STA-ET 2.1, STA-ET10,

WE-68) were seeded on either Matrigel or gelatine coated

coverslips (growth factor reduced, BD Biosciences, UK). After

adaption for 2 days, cells were serum-starved in RPMI 1640

supplemented with 1% Penicillin-Streptomycin for 24 hr and

treated with IGF2 (50 ng ml21, R&D systems) for 1 hr at 37uC.

Finally cells were fixed in 4% (v/v) formaldehyde for 15 min at

room temperature (RT).

Paraffin-embedded cell cores
Four Ewing cell lines (CHP-100, RD-ES, SK-N-MC, A673)

were grown in petri-dishes (d = 14 cm) for 48 hr prior to 24 hr of

serum starvation. After treatment with IGF2 (50 ng ml21) for 1 hr,

cells were trypsinised (TrypLE Express, Life Technologies, UK)

and centrifuged at 1000 rpm for 5 min. Cells were re-suspended in

4% (v/v) formaldehyde in PBS, and fixed for 1 hr at RT. After

centrifugation at 1300 rpm for 2 min, cells were re-suspended in

2% (v/v) molten agarose at 60uC (Hi-Res standard agarose,

Geneflow, UK)/4% (v/v) formaldehyde in PBS, centrifuged at

2000 rpm for 20 sec and kept on ice for 30 min for the agar to set.

The agarose block containing the cell pellet was dehydrated in an

ascending alcohol series and embedded in paraffin. Five micro-

meter slices were cut and transferred to Polysine slides. Slides were

dried over night at 37uC and stored at 4uC until immune-labelling

was performed within 7 days.

Immunofluorescence
Cells on coverslips were washed in TBS for 563 min,

permeabilised and blocked in TBS/0.5% (v/v) Triton X-100/

10% (v/v) goat serum for 1 hr, and incubated with the primary

antibody at 4uC overnight. Monoclonal rabbit antibodies pS6
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(#4857), Foxo3a (#2497; #9467), EGR1 (#4154) and pMAPK

(#4370) were purchased from New England Biolabs (UK). After 3

washing steps, cells were incubated with a secondary goat anti-

rabbit antibody Alexa 594 (Life Technologies, UK) for 2 hr at RT.

Fluorescent Phalloidin Alexa 488 (Life Technologies, UK) was

used in order to detect the actin cytoskeleton. Cells were incubated

with Phalloidin Alexa 488 (1:50) for 2 hr at RT following 363 min

washes in TBS. Nuclei were detected with the DNA stain DAPI

(Sigma, UK) and coverslips were mounted with Prolong Gold

Antifade (Life Technologies, UK). In order to determine the

dilution of antibodies, we first serially diluted the secondary

antibodies until the signals were at background level. We then

titrated the primary antibodies in the same way, so that signal was

detectable above background. More details for the validation of

the antibody probes are in Table S2. Antibodies were further

validated by use of inhibitors in cell lines (e.g. MCF-7). Reduction

in either signal intensity or altered cellular distribution in response

to IGF2 were confirmed by addition of inhibitors with a range of

concentrations (maximal inhibitory concentration); rapamycin

(10nM), LY294002 (10 mM) and U0126 (10 mM), for pS6 (signal

reduction), Foxo3a (nuclear localization) and EGR1 (cytoplasmic

localization), respectively.

Tissue processing and image capture
Ewing sarcoma TMAs were derived from core biopsies obtained

from the Department of Pathology, University of Valencia, the

Institute of Pathology, University of Düsseldorf, Medical Faculty,

and the Department of Pathology, Leiden University Medical

Centre in collaboration with the EuroBoNeT biobank (Table S3).

Written informed consent was obtained for all patient samples,

and TMA cores coded with anonymised codes linked to clinical

data that was also anonymised with the same code, with the latter

data transferred with the physical TMA’s as part of the

EuroBoNET biobank. For tissue assembled into TMA from

Valencia that included the Rizzoli Institute in Bologna, Italy, local

consent was obtained for research on anonymised tumour material

as part of the Prothets-503036 and EuroBoNeT-011814 bio-banks

via the ethical committee of the Rizzoli Institute and Institutional

Ethical Committee of Valencia University, respectively. For tissue

assembled into TMA from Düsseldorf, informed consent was

obtained for tissue for studies through the EUROPEAN Ewing

Tumour Working Initiative of National Groups, Ewing Tumour

Studies 1999 (EuroEwing99), in conjunction with institutional

ethics committee of the University of Münster, Germany. For

tissue assembled in the TMA from LUMC, all samples were

handled according to the Dutch code of proper secondary use of

human material as accorded by the Dutch society of pathology

(www.federa.org). The samples were handled in a coded (pseud-

anonymised) fashion according to the procedures as accorded by

the LUMC ethical board. Importation of anonymised tissue was

approved under UK HTA licence and local ethical review to the

Sarcoma component of the Oxford Research Biobank (HTA

12217, Research Ethics Committee Oxford- C, REC 09/H0606/

5). The HTA licence also covered informed consent for both

importation of material and for project consent for biomarker

studies of signalling proteins in sarcoma tissue.

A total of 524 patients were initially identified from three

cohorts. 472 patients had TMA cores, but not all had outcome

data. 314 potential biopsies were analysed with each TMA

containing one (d = 2 mm, cohort a), three (d = 2 mm, cohort b) or

two (d = 1 mm, cohort c) representative cores for each case,

respectively. Of these, 52 cases had no cores listed on the TMAs

obtained, and 77 had missing cores samples on slides (non-

adherent) even though they had been incorporated into the

TMAs. The remaining 185 cases had both visible cores on the

TMA slides and associated outcome data and were therefore

imaged. 5 mm thick TMA sections were dried for 10 min at RT

before processing. After de-waxing and rehydrating, TMAs were

permeabilised with TBS/0.5% (v/v) Tween20 for 30 min at RT,

and washed several times in distilled water. For antigen de-

masking, slides were immersed in citrate buffer (pH 6.0) and

antigen retrieval was performed in a pressure cooker (Biocare

Medical, UK) for 2 min at 125uC followed by 10 min at 85uC.

Non-specific binding was blocked in TBS/Tween20 (0.5%. v/v)

and 10% (v/v) goat serum for 1 hr at RT. Primary antibodies

rabbit anti-Ki67 (1:300, Thermo Scientific, UK), rabbit anti-Egr1

(1:50), rabbit anti-Foxo3a (1:100) and rabbit anti-pMAPK (1:50)

(New England Biolabs, UK) were incubated simultaneously with

mouse anti-CD99 (1:100, Leica, UK) in a humidified chamber at

4uC over night. After washing in TBS, both secondary antibodies

(goat anti-rabbit Alexa 488 and goat anti-mouse Alexa 555, Life

Technologies, UK) were added together for 2 hr at RT. Slides

were washed and blocked with TBS/10% (v/v) rabbit serum for

1 hour before incubation with the primary conjugate pS6 Alexa

647 (1:30, New England Biolabs, UK, #4851) for 2 hr at RT.

Nuclei were labelled with DAPI and slides were mounted with

Prolong Gold Antifade (Life Technologies, UK). Images were

acquired with an Olympus Fluoview FV1000 confocal microscope

and a 60x oil objective (NA: 1.35). Images of 204862048 pixels,

had a horizontal and vertical dimension of 211 mm6211 mm and a

thickness of 1.292 mm. Between 1 and 6 images per patient were

captured depending on the size of the tissue core. Median filtering

and Gaussian smoothing were applied to all images to reduce

image noise. The total processing of samples to final images took

on average 2-3 days per TMA slide.

Image analysis
Segmentation: To segment individual DAPI stained nuclei,

Otsu’s method was used to initialise a level set algorithm [38]. A

hybrid geodesic region-based level set was used to estimate

location and shape of individual nuclei [39]. This estimate was

corrected using a watershed tesselation for cells in tissues in order

to divide clumps of nuclei. For the cytoplasmic segmentation,

thresholding was used to find the outer boundaries of cells. A

Voronoi tesselation was first calculated based on an equidistant

partitioning between neighbouring cells [40]. The cytoplasm of

cells in cores were segmented firstly with a watershed tesselation,

followed by an iterative marker controlled watershed method to

find the inner boundaries based on the intensity gradient of CD99.

This cytoplasmic segmentation algorithm was then applied to

tissue sections. Nucleus and cytoplasm segmentations were

validated by comparing the computed segmentation results with

manual results drawn by 3 human experts. For this purpose,

images from 3 different cell lines (A673, SK-N-MC, RD-ES) on

coverslips and as cell cores were analysed. The results of the

validation are shown as Bland-Altman plots, which compare the

areas of all nuclei found by 3 experts to the areas according to the

segmentation algorithm, and plots of the Hausdoff distance, which

is the size of the worst mismatch between both segmentation

results. OxBioPathv1 integrates the segmentation and analysis

(below) and is written in Matlab. The total time to process

automated segmentation of all images took 24–48 hours using

University of Oxford computing services.

CD99 and Ki67 thresholding: A Ki67 index for each patient

was defined as the proportion of CD99 positive cells that were

Ki67 positive, as defined by thresholding the log2 (nucleus/

cytoplasmic ratio) of each marker. For the RSF analysis CD99
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Figure 1. Development of a single cell segmentation algorithm for tumour tissues. Confocal images of agar pellets of EWS-FLI1 positive
Ewing sarcoma cell lines were used to optimise image segmentation. a. Multi-channel and single channel images (with segmentation lines) of the
CHP-100 cell line in cores labelled with DAPI, CD99 and EGR1 biomarkers indicating nucleus and cytoplasm localisation, respectively (see high
magnification insert). In b., .500 cells were manually segmented and compared to the image segmentation algorithm (see Fig. S1 in File S1) using
Bland-Altman and Hausdorff distance. Also, example distributions are shown for nuclear DNA content and nuclear and cytoplasmic localisation of
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positive cells were defined as those with mean cytoplasmic CD99.

mean nuclear CD99.

Principal Component Analysis (PCA): PCA is a dimensionality

reduction tool which allows an initial visualisation of the data to be

created in two or three dimensions, by searching for linear

combinations of features corresponding to the modes of maximum

variation in the data. Z-scores were calculated to transform all

features to a common scale (mean 0, variance 1) before the PCA

calculation.

Patient features: Individual cell features from all images

associated with a patient were summarised by using kernel density

estimation to approximate the probability density function (PDF)

of each feature. The PDF for each feature was evaluated at 100

equally spaced points.

Automated Quality Control: Image features were only calcu-

lated for those images which passed the quality control criteria,

which primarily related to the numbers and proportion of cells in

focus. In order to support future automation of the entire pipeline,

we built an automated classifier using a set of image features

designed for high content screening (HCS) using the DAPI

channel from images also stained for Ki67 (916 images). 230 of

these images were labelled as poor quality and 686 as good quality.

Four HCS QC features were calculated for each image [41]:

1. Inverse coefficient of variation: Mean image intensity/Stan-

dard deviation image intensity

2. Focus score: Variance image intensity/Mean image intensity

3. Image correlation: A measure of the correlation between

neighbouring pixels in an image, calculated from the grey-level

co-occurrence matrix (GLCM) [42]. Image intensities were

quantised into eight levels, and the GLCM was calculated at a

single scale for neighbouring pixels.

4. Power log-log slope (PLLS, across the whole range): The

change in the intensity power spectrum of an image is

described as a function of spatial frequency. The 2-dimensional

FFT of an image was calculated, and log10 (squared magnitude

of FFT) plotted against log10 (spatial frequency), ignoring

orientation. The gradient of this plot was calculated across the

full spatial frequency range.

An additional eight features were obtained by splitting the

power log-log plot into eight spatial frequency ranges, before

calculating the slope for each. This corresponds to the PLLS at

different image scales. These features were used to train two

logistic regression classifiers to distinguish between good and poor

quality images, one using the first four features (x1-x4), and the

other using all twelve features (x1-x12). The performance was

evaluated using leave-one-out cross-validation.

Random Survival Forest: The RSF training process involved

building a set of decision trees from a subset of the original dataset,

using sampling with replacement (bagging). Since each tree was

built from a different subset of samples the remaining out-of-bag

(OOB) samples provided an unbiased estimate of the error rate,

calculated using Harrell’s concordance index [43], so that 0

indicated a perfect prediction whereas 0.5 would be expected by

chance. At each step during the construction of each tree a

random subset of features was tested for predictive capability. This

ensured all trees were different, contributing to the resilience of

RSF to over-fitting.

In common with most machine learning algorithms, the

performance of RSF was improved by using a feature selection

algorithm to discard irrelevant features. We used the variable

hunting algorithm included in the RSF package, which introduced

an additional random partitioning of the data (80% train and 20%

test) before the forest was trained. Features were iteratively

introduced until no significant features remained, after which the

process was repeated multiple times with a different sampling of

the data. Since each iteration was independent of all others the

importance of a feature could be measured by how frequently it

was selected.

In addition the internal RSF error rates were further validated

using cross-validation in which the data set was randomly

partitioned into a training set consisting of two-thirds of the

samples on which the RSF was trained, with the remaining one-

third of samples used for testing. This was repeated 50 times for

each set of features. Cross-validation is a valuable tool for

analysing the expected performance of the algorithm since a single

analysis may lead to an apparently well (or poorly) performing

EGR1. Image segmentation was applied to tissue microarrays of c. Ewing sarcoma core biopsies on a tissue microarray (TMA), and d., multi-channel
confocal images captured for DAPI, CD99 and Ki67 proliferation marker. In e. .500 cells from TMA cores were manually segmented and compared to
the image segmentation algorithm using Bland-Altman and Hausdorff distance, with distributions for DNA and Ki67. Bars: 20 mm (a. and d.), and in c,
200, 100 and 50 mm, respectively.
doi:10.1371/journal.pone.0107105.g001

Table 1. Clinical features of patients with informative images from cohorts utilised in combined random forest analyses.

Ewing sarcoma clinical features Cohort a (n = 43) Cohort b (n = 16) Cohort c (n = 59)

Status (% alive) 70 25 54

Male: Female ratio 1.26:1 3:1 1.23:1

Mean age 19 19 18

Site (%, central: peripheral: extra-osseous) 39:33:28* 19:75:6 24:76:0

Tumour volume (%, ,200 ml: $200 ml: ND) 63:25:12 13:25:62 NA

Metastasis (% Yes: No: ND) 98:0:2 69:19:12 34:66

Translocation (%, EWS-FLI1: Non-FLI1#: ND) 77:9:14 31:38:31 88:0:12

*ND cohort a = outside bone
#Non EWS-FLI1 = EWS-ERG; EWS-NFATC2 or EWSR1-re-arranged (no FLI or ERG partner).
Note: all patients treated in Europe with standard chemotherapeutic, radiotherapy and surgical trial protocol (EICESS92/EE99 CESS81).
ND: data not available.
doi:10.1371/journal.pone.0107105.t001
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algorithm by chance, whereas the use of multiple resamplings

mimics the analysis of multiple different datasets.

RSF parameters:

Number of trees: 1000

Splitting rule: Logrank random (default)

Number of features tested at each split: N/3 (default).

Results

Cell line segmentation
We first obtained imaging data of biomarker localisation and

distributions using unbiased image segmentation of cell lines and

cell line cores. A panel of 10 validated ES cell lines (Table S1) were

exposed to serum free culture and to the growth factor ligand,

insulin-like growth factor 2 (IGF2). A novel image segmentation

algorithm (see methods) was used to identify the boundaries of the

nucleus and cytoplasm of each cell (Figure S1 and S2 in File S1).

Simultaneous fluorescent detection of Phalloidin, DAPI and

signaling biomarkers such as pS6, Foxo3a or EGR1, were imaged

by multi-spectral confocal microscopy (Figure S2 in File S1).

Segmented images were validated relative to three experts using

Hausdorff (maximum discrepancy between boundaries) and

Bland-Altman plots of segmented areas (Figure S2b, d, f in File

S1). Cumulative frequency plots revealed cell line specific effects of

biomarker distributions within the nucleus and cytoplasm of each

cell in response to IGF2, indicating there was significant

heterogeneity between each cell’s response within a given cell

culture, and that the biomarker antibodies were informative for

response (Figure S3 in File S1). An improved version of the

segmentation algorithm was then validated using the same cell

lines assembled into cell pellets, where there were frequent

associated clumps and overlapping cells that more closely

resembled tumours (Figure 1a, b and Figure S4 in File S1).

Tissue micro-array segmentation
Image segmentation of Ewing sarcoma tissue biopsy cores from

three separate but similarly treated ES clinical cohorts (Table 1)

assembled TMAs (Figure 1c, d) were next validated using Bland-

Altman and Hausdorff plots (Figure 1e). The accuracies of the

image segmentations in cell culture, cell pellets and tumours were

relatively similar, although overlapping cells and the disrupted cell

architecture in tumours presented more challenges to the final

segmentation algorithm. The number of cells segmented per

image was in the range 50–500 depending on cell density, and up

to 4 images were captured from random sites on each TMA core.

We utilised TMAs where cores were present on slides linked to

clinical outcome data for 185 ES cases confirmed by EWSR1

break apart in situ hybridisation probes sourced from the three

separate patient European cohorts (a = 57, b = 20, c = 108).

Following imaging of all TMA cores labelled with DAPI, CD99

and pS6, we then applied strict image based quality control criteria

in order to discard non-informative images, including those where

nuclei could not be segmented using DAPI (Figure S5 in File S1).

Image normalisation included controlling for image bias of the

confocal microscope, image pre-processing and comparison of

feature values between cohorts. As a result of the quality control

based on these criteria for each image, 36% of the sampled images

had to eliminated because of poor quality (67/185), leaving a total

of 118 cases with truly informative images suitable for further

analysis (Table 1, a = 43, b = 16, c = 59).

The elimination of a significant number of samples as a result of

quality control indicates that sample pre-analytical processing is a

key and independent determinant of the utility of biomarker

analysis. The formalin fixed samples assembled into paraffin

blocks were processed by local laboratories in the different cohorts.

There were no systematic records collected for the processing and

storage of the blocks and only local guidelines stipulated for the

diagnostic samples. The primary core blocks were sampled and

assembled in the TMAs specific for each cohort. We assume that a

large source of variation relates to timing of tissue collection and

fixation, the length, type and conditions of storage of samples as all

such pre-analytical steps contribute to variations in sample quality

and biomarker stability.

The Kaplan Meier overall survival analysis confirmed that the

patient outcome was different between cohorts (Figure S6 in File

S1). These differences were due to different relative proportions of

patients with relatively good or bad prognosis in each cohort.

Importantly, the informative cases that were imaged were however

representative of the total for all cohorts combined (passed and

failed), and with respect to the different survival outcomes per

cohort (Figure S6 in File S1). We tried to confirm our use of

manual criteria to select images that could be informative by

building a logistic regression classifier for quality control of high

content imaging using the passed and failed images. In the two

classifiers tested, we failed to clearly identify the passed and failed

images, with the AUC for ROC curves both being 0.72 (Figure S7

in File S1). Thus the images of the samples that had not passed

quality control could yet be informative in terms of clinical

outcome data, but it remains necessary to develop quality control

classifiers in the future to select regions in tumours that can be

analysed.

Within the informative imaged data, significant differences still

existed within each cohort with respect to principle component

analysis (PCA), in line with the differences in patient survival,

although as expected TMA cores for the same patient imaged

separately segregated together and were found to be relatively

consistent (Figure S8 in File S1). The patient samples within each

cohort appeared heterogeneous in terms of outcome data as

above, reflecting not only the differences in survival in each cohort,

but also suggesting the importance of normalised pre-analytic

processing to reduce data variation [44]. Overall, 476 multi-

spectral registered confocal images were captured from material

from 118 patients and resulted in the segmentation of a total of

113,201 individual cells with an average of four biomarkers per

cell (104 features per patient). Each biomarker was associated with

a cellular distribution (in relation to the nucleus-DAPI and

cytoplasm-CD99 segmentation) in each cell. Although the

remaining 118 imaged cases did not differ in survival from the

combined cohort, the final number of patients would normally

severely limit the potential for a conventional training and

validation approach to the characterisation of single biomarkers

using the separately identified cohorts. In addition, as others have

found, our data undermines the assumption of the REMARK

guidance, that non-normalised data from separate cohorts are

similar enough to make experimentally valid attempts at

conventional cross-validation of imaging biomarkers [45]. More-

over, the high-dimensionality of our data set compared to the size

of the patient cohorts even if we had included all patients, would

have still remained the main challenge to any subsequent analysis.

This would have remained the case even if several hundred high

quality validation samples could have been identified. Table S3

lists the anonymised patient data with respect to imaged data. Raw

images and software can be freely downloaded; http://www.ibme.

ox.ac.uk/research/biomedia/software-and-datasets.

Conventional biomarker analysis
In order to analyse the pooled image distribution feature data,

we first undertook a conventional threshold approach. By
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combining an exhaustive range of thresholds (cut-points) with

respect to the labels Ki67 (the proliferative marker) and CD99 (the

cytoplasmic marker) with overall patient survival, a weighted

regression accounted for non-linear dependence between total

absolute intensity and intensity ratios using informative images

(Figure S2 in File S1). We plotted Cox proportional hazards p
values of the survival functions for each threshold setting on a heat

map (Figure 2a). Using the maximal significance threshold

(annotated in Figure 2a), log rank significance values were then

also plotted for all possible splits (cut-points) of patients into two

groups (Figure 2b). The data for the maximal significance value

was utilised to generate the Kaplan-Meier plot (Figure 2c). By

taking the same set of images, one experienced observer (CB) also

screened the same images independently of the machine derived

cut point and scored them using a visual threshold of whether

samples showed subjectively high or low proportion of Ki67

labelling. The results showed that the Kaplan-Meier plots from the

maximum threshold cut-point determined systematically, and the

subjective decision of the independent observer appeared surpris-

ingly similar, although not identical (Figure 2c and 2d). These data

suggest that there are significant risks of bias when taking a

subjective threshold value based on an observer, but also an

inherent risk of setting incorrect thresholds if applied indiscrim-

inately by a conventional image analysis to all cells in the image,

and setting an arbitrarily determined threshold or cut-point. Both

approaches have bias in that either might obscure or enhance the

predictive role of a biomarker, for instance due to multiple

comparisons leading to a significant result by chance.

Random survival forest analysis
An alternative analysis was undertaken with an unbiased

machine learning tool random survival forest (RSF). RSF was

applied to the combined cohort of image features and associated

overall survival data. Random forests (RF) and variants are

powerful machine learning tools to automatically generate

Figure 2. Image thresholds bias significance of tissue biomarker results. a. Thresholds for CD99 and Ki67 were split into centiles of the log2

(nuclear/cytoplasmic ratio) distribution. The heat map shows the Cox regression p value (log10) for each pair of centiles with respect to survival
outcome of the whole imaged cohort. The square marker shows the optimal threshold with respect to the p value (CD99; 20.18 [62%tile], Ki67; 0.31
[22%tile]. b. Using this pair of thresholds, the Ki67 index and the log-rank test is calculated for all possible dichotomised splits of patient groups. c.
Optimal threshold values defined in a. and b. lead to the Kaplan-Meier plot of overall survival outcome for good (low Ki67 index, blue) and poor
prognosis (high Ki67 index, red) cases (dotted lines; 95% confidence intervals). Cox regression (b = 1.6, z = 4.8, p = 1.661026, log-rank p = 2.661027). d.
A single observer (CB) scored the same images for Ki67 labelling by eye based on a binary low (blue) or high (red) score, resulting in the Kaplan Meier
plot (Cox regression = 1.3, z = 3.7, p = 2.561024, log-rank p = 161024).
doi:10.1371/journal.pone.0107105.g002
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predictions from a dataset by combining multiple features, each of

which may have a highly skewed non-linear distribution [46].

Importantly, RF can take into account both interactions and

dependencies between features without them being explicitly

encoded. Unsupervised analysis can also result in a form of

clustering analysis, and this basic form of RF has been successfully

applied to immuno-histochemistry based classification [47]. RSF is

a specific supervised random forest variant recently developed that

allows integration of multiple independent features to generate a

predictive tool with respect to patient outcome (prognosis) in the

form of time dependent survival data, without requiring the user to

specify thresholds or cut-points [48,49]. Importantly, the use of

randomised ‘leave out’ and random feature selection reduce the

problems of over-fitting inherent in many machine learning

algorithms, particularly in our case with low sample numbers, and

the lack of independent high quality validation patient sets.

Nine RSFs were performed (Table 2) and trained on the patient

distribution features obtained from single cell features using the

iterative variable hunting (VH) feature selection algorithm to

identify features which were predictive of patient outcome, with

overall cross-validation error rate measured using Harrell’s

concordance index (Figure 3) [43]. Instead of calculating a single

error rate, which might be abnormally high or low due to chance,

we obtained a distribution of error rates from the multiple

iterations (Figure 4a), giving a more realistic view of the

performance of the algorithm. Error rates were lower (,4.0) in

the RSF with Ki67, Ki67 combined with DAPI and Ki67

combined with EGR1, Foxo3a and pS6 markers (Table 2,

Figure 4a). Significant features were identified by comparing the

number of times a feature was selected for the final model out of

the 100 random VH iterations. For example, the ‘CD99 negative

Ki67’ RSF selected the feature ‘CD99 negative Ki67 mean

nuclear/cytoplasm ratio’ at the 63rd centile a total of 73 times

(Figure 4b). The distribution of each patient’s features for CD99

negative Ki67 mean nuclear/cytoplasmic ratio are shown (insert

higher magnification, Figure 4c), along with the final five selected

features marked by green dashed lines. Each feature of the

classifier, although normally combined together, is also shown as

single features compared to relative mortality (Figure 4d). Note

that this shows the relative contribution to the RSF prediction of

that feature, and importantly does not necessarily mean that the

single feature could be used as a predictor on its own.

The internally generated RSF error rates should be unbiased,

and to further validate this we used randomised cross-validation

which, as expected, showed error rates consistent with this

(variable hunting cross-validation, Table 2). This also enabled us

to better understand the variation in performance by visualising

the change in predicted output, as summarised by four of the

cross-validation predictions for the CD99 negative (low cytoplas-

mic labelling) Ki67 RSF (Figure 5). Predicted mortality and

survival plots for the test sets from 25 of all 50 partitions ranked by

error rate are also shown (Figure S10, S11 and S12 in File S1).

Ki67 has been proposed as a prognostic biomarker for Ewing

sarcoma, although here we specifically identified a sub-group of

cells that were Ki67 positive but relatively CD99 negative, that is

the nuclear/cytoplasmic ratio of the CD99 marker was less than 1

(Figure S9 in File S1). Following this result, we were able to

specifically identify this population of cells in images that may have

been overlooked using single biomarker analysis (Figure S13 in

File S1). The biological basis of this top ranked feature, and the

potential for an undifferentiated sub-population that it may

represent, remains unknown. For example, the identification of

CD133 positive stem cells would still require further experimental

investigation [50–52]. Although the RSF classifier predicted

mortality, the predictions for survival outcome were also

consistent, and demonstrate the validity of the RSF classifier

method (Figure S10, S11 and S12 in File S1). Importantly, each

patient’s predicted survival could be modelled, leading to a

personalised prediction and risk stratification that fully incorpo-

rates heterogeneity of that patient’s feature distributions.

Figure 3. Random survival forest analysis of biomarker image
feature distributions. An overview of the imaging, the RSF survival
analysis algorithm and validation approach. Single cell features are
combined into patient features by estimating the probability distribu-
tion (PDF) for each feature, and taking measurements of each
distribution at 100 points. Each RSF is used to analyse all patients,
with prognostic features identified. The use of bagging in each RSF
means error rate estimates should be unbiased, and this is verified
using randomised cross-validation. This procedure also allows the
variability in performance of the algorithm to be simulated without
requiring an additional dataset.
doi:10.1371/journal.pone.0107105.g003
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Discussion

We have been motivated to develop an unbiased analysis

pipeline that is directed at the cellular distribution of biomarkers in

tumours because of the biological problem of cell heterogeneity.

Data integration strategies aimed at quantification of the hetero-

geneity of cells within a tumour are relatively under-developed,

and may be limited by current multi-variate approaches.

Automated methods for unbiased quantification of images have

also been applied, yet frequently lack resolution at the individual

cell, making it difficult to infer whether distributions (heterogene-

ity) between cells was evident [53]. Processing of high dimensional

biomarker data has however been improved by application of

machine learning algorithms, such as random forests, and so

provide an important platform whereby informative components

of data have the potential to be incorporated into a multi-

parameter classifier [54].

Whilst the use of image segmentation in tissue sections has been

widely applied, the analysis has largely been restricted to

segmentation methodology, rather than to a complete integration

with subsequent biomarker analysis in a clinically characterised

sample set [55–57]. We validated known methods of image

segmentation following capture of high resolution fluorescent

confocal images from genetically defined tumour cell lines and

tumour tissue [58]. The distributions of simultaneously captured

fluorescent biomarkers within each cell of image were obtained

using cytoplasmic and nuclear masks, and these were used to

define boundaries between each cell. Here image segmentation

was performed using two steps. The first used the well

characterised local initiated thresholds using ‘level sets’ to define

nuclear boundaries, which was then combined with a cytoplasmic

marker iterative watershed method to segment cytoplasmic and

cell boundaries. The distribution of image features within each cell

and between all cells segmented in the image represents tumour

cell heterogeneity. With the number of probes and images, we

quickly generated high dimensional data per patient. Importantly,

we incorporated information on heterogeneity by splitting the

distribution of each biomarker (probability density function) in 100

equal segments (Figure 3). Importantly, by this novel approach, we

captured the distributions of these features, and incorporated all

the data into a random survival forest (RSF) tool to generate a

prognostic classifier. When integrated analysis combining image

analysis with biomarker evaluation has been performed, for

example in the analysis of breast cancer stroma and in a RSF

analysis in renal cell carcinoma, clinically significant findings were

frequently generated when combined with methodology develop-

ment [45,59]. These precedents lead us to apply our unbiased

methodology pipeline that integrated image acquisition, image

segmentation and machine learning with RSF, to the discovery a

clinical prognostic classifier.

In order to maximise the potential of the pipeline we needed to

attempt to minimise variation in a test example. Variation includes

fundamental differences in tumour cells attributed to different

driver mutations, and to the differences in clinical outcome

attributed to non-standardised diagnosis, stage of disease and

treatment modalities. By sourcing cohorts of Ewing sarcoma

biopsy material associated with standardised clinical management

and outcome data, we attempted to enrich for molecular and

clinical homogeneity, such that differences in outcome may be

more likely to be attributed to differences in tumour behaviour

sampled by the biomarkers that we quantified. Our initial

observations indicated that there was considerable biomarker

variation between different patients, but this was mainly in the

quality of tissue material available for analysis, such that the

potential of what initially appeared a unique combined cohort was

significantly limited to samples that could actually be reliably

analysed by the pipeline (informative material). This was an

important observation and similar to those reported by others,

especially in TMA assembled formalin fixed material [25,60,61].

Moreover, such observations undermine any analysis of separately

collected and stored tissues under variable pre-analytic processing

conditions, as combining these data sets are likely to compound

either biased high content or even standard histological scoring

systems using immuno-histochemistry. For future prospective

validation, improved tissue ischaemic time and optimal preserva-

tion, such as with combined paraffin coating and nitrogen storage,

will likely be mandatory [44,62,63].

Despite the limitation with material quality, the informative and

high quality material lead to the identification of biomarker

heterogeneity between each cell of a Ewing tumour core biopsy,

including in the commonly assayed signalling pathways frequently

deranged in these tumours, namely the MAPK and IGF-PI3K

pathways. Our unbiased pipeline with RSF verified Ki67 as a

potentially informative prognostic biomarker in terms of patient

survival, but only it appears in a subset of cells with lower CD99

labelling than in the total cell population. It is known that cellular

hierarchies exist in tumours, exemplified by rapid proliferative cell

types (Ki67 positive), and concept of the cancer stem cell or

tumour progenitor cells, that initiate and sustain tumour growth.

For example, CD133 positive ES cells have been isolated that can

sustain tumour growth through serial transplantation, and can

differentiate into other lineages such as adipocytes and osteogenic

cells [52,64]. Moreover, mir145 and SOX2 are regulated by

EWS-FLI1, and TARBP2 dependent miRNA maturation appears

to be a major regulatory determinant of the cancer stem cells in

Ewing sarcoma [65,66]. Further hypothesis testing is required, as it

remains unknown if the CD99 distribution in such progenitor cells

is more variable and whether these cells are proliferative and so

relate in any way to our observations.

As we also demonstrate, biomarker classifiers based on arbitrary

cut-points of the imaged data could result in bias, a factor that

remains a significant impediment to current techniques [14,22].

These findings underscore the need for further unbiased

approaches to sample analysis in tumours, from quality control

to biomarker validation and clinical annotation. The high

dimensionality of collated imaging data, and in particular the

skewed distributions of biomarker image features, does require

novel analysis tools such as RSF [49]. Moreover, new strategies in

development that aim to reduce dimensionality, and so minimise

the risk of over fitting when using random forest, and ultimately

Figure 4. Random survival forest classifier error rates, distribution features and mortality. a. Error rates for nine RSF analyses trained with
the variable hunting algorithm, shown as box plots (median line, inter-quartile range box, minimum and maximum). SiBio refers to combined analysis
of signalling biomarkers Egr1, Foxo3a, pS6 with and without pMAPK*. Errors were lower for Ki-67 marker. See also Table 2. b. As each iteration of
variable hunting is independent, so the frequency of selection of each feature and its overall ranking can be shown following 100 re-samplings. c.
Selected features plotted (vertical lines) against the original distribution. Red and black lines indicate deceased and censored patients, with insert
showing magnified plots. d. Based on 100 iterations of variable hunting RSF, an overall mortality plot can be generated as a function of the RSF and
each feature. The top six (*) separate features are shown for the CD99 negative Ki-67 RSF, with the RSF integrating all ranked features` within one
classifier. Red crosses and black dots, deceased and censored patients, respectively.
doi:10.1371/journal.pone.0107105.g004
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the performance of these approaches, will likely redefine the

concept of sample size in biomedical applications [67]. As the

subsets of the genomic enriched classification of cancer further

sub-divide, rigid application of the ‘test-validation’ cohorts as

developed in biomarker guidelines such as REMARK are unlikely

to be helpful longer term, especially if data is directly linked to

genomic analysis [68,69]. In particular, the quality assurance at

the molecular level will be essential as a first analysis before any

prospect of useful cross-validation in independent cohorts can be

attempted, even if sample processing guidelines are followed, e.g.

BRISQ guidelines. Thus to maximise the informative and

predictive capabilities provided by unbiased machine learning

algorithms such as RF, the standardisation of protocols for

collecting and processing high quality material are still required

[25].

A further application of our methodology of single cell

segmentation and biomarker distribution could equally apply to

determining the response to agents and drugs. The relative

changes between multiple small core biopsies before and after

exposure to agents may identify cell populations resistant to target

inhibition. We are currently applying our methodology in a Ewing

sarcoma exploratory biomarker Phase II study (LINES trial,

EuroSarc) in patients with advanced disease. The drug tested in

this case is linsitinib, a dual IGF1R/IR-A kinase inhibitor.

In summary, we combined single cell imaging data from tissue

into a high dimensional feature distribution and a cross-validated

RSF to generate a pipeline for discovery of prognostic classifiers

(summarised in Figure 3). Importantly, such unbiased analysis can

lead to the generation of new hypotheses requiring testing, and in

particular relating to sub-populations of cells in a tumour that may

have a disproportionate contribution to clinical outcomes in

genetically characterised cancer sample cohorts.

Figure 5. Cross-validation of the full RSF algorithm. The imaging dataset was randomly partitioned into a training set (e.g. two-thirds of
patients = 79) and a testing set (one-third of patients = 39), with 50 repeats. Example results from 4 of the 50 cross-validation repeats for the CD99-
Ki67 RSF, encompassing the full range of error rates (0.22–0.53) shown in black). Patients in the test set were divided into two approximately equal
groups using the RSF predicted mortality (low, high) and survival curves plotted using the known survival data (solid lines), with a low error rate
corresponding to a difference in survival of the groups. In addition to predicting mortality the RSF could also predict an individual time dependent
survival curve for each patient (dashed lines). Plots are truncated at 2500 days, in some cases predicted survival times do not reach this far since they
are limited by the last event in the randomly selected training set. (see also Figure S12 in File S1).
doi:10.1371/journal.pone.0107105.g005
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