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Abstract

The duality relation between one–loop integrals and phase–space integrals, developed in a
previous work, is extended to higher–order loops. The duality relation is realized by a modi-
fication of the customary+i0 prescription of the Feynman propagators, which compensates
for the absence of the multiple–cut contributions that appear in the Feynman tree theorem.
We rederive the duality theorem at one–loop order in a form that is more suitable for its
iterative extension to higher–loop orders. We explicitly show its application to two– and
three–loop scalar master integrals, and we discuss the structure of the occurring cuts and the
ensuing results in detail.
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1 Introduction

With the start of the LHC, the physics of elementary particles enters a new era, opening a powerful
window to discover the Higgs boson and to explore new interactions beyond the Standard Model (SM)
at the TeV energy scale. Precision theoretical predictionsfor background and signal multi–particle hard
scattering processes, in the SM and beyond, are mandatory for the phenomenological interpretation of
experimental data, and thus to achieve a successful exploitation of the LHC physics programme.

While leading–order (LO) predictions of multi–particle processes at hadron colliders in perturbative
Quantum Chromodynamics (pQCD) provide, in general, a rather poor description of experimental data,
next–to–leading order (NLO) is the first order at which normalizations, and in some cases the shapes, of
cross sections can be considered reliable, [1]. Next–to–next–to leading order (NNLO), besides improv-
ing the determination of normalizations and shapes, is alsogenerally accepted to provide the first serious
estimate of the theoretical uncertainty in pQCD. Despite the relatively smaller coupling, electroweak
(EW) radiative NLO corrections might also be sizable at the LHC, [2, 3].

Computing higher–order corrections in Quantum Field Theories, in particular in QCD or in the EW
sector of the SM, is highly challenging and substantially demanding as the complexity increases with the
number of external particles, and the order in perturbationtheory at which the hard scattering process
must be calculated in order to match the experimental precision. In the recent years, important efforts
have been devoted to developing efficient methods able to boost forward the calculational capability both
at the multi–leg and the multi–loop frontier. Today,2 → 4 processes at NLO, either from Unitarity based
methods, [4, 5, 6], or from a more traditional Feynman diagrammatic approach, [7], are affordable and
are even becoming standardized. There has also been a lot of progress concerning NNLO calculations
[8, 9, 10, 11].

In Ref. [12], a duality relation between one–loop integralsand phase–space integrals has been demon-
strated. The duality relation is suitable to numerically compute, [13], multi–leg one–loop cross sec-
tions in perturbative field theories (local and unitary). Ithas analogies with the Feynman tree theorem
(FTT), [14, 15], but involves only single cuts of the one–loop Feynman diagrams. The duality theorem
requires to properly regularize propagators by a complex Lorentz–covariant prescription, which is dif-
ferent from the customary+i0 prescription of the Feynman propagators. The main consequence of this
new prescription is that the multiple cuts appearing in the FTT are avoided.

The computation of cross sections at NLO (or NNLO) requires the separate evaluation of real and
virtual radiative corrections. Real (virtual) radiative corrections are given by multi–leg tree–level (loop)
matrix elements to be integrated over the multi–particle phase–space of the physical process. The loop–
tree duality at one–loop presented in Ref. [12], as well as other methods relating one–loop and phase–
space integrals [16, 17, 18], have the attractive feature that they recast the virtual radiative corrections in
a form that closely parallels the contribution of the real radiative corrections. This close correspondence
can help to directly combine real and virtual contributionsto NLO cross sections. In this paper, we
extend the loop–tree duality theorem derived in Ref. [12] tohigher–order loops, as a first attempt towards
extending the duality method to the computation of cross sections at NNLO or even higher orders.
Preliminary results were presented in Ref. [19].

The outline of the paper is as follows: In Section 2, we reconsider the tree–loop duality theorem
at one–loop. This involves the definition of dual propagators in addition to the Feynman, advanced
and retarded propagators commonly known. Afterwards, we reformulate the duality theorem in a way
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which is more appropriate for extending it to higher loop orders. This is done by providing functions of
propagators of complete sets of momenta, corresponding to the internal lines of the diagram. As for their
single–momenta analogues, it is likewise possible to inferrelations amongst these functions. The proof
of the main relation which is crucial for the extension to higher loop orders, is given in the Appendix A.
In Section 3, we then provide a duality theorem for the two–loop master diagram withN external legs
by using the previously defined relations and iteratively applying the duality theorem to the occurring
loops. We also discuss some subtleties involved, as well as the structure of the result and occurring cuts.
Furthermore, we derive a two–loop representation of the Feynman tree theorem. Having set up the basic
method in this way, we will continue with the four basic master topologies at three loops in Section 4,
and show that the method is indeed extendible to even higher loop orders in an iterative manner. We
end this section with a brief comment on the extension of the duality theorem at the amplitude level. In
Section 5, we conclude and provide an outlook. In the Appendix B, we provide a simple example of a
two–loop scalar integral calculated from its dual representation.

2 Duality relation at one loop

In this section, we provide the basic quantities, definitions and relations used in the rest of the paper, and
sketch the steps for the derivation of the tree–loop dualitytheorem at one–loop, as presented in Ref. [12].
We will also rederive this tree–loop duality theorem in a form which is more suitable for its extension to
higher orders by introducing the main formulas used for the iterative application of the duality.

Let us start by considering a general one–loopN–leg diagram, as shown in Fig. 1, which is repre-
sented by the scalar integral:

L(1)(p1, p2, . . . , pN) =

∫

ℓ1

N∏

i=1

GF (qi) . (1)

The four–momenta of the external legs are denotedpi, i ∈ {1, 2, . . .N}. All are taken as outgoing and
ordered clockwise. The loop momentum isℓ1, which flows anti–clockwise. The momenta of the internal
linesqi, are defined as

qi = ℓ1 + p1,i , i ∈ α1 = {1, 2, . . .N} . (2)

As is commonly used, we definepi,j = pi + pi+1 + . . . + pj . Momentum conservation is equivalent to
p1,N = 0. We use dimensionally regularized integrals with the number of space–time dimensions equal
to d, and introduce the following shorthand notation:

∫

ℓi

· · · ≡ −i

∫
ddℓi

(2π)d
· · · . (3)

The space–time coordinates of any momentumkµ are denoted askµ = (k0,k), wherek0 is the energy
(time) component ofkµ. The Feynman propagatorsGF (qi) in Eq. (1) have real internal massesmi:

GF (qi) =
1

q2i −m2
i + i0

. (4)

The derivation of the duality theorem is exactly the same regardless of the internal lines being massive or
massless (mi = 0), as long as the masses are real. Non–vanishing internal real masses only account for a
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Figure 1:Momentum configuration of the one–loopN–point scalar integral.

displacement of the poles of the propagators along the real axis, which does not change the derivation of
the duality theorem, as will become obvious in the following. Moreover, they do not alter the relationship
between Feynman, advanced, retarded and dual propagators,which is the basis of both, the duality
theorem as a duality to the FTT, as well as the extension of themethod to higher loop orders. The case of
unstable particles with complex masses has been discussed in detail in Ref. [12], and we do not consider
this possibility in the current paper.

Besides the customary Feynman propagatorsGF (qi), we also encounter advanced,GA(qi), and re-
tarded,GR(qi), propagators, defined by:

GA(qi) =
1

q2i −m2
i − i0 qi,0

, GR(qi) =
1

q2i −m2
i + i0 qi,0

. (5)

The Feynman, advanced, and retarded propagators only differ in the position of the particle poles in
the complex plane. Usingq2i = q2i,0 − q2

i , we therefore find the poles of the Feynman and advanced
propagators in the complex plane of the variableqi,0 at:

[GF (qi)]
−1 = 0 =⇒ qi,0 = ±

√
q2
i −m2

i − i0 and[GA(qi)]
−1 = 0 =⇒ qi,0 ≃ ±

√
q2
i −m2

i+i0 . (6)

Thus, the pole with positive/negativeenergy of the Feynmanpropagator is slightly displaced below/above
the real axis, while both poles of the advanced/retarded propagator, independently of the sign of the
energy, are slightly displaced above/below the real axis (cf. Fig. 2). We further define

δ̃ (qi) ≡ 2π i θ(qi,0) δ(q
2
i −m2

i ) = 2π i δ+(q
2
i −m2

i ) , (7)

where the subscript+ of δ+ refers to the on–shell mode with positive definite energy,qi,0 ≥ 0. Hence,
the phase–space integral of a physical particle with momentumqi, i.e., an on–shell particle with positive–
definite energy,q2i = m2

i , qi,0 ≥ 0, reads:

∫
ddqi

(2π)d−1
θ(qi,0) δ(q

2
i −m2

i ) · · · ≡

∫

qi

δ̃ (qi) · · · . (8)

We continue by shortly recalling the duality theorem at one–loop order, which was derived in Ref. [12].
For a detailed discussion of all definitions and steps, as well as subtleties related to them, we refer the
reader to this paper. In order to derive the duality theorem,one directly applies the residue theorem to the
computation ofL(1)(p1, p2, . . . , pN) in Eq. (1): Each of the Feynman propagatorsGF (qi) has single poles
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GF (qi) GA(qi)

qi,0 plane qi,0 plane

×

× ××

Figure 2:Location of the particle poles of the Feynman (left) and advanced (right) propagatorsGF (qi)
andGA(qi) in the complex plane of the variableqi,0.

in both the upper and lower half–planes of the complex variable ℓ1,0. Since the integrand is convergent
whenℓ1,0 → ∞, by closing the contour at∞ in the lower half–plane and applying the Cauchy theorem,
the one–loop integral becomes the sum ofN contributions, each of them obtained by evaluating the loop
integral at the residues of the poles with negative imaginary part belonging to the propagatorsGF (qi).
The calculation of the residue ofGF (qi) gives

Res[GF (qi)]Im(qi,0)<0 =

∫
dℓ1,0 δ+(q

2
i −m2

i ) , (9)

with δ+(q
2
i − m2

i ) defined in Eq. (7). This result shows that considering the residue of the Feynman
propagator of the internal line with momentumqi is equivalent to cutting that line by including the
corresponding on–shell propagatorδ+(q

2
i −m2

i ). The propagatorsGF (qj), with j 6= i, are not singular
at the value of the pole ofGF (qi) and can therefore be directly evaluated at this point, yielding to

∏

j 6=i

GF (qj)

∣∣∣∣GF (qi)
−1=0

Im(qi,0)<0

=
∏

j 6=i

GD(qi; qj) , (10)

where

GD(qi; qj) =
1

q2j −m2
j − i0 η(qj − qi)

, (11)

is the so–called dual propagator, as defined in Ref. [12], with η a future–likevector,

ηµ = (η0, η) , η0 ≥ 0, η2 = ηµη
µ ≥ 0 , (12)

i.e., ad–dimensional vector that can be either light–like(η2 = 0) or time–like(η2 > 0) with positive
definite energyη0.

Collecting the results from Eq. (9) and Eq. (10), the tree–loop duality theorem at one–loop, [12],
takes the final form

L(1)(p1, p2, . . . , pN) = −
∑ ∫

ℓ1

δ̃ (qi)

N∏

j=1
j 6=i

GD(qi; qj) . (13)

Contrary to the FTT, [14, 15], Eq. (13) contains only single–cut integrals. Multiple–cut integrals, like
those that appear in the FTT, are absent thanks to modifying the original+i0 prescription of the uncut
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Feynman propagators in Eq. (10) by the new prescription−i0 η(qj − qi), which is named the ‘dual’i0
prescription or, briefly, theη prescription. This is the main result of Ref. [12]. The duali0 prescription
arises from the fact that the original Feynman propagatorGF (qj) is evaluated at thecomplexvalue of the
loop momentumℓ1, which is determined by the location of the pole atq2i −m2

i + i0 = 0. Thei0 depen-
dence of the pole ofGF (qi) modifies thei0 dependence in the Feynman propagatorGF (qj), leading to
the total dependence as given by the duali0 prescription. The presence of the vectorηµ is a consequence
of using the residue theorem and the fact that the residues ateach of the poles are not Lorentz–invariant
quantities. The Lorentz–invariance of the loop integral isrecovered after summing over all the residues.
Furthermore, in the one–loop case, the momentum differenceη(qj − qi) is independent of the integration
momentumℓ1, and only depends on the momenta of the external legs (cf. Eq.(2)).

We now rederive the one–loop duality theorem Eq. (13) by exploiting the relationship between Feyn-
man, advanced and dual propagators. This will prove to be useful when extending the duality theorem
to higher orders. Using the elementary identity

1

x± i0
= PV

(
1

x

)
∓ iπ δ(x) , (14)

wherePV denotes the principal–value prescription, we can transform one kind of propagators into the
other:

GA(qi) = GF (qi) + δ̃ (qi) , GR(qi) = GF (qi) + δ̃ (−qi) , GA(−qi) = GR(qi) . (15)

Dual and Feynman propagators are related through, [12],

δ̃ (qi) GD(qi; qj) = δ̃ (qi)
[
GF (qj) + θ̃ (qj − qi) δ̃ (qj)

]
, (16)

with θ̃ (q) = θ(ηq).

In the following, we extend the definition of propagators of single momenta to combinations of
propagators of sets of internal momenta: Letαk be any set of internal momenta withqi, qj ∈ αk. We
then define Feynman, advanced, retarded and dual propagatorfunctions of this setαk in the following
way:

GF (A,R)(αk) =
∏

i∈αk

GF (A,R)(qi) , GD(αk) =
∑

i∈αk

δ̃ (qi)
∏

j∈αk

j 6=i

GD(qi; qj) . (17)

By definition, GD(αk) = δ̃ (qi), whenαk = {i} and thus consists of a single four momentum. At
one–loop order,αk is naturally given by all internal momenta of the diagram which depend on the single
integration loop momentumℓ1, αk = {1, 2, . . . , N}. However, let us stress thatαk can in principle be
any set of internal momenta. At higher order loops, e.g., several integration loop momenta are needed,
and we can define several loop linesαk to label all the internal momenta (cf. Eq. (27)) where Eq. (17)
will be used for these loop lines or unifications of these. To simplify the notation, we also introduce

GD(−αk) =
∑

i∈αk

δ̃ (−qi)
∏

j∈αk

j 6=i

GD(−qi;−qj) , GA(−αk) =
∏

i∈αk

GA(−qi) = GR(αk) , (18)

where the sign in front ofαk indicates that we have reversed the momentum flow of all the internal lines
in αk. For Feynman propagators, moreover,GF (−αk) = GF (αk).
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In analogy to Eq. (15), the following relation holds for any set of internal momentaαk:

GA(αk) = GF (αk) +GD(αk) . (19)

This is a non–trivial relation, considering Eq. (16). Note that individual terms inGD(αk) depend on the
dual vectorη, but the sum over all terms contributing toGD(αk) is independent of it. We leave the de-
tailed proof by induction of Eq. (19) for the Appendix A. Eq. (19) is our main result for a straightforward
derivation of the duality theorem.

Another crucial relation for the following is given by a formula that allows to express the dual func-
tion of a set of momenta in terms of chosen subsets. Consider the following setβN ≡ α1∪...∪αN , where
βN is the unification of various subsetsαi. Solving for the dual part, Eq. (19) then has the following form:

GD(α1 ∪ α2 ∪ ... ∪ αN) = GA(α1 ∪ α2 ∪ ... ∪ αN)−GF (α1 ∪ α2 ∪ ... ∪ αN) . (20)

We continue by using the multiplicativity ofGA(βN) andGF (βN ), as defined in Eq. (17), to obtain:

GD(α1 ∪ α2 ∪ ... ∪ αN ) =
N∏

i=1

GA(αi)−
N∏

i=1

GF (αi)

=

N∏

i=1

[GF (αi) +GD(αi)]−
N∏

i=1

GF (αi)

=
∑

β
(1)
N

∪β
(2)
N

=βN

∏

i1∈β
(1)
N

GD(αi1)
∏

i2∈β
(2)
N

GF (αi2) . (21)

The sum runs over all partitions ofβN into exactly two blocksβ(1)
N and β

(2)
N with elementsαi,

i ∈ {1, ..., N}, where, contrary to the usual definition, we include the case: β
(1)
N ≡ βN , β(2)

N ≡ ∅.
This relation will be extensively used in the subsequent calculations. For the case ofN = 2, e.g., where
β2 ≡ α1 ∪ α2, we have:

GD(α1 ∪ α2) = GD(α1)GD(α2) +GD(α1)GF (α2) +GF (α1)GD(α2) . (22)

Since in general relation (21) holds for any constellation of basic elementsαi which are sets of internal
momenta, one can look at these expressions in different ways, depending on the given sets and subsets
considered. If we define, for example, the basic subsetsαi to be given by single momentaqi, and since
in that caseGD(qi) = δ̃ (qi), Eq. (21) then denotes a sum over all possible differing m–tuple cuts for
the momenta in the setβN , while the uncut propagators are Feynman propagators. These cuts start
from single cuts up to the maximal number of cuts given by the term where all the propagators of the
considered set are cut.

Let us now return to the one–loop integral: Since advanced propagators have poles with positive
imaginary part only, we do not enclose any singularity by closing the integration contour at∞ in the
lower half–plane, and therefore a loop integral over advanced propagators vanishes. Thus, by using
Eq. (19), we find

0 =

∫

ℓ1

GA(α1) =

∫

ℓ1

[GF (α1) +GD(α1)] , (23)

whereα1 as in Eq. (2) labelsall internal momentaqi. The first term on the right–hand side of Eq. (23),
containing only Feynman propagators, is the original one–loop integral. Therefore,

L(1)(p1, p2, . . . , pN) = −

∫

ℓ1

GD(α1) . (24)
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Figure 3:Momentum configuration of the two–loopN–point scalar integral.

In this way, we directly obtain the duality relation betweenone–loop integrals and single–cut phase–
space integrals and hence Eq. (24) can be interpreted as the application of the duality theorem to the
given set of momentaα1. It obviously agrees with Eq. (13). Furthermore, by using Eq. (21) in its
refined form where the subsetsαi are given by the single momentaqi of the inner lines of the one–loop
integral, we rederive the FTT at one–loop, namely the one–loop integral written in terms of multiple–cut
contributions and Feynman propagators:

L(1)(p1, p2, . . . , pN) = −
∑

α
(1)
1 ∪α

(2)
1 =α1

∫

ℓ1

∏

i1∈α
(1)
1

δ̃ (qi1)
∏

i2∈α
(2)
1

GF (qi2) . (25)

The sum runs over all partitions ofα1 as defined in Eq. (21), excluding the possibility to have a term
with only Feynman propagators. Them–cut integral of the FTT is given by the sum of the contributions
from all partitions ofα1, with α

(1)
1 containing preciselym elements∗.

The extension of the duality theorem and of the FTT from scalar loop integrals to full scattering am-
plitudes in the case of unitary, local field theories and in the occurrence of real masses is straightforward
and has been discussed in detail in Ref. [12].

3 Duality relation at two loops

We now turn to the general two–loop master diagram, as presented in Fig. 3. Again, all external momenta
pi are taken as outgoing, and we havepi,j = pi+pi+1+ . . .+pj , with momentum conservationp1,N = 0.
The labeli of the external momenta is defined moduloN , i.e.,pN+i ≡ pi. Note, however, that one or
both of the external momenta attached to the four–leg vertices might be absent:pℓ = 0 and/orpN = 0. In
the two–loop case, unlike at the one–loop order, the number of external momenta might differ from the

∗If the number of space–time dimensions isd, thenm is limited to bem ≤ d; the terms with larger values ofm vanish,
since the corresponding number of delta functions in the integrand is larger than the number of integration variables.
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number of internal momenta. The loop momenta areℓ1 andℓ2, which flow anti–clockwise and clockwise
respectively. The momenta of the internal lines are denotedby qi and are explicitly given by

qi =





ℓ1 + p1,i , i ∈ α1

ℓ2 + pi,l−1 , i ∈ α2

ℓ1 + ℓ2 + pi,l−1 , i ∈ α3 ,
(26)

whereαk, with k = 1, 2, 3, are defined as the set of lines, propagators respectively, related to the mo-
mentaqi, for the following ranges ofi:

α1 ≡ {0, 1, ..., r} , α2 ≡ {r + 1, r + 2, ..., l} , α3 ≡ {l + 1, l + 2, ..., N} . (27)

In the following, we will useαk for denoting a set of indices or the set of the corresponding internal
momenta synonymously. Furthermore, we will refer to these lines often simply as the “loop lines”.

We shall now extend the duality theorem to the two–loop case,by applying Eq. (23) iteratively. We
consider first, in the most general form, a set of several looplinesα1 to αN depending on the same
integration momentumℓi, and find

∫

ℓi

GF (α1 ∪ α2 ∪ ... ∪ αN) = −

∫

ℓi

GD(α1 ∪ α2 ∪ ... ∪ αN ) , (28)

which states the application of the duality theorem, Eq. (23), to the set of loop lines belonging to the
same loop. Eq. (28) is the generalization of the duality theorem found at one–loop to a single loop
of a multi–loop diagram. Each subsequent application of theduality theorem to another loop of the
same diagram will introduce an extra single cut, and by applying the duality theorem as many times as
the number of loops, a given multi–loop diagram will be opened to a tree–level diagram. The duality
theorem, Eq. (28), however, applies only to Feynman propagators, and a subset of the loop lines whose
propagators are transformed into dual propagators by the application of the duality theorem to the first
loop might also be part of the next loop (cf., e.g., the “middle” line belonging toα3 in Fig. 3). The dual
function of the unification of several subsets can be expressed in terms of dual and Feynman functions
of the individual subsets by using Eq. (21) (or Eq. (22)) though, and we will use these expressions to
transform part of the dual propagators into Feynman propagators, in order to apply the duality theorem
to the second loop.

We are now ready for extending the duality relation to two loops. Our starting point is the expression
for the two–loopN–leg scalar integral

L(2)(p1, p2, . . . , pN) =

∫

ℓ1

∫

ℓ2

GF (α1 ∪ α2 ∪ α3) , (29)

where the momenta of the internal lines are specified in Eq. (26) and Eq. (27). As stated before, we
will apply the duality theorem sequentially to the two different loops associated with the integration
momentaℓ1 andℓ2. Starting with the first loop related toℓ1, and hence to the loop linesα1 andα3, and
using Eq. (28), we obtain:

L(2)(p1, p2, . . . , pN) = −

∫

ℓ1

∫

ℓ2

GD(α1 ∪ α3)GF (α2) . (30)

We then use Eq. (22) forGD(α1 ∪ α3), leading to

L(2)(p1, p2, . . . , pN) = −

∫

ℓ1

∫

ℓ2

{GD(α1)GD(α3) +GD(α1)GF (α3) +GF (α1)GD(α3)} GF (α2) .

(31)
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The first term of the integrand on the right–hand side of Eq. (31) is the product of two dual functions, and
therefore already contains double cuts. We do not modify this term further. The second and third terms
of Eq. (31) containoneGD(αi) and hence single cuts only. We thus apply the duality theoremagain, i.e.,
we use Eq. (28) forℓ2 in order to generate one more cut. A subtlety arises at this point since due to our
choice of momentum flow,α1 andα2, appearing in the third term of Eq. (31), flow in the opposite sense.
Hence, in order to apply the duality theorem to the second loop we have to reverse the momentum flow
of one of these two loop lines. We choose to change the direction ofα1, namelyqi → −qi for i ∈ α1.
This change of momentum flow is denoted by a sign in front ofα1. Thus, applying Eq. (28) to the last
two terms of Eq. (31), leads to

L(2)(p1, p2, . . . , pN)

=

∫

ℓ1

∫

ℓ2

{−GD(α1)GF (α2)GD(α3) +GD(α1)GD(α2 ∪ α3) +GD(α3)GD(−α1 ∪ α2)} .

(32)

This is the dual representation of the two–loop scalar integral as a function of double–cut integrals only,
since all the terms of the integrand in Eq. (32) contain exactly two dual functions as defined in Eq. (17).
The integrand in Eq. (32) can then be reinterpreted as the sumover tree–level diagrams integrated over a
two–body phase–space.

The integrand in Eq. (32), however, contains several dual functions of two different loop lines, and
hence dual propagators whose duali0 prescription might still depend on the integration momenta. This
is the case for dual propagatorsGD(qi; qj) where each of the momentaqi and qj belong to different
loop lines. If both momenta belong to the same loop line the dependence on the integration momenta
in η(qj − qi) obviously cancels, and the complex dual prescription is determined by external momenta
only. The dual prescriptionη(qj−qi) can thus, in some cases, change sign within the integration volume,
therefore moving up or down the position of the poles in the complex plane. To avoid this, we should
reexpress the dual representation of the two–loop scalar integral in Eq. (32) in terms of dual functions of
single loop lines. This transformation was unnecessary at one–loop because at the lowest order all the
internal momenta depend on the same integration loop momenta; in other words, there is only a single
loop line.

Inserting Eq. (22) in Eq. (32) and reordering some terms, we arrive at the following representation of
the two–loop scalar integral

L(2)(p1, p2, . . . , pN)

=

∫

ℓ1

∫

ℓ2

{GD(α1)GD(α2)GF (α3) +GD(−α1)GF (α2)GD(α3) +G∗(α1)GD(α2)GD(α3)} ,

(33)

where
G∗(αk) ≡ GF (αk) + GD(αk) +GD(−αk) . (34)

This is the second main result of this paper. In Eq. (33), thei0 prescription of all the dual propagators
depends on external momenta only. Through Eq. (34), however, Eq. (33) contains also triple cuts, given
by the contributions with threeGD(αk). The triple cuts are such that they split the two–loop diagram
into two disconnected tree–level diagrams. By definition, however, the triple cuts are such that there is
no more than one cut per loop lineαk. Since there is only one loop line at one–loop, it is also clear why
we did not generate disconnected graphs at this loop order. For a higher number of loops, we expect to
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find at least the same number of cuts as the number of loops, andtopology dependent disconnected tree
diagrams built by cutting up to all the loop linesαk. We explore this possibility at three loops in the next
section.

Note that using Eq. (19),G∗(αk) can also be expressed as

G∗(αk) = GA(αk) +GR(αk)−GF (αk) , (35)

which contains no cuts, although the imaginary prescription of the advanced and retarded propagators
still depends on the integration loop momenta.

Finally, let us remark that from Eq. (33) we can obtain the FTTrepresentation of the two–loop scalar
integral. More precisely, we can write eachGD(αk), for the linesk ∈ {1, 2, 3}, in terms of Feynman
propagators and multiple cuts of their constituting momenta, by using Eq. (21) with the basic subsetsαi

given by single momenta. After regrouping some terms, we obtain

L(2)(p1, · · · , pN) =
∑

α
(1)
k

∪α
(2)
k

=αk

k∈{1,2,3}

∫

ℓ1

∫

ℓ2

{
GF (α1)

∏

i1∈α
(1)
2

δ̃ (qi1)
∏

i2∈α
(1)
3

δ̃ (qi2)
∏

i3∈α
(2)
2 ∪α

(2)
3

GF (qi3)

+GF (α2)
∏

i1∈α
(1)
1

δ̃ (−qi1)
∏

i2∈α
(1)
3

δ̃ (qi2)
∏

i3∈α
(2)
1 ∪α

(2)
3

GF (qi3)

+GF (α3)
∏

i1∈α
(1)
1

δ̃ (qi1)
∏

i2∈α
(1)
2

δ̃ (qi2)
∏

i3∈α
(2)
1 ∪α

(2)
2

GF (qi3)

+

( ∏

i1∈α
(1)
1

δ̃ (qi1) +
∏

i1∈α
(1)
1

δ̃ (−qi1)

) ∏

i2∈α
(1)
2

δ̃ (qi2)
∏

i3∈α
(1)
3

δ̃ (qi3)
∏

i4∈α
(2)
1 ∪α

(2)
2 ∪α

(2)
3

GF (qi4)

}
,

(36)

where the sums always run over the partitions of the index sets as defined and used in Eq. (21). We see
that it consists of at least double cuts up to a multiple cut ofall the internal momenta.

4 Duality relation beyond two loops

In this section, we will take a first look on the duality relation beyond the two–loop order by considering
the master topologies at three loops, as represented in Fig.4. We obtain explicit representations of the
diagrams of Fig. 4 by using the iterative method described inthe previous section. Although the dual
representations obtained in this section are not unique, asthe diagrams can be expressed in different ways
in terms of dual and Feynman propagators depending on the choice of lines whose momentum flow is
changed in the course of applying the duality theorem to eachloop, we have followed a systematic way
in order to minimize the number of terms.

Diagrams 4(a) - 4(c) are in a certain sense of the same type, and will be treated in the same way. We
first cut these diagrams on the disjoint loops assigned to thelines{α1, α2} and{α3, α4}. Considering
the basket ball diagram (a) of Fig. 4, for example, this means:

L
(3)
basket(p1, p2, . . . , pN) =

∫

ℓ1

∫

ℓ2

∫

ℓ3

GD(α1 ∪ α2) GD(α3 ∪ α4) . (37)
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α1

α5 α3

α2

(d)

Figure 4:Master topologies of three–loop scalar integrals. Each internal lineαk can be dressed with an
arbitrary number of external lines, which are not shown here.

Remember that any dual functionGD(αk) of any set of momenta, and hence any application of the
duality to a loop, contains at least one cut. Since we have a product of two expressions of the dual
type, all terms in the expansion of this product in Eq. (37) via Eq. (22) contain at least two cuts.
Terms with triple and more cuts are already in their final form. They belong to the case where ei-
ther all lines are dual, or one line is of the type “Feynman”. However, the double–cut terms, as, e.g.,
GD(α1)GF (α2)GF (α3)GD(α4), stemming from the combination of one Feynman propagator from
each of the two different loops, form a third loop, which still consists only of Feynman propagators
and hence still needs one more application of the duality theorem in order to generate the third cut:
∫

ℓ1

∫

ℓ2

∫

ℓ3

GD(α1)GF (α2)GF (α3)GD(α4) → −

∫

ℓ1

∫

ℓ2

∫

ℓ3

GD(α1)GD(α2 ∪ α3)GD(α4) . (38)

In the case of the zigzag diagram, 4(b), or the ladder diagram, 4(c), this third loop consists of one more
internal loop line: lineα5 in the former case and the linesα5 andα6 in the latter. Hence the third loop
now consists of exactly one loop line from the first and secondloop, and these additional loop lines. Due
to the nature of the application of the duality through Eq. (28) and Eq. (21), we have to sum over all
possibilities to build such sets of loop lines fulfilling these properties. Additionally, we have to assure
that for each application of the duality the integration momentum runs in the same sense and hence
change the momentum–flow direction for some chosen loop lines. Since each application of the duality
generates one minus sign, we obtain the following general result for diagrams 4(a) - 4(c):

L
(3)
(a),(b),(c)(p1, p2, . . . , pN) =

∫

ℓ1

∫

ℓ2

∫

ℓ3

GD(α1 ∪ α2) GD(α3 ∪ α4) GF (β)

=

∫

ℓ1

∫

ℓ2

∫

ℓ3

{[
GD(α2, α3, α4) GF (α1) +GD(α1, α3, α4) GF (α2) +GD(α1, α2, α4) GF (α3)

+GD(α1, α2, α3) GF (α4) +GD(α1, α2, α3, α4)

]
GF (β)

−GD(α1, α3) GD(α2 ∪ −α4 ∪ β)−GD(α1, α4) GD(α2 ∪ α3 ∪ β)

−GD(α2, α3) GD(−α1 ∪ −α4 ∪ β)−GD(α2, α4) GD(−α1 ∪ α3 ∪ β)

}
, (39)

whereβ = ∅ in the case of diagram 4(a) (withGF (∅) = 1), β = α5 for diagram 4(b) andβ = α5 ∪α6 in
the case of the ladder diagram 4(c). Note that for the ladder diagram, linesα5 andα6 depend on the same
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integration momentum and can therefore be considered as asingleloop line as defined in this context.
Hence, in this sense, the diagram naturally reduces to the zigzag–case, as long as the relative sense of
momentum flow in these lines is correct and stays unchanged. For brevity, we defined the product of
dual propagators asGD(α1, ..., αN) =

∏N

i=1GD(αi), in contrast toGD(α1 ∪ ...∪αN ), given in Eq. (21).
The dual representation of the three–loop scalar integral in Eq. (39), contains mostly triple cuts. We have
allowed for a single four–cut contribution in order to make this expression more symmetric, but this term
can be rewritten in terms of triple–cut contributions with the help of Eq. (22).

If we expand all existing dual functions in Eq. (39) in terms of dual functions of single loop lines by
using Eq. (21), we obtain, e.g., for diagram 4(a):

L
(3)
basket(p1, p2, . . . , pN) = −

∫

ℓ1

∫

ℓ2

∫

ℓ3

{
GD(α2, α3,−α4) GF (α1) +GD(α1, α3,−α4) GF (α2)

+GD(−α1, α2, α4) GF (α3) +GD(−α1, α2, α3) GF (α4)

+GD(−α1, α2, α3, α4) +GD(α1, α2, α3,−α4) +GD(−α1, α2, α3,−α4)

}
. (40)

In this expression, the complex dual prescription of all thedual propagators depend on external momenta
only, although at the price of generating disconnected treediagrams. Similar results can be obtained for
diagrams 4(b) and 4(c). There are up to four cuts for diagram 4(a) (cf. Eq. (40)), five cuts for diagrams
4(b) and six cuts for diagram 4(c), although in this last casefive cuts are enough ifα5 ∪ α6 is considered
as a single loop line.

Also the Mercedes star diagram 4(d) can be expressed in termsof only three–cut contributions or in
terms of three– up to six– cut contributions. However, due tothe non–planar nature of this diagram, the
way of obtaining its dual representation is slightly more involved, whereas the general idea as explained
before stays the same. We achieve for the Mercedes star diagram the following dual representation:

L
(3)
Mercedes(p1, p2, . . . , pN)

=

∫

ℓ1

∫

ℓ2

∫

ℓ3

{
−GD(α1, α2, α3)GF (α4, α5, α6) +GD(α3 ∪ α4 ∪ α5)GD(α1, α2)GF (α6)

+GD(−α1 ∪ α4 ∪ α6)GD(α2, α3)GF (α5) +GD(−α2 ∪ α5 ∪ −α6)GD(α1, α3)GF (α4)

+GD(α1)[GD(α3 ∪ α4)GD(α5)GF (α2 ∪ α6)−GD(α2 ∪ α3 ∪ α4 ∪ α6)GD(α5)

−GD(α3 ∪ α4)GD(−α2 ∪ α5 ∪ −α6)]

+GD(α2)[GD(−α1 ∪ α6)GD(α4)GF (α3 ∪ α5)−GD(α1 ∪ α3 ∪ α5 ∪ −α6)GD(α4)

−GD(−α1 ∪ α6)GD(α3 ∪ α4 ∪ α5)]

+GD(α3)[GD(−α2 ∪ α5)GD(−α6)GF (α1 ∪ α4)−GD(−α1 ∪ −α2 ∪ α4 ∪ α5)GD(−α6)

−GD(−α2 ∪ α5)GD(−α1 ∪ α4 ∪ α6)]

}
. (41)
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From the inspection of the three–loop case and from the general derivation of the method, it seems
obvious how to extend it to even higher loop orders. Eq. (21) can also be used to obtain the FTT
representation of scalar integrals or scattering amplitudes at any loop order.

The duality relation can be extended to evaluate not only scalar loop integrals, as discussed so far, but
also complete Feynman diagrams. The extension of the one-loop duality relation from scalar integrals to
Feynman diagrams was discussed in details in Ref. [12]. Thisextension relies on the simple observation
that the duality relation acts only on the Feynman propagators of the loop, leaving unchanged all the other
factors in the Feynman diagram. This is valid in any unitary and local field theories. In spontaneously
broken gauge theories, it holds in the ’t Hooft-Feynman gauge and in the unitary gauge. In unbroken
gauge theories, the duality relation is valid in the ’t Hooft-Feynman gauge, and in physical gauges where
the gauge vectornν is orthogonal to the dual vectorηµ, i.e.,n · η = 0. This excludes gauges wherenν

is time-like. At one-loop order, this choice of gauges avoids the appearance of extra unphysical gauge
poles, which in other gauges (e.g. the time-like axial gauge) are also poles of the second order. Within
the same choice of gauges, additional (unphysical) gauge poles are absent also at higher-loop level, and
the duality relation can be straightforwardly extended from scalar integrals to Feynman diagrams.

In Ref. [12], it was also shown how the one-loop duality relation can directly be expressed at the
level of full scattering amplitudes (or, more precisely, off-shell Green’s functions). The derivation of
the duality between one-loop and tree-level scattering amplitudes requires a detailed discussion of some
issues related to tadpole and self-energy configurations. These (and related) issues become more delicate
at higher-loop levels. We do not pursue further on this pointin this paper, and we postpone detailed
investigations to further studies.

5 Conclusion and Outlook

We have rederived the tree–loop duality theorem at one–looporder, which was introduced in Ref. [12],
in a way which is more suitable for extending it to higher looporders. By iteratively applying the
duality theorem, we have given explicit representations ofthe two– and three–loop scalar integrals. The
method, however, is easily extendible to higher loop ordersbeyond three loops. In general, the dual
representation of the loop integrals can be written as a sum of terms with exactly the same number of
cuts as the number of loops, and in such a way that the loop diagram is opened to a tree–level diagram.
However, this requires to deal with uncut propagators with complex duali0 prescription depending on
the integration momenta, and thus with complex dual prescriptions that might change sign within the
integration volume. Dual representations of the loop integrals with complex dual prescription depending
only on the external momenta can be obtained at the cost of introducing extra cuts, which break the loop
integrals into disconnected diagrams. This is a new featureof the duality theorem beyond one–loop,
which does not happen at the lowest order. The number of extracuts to be taken into account depends
on the topology of the loop diagram. The maximal number of cuts agrees with the number of loop lines,
and the cuts are such that it does not appear more than a singlecut for each internal loop line. These
general facts are true for the application of the duality relation to diagrams with an arbitrary number of
loops. The results presented in this paper can also be used toobtain the FTT representation of diagrams
at higher orders.

The dual representations obtained in this paper are valid asfar as only single poles are present when
the residue theorem is applied. At one–loop order, the propagators of the gauge bosons might generate
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unphysical poles, or even higher order poles. Those non–single poles can be avoided by a convenient
choice of the gauge or of the dual vector [12]. At two– or higher loop orders, however, higher order
poles might appear when diagrams with selfenergy insertions (nested or disjoint) are considered. At two
loops this happens when two of the loop lines are made of single propagators, and no external momenta
are attached to any of the two four-leg vertices of Fig. 3. At higher order loops, there are many more
possible topologies showing this feature. Extending the duality theorem to this kind of diagrams requires
to evaluate the contribution of the higher order poles, which depends on the topology of the diagram and
on the nature of the internal propagators and on the form of the interaction vertices. Explicity studies of
these loop diagrams are left to future investigations.

Note added:After completion of this paper, a work [20] dealing with similar topics appeared. The
author uses retarded boundary conditions, and obtains somecombinatorial factors weighting the different
terms contributing to the loop-tree duality relation. We haved checked explicitly, in the two-loop case,
that such combinatorial factors are the result of averagingover the different dual countertparts of the
same loop integral obtained by permuting the loop linesαi. Although many of the terms obtained in
this way are either equivalent or can be related to each otherafter shifting the loop momenta, a larger
amount of terms than by using a single dual counterpart are needed to be summed up for the same loop
integral or Feynman diagram. By using Eq. (55) or Eq. (57) dual propagators can be expressed in terms
of advanced or retarded propagators in a straightforward way, leading to an equivalent loop-tree duality
relation as presented in Ref. [20]. In our paper we have not followed this procedure, since a main feature
of our duality relation is that the ‘i0’ prescription of the dual propagators depends only on the external
momenta.
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A Derivation of some algebraic relations

In this Appendix, we prove by induction several algebraic relations that have been used in the text. The
basic ingredient of the proof is the following relation:

θ(λ1) θ(λ1 + λ2) . . . θ(λ1 + λ2 + · · ·+ λn−1) + cyclic perms. = 1 , (42)

that holds for any set ofn real variablesλi, with i = 1, 2, . . . , n, such that
n∑

i=1

λi = 0 . (43)

Relation (42) was proven in Appendix B of Ref. [12]. It applies, in particular, toλi = ηpi, and follows
from momentum conservation

∑n
i=1 pi = 0, wherepi are external momenta. In the following, we will
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use Eq. (42) by settingλi = η(qi − qi+1) for i ∈ {1, ..., n}, with (n+ i) ≡ i modn. The four–momenta
qi are any arbitrary set of internal momenta, and the real variablesλi = η(qi−qi+1) might still depend on
the loop momentaℓ1 andℓ2. By construction, however, Eq. (43) is automatically fulfilled. Thus, Eq. (42)
can also be written as:

n∑

i=1

n∏

j=1
j 6=i

θ̃ (qi − qj) =
n∑

i=1

n∏

j=1
j 6=i

θ̃ (qj − qi) = 1 . (44)

We start by deriving the following algebraic identity:

GD(αk) = GA(αk)−GF (αk) , (45)

where
GD(αk) =

∑

i∈αk

δ̃ (qi)
∏

j∈αk

j 6=i

GD(qi; qj) , GA(F )(αk) =
∏

i∈αk

GA(F )(qi) . (46)

as defined in Eq. (17). Remember thatGD(αk) = δ̃ (qi) whenαk consists of a single four momentumqi.
Using the identityGA(qi) = GF (qi) + δ̃ (qi), the right-hand side of Eq. (45), can also be written as

GA(αk)−GF (αk) =
∑

α
(1)
k

∪α
(2)
k

=αk

∏

i1∈α
(1)
k

δ̃ (qi1)
∏

i2∈α
(2)
k

GF (qi2) , (47)

where the sum runs over all possible partitions ofαk into exactly two subsetsα(1)
k andα(2)

k . Additionally,
we allow for the subsetα(2)

k to be empty, but the subsetα(1)
k always contains at least one element, this

means that a term with only Feynman propagators is excluded.The first non trivial case for Eq. (45)
occurs forαk = {1, 2}. By using Eq. (16), and̃θ (q1 − q2) + θ̃ (q2 − q1) = 1, it is straightforward to
prove that

δ̃ (q1) GD(q1; q2) + δ̃ (q2) GD(q2; q1) = δ̃ (q1) GF (q2) + δ̃ (q2) GF (q1) + δ̃ (q1) δ̃ (q2) . (48)

Let us now assume that relation (45) is correct forN loop momenta,αk = {1, . . . , N}, and show
that it is valid forαN+1

k = αk ∪ {N + 1}. We replace the dual propagatorsGD(qi; qN+1) appearing in
GD(α

N+1
k ) by using again Eq. (16). We obtain:

GD(α
N+1
k ) =

N+1∑

i=1

δ̃ (qi)

N+1∏

j=1
j 6=i

GD(qi; qj) = GD(αk)GF (qN+1)

+ δ̃ (qN+1)

( N∑

i=1

θ̃ (qN+1 − qi) δ̃ (qi)
N∏

j=1
j 6=i

GD(qi; qj) +
N∏

j=1
j 6=i

GD(qN+1; qj)

)
. (49)

Assuming that Eq. (45) and Eq. (47) are valid forN elements, the first term in the right-hand side of
Eq. (49), which is proportional toGF (qN+1), becomes

GD(αk)GF (qN+1) = [GA(αk)−GF (αk)]GF (qN+1) . (50)
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For the remaining terms in Eq. (49), which are proportional to δ̃ (qN+1), we apply again Eq. (16) to all
dual propagators. After some algebra, we find:

GD(α
N+1
k )−GD(αk)GF (qN+1) =

δ̃ (qN+1)

(
GF (αk) +

∑

α
(1)
k

∪α
(2)
k

=αk

Θ̃(α
(1)
k ∪ {N + 1})

∏

j1∈α
(1)
k

δ̃ (qj1)
∏

j2∈α
(2)
k

GF (qj2)

)
, (51)

with

Θ̃(α
(1)
k ∪ {N + 1}) =

∑

i1∈α
(1)
k

∪{N+1}

(
∏

i2∈α
(1)
k

∪{N+1}
i2 6=i1

θ̃ (qi1 − qi2)

)
, (52)

where the sum runs over all possible products ofθ̃ functions that can be constructed with the four–
momenta in the setα(1)

k andqN+1. Obviously, from Eq. (44),

Θ̃(α
(1)
k ∪ {N + 1}) = 1 , (53)

for all possible partitions ofαk into α
(1)
k andα(2)

k . Collecting the results from Eq. (50), Eq. (51), and
Eq. (53), we finally obtain

GD(α
N+1
k ) = GD(αk)GF (qN+1) + δ̃ (qN+1) (GF (αk) +GD(αk))

= GA(αk)GA(qN+1)−GF (αk)GF (qN+1) , (54)

as we wanted to demonstrate.

Another useful relation of advanced and Feynman propagators is the following:

GD(αk) =
∑

i∈αk

(
∏

j∈αk
j<i

GA(qj)

)
δ̃ (qi)

(
∏

l∈αk
l>i

GF (ql)

)
. (55)

We do not attempt to present a detailed proof here, as Eq. (55)can be straightforwardly derived by
reordering some terms from Eq. (47). Analogously, we also have

GD(−αk) = GR(αk)−GF (αk) , (56)

and

GD(−αk) =
∑

i∈αk

(
∏

j∈αk
j<i

GR(qj)

)
δ̃ (−qi)

(
∏

l∈αk
l>i

GF (ql)

)
, (57)

which also hold straightforward by changing the momentum flow of the four–momenta fromαk in
Eq. (45) and Eq. (55) and taking into account thatGF (−qi) = GF (qi) andGA(−qi) = GR(qi).

B Massless sunrise two–loop two–point function

We consider, as explicit example of the application of the duality relation at two–loops, the massless
sunrise two–loop two–point function (Fig. 5). From Eq. (33), the dual representation of the sunrise
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Figure 5:Sunrise two–loop two–point function.

two–loop scalar integral is given by

L(2)(p1, p2) =

∫

ℓ1

∫

ℓ2

{
δ̃ (q1) δ̃ (q2) GF (q3) + δ̃ (−q1) GF (q2) δ̃ (q3) +G∗(q1) δ̃ (q2) δ̃ (q3)

}
. (58)

After replacingG∗(q1) = GF (q1) + δ̃ (q1) + δ̃ (−q1), and shifting some momenta, we obtain

L(2)(p1, p2) =

∫

ℓ1

∫

ℓ2

δ̃ (ℓ1) δ̃ (ℓ2)

{
GF (ℓ1 + ℓ2 + p1) +GF (ℓ1 + ℓ2 − p1) +GF (ℓ1 − ℓ2 − p1)

+δ̃ (ℓ1 + ℓ2 + p1) + δ̃ (ℓ1 + ℓ2 − p1)

}
. (59)

For the integration of the first loop momentumℓ1, we use the basic integrals already calculated in
Ref. [12]:

∫

ℓ1

δ̃ (ℓ1) GF (ℓ1 + k) = dΓ
[
k2 + i0

]−ǫ [
1 + θ(k2) θ(−k0)

(
ei2πǫ − 1

)]
, (60)

and ∫

ℓ1

δ̃ (ℓ1) δ̃ (ℓ1 + k) = dΓ
[
k2 + i0

]−ǫ
θ(−k2)

(
ei2πǫ − 1

)
, (61)

where

dΓ = −
cΓ

2

1

ǫ(1− 2ǫ)

1

cos(πǫ)
, cΓ =

Γ(1 + ǫ) Γ2(1− ǫ)

(4π)2−ǫ Γ(1− 2ǫ)
, (62)

which we have reexpressed in a more suitable way in terms of[k2 + i0]
−ǫ. Applying Eq. (60) and

Eq. (61) to Eq. (59), we find

L(2)(p1, p2) = dΓ

∫

ℓ2

δ̃ (ℓ2)

{[
(ℓ2 + p1)

2 + i0
]−ǫ (

ei2πǫ + 1
)

+
[
(ℓ2 − p1)

2 + i0
]−ǫ [

ei2πǫ − θ((ℓ2 − p1)
2)θ((ℓ2 − p1)0)

(
ei2πǫ − 1

)]}
. (63)

The new phase–space integrals that we have to evaluate now for the integration over the second
loop momentumℓ2 are then quite similar to those already encountered at one–loop. The calculation is
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elementary, and we obtain

dΓ

∫

ℓ2

δ̃ (ℓ2)
[
(ℓ2 + k)2 + i0

]−ǫ
=

−G2
sin(πǫ) e−i2πǫ

sin(3πǫ)
(−k2 − i0)1−2ǫ

[
1 + θ(k2)θ(−k0)

(
ei2πǫ − 1

)]
, (64)

and

dΓ

∫

ℓ2

δ̃ (ℓ2)
[
(ℓ2 + k)2 + i0

]−ǫ
θ((ℓ2 + k)2) θ((ℓ2 + k)0) =

G2
sin(πǫ)

sin(3πǫ)
(−k2 − i0)1−2ǫ

[
θ(−k2)− θ(k2) θ(k0) e

−i2πǫ
]
, (65)

where

G2 =
Γ(−1 + 2ǫ) Γ(1− ǫ)3

(4π)4−2ǫ Γ(3− 3ǫ)
. (66)

Applying Eq. (64) and Eq. (65) to Eq. (63), and summing up all the theta functions, we finally get

L(2)(p1, p2) = −G2 (−p21 − i0)1−2ǫ , (67)

which is the well–known result for the massless sunrise two–loop two–point function.
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