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Abstract

Aims: A variety of vessels, such as resistance pulmonary arteries (PA) and fetoplacental arteries and the ductus
arteriosus (DA) are specialized in sensing and responding to changes in oxygen tension. Despite opposite stimuli,
normoxic DA contraction and hypoxic fetoplacental and PA vasoconstriction share some mechanistic features.
Activation of neutral sphingomyelinase (nSMase) and subsequent ceramide production has been involved in
hypoxic pulmonary vasoconstriction (HPV). Herein we aimed to study the possible role of nSMase-derived cer-
amide as a common factor in the acute oxygen-sensing function of specialized vascular tissues. Results: The nSMase
inhibitor GW4869 and an anticeramide antibody reduced the hypoxic vasoconstriction in chicken PA and chorio-
allantoic arteries (CA) and the normoxic contraction of chicken DA. Incubation with interference RNA targeted to
SMPD3 also inhibited HPV. Moreover, ceramide and reactive oxygen species production were increased by hypoxia
in PA and by normoxia in DA. Either bacterial sphingomyelinase or ceramide mimicked the contractile responses of
hypoxia in PA and CA and those of normoxia in the DA. Furthermore, ceramide inhibited voltage-gated potassium
currents present in smooth muscle cells from PA and DA. Finally, the role of nSMase in acute oxygen sensing was
also observed in human PA and DA. Innovation: These data provide evidence for the proposal that nSMase-
derived ceramide is a critical player in acute oxygen-sensing in specialized vascular tissues. Conclusion: Our results
indicate that an increase in ceramide generation is involved in the vasoconstrictor responses induced by two
opposite stimuli, such as hypoxia (in PA and CA) and normoxia (in DA). Antioxid. Redox Signal. 20, 1-14.

Introduction

SOME SPECIALIZED CELLS are able to respond rapidly to
changes in oxygen tension within the physiological range
in a manner that contributes to maintenance of oxygen ho-
meostasis in the whole body (55). These include glomus cells
of the carotid body, neuroepithelial bodies in the lungs,
chromaffin cells of the fetal adrenal medulla, and specialized
vascular smooth muscle cells present in resistance pulmonary
arteries (PA), fetoplacental arteries, and ductus arteriosus

(DA). Resistance PA and fetoplacental arteries contract in re-
sponse to moderate hypoxia, while the increase in oxygen
causes contraction of the DA (55).

Hypoxic pulmonary vasoconstriction (HPV) allows shift-
ing blood flow from hypoxic to normoxic lung areas, thereby
coupling ventilation and perfusion (55). HPV is considered to
be responsible for the high pulmonary vascular resistance
during fetal life. A similar mechanism for flow matching has
been proposed in the fetoplacental vasculature, so that hyp-
oxic vasoconstriction of fetoplacental arteries would divert

'Department of Pharmacology, School of Medicine, Universidad Complutense Madrid, Madrid, Spain.

Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.

SInstituto de Investigacién Sanitaria Clinico San Carlos (IdISSC), Madrid, Spain.

4Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain.

®Department of Pharmacology, School of Medicine, University of Valencia, Valencia, Spain.

®Fundacién Investigacién, Hospital General Universitario de Valencia, Valencia, Spain.

“Servicio de Neonatologfa, Hospital General Universitario Gregorio Marafién, Madrid, Spain.

8Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre (MUMC +),

Maastricht, The Netherlands.



Innovation

Some vessels are specialized in detecting and responding
to acute changes in oxygen tension. The results from the
present study are consistent with a prominent role of neutral
sphingomyelinase (nSMase)-derived ceramide in the hyp-
oxic contraction in pulmonary arteries and chorioallantoic
arteries and in the normoxic contraction of the ductus arte-
riosus. These data provide evidence for the proposal that
nSMase-derived ceramide is a unifying mediator of acute
oxygen-sensing in specialized vascular tissues.

blood flow to the placental areas with better maternal perfu-
sion (21, 23, 25, 55). On the other hand, the increase in oxygen
tension at birth is a key factor stimulating DA constriction,
which precedes the permanent closure of the vessel (45, 55).
Therefore, oxygen sensing in PA, fetoplacental arteries and
DA play crucial roles during fetal life and in the transition to
postnatal life.

Elucidation of the mechanisms involved in acute oxygen
sensing in vascular smooth muscle cells has been the matter of
intensive effort. It is now generally accepted that the physio-
logical responses to changes in oxygen requires the existence of
an oxygen sensor coupled to a signal transduction system,
which in turn activates a variety of effector mechanisms (46, 52,
54). Intriguingly, despite opposite stimuli, hypoxic contraction
of PA and fetoplacental arteries and normoxic contraction of
the DA appear to share common mechanistic features. For
instance, voltage-gated potassium (Kv) channels are inhibited
by hypoxia in PA (2, 8, 56) and in fetoplacental arteries (20)
and by normoxia in DA (34, 47), which suggest that these ox-
ygen-sensitive K* channels constitute a conserved effector
mechanism in these cells. The inhibition of Kv channels likely
contributes to depolarization of the cell membrane and sub-
sequent activation of voltage-gated L-type calcium channels
and, accordingly, calcium channel blockers inhibit the hypoxic
vasoconstriction in PA (8, 32, 53) and fetoplacental arteries
(25) and the normoxic DA contraction (11, 33). In addition,
other common mechanisms for HPV and normoxic DA con-
traction have been reported, such as release of calcium from
intracellular stores (24, 27, 37), voltage-independent calcium
entry (22, 26) and increase in Rho kinase activity (22, 26, 43).

The chicken embryo is a suitable model for studying de-
velopmental vascular biology (13). As compared to other
models, the responses to normoxia in the DA (1, 7) and to
hypoxia in PA (58) and chorioallantoic arteries (CA), the avian
homologue of human fetoplacental arteries, (28) are consis-
tent, robust, and reproducible in the chicken. Moreover, they
do not require an agonist-induced pretone which preclude the
possible influence of a preconstriction agent on the intracel-
lular signaling mediating the responses to oxygen changes.
Interestingly, in the chicken DA, the pulmonary and the aortic
parts of the vessel can be morphologically and functionally
distinguished. Thus, the pulmonary side (pDA) is a muscular
artery which responds to normoxia with contraction, while
the aortic side (aDA) is an elastic artery, which responds to
normoxia with relaxation (1, 4, 7). This offers an excellent
opportunity to comparatively search for an exclusive oxygen-
sensitive mechanism in different portions of the same vessel.

Ceramide can be generated in cells via de novo biosynthesis
pathway involving serine palmitoyl transferase or be syn-
thesized from membrane sphingomyelin by sphingomyeli-
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nases (SMase), which are activated by multiple membrane
receptors and nonreceptor stimuli (18). We have previously
found that neutral SMase (nSMase)-derived ceramide acts as a
critical mediator in the HPV response in rats by increasing
reactive oxygen species (ROS) production via NADPH oxi-
dase (8, 14). However, the possible role of ceramide in other
oxygen-sensing tissues remains to be explored. Here we show
that two opposite stimuli, such as hypoxia (in PA and CA) and
normoxia (in pDA) increase ceramide production to promote
vasoconstriction in chicken vessels. Moreover, inhibition of
nSMase also prevented the HPV and oxygen-induced DA
contraction in human tissues.

Results

Hypoxic contraction is reduced by nSMase
inhibition in PA and CA

In chicken PA incubated under normoxic conditions,
exposition to hypoxia led to a triphasic (contraction—relaxation—
contraction) response. The second contraction reached a pla-
teau after 10-12 min (Fig. 1A). To ascertain the role of nSMase
in HPV, a second challenge to hypoxia was elicited in the
absence (vehicle) or in the presence of an anticeramide anti-
body (15B4) or the nSMase inhibitor GW4869. Both treatments
inhibited the contraction induced by hypoxia in PA (Fig. 1A,
B), the inhibitory effects of GW4869 being concentration-
dependent (12.5%£5.7%, 25.7%+5.1%, and 56.3%+7.2% for
0.1, 1, and 10 uM). Moreover, downregulation of nSMAse by
siRNA also almost fully inhibited HPV (Fig. 1C, D) but had no
effect on the contractile response to exogenous addition of
bacterial SMase (Fig. 1D). CA responded with a transient con-
traction during the 10-min exposure to hypoxia (Fig. 1E). Si-
milar to HPV, the hypoxic CA contraction was reproducible
and inhibited by GW4869 (Fig. 1E, F). Unlike the hypoxic re-
sponses, the contractions induced by endothelin-1 (ET-1, 30 nM)
were not affected by GW4869 in either PA or CA (Fig. 1G).

Normoxic contraction of the DA is reduced
by nSMase inhibition

Exposure to normoxia in chicken pDA caused a repro-
ducible contraction, which was inhibited by the anticeramide
antibody and the nSMase inhibitor (Fig. 2A, B). Again the
contraction induced by ET-1 in the DA was not affected by
GW4869 (Fig. 2C). In another set of experiments, the normoxic
contraction was tested in the presence of a PKC{ peptide in-
hibitor (PKC{-PI, 10 uM) or Go6976 (0.1 uM) an inhibitor of
classic and novel protein kinase C (PKC) isoforms but without
effect on the atypical isoform PKC{. PKC{-PI reduced the
normoxic contraction of the DA, while G66976 was without
effect (Fig. 2D).

Increase in ceramide content by hypoxia
in PA and by normoxia in DA

In freshly isolated PA smooth muscles cells (PASMC) in-
cubated in normoxic conditions, exposure to hypoxia for
10 min led to a marked increase in ceramide content measured
by the fluorescence of permeabilized cells immunostained
with an anticeramide antibody (Fig. 3A). DA smooth muscle
cells (DASMC) isolated from the pDA or the aDA were
incubated in hypoxia and exposed to normoxia for 10 min.
Interestingly, normoxia markedly increased ceramide content
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in smooth muscle cells isolated from pDA but not in those
isolated from aDA (Fig. 3B). In Figure 3C, the confocal images
of nonpermeabilized PASMC show that ceramide can be
exposed at the extracellular surface and bound by the an-
ticeramide antibody. The increased in ceramide content after
hypoxia in PA was further confirmed using ultra high per-
formance liquid chromatography-mass spectrometry
(UHPLC-MS). Figure 3D shows that hypoxia increased sig-
nificantly the most abundant ceramide (d18:1/16:0) and a
similar trend was observed for the other ceramides. A
marked increase in this ceramide was also found in PA
after exposure with bacterial SMase for 10 min, which served
as a positive control (0.08+0.008 vs. 5.8+3.8 ceramide/
phosphatidylcholine [PC]) in control and SMase-treated
PA, respectively; n=5; p<0.05). Moreover, in PASMC ex-
posed to hypoxia, ceramide levels recovered after 10 min of
re-exposure to normoxia.
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Increase in ROS production by hypoxia
in PA and by normoxia in DA

We have previously reported that the contraction of rat PA
in response to acute hypoxia and ceramide is associated with
NADPH oxidase-mediated ROS generation (14). Likewise,
hypoxia increased ROS production in chicken PA as deter-
mined by 2,7-dichlorofluorescein (DCF) fluorescence (Fig. 4A)
and this increase was inhibited by the NADPH oxidase
inhibitor VAS2870. The inset in Figure 4A shows that hyp-
oxia-induced ROS increase was reversible after returning to
normoxia. In the pDA, exposure to normoxia also led to an
increase in ROS production (Fig. 4B). When the pDA were
incubated with the NADPH oxidase inhibitor apocynin
(300 uM), showed a decrease in ROS levels upon the normoxic
challenge (Fig. 4B). Furthermore, incubation with apocynin or
with the more selective inhibitor VAS2870 similarly reduced
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the hypoxic vasoconstriction in PA (Fig. 4C) and the normoxic
contraction of the pDA (Fig. 4D). In addition, HPV response
was markedly impaired by the presence of the mitochondrial
electron transport chain inhibitors rotenone (complex I,
30 uM) and myxothiaxol (complex III, 10 uM) as compared to
parallel controls (23%+12%, 16%%10%, and 148% £22% of
the first hypoxic response, respectively). Likewise, rotenone
inhibited hypoxia-induced ROS increase in PA (25% 4% and
—11%%15% in control vs. rotenone-treated PA; p <0.05).

Expression of SMPD3

As compared to PA and pDA, aDA was relatively insen-
sitive to changes in oxygen in terms of ceramide production,
which could reflect changes in the expression of nSMase. To
test this possibility, mRNA levels of nSMase in pDA, aDA,
PA, and CA were quantified. Quantitative real-time—
polymerase chain reaction (RT-PCR) analysis revealed a re-
duced expression in aDA as compared to PA. No significant
differences were found between aDA and pDA (Fig. 5).

Endogenous and exogenous ceramide mimic
the effects of hypoxia in PA and CA,
and the effects of normoxia in the DA

In another set of experiments, vessels were exposed to Ce-
ceramide (10 or 30 uM) or to SMase from Bacillus cereus
(100 mU/ml), that cleaves membrane sphingomyelin and re-
lease endogenous ceramide. Addition of Cg-ceramide or
SMase contracted PA and CA (Fig. 6A), mimicking the effects
of acute hypoxia (Fig. 6B). C¢-ceramide and SMase also con-

tracted pDA, while relaxed aDA (Fig. 6C), mimicking the re-
sponses to normoxia in pDA and aDA (Fig. 6D). In addition,
the incubation with the PKC{-PI (10 uM) reduced the con-
traction of the pDA induced by C6-ceramide (2.2% +5.2% of
KCl-contraction, n=6; p<0.05 vs. control).

Ceramide inhibits Kv currents in PA and pDA

In agreement with previous studies in rat PASMC, expo-
sure to ceramide (Fig. 7A, B) or to acute hypoxia (Fig. 7B)
inhibited Kv currents in chicken PASMC. The inhibitory ef-
fects of hypoxia and ceramide were comparable to those eli-
cited by the Kv channels blocker 4-aminopyridine.
Interestingly, ceramide also inhibited the potassium current
present in pDASMC (Fig. 7C), mimicking the effects of 4-
aminopyridine and normoxia (Fig. 7D) in these cells.

Effects of GW4869 in human vessels

Finally, we tested the effects of GW4869 in HPV and in the
normoxic DA contraction in human tissues. The drug in-
hibited both the normoxic contraction of the DA (Fig. 8A, B)
and the hypoxic contraction of the PA (Fig. 8C). Moreover,
exogenous addition of ceramide (10 uM) also contracted hu-
man DA (22% 5% of the normoxic response, n=4).

Discussion

In the present article, we show that ceramide is involved in
acute vascular oxygen sensing. Pharmacological and genetic
inhibition of the ceramide-generating enzyme nSMase
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tractile responses of hypoxia in PA and CA and those of
normoxia in the DA. In addition, ceramide inhibited Kv cur-
rents present in PASMC and DASMC. Finally, the role of
nSMase in acute oxygen sensing was confirmed in human PA
and DA.

Hypoxic PA contraction

HPV allows shifting blood flow from hypoxic to normoxic
lung areas, thereby coupling ventilation and perfusion (46,
49). Despite intensive effort, the precise mechanisms involved
in HPV have not been fully clarified. While there is general
consensus that the oxygen sensor resides in the mitochondria
(46, 49, 52, 54), a variety of effector mechanisms have been
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reported to play a role in HPV, including calcium release from
intracellular stores, closure of Kv channels, opening of volt-
age-gated calcium channels and nonselective cation channels
and calcium sensitization via Rho kinase activation (2, 30, 43,
44, 46). However, the most contentious area concerns the
signaling mechanisms that link the mitochondrial sensor to
the effectors. Thus, some authors propose that ROS decrease
during hypoxia, while others propose that ROS increase
during hypoxia (49, 51, 54). In previous studies, we have
shown that acute hypoxia increases ROS in rat PA through an
integrated signaling pathway, which includes activation of
nSMase, increase in ceramide production and PKC{-depen-
dent NADPH oxidase activation (8, 14). Our results showing a
NADPH-dependent Kv channel inhibition by hypoxia (8, 14)
have been more recently confirmed by Mittal et al. (35). Herein
we show that acute hypoxia also increases ceramide and ROS
production in chicken PASMC. Moreover, the nSMase in-
hibitor GW4869, the siRNA against SMPD3 (the gene
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encoding nSMase2), and the NADPH oxidase inhibitors
apocynin and VAS2870 reduced HPV in chicken PA. GW4869
also inhibited HPV in human PA, which suggest that this
mechanism of oxygen sensing is widely present in verte-
brates. HPV was also inhibited by the anticeramide-antibody
which reflects that ceramide may be exposed in the outer
leaflet of the plasma membrane since antibodies are not able
to cross the membrane. This was confirmed by immunocy-
tochemistry in nonpermeabilized cells. Although it is gener-
ally believed that ceramides in the plasma membrane are
segregated into rigid domains or rafts, they may be rapidly
transferred across the membrane to the outer leaflet and vice
versa flip-flop (3, 12, 31). Thus, ceramide generated as a sec-
ond messenger may recruit its signaling targets (e.g., PKC{) to
the inner surface of the membrane (19) but also be exposed to
the extracellular surface.

Hypoxic CA contraction

It has been proposed that, similar to HPV, hypoxic feto-
placental vasoconstriction would divert fetal blood flow to-
ward regions receiving better maternal perfusion (20, 23, 55).
Moreover, resembling HPV, inhibition of Kv channels has
been reported to contribute to hypoxic fetoplacental vaso-
constriction (20). The avian homologous of mammalian feto-
placental arteries are CA which perfuse the late embryonic
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organ for gas-exchange, the chorioallantoic membrane. Like
human fetoplacental vessels (20), chicken CA constrict in re-
sponse to acute hypoxia (28). Herein we show that the hyp-
oxic contraction of CA is decreased after nSMase inhibition. In
agreement with previous reports, our observations argue in
favor of a common mechanism for hypoxic vasoconstriction
in PA and fetoplacental arteries.

Normoxic DA contraction

Atbirth, closure of the DA is crucial for the adaptation from
fetal to postnatal life. In full term, infants the increase in ox-
ygen tension at birth leads to DA constriction which precedes
the anatomical and permanent closure of the vessel (45, 55).
Thus, the DA behaves exactly opposite to PA and CA, since it
contracts during normoxia and relaxes to hypoxia. Para-
doxically, the effector mechanisms responsible for HPV and
the normoxic contraction of the DA seem to be virtually the
same. These include: Kv channel inhibition (33), Rho kinase
activation (22, 26), activation of store operated calcium entry
encoded by transient receptor potential cation channels
channels (22) and calcium release from intracellular stores
(27). In contrast with the discrepancies reported in the HPV
field, most evidences support a role of increased ROS in the
normoxic DA contraction (55). As mentioned for the PA, the
reported mechanisms for oxygen sensing/signaling are
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similar in mammalian and chicken DA (7, 17). In the present
study we show that, similar to HPV, the normoxic contraction
of the pDA was attenuated by nSMase and NADPH oxidase
inhibitors. Furthermore, oxygen increased ceramide produc-
tion in SMC isolated from pDA but not in those from aDA, the
portion of the vessel that lacks a normoxic contraction (1, 11).
In rat PA, we have found that hypoxia-induced p47P">
phosphorylation and ROS production were prevented by in-
hibition of nSMase or PKC( (14), a well known target of cer-
amide (5, 36, 40). Likewise, contraction of pDA induced by
normoxia and ceramide were reduced by a PKC{ inhibitor.

One potential limitation of our study was the use of the
same hypoxic and normoxic conditions for all vessels studied.
Our hypoxic conditions yielded pO, values of ~3kPa, com-
parable to those estimated to occur in the fetal PA and DA
(15). However, our normoxic conditions (~18kPa), repre-
sentative of normoxic ventilation, may approach those de-
tected in PA (46, 48), but exceed the pO2 values that the DA
sense after the newborn starts breathing.

Ceramide mimics the effects of changes in oxygen
concentration

In our previous study, we showed that nSMase2 mRNA
expression was ~ 10-fold higher in PA compared to mesen-
teric arteries (8). Thus, the specific increase in ceramide pro-
duction observed in oxygen sensing in vascular cells could
reflect differences at the level of nSMase expression. Herein
we found a trend for higher expression in the mRNA ex-
pression of SMPD3 in PA, pDA, and CA as compared to aDA,
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FIG. 7. Ceramide inhibits
Kv currents in PASMC and
DASMC. (A, O Re-
presentative current traces for
200-ms depolarization pulses
from —60mV to +60mV in
10mV increments from a
holding potential —60mV
before (control) and after
10 uM Cg-ceramide in
PASMC (A) or pDASMC
(C). Right panels show the
current—voltage relationships
of Kv currents measured at
the end of the pulse before
(control) and after the addi-
tion of Cg-ceramide (n=6).
(B) K* current blockade
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hypoxia and Cg-ceramide at
+60mV in PASMC. (D) K*

H
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muscle cell; DASMC, ductus
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FIG. 8. GW4869 inhibits hypoxic PA con-
traction and normoxic DA contraction in
human vessels. (A) Original experiment
showing the contractile responses induced
by repetitive exposures to normoxia in a
human DA. The last exposure was per-
formed in the presence of GW4869. SNP
(10 uM) was used as indicated to accelerate
the otherwise slow and incomplete relaxa-
tion. (B, C) Average values of the contrac-
tions induced by normoxia in human DA
and by hypoxia in human PA in the absence
or in the presence of the nSMase inhibitor
GW4869 (10 uM). Data are expressed as a
percentage an initial response to normoxia or
hypoxia in the absence of the drug. * in-
dicates p<0.05 versus control. Results are
means+SEM (n=3-5). SNP, sodium ni-
troprusside.



ROLE OF CERAMIDE IN OXYGEN SENSING

although only the former reached statistical significance.
Unfortunately, we could not study possible differences at the
protein level due to the lack of commercial antibodies for
chicken nSMase2. Therefore, the specific responses observed
in oxygen sensing cells may be partly attributable to differ-
ences nSMase expression. In a striking similarity with the ef-
fects of changes in oxygen tension, addition of SMase and
ceramide contracted PA, CA, and pDA, while relaxed aDA.
These effects resemble those induced by hydrogen peroxide
which inhibits the oxygen-sensitive Kv currents and causes
contraction of the PA (14) and the pDA (7), while relaxes the
aDA. These results support the notion that oxygen sensitive
responses require not only ceramide production but also the
presence of exclusive oxygen-sensitive effector mechanisms
targeted by ceramide.

Kv channel modulation

Despite the functional contribution of Kv channels in HPV,
it is still a matter of controversy, it is generally accepted their
modulation by changes in oxygen tension. Therefore, we fo-
cus on Kv channels as well recognized oxygen sensing effec-
tors in PA (2, 56), DA (34, 47), and fetoplacental arteries (20).
Accordingly, Kv channels were inhibited by hypoxia in
chicken PA (present study) and by normoxia in pDA (7). In
addition, ceramide inhibited Kv currents present in SMC from
chicken PA and pDA, again mimicking the effects of these
opposite stimuli. Interestingly, the nature of the Kv channel
subunits most likely to generate the oxygen-sensitive Kv
current in both PASMC and DASMC appears the same (i.e.,
Kv1l.5 and Kv2.1) (55). It has been proposed that hypoxia
decreases Kv current by shifting the PASMCs to a more re-
duced redox status, while the inhibition of Kv currents in-
duced by normoxia in the DASMC results from a more
oxidized environment (34, 53). In agreement with this idea,
reducing and oxidizing agents (at relatively high concentra-
tions) mimic the effects of hypoxia in PA and normoxia in DA,
respectively (38). A still unanswered question in this model is
how a more reduced redox status in the PA and an oxidized
environment in the DA lead to the inhibition of virtually the
same Kv channels. Moreover, the reducing agent GSH inhibits
not only the hypoxic-sensitive Kv currents in PASMC but also
the hypoxic-insensitive Kv currents in mesenteric arteries (57).
Alternatively, we propose that inhibition of Kv channels by
opposite stimuli involves a common mediator (i.e., ceramide
and ROS). In agreement with our proposal, not only ceramide
(present study) but also t-butylhydroperoxide (at concentra-
tions in the micromolar range), inhibit Kv currents and cause
vasoconstriction in both PA and DA (7, 14, 42). Moreover,
inhibition of endogenous H,O, production by increasing in-
tracellular catalase through the patch pipette prevented the
inhibition of Kv currents induced by hypoxia in PA and
by normoxia in DA (7, 14, 42). Another argument in favor of
our proposal arises from the fact that ceramide inhibits the
hypoxic-sensitive Kv currents in PASMC but not the hypoxic-
insensitive Kv currents in mesenteric arteries (36).

Therefore, based on this and previous reports (8, 11, 14, 36)
we propose a common signaling pathway for oxygen sensi-
tive vessels involving the activation of nSMase. The ceramide
generated via activation of PKC{ leads to NADPH-derived
ROS production. Among other targets, ROS inhibit Kv
channels and lead to vessel contraction.

Unresolved issues

Although the identity of the oxygen sensor remains un-
known, substantial body of evidence supports the concept
that mitochondria acts as the oxygen sensor in specialized
oxygen sensing tissues (46, 52, 54). In agreement with this
idea, hypoxic contraction in rat (14) and chicken (present
study) PA and the normoxic contraction of the DA (7, 17) are
blunted by inhibitors of complex I and III of the mitochon-
drial electron transport chain. Moreover, the complex I in-
hibitor rotenone prevents hypoxia-induced ceramide and
ROS production in rat (14) and chicken (present study) PA.
However, the mechanisms matching the sensor to nSMase
remain unknown. Intriguingly, nSMase is a redox-sensitive
enzyme that can be activated by an increase in ROS (18, 29).
Thus, one possibility is that in both situations, hypoxia in PA
and normoxia in DA, nSMase is activated by mitochondrial-
derived ROS. It is conceivable that normoxia increases mi-
tochondrial ROS generation in the DA by providing more
oxygen as substrate. Likewise, hypoxia is able to increase
mitochondrial-derived ROS in PA and probably in systemic
arteries (52). Therefore, activation of nSMase, production of
ceramide and subsequent NADPH oxidase-derived ROS
might represent an amplification pathway downstream the
sensor (14, 39, 41) present only in specialized oxygen sensing
cells.

A number of nonvascular cells, such as the glomus cells of
the carotid body, neuroepithelial bodies in the lungs or
chromaffin cells of the fetal adrenal medulla are also able to
acutely respond to changes in oxygen tension. The results
from the present study raise the question of whether
nSMase-derived ceramide might also participate in oxygen
sensing in these tissues. However, it has been reported that
the response to hypoxia in the carotid body is not affected by
the nSMase inhibitor GW4869 (16). The possible role of cer-
amide in other oxygen sensing tissues warrants future
studies.

Materials and Methods

Animal experiments were performed in accordance with
the Spanish legislation and the procedures were approved by
the review board of the Complutense University of Madrid.
The Human Studies Committee of Hospital Gregorio Mar-
anon and Hospital General Universitario de Valencia ap-
proved the use, after informed consent, of discarded DAs and
lung tissue, respectively, excised during surgery. DAs derived
from five neonates with hypoplastic left heart syndrome
(n=3) or coartaction of the aorta (1n=2), while lung tissue
was obtained from three adult patients with lung carcinoma
surgery.

Reagents

Unless stated otherwise, drugs and reagents were obtained
from Sigma-Aldrich Quimica. Ethanol (HPLC-grade) and
ammonium (Reagent-grade) were purchased from Panreac
Quimica, formic acid (98%) and LC-MS grade methanol were
purchased from Fluka Analytical. The mouse anticeramide
15B4 antibody was from Alexis (Grupo Taper). Drugs were
dissolved in distilled water except Cg-ceramide, GW4869 and
rotenone in DMSO and myxothiazol in ethanol. Final vehicle
concentrations were <0.1%.
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Egg incubation and tissue isolation

Fertilized eggs of White Leghorn chickens were incubated
at 38°C, and automatically rotated once per hour (Brinsea
Polyhatch incubator). Embryos were incubated for 19-20 days
of the 21-day incubation period or allowed to hatch, and then
transferred to a brooder chick box (Novital Brooder Chick
Box, PY333) for up to 3 days. During the grow-out period,
chickens were provided ad [libitum access to water and a
standard starter diet. Animals were euthanized by decapita-
tion, and the DA, the chorioallantoic membrane, or the lungs
were removed and immersed in ice-cold Krebs buffer (com-
position in mM: NaCl 118, KC1 4.75, NaHCO; 25, MgSO, 1.2,
CaCl, 2.0, KH,PO,4 1.2 and glucose 11). Right and left DA and
CA were sampled at 19-20 days of incubation (noninternally
pipped embryos), while PA were isolated from 2- to 3-day-old
chickens.

Vessel and cell isolation

Vessels were isolated as previously described (1, 11, 28, 58).
Briefly, secondary branches of the PA and tertiary branches of
the CA were carefully dissected free of surrounding tissue and
cut into rings (1.8-2 mm length). The DAs were divided in two
segments referred to as pulmonary and aortic DA (pDA and
aDA, respectively).

PASMC and DASMC were isolated by enzymatic diges-
tion as previously described (10, 11). For cell isolation,
endothelium-denuded vessels were dissected into a physi-
ological salt solution (PSS) of composition (in mM): NaCl
130, KC1 5, MgCl, 1.2, CaCl, 1.5, glucose 10, HEPES 10 (pH
7.3 with NaOH). PA rings were incubated in a Ca* -free PSS
containing (in mg/ml) papain 1, dithiothreitol 0.8 and al-
bumin 0.7 for 5-7 min. DA rings were initially incubated at
4°C in Ca®*-free PSS containing elastase I (0.28 mg/ml) for
5min. Thereafter, DA was incubated at 37°C in a low Ca?
(10 uM) PSS containing collagenase I (1 mg/ml), collagenase
XI (Img/ml), papain (0.15mg/ml), and ditiothreitol
(1.5mg/ml) for additional 5min. After enzymatic incuba-
tion, tissues were washed in Ca’?*-free PSS and dis-
aggregated using a wide bore, smooth-tipped pipette. Cells
were stored in Ca®*-free PSS (4°C) and used within 8h (7,
10). To maintain a hypoxic environment, solutions for
DASMC digestion and storage contained the oxygen scav-
enger sodium dithionite (0.8x1072% M; pH adjusted to 7.4
with NaOH) (7, 10).

Normoxia and hypoxia

For contractile tension recording, the chambers were filled
with Krebs buffer maintained at 37°C. To achieve normoxic
conditions, solutions were continuously aerated with 21%
02-5% CO,-74% N, (pO2=17-19kPa). Hypoxia was in-
duced by gassing the chamber with 95% N,/5% CO,
(pO,=2.6-3.3kPa). For the other in vitro experiments, cells
and isolated vessels were placed in a chamber of 0.5ml and
perfused with a normoxic (oxygen in equilibrium with room
air) or a hypoxic PSS at a rate of 2ml/min. In these experi-
ments, hypoxia was achieved by vigorously bubbling the
PSS solution with 100% N5 in a film coated reservoir. This led
to an oxygen concentration of 3%-4% in the chamber as
measured with an oxygen Clarck electrode (WPI Instru-
ments).

MORENO ET AL.

Recording of arterial reactivity

Contractile responses in endothelium-intact PA, CA, and
DA rings mounted in a wire myograph were recorded as
previously reported (1, 11, 36). Human DA rings (internal di-
ameter 3-5mm) were mounted in conventional organ baths.
PA and CA were mounted under normoxic condition; while
DA rings were maintained under hypoxic conditions (see
above). After an equilibration period of 30 min, chicken vessels
and human resistance PA (internal diameter 300-400 yum) were
distended to a resting tension corresponding to a transmural
pressure of 2.66 kPa, while human DA were mounted between
two hooks under a tension of 30 mN. Preparations were firstly
stimulated by raising the K* concentration of the buffer (to
80mM) in exchange for Na™. Vessels were washed three times
and allowed to recover before a new stimulation.

In preliminary experiments, we ascertained that vessels
were able to respond to successive challenges to hypoxia (for
PA and CA) or normoxia (for DA) in the absence of a pre-
constrictor agent. Therefore, each vessel was exposed to two
hypoxic (PA and CA) or normoxic (DA) challenges. The sec-
ond challenge was examined after 1h incubation with vehicle
(control), anticeramide antibody (15B4, 200ng/ml), the
nSMase inhibitor GW4869 (10 uM), the classic PKC inhibitor
Go66976 (0.1 uM), PKCE-PI (0.1 uM), the NADPH oxidases in-
hibitors apocynin (300 uM), and VAS2870 (30 umol) or the
mitochondrial electron transport chain inhibitors rotenone
(complex I, 30 uM) and myxothiaxol (complex III, 10 uM) and
the contractile responses were expressed as a percentage of
the first challenge. In some experiments, the effects of Cs-
ceramide (10 uM), SMase from B. cereus (100 mU/ml) or ET-1
(30nM) were tested in the absence and the presence of
GW4869. The contractile responses induced by these agents
were expressed as a percentage of the initial response to KCl.

Human DA showed and intrinsic contractile tone that was
not reversed upon continuous wash-out with hypoxic Krebs
solution. Therefore, to study oxygen-induced contractions all
human DA rings were initially relaxed by sodium nitroprus-
side (SNP, 100 uM). Thereafter, DAs were washed three times
with drug free Krebs solution. After 40 min equilibration rings
were challenged to normoxia. Similar procedure was used
before subsequent exposures to normoxia.

Introduction of siRNA by reverse permeabilization

Reverse permeabilization was used to introduce siRNA
into isolated chicken PA (6). Briefly, PA were exposed to three
successive solutions (4°C) containing (in mM) (i) 10 EGTA,
120 KCl, 5Na,ATP, 2 MgCl,, 20 HEPES and 50 nM siRNA (pH
6.8; 30 min); (ii) 120 KCl, 5 Na,ATP, 2 MgCl,, and 20 HEPES
and 50nM siRNA (pH 6.8; 180min); and (iii) 120 KCl, 5
Na,ATP, 10 MgCl,, and 20 HEPES and 50 nM siRNA (pH 6.8;
30 min). Subsequently, PA were bathed in a fourth solution
containing (in mM) 120 NaCl, 5 KCl, 5 Na,ATP, 10 MgCl,, 5.6
glucose, and 10 HEPES (pH 7.1, 4°C), in which [Ca®*] was
gradually increased from 0.001 to 0.01 to 0.1 to 1mM every
15min. Vessels were then placed in DMEM culture medium
supplemented with L-glutamine (2 mM), penicillin (100 U/ml),
and streptomycin (100 xg/ml) and maintained in an incubator
(37°C, 95% O,/5% CO,) for 3 days before assessing vascular
contractility.

A mixture of four siRNAs (including one Cy3-labelled
siRNA) targeting different regions of chicken nSMase was
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used. After 24 h incubation, some vessels were examined us-
ing fluorescence microscopy to assess siRNA uptake. In pre-
liminary studies, siRNA efficiency was measured by RT-PCR
confirming a reduction in SMPD3 mRNA levels by 51% £ 12%
at 72h, as compared to vessels exposed to random siRNA
(scramble).

Immunofluorescent detection of ceramide content

Freshly isolated PASMC or DASMC were allowed to settle
on gelatine-coated coverslips for 20 min. PASMC were ini-
tially perfused with normoxic PSS for 25 min and thereafter,
some coverslips were kept in normoxia and others changed to
hypoxic PSS during the last 5 min. On the contrary, DASMC
were initially perfused with hypoxic PSS for 25 min, and then
randomly changed to normoxia or kept in hypoxia for the last
5min. Thereafter, cells were immediately fixed with 4%
paraformaldehyde, washed with phosphate-buffered saline
(PBS) and permeabilized with 0.4% Triton and 3% bovine
serum albumin bovine for 1 h. Cells were incubated with 1:30
dilution of mouse anticeramide antibody at 4°C over-night,
and then for 15min at 37°C. Coverslips were washed with
blocking buffer and exposed to FITC-conjugated anti-mouse
secondary antibody for 2h a 37°C. After washing, immuno-
fluorescent signals were viewed using an inverted non-
confocal fluorescent microscope. Fluorescence was quantified
using Image] (ver 1.32j, NIH, http://rsb.info.nih/ij/). In-
tensity values were normalized by cell surface after sub-
tracting background. For each condition, a minimum of four
coverslips from at least three separate samples (derived from
different animals) were used for quantification. Pictures were
taken and analyzed by a blind observer, unaware of the
treatment. In selected experiments, PASMCs exposed to
hypoxic PSS were assessed for the presence of ceramide in the
outer leaflet of the plasma membrane by removing the per-
meabilization step from the immunofluorescence labeling
process. These preparations were examined with a confocal
laser scanning fluorescent microscope (Centro de Micro-
scopia, Universidad Complutense de Madrid).

Determination of ROS

The fluorescent dye DCF was used to asses ROS produc-
tion. Although this dye is far the commonest probe used to
detect ROS, it can be oxidized by other free radicals (50). Thus,
measurements were compared with parallel time controls,
positive controls (t-butylhydroperoxide) and experiments in
the presence of ROS generating system inhibitors. En-
dothelium denuded PA and pDA segments were incubated
with the membrane-permeable diacetate form of DCF (DCF-
DA, 10 uM) for 60-90 min. Vessels were then placed in the
stage of a fluorescent inverted microscope (Leica DM IRB),
superfused with PSS (2ml/min). Preparations were allowed
to equilibrate for 30 min under normoxic (for PA) or hypoxic
(for DA) conditions, in the absence or in the presence of
VAS2870, apocynin or rotenone. Finally, vessels were illu-
minated through the luminal surface using a 450-490nm
band-pass filter. The emitted fluorescence was filtered using
515 nm long-pass emission filter. Images were taken at 1 min
intervals with a Leica DC300F color digital camera. Fluores-
cence was quantified using Image]. Intensity values are re-
ported as a percent of the initial values after subtracting
background. After fluorescence values were stable, prepara-
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tions were challenged with a hypoxic (for PA) or a normoxic
(for DA) solution in the continuous absence or presence of
apocynin or VAS2870.

RT-PCR analysis

Total RNA was isolated and purified from PA, CA, aDA,
and pDA homogenates using RNeasy Fibrous Tissue Mini kit
(Qiagen). Total RNA was reverse transcribed into cDNA us-
ing iScript™ cDNA Synthesis Kit (BioRad) following manu-
facturer’s instructions. RT-PCR was performed using a
Tagman system (Roche-Applied Biosystems) in the Unidad
de Genémica (Universidad Complutense de Madrid). Specific
primers were designed for the chicken nSMase gene SMPD3.

Lipid extraction and ceramide species measurement

Quantitative evaluation of the proportion of ceramide to
the main PC (34:2) was performed by UHPLC-MS. Samples
were thawed and 100 ul ethanol added to every tube and
vortex-mixed for 5 min. The suspensions were transferred into
0.5ml microcentrifuge tubes where 5-10 ug of glass beads
(acid-washed, 150-212 ym; Sigma-Aldrich) had been pre-
pared. Lipids were then extracted by vigorous shaking with a
TissueLyser LT from Qiagen for 15 min, at 50 rpm. Tubes were
further centrifuged at 15400 g and 15°C for 20 min, and 80 ul
from the supernatant was transferred to HPLC vials with in-
sert. The samples were analyzed with an UHPLC-QTOF MS
from Agilent Technologies, equipped with a 1290 series LC
system and a 6550 iFunnel QTOF MS detector. About 0.5 ul
from each sample was injected (in triplicate) onto the column,
a Zorbax Eclipse Plus C8, 2.1x150mm; 1.8 um (Agilent
Technologies) kept at 80°C. Compounds were eluted with an
8 min linear gradient for the mobile phase at 0.6 ml/min, from
50% ammonium formate 10 mM (pH 6.6) and 50% methanol
to 100% methanol. Data files were processed with Mas-
sHunter Qualitative Analysis B.05.00 to clean of background
noises and unrelated ions by the Molecular Feature Extraction
tool. Data pretreatment, including alignment and filtering
was performed in MassProfiler Professional (B.12.01; Agilent
Technologies). The result was a matrix with all the com-
pounds in the samples sorted by their characteristic retention
time and neutral mass, and the abundance of each compound
for each sample. The list of exact masses was exported
to public databases (METLIN—http://metlin.scripps.edu/;
LipidMaps—www lipidmaps.org/; and KEGG—www.genome
jp/kegg/), and the features for ceramides and PC (34:2) were
identified by the exact mass (less than 5 ppm error).

Electrophysiological studies

Membrane currents were recorded with an Axopatch 200B
and a Digidata 1322A (Axon Instruments) using the whole-
cell configuration of the patch clamp technique. Currents
were evoked by applying depolarizing steps, normalized for
cell capacitance and expressed in pA/pF as previously de-
scribed (10, 11). Current-voltage relationships were con-
structed by measuring the currents at the end of the pulse. For
recording optimal Kv currents, cells were superfused with an
external Ca”*-free PSS (see above) and a Ca®*-free pipette
(internal) solution containing (mM): KCl 110, MgCl, 1.2,
Na,ATP 5, HEPES 10, EGTA 10, pH adjusted to 7.3 with KOH.
All experiments were performed at room temperature (22°C
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—24°C). Experiments were performed under normoxic or
hypoxic conditions for PASMC or DASMC, respectively.

Data analysis

Data are expressed as means + SEM; n indicates the number
of samples from different animals or patients. For multiple
comparisons, statistical analysis was performed using a one
or two way ANOVA followed by a Bonferroni post hoc test,
otherwise using a two-tailed Student’s t-test for paired or
unpaired observations. Differences were considered statisti-
cally significant when p <0.05.
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Abbreviations Used
4-AP =4-aminopyridine
aDA = aortic side of the ductus arteriosus
CA = chorioallantoic arteries
DA =ductus arteriosus
DASMC = ductus arteriosus smooth muscle cells
DCF =2,7-dichlorofluorescein
ET-1 = endothelin-1
HPV = hypoxic pulmonary vasoconstriction
Kv =voltage-gated potassium
nSMase =neutral sphingomyelinase
PA =pulmonary arteries
PASMC = pulmonary artery smooth muscle cells
PBS = phosphate-buffered saline
PC = phosphatidylcholine
PDA =pulmonary side of the ductus arteriosus
PKC = protein kinase C
PKC{-PI =PKC{ peptide inhibitor
PSS = physiological salt solution
ROS = reactive oxygen species
RT-PCR = real-time—polymerase chain reaction
SMase = sphingomyelinase
SNP = sodium nitroprusside
TBH = t-butylhydroperoxide
UHPLC-MS = ultra high performance liquid
chromatography—mass spectrometry




