arXiv:1007.0194v2 [hep-ph] 27 Oct 2010

IFIC/10-17

A Tree—Loop Duality Relation at Two Loops
and Beyond

Isabella Bierenbaum @, Stefano Catani®f, Petros Draggiotis®f| and German Rodrigo (“fi

(@) Instituto de Fisica Corpuscular, Universitat de Val@neiConsejo Superior de Investigaciones
Cientificas, Apartado de Correos 22085, E-46071 Valespajn

(®) INFN, Sezione di Firenze and Dipartimento di Fisica, Uns#@rdi Firenze,
[-50019 Sesto Fiorentino, Florence, Italy

Abstract

The duality relation between one—loop integrals and phassee integrals, developed in a
previous work, is extended to higher—order loops. The tuedlation is realized by a modi-
fication of the customary-i0 prescription of the Feynman propagators, which compegssate
for the absence of the multiple—cut contributions that appe the Feynman tree theorem.
We rederive the duality theorem at one—loop order in a forat th more suitable for its
iterative extension to higher—loop orders. We explicithypw its application to two— and
three—loop scalar master integrals, and we discuss thetstewof the occurring cuts and the
ensuing results in detail.
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1 Introduction

With the start of the LHC, the physics of elementary parickaters a new era, opening a powerful
window to discover the Higgs boson and to explore new interas beyond the Standard Model (SM)
at the TeV energy scale. Precision theoretical predictionbackground and signal multi—particle hard
scattering processes, in the SM and beyond, are mandatotlyefgphenomenological interpretation of
experimental data, and thus to achieve a successful exgpbritof the LHC physics programme.

While leading—order (LO) predictions of multi—particleogesses at hadron colliders in perturbative
Quantum Chromodynamics (pQCD) provide, in general, a raiher description of experimental data,
next—to—leading order (NLO) is the first order at which ndirzions, and in some cases the shapes, of
cross sections can be considered reliable, [1]. Next—tdi—teeleading order (NNLO), besides improv-
ing the determination of normalizations and shapes, isgdserally accepted to provide the first serious
estimate of the theoretical uncertainty in pQCD. Despite réfatively smaller coupling, electroweak
(EW) radiative NLO corrections might also be sizable at th, [2,[3].

Computing higher—order corrections in Quantum Field Thespiin particular in QCD or in the EW
sector of the SM, is highly challenging and substantialljpdading as the complexity increases with the
number of external particles, and the order in perturbat@ory at which the hard scattering process
must be calculated in order to match the experimental pogcidn the recent years, important efforts
have been devoted to developing efficient methods able tstlbmovard the calculational capability both
at the multi—-leg and the multi—loop frontier. Today;~ 4 processes at NLO, either from Unitarity based
methods,[4], 5, 6], or from a more traditional Feynman diagreatic approach| [7], are affordable and
are even becoming standardized. There has also been a IaigrEps concerning NNLO calculations
[8,19,[10/11].

In Ref. [12], a duality relation between one—loop integeadd phase—space integrals has been demon-
strated. The duality relation is suitable to numericallyngpate, [13], multi-leg one—loop cross sec-
tions in perturbative field theories (local and unitary)hdts analogies with the Feynman tree theorem
(FTT), [14,115], but involves only single cuts of the onepdéeynman diagrams. The duality theorem
requires to properly regularize propagators by a complexehiz—covariant prescription, which is dif-
ferent from the customaryi0 prescription of the Feynman propagators. The main conseguef this
new prescription is that the multiple cuts appearing in thé &re avoided.

The computation of cross sections at NLO (or NNLO) requilessgeparate evaluation of real and
virtual radiative corrections. Real (virtual) radiativercections are given by multi—-leg tree—level (loop)
matrix elements to be integrated over the multi—particlasgh-space of the physical process. The loop—
tree duality at one—loop presented in Ref.|[12], as well &smoinethods relating one—loop and phase—
space integrals [16, 1[7, 18], have the attractive featwattkiey recast the virtual radiative corrections in
a form that closely parallels the contribution of the rediasive corrections. This close correspondence
can help to directly combine real and virtual contributidasNLO cross sections. In this paper, we
extend the loop—tree duality theorem derived in Ref. [12igher—order loops, as a first attempt towards
extending the duality method to the computation of crossi@es at NNLO or even higher orders.
Preliminary results were presented in Ref./[19].

The outline of the paper is as follows: In Sectldn 2, we reersthe tree—loop duality theorem
at one—loop. This involves the definition of dual propagator addition to the Feynman, advanced
and retarded propagators commonly known. Afterwards, iegmailate the duality theorem in a way



which is more appropriate for extending it to higher loopeysd This is done by providing functions of
propagators of complete sets of momenta, corresponditgtoternal lines of the diagram. As for their
single-momenta analogues, it is likewise possible to ird&tions amongst these functions. The proof
of the main relation which is crucial for the extension tolegloop orders, is given in the Appendik A.
In Sectior[ B, we then provide a duality theorem for the twoplmaster diagram wittv external legs
by using the previously defined relations and iterativelglging the duality theorem to the occurring
loops. We also discuss some subtleties involved, as wdlleasttucture of the result and occurring cuts.
Furthermore, we derive a two—loop representation of thefeyn tree theorem. Having set up the basic
method in this way, we will continue with the four basic magtgpologies at three loops in Section 4,
and show that the method is indeed extendible to even higlogr drders in an iterative manner. We
end this section with a brief comment on the extension of theity theorem at the amplitude level. In
Sectior b, we conclude and provide an outlook. In the AppeBiiiwe provide a simple example of a
two—loop scalar integral calculated from its dual représston.

2 Duality relation at one loop

In this section, we provide the basic quantities, defingiand relations used in the rest of the paper, and
sketch the steps for the derivation of the tree—loop dutliéprem at one—loop, as presented in Ref. [12].
We will also rederive this tree—loop duality theorem in anfiawhich is more suitable for its extension to
higher orders by introducing the main formulas used for theative application of the duality.

Let us start by considering a general one—lddgleg diagram, as shown in Fig. 1, which is repre-
sented by the scalar integral:

N
L(l)(pl,p2, e ,pN) :/ H GF(CIz') . (1)

L

The four-momenta of the external legs are denpted € {1,2,... N}. All are taken as outgoing and
ordered clockwise. The loop momentuntiswhich flows anti—clockwise. The momenta of the internal
linesg;, are defined as

qi:€1+p1,i7 i€a1:{1,2,...N}. (2)

As is commonly used, we defing,; = p; + p;+1 + ... + p;. Momentum conservation is equivalent to
p1.n = 0. We use dimensionally regularized integrals with the nuntbespace—time dimensions equal
to d, and introduce the following shorthand notation:

[ .

The space-time coordinates of any momenfynare denoted a, = (ko, k), wherek, is the energy
(time) component ok,,. The Feynman propagataf&-(¢;) in Eq. (1) have real internal masses:

Gr(g) = —5—— 4)

@ —m?+i0"

The derivation of the duality theorem is exactly the samardigss of the internal lines being massive or
masslessi(; = 0), as long as the masses are real. Non—vanishing internahesses only account for a
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Figure 1:Momentum configuration of the one—lodp-point scalar integral.

displacement of the poles of the propagators along the xéglahich does not change the derivation of
the duality theorem, as will become obvious in the followiMpreover, they do not alter the relationship
between Feynman, advanced, retarded and dual propagaturs) is the basis of both, the duality
theorem as a duality to the FTT, as well as the extension ahtbod to higher loop orders. The case of
unstable particles with complex masses has been discusdethil in Ref.[[12], and we do not consider
this possibility in the current paper.

Besides the customary Feynman propagaforég; ), we also encounter advanced,(q;), and re-
tarded,GGr(¢;), propagators, defined by:

1 1

GA q;) = - y G q;) = - .
(@) g —m? —1i0¢g #(4:) g —m?+1i0g0

(5)

The Feynman, advanced, and retarded propagators only oliftbe position of the particle poles in
the complex plane. Using’ = ¢7, — q;, we therefore find the poles of the Feynman and advanced
propagators in the complex plane of the variap|eat:

[GF(C]Z')]_I =0 = qi0 = :l:\/ ql2 — mlz —10 and[GA(qi)]_l =0 = qi,0 =~ :t\/q? — m22—|—7,0 . (6)

Thus, the pole with positive/negative energy of the Feynprapagator is slightly displaced below/above
the real axis, while both poles of the advanced/retardegdggator, independently of the sign of the
energy, are slightly displaced above/below the real afisHg.[2). We further define

g(%) = QWiQ(Qi,o) 5(%'2 - mzz) = 27”5+(qz'2 - mzz) ) (7)

where the subscript of 0. refers to the on—shell mode with positive definite eneggy,> 0. Hence,
the phase—space integral of a physical particle with moumeny, i.e., an on—shell particle with positive—
definite energyg? = m?, ¢, > 0, reads:

/(;T%@(%,OM(%Q—m?) 5/5(%) e @®

We continue by shortly recalling the duality theorem at doep order, which was derived in Ref. [12].
For a detailed discussion of all definitions and steps, abasetubtleties related to them, we refer the
reader to this paper. In order to derive the duality theomma,directly applies the residue theorem to the
computation o.M (py, ps, . .., px) in Eq. (1): Each of the Feynman propagat@is(¢;) has single poles
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Figure 2:Location of the particle poles of the Feynman (left) and axbesl (right) propagators:»(q¢;)
andG4(g;) in the complex plane of the variabje,.

in both the upper and lower half—planes of the complex végiéf,. Since the integrand is convergent
when/, o — oo, by closing the contour ak in the lower half-plane and applying the Cauchy theorem,
the one—loop integral becomes the suniVofontributions, each of them obtained by evaluating the loop
integral at the residues of the poles with negative imagipart belonging to the propagatas-(g;).

The calculation of the residue 6f-(q;) gives

Res[G r(qi)]im(gi0)<0 = /dfl,o 5. (g —m7), 9)

with 6, (¢? — m?) defined in Eq.[(7). This result shows that considering th&luesof the Feynman
propagator of the internal line with momentumis equivalent to cutting that line by including the
corresponding on—shell propagatan(¢? — m?). The propagator&'s(g;), with j # 4, are not singular
at the value of the pole @ »(¢;) and can therefore be directly evaluated at this point, ingltb

| | GF(Qj)‘G = | | Gp(ai; q5) (10)
-k F(gi)” =0 -k

J#i Im(qiyg)<0 J#i
where .

GD(C]i;CIj) = (11)

q; —m3; —i0n(q; —q)
is the so—called dual propagator, as defined in Ref. [12] wé future—likevector,

M= (o,m) , M=>0,07"=nm">0, (12)

i.e., ad—dimensional vector that can be either light-lik = 0) or time—like (n*> > 0) with positive
definite energy).

Collecting the results from Ed.](9) and Ef.10), the treeplduality theorem at one—loop, [12],
takes the final form

N
L(l)(pbpzy---,pN) = —Z/ 6((]i)HGD(Qi;Qj)' (13)
Zl ]:1

i#i

Contrary to the FTT,[14, 15], Ed._(IL3) contains only singlgtintegrals. Multiple—cut integrals, like
those that appear in the FTT, are absent thanks to modifpm@tiginal-+:0 prescription of the uncut
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Feynman propagators in E{. {10) by the new prescriptiéhn(q; — ¢;), which is named the ‘dual0
prescription or, briefly, the prescription. This is the main result of Ref. [12]. The difaprescription
arises from the fact that the original Feynman propagaie(y;) is evaluated at theomplexvalue of the
loop momentunt;, which is determined by the location of the poleat- m? + i0 = 0. Thei0 depen-
dence of the pole of/»(¢;) modifies thei0 dependence in the Feynman propagéte(q;), leading to
the total dependence as given by the dOgdrescription. The presence of the veajpiis a consequence
of using the residue theorem and the fact that the residusschtof the poles are not Lorentz—invariant
guantities. The Lorentz—invariance of the loop integraesovered after summing over all the residues.
Furthermore, in the one—loop case, the momentum differgfige- ¢;) is independent of the integration
momentuny,, and only depends on the momenta of the external legs (cf(2Eq.

We now rederive the one—loop duality theorem Eql (13) bya@iiph the relationship between Feyn-
man, advanced and dual propagators. This will prove to bius@en extending the duality theorem
to higher orders. Using the elementary identity

1 1 ,
e PV (E) Fird(z) , (14)

wherePV denotes the principal-value prescription, we can transfone kind of propagators into the
other:

Galq) = Grla) + () Gr(q) = Grla) +0 (—a) Ga(—q) = Gr(q) - (15)

Dual and Feynman propagators are related through, [12],
5(a) Golas ) =3(a) |Gr(e)+0(q—a) 5()] . (16)

with 0 () = 0(1q)-

In the following, we extend the definition of propagators ofgée momenta to combinations of
propagators of sets of internal momenta: bgtbe any set of internal momenta with ¢; € . We
then define Feynman, advanced, retarded and dual propdgatbions of this sety, in the following
way:

Grar) (o) = H Grar(a) Gp(ag) = Z 6 (¢:) H Gp(qi:q5) - (17)
1EQ 1EQ JEa)
J#i

By definition, G (o) = 0 (¢;), whenay, = {i} and thus consists of a single four momentum. At
one—loop ordery, is naturally given by all internal momenta of the diagramettdepend on the single
integration loop momenturfy, o, = {1,2,..., N}. However, let us stress thaj, can in principle be
any set of internal momenta. At higher order loops, e.g.esdvntegration loop momenta are needed,
and we can define several loop linesto label all the internal momenta (cf. EQ. {27)) where Eq) (17
will be used for these loop lines or unifications of these. iagpdify the notation, we also introduce

Gp(—ar) =3 0(=a) J] Gp(-ai—a),  Gal-ar) = J] Ga(-a) = Grlew),  (18)

J#i

where the sign in front o, indicates that we have reversed the momentum flow of all teenal lines
in o For Feynman propagators, moreov@f(—ay) = Gr(ax).
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In analogy to Eq.[(15), the following relation holds for argt sf internal momenta:
GA(Oék) = GF<CYk) + GD(ozk) . (19)

This is a non-trivial relation, considering EQ.(16). Ndtattindividual terms irG () depend on the
dual vector, but the sum over all terms contributing &, () is independent of it. We leave the de-
tailed proof by induction of Eq[(19) for the Appendix A. E49) is our main result for a straightforward
derivation of the duality theorem.

Another crucial relation for the following is given by a fouta that allows to express the dual func-
tion of a set of momenta in terms of chosen subsets. Considéoliowing set3y = a;U...Uay, where
By is the unification of various subsets Solving for the dual part, EJ. (1.9) then has the followingnfo

GD(Oél U (6) U..u OéN) = GA(Oél U 9 U..u OéN) — GF(Oél U 9 U..u OéN) . (20)
We continue by using the multiplicativity @f 4 (Sy) andGr(8y), as defined in EqL(17), to obtain:

N
GD(OQUOAQU...UOAN) = HGA HGF Oél

N
= H[GF(OQ —|-GD Oél HGF Oél

- Z H Gp(ai,) H Gr(as,) . (21)

B(l)UBI(\?)_BN 2166 22655\?)

The sum runs over all partitions ofy into exactly two bIocksﬁN and B with elementSal,

i € {1,...,N}, where, contrary to the usual definition, we include the Jca(é@ = [, = 0.
This relatlon will be extensively used in the subsequerdudations. For the case of = 2, e. g Where
By = a1 U ag, We have:

GD(Ozl U 042) = GD(Ozl) GD(CYQ) -+ GD(Oél) GF(CYQ) -+ GF(OQ) GD(CEQ) . (22)

Since in general relatiofn (1) holds for any constellatibbasic elements; which are sets of internal
momenta, one can look at these expressions in different,wigpending on the given sets and subsets
considered. If we define, for example, the basic subsgts be given by single momentg, and since

in that case=p(q;)) = 0 (¢:), EQ. (21) then denotes a sum over all possible differing pietauts for
the momenta in the sety, while the uncut propagators are Feynman propagators. eTtigs start
from single cuts up to the maximal number of cuts given by grentwhere all the propagators of the
considered set are cut.

Let us now return to the one—loop integral: Since advancegggators have poles with positive
imaginary part only, we do not enclose any singularity bysirig the integration contour ab in the
lower half—plane, and therefore a loop integral over adegdn@ropagators vanishes. Thus, by using
Eq. (19), we find

0= [ Gatar) = [ Gl + Golan)] (23)
é1 él
whereq; as in Eq.[(R) labelsll internal momenta;. The first term on the right—hand side of Hg.|(23),
containing only Feynman propagators, is the original ooep-integral. Therefore,

L(1)<p17p27...,pN) = — GD(O{l) . (24)
1451



Figure 3:Momentum configuration of the two—lodg-point scalar integral.

In this way, we directly obtain the duality relation betwemme—loop integrals and single—cut phase—
space integrals and hence Hg.|(24) can be interpreted apphieation of the duality theorem to the
given set of momenta;. It obviously agrees with Eq[_(13). Furthermore, by using &f) in its
refined form where the subsetsare given by the single momengaof the inner lines of the one—loop
integral, we rederive the FTT at one—loop, namely the orags-Hotegral written in terms of multiple—cut
contributions and Feynman propagators:

i) = = Y [ T[S [T Grta). (25)

ail)UQSQ):al b i16a§1) izEa?)
The sum runs over all partitions of, as defined in Eq[(21), excluding the possibility to have enter
with only Feynman propagators. The-cut integral of the FTT is given by the sum of the contribaso
from all partitions ofa;, with a§1> containing preciselyn elementd.

The extension of the duality theorem and of the FTT from sdalap integrals to full scattering am-
plitudes in the case of unitary, local field theories and adhcurrence of real masses is straightforward
and has been discussed in detail in Ref! [12].

3 Duality relation at two loops

We now turn to the general two—loop master diagram, as ptegéenFig[3. Again, all external momenta
p; are taken as outgoing, and we haye = p; +p;+1 +. . . +p;, with momentum conservatign y = 0.
The labeli of the external momenta is defined modWo i.e.,py.; = p;. Note, however, that one or
both of the external momenta attached to the four—leg \e=rticight be absenp; = 0 and/orpy = 0. In
the two—loop case, unlike at the one—loop order, the numbexternal momenta might differ from the

*If the number of space-time dimensionsgljghenm is limited to bem < d; the terms with larger values af vanish,
since the corresponding number of delta functions in thegireind is larger than the number of integration variables.
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number of internal momenta. The loop momenta/a@nd/,, which flow anti—clockwise and clockwise
respectively. The momenta of the internal lines are denoyed and are explicitly given by

b1+ pr 1€
g =19 l2tpii 1€ Qp (26)
b+l +pig—1 i€ as,

whereay, with k& = 1, 2, 3, are defined as the set of lines, propagators respectietiyed to the mo-
mentay;, for the following ranges of:

ap =40,1,...,r}, a={r+1,r+2,..10}, as={l+1,1+2,...N}. (27)

In the following, we will useqy, for denoting a set of indices or the set of the correspondibgrmal
momenta synonymously. Furthermore, we will refer to thesesl often simply as the “loop lines”.

We shall now extend the duality theorem to the two—loop cagepplying Eq.[(2B) iteratively. We
consider first, in the most general form, a set of several lows o; to ay depending on the same
integration momentury;, and find

/ GF(OélLJOéQU...UOéN):—/ GD(OqU(IQU...UOéN), (28)
Zi gi

which states the application of the duality theorem, Eq),(&Bthe set of loop lines belonging to the
same loop. EQq[(28) is the generalization of the duality theofound at one—loop to a single loop
of a multi-loop diagram. Each subsequent application ofdingity theorem to another loop of the
same diagram will introduce an extra single cut, and by apglthe duality theorem as many times as
the number of loops, a given multi—-loop diagram will be opkt®a tree—level diagram. The duality
theorem, Eq.[(28), however, applies only to Feynman prapagieand a subset of the loop lines whose
propagators are transformed into dual propagators by thkcapon of the duality theorem to the first
loop might also be part of the next loop (cf., e.g., the “mé@ldine belonging tax; in Fig.[3). The dual
function of the unification of several subsets can be expressterms of dual and Feynman functions
of the individual subsets by using E@. [21) (or Eq.l(22)) thilmuand we will use these expressions to
transform part of the dual propagators into Feynman prdpagian order to apply the duality theorem
to the second loop.

We are now ready for extending the duality relation to twgeoOur starting point is the expression
for the two—loop/N—-leg scalar integral

L(z)(pbpz, co . DN) = / / GrlonUayUas), (29)
£y

where the momenta of the internal lines are specified in [E). §2d Eq.[(27). As stated before, we
will apply the duality theorem sequentially to the two diffat loops associated with the integration
momenta/; and/,. Starting with the first loop related #q, and hence to the loop lines andas, and
using Eq.[(Z28), we obtain:

Lprpse o) = = [ [ GolarUag) Grlas) (30)
01 J Lo
We then use EqL(22) faF p(«; U «3), leading to

L® (]9171727 cee ,pN /e / {GD aq GD(Oés) + GD(OQ) GF(Oés) + GF(Oél) GD(Oés)} GF(OQ)
1 (31)



The first term of the integrand on the right—hand side of [E&) i8the product of two dual functions, and
therefore already contains double cuts. We do not modifytirim further. The second and third terms
of Eq. (31) contaioneG p(«;) and hence single cuts only. We thus apply the duality theagam, i.e.,
we use Eq.[(28) fof, in order to generate one more cut. A subtlety arises at thig pmce due to our
choice of momentum flowy; anda,, appearing in the third term of Ed.(31), flow in the opposépse.
Hence, in order to apply the duality theorem to the secong \e® have to reverse the momentum flow
of one of these two loop lines. We choose to change the dwredtic;, namelyg; — —q; fori € a;.
This change of momentum flow is denoted by a sign in front0f Thus, applying EqL(28) to the last
two terms of Eq.[(31), leads to

L(2)(p1,p2, . ,pN)
_ /e [ {=Gp(01) Grlaz) Go(a) + Gi(ar) Gz Uas) + Gpla) Go(—ar U}
(32)

This is the dual representation of the two—loop scalar natleags a function of double—cut integrals only,
since all the terms of the integrand in Eg.|(32) contain dyaato dual functions as defined in EQ._(17).
The integrand in Eq[(32) can then be reinterpreted as theosantree—level diagrams integrated over a
two—body phase—space.

The integrand in EqL(32), however, contains several duatfans of two different loop lines, and
hence dual propagators whose ditaprescription might still depend on the integration momeiitais
is the case for dual propagata®s,(¢;; ¢;) where each of the momentga and ¢; belong to different
loop lines. If both momenta belong to the same loop line th@eddence on the integration momenta
in n(g; — ¢;) obviously cancels, and the complex dual prescription isreined by external momenta
only. The dual prescription(g; —¢;) can thus, in some cases, change sign within the integratiome,
therefore moving up or down the position of the poles in theaglex plane. To avoid this, we should
reexpress the dual representation of the two—loop scakgrial in Eq.[(3R) in terms of dual functions of
single loop lines. This transformation was unnecessarynetimop because at the lowest order all the
internal momenta depend on the same integration loop m@nentther words, there is only a single
loop line.

Inserting Eq.[(2R) in EqL(32) and reordering some terms, mreeaat the following representation of
the two—loop scalar integral

L(2)(p1,p2, cen ,pN)
- /g Z {Gp(a1) Gp(az) Gr(az) + Gp(—a1) Gr(az) Gp(as) + G*(a1) Gp(as) Gp(as)}
1 (33)

where
G*<Oék) = GF(Oék) + GD<CYk) + GD<—Oék) . (34)

This is the second main result of this paper. In Eq] (33),therescription of all the dual propagators

depends on external momenta only. Through Eg. (34), howEge{33) contains also triple cuts, given

by the contributions with thre€&'p(«y). The triple cuts are such that they split the two—loop diagra

into two disconnected tree—level diagrams. By definitianyéver, the triple cuts are such that there is
no more than one cut per loop ling. Since there is only one loop line at one—loop, it is alsorolday

we did not generate disconnected graphs at this loop ordea Righer number of loops, we expect to
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find at least the same number of cuts as the number of loopsppobtbgy dependent disconnected tree
diagrams built by cutting up to all the loop linag. We explore this possibility at three loops in the next
section.

Note that using EqL(19)7*(a4) can also be expressed as
G* (o) = Galow) + Grlay) — Grlay) , (39)

which contains no cuts, although the imaginary prescniptibthe advanced and retarded propagators
still depends on the integration loop momenta.

Finally, let us remark that from Ed.(B33) we can obtain the Fé&fresentation of the two—loop scalar
integral. More precisely, we can write ea€h,(«ay.), for the linesk € {1,2,3}, in terms of Feynman
propagators and multiple cuts of their constituting moraghy using Eq[(21) with the basic subsets
given by single momenta. After regrouping some terms, wainbt

Lpy,- )= Y /51/132 {GF(al) 1T 5 (i) 1T 3 () IT Grla)

a;cl)Ua](f):ak i1 Gaél) i2€a§1) igeaéQ)Uaf)

ke{1,2,3}

+GF<a2> H g(_qil) H g<qi2> H GF<qi3>
(1)

(1)

t11€ay i26a31 i3€a§2)Ua§2)

+Gras) [] 0 (qi,) I1 0 (q1,) II  Grla)
)

ireatt ireay izealPual?

(T o+ IT 3Can ) 1 3@ I 6 IT Grla},

i1€0¢§1) ileagl) izEaél) i:;EOcél) i4€a§2)Ua;2)Uag2)

(36)

where the sums always run over the partitions of the indexaetlefined and used in EQ.](21). We see
that it consists of at least double cuts up to a multiple catllahe internal momenta.

4 Duality relation beyond two loops

In this section, we will take a first look on the duality retatibeyond the two—loop order by considering
the master topologies at three loops, as represented idlFiyye obtain explicit representations of the
diagrams of Figl ¥4 by using the iterative method describeithénprevious section. Although the dual
representations obtained in this section are not uniqubeatiagrams can be expressed in different ways
in terms of dual and Feynman propagators depending on tHeechblines whose momentum flow is
changed in the course of applying the duality theorem to &zmh we have followed a systematic way
in order to minimize the number of terms.

Diagramg #(a) F14(c) are in a certain sense of the same tydey#irbe treated in the same way. We
first cut these diagrams on the disjoint loops assigned téinbe {«;, as} and{as, ay}. Considering
the basket ball diagram (a) of FIg. 4, for example, this means

L}(a?;)sket<plap2a o DN) = / / Gplag Uas) Gp(aszUay) . (37)
£y Sl J U3
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(a) (b) () (d)

Figure 4:Master topologies of three—loop scalar integrals. Eacleintl linea,, can be dressed with an
arbitrary number of external lines, which are not shown here

Remember that any dual functidi, (o)) of any set of momenta, and hence any application of the
duality to a loop, contains at least one cut. Since we haveodugt of two expressions of the dual
type, all terms in the expansion of this product in Hq.l (37 Eq. [22) contain at least two cuts.
Terms with triple and more cuts are already in their final forithey belong to the case where ei-
ther all lines are dual, or one line is of the type “Feynman’bwdéver, the double—cut terms, as, e.g.,
Gp(ay) Gp(ae) Gr(as) Gp(ay), stemming from the combination of one Feynman propagaton fr
each of the two different loops, form a third loop, whichlstibnsists only of Feynman propagators
and hence still needs one more application of the dualityréma in order to generate the third cut:

/ / Gp(n) Gr(0s) Grlos) Gplas) — — / / Gplen) Gplas Uas) Gplas) . (38)

In the case of the zigzag diagranh, 4(b), or the ladder dlamcr), this third loop consists of one more
internal loop line: linexs in the former case and the lineg andag in the latter. Hence the third loop
now consists of exactly one loop line from the first and sedoogd, and these additional loop lines. Due
to the nature of the application of the duality through E@)(@nd Eq.[(2l1), we have to sum over all
possibilities to build such sets of loop lines fulfilling geeproperties. Additionally, we have to assure
that for each application of the duality the integration nemtum runs in the same sense and hence
change the momentum—flow direction for some chosen loop.liB&ce each application of the duality
generates one minus sign, we obtain the following genesaltréor diagramgl4(a)ld 4(c):

LE§§,<b),(C> (P1,p2; -5 PN) = /e1 /42 . Gplar Uaz) GplazUag) Gr(B)

= /g /Z /g {[GD(O‘%O‘?”OM) Gr(an) + Gpla, az,as) Gr(az) + Gp(ay, az, ay) Gr(as)
+Gp(ag, ag, a3) Gr(ay) + Gplag, as, as, cu)} Gr(B)
—Gplag,a3) GplagU —ay U B) — Gp(o, ay) Gp(as U az U B)

_GD<OK2, 043) GD(—Oél U —Qy U 5) — GD(OAQ, 044) GD(—Oél U Qa3 U 5)} y (39)

wheres = () in the case of diagrafd 4(a) (withx(0) = 1), 5 = a5 for diagrani4(b) and = a5 U ag in
the case of the ladder diagrain 4(c). Note that for the ladidgram, linesyvs andag depend on the same
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integration momentum and can therefore be consideredsagjbeloop line as defined in this context.
Hence, in this sense, the diagram naturally reduces to gmagicase, as long as the relative sense of
momentum flow in these lines is correct and stays unchangedbrevity, we defined the product of
dual propagators aSp(ay, ..., an) = H,-N:1 Gp(a;), in contrast td7p(aq U... Uay), given in Eq.[(2L).
The dual representation of the three—loop scalar integiadji [39), contains mostly triple cuts. We have
allowed for a single four—cut contribution in order to makistexpression more symmetric, but this term
can be rewritten in terms of triple—cut contributions witie thelp of Eq.L(22).

If we expand all existing dual functions in E@. (39) in ternigloal functions of single loop lines by
using Eq.[(2L), we obtain, e.g., for diagram 4(a):

Ll()3asket(p17p27 . s PN) / / / {GD g, a3, —y) Gp(ar) + Gplay, as, —ay) Gp(a)
0 Jes Jes
+ Gp(—aq, a2, aq) Grag) + Gp(—ar, g, a3) Gr(ay)
+ Gp(—aq, a, a3, 04) + Gplou, az, a3, —ou) + Gp(—aq, ag, as, —CY4)} . (40)

In this expression, the complex dual prescription of alldbel propagators depend on external momenta
only, although at the price of generating disconnecteddragrams. Similar results can be obtained for
diagrams$ ¥(b) and 4(c). There are up to four cuts for diagrap (4f. Eq. [40)), five cuts for diagrams
[4(b) and six cuts for diagram 4(c), although in this last dagecuts are enough if5 U ag is considered

as a single loop line.

Also the Mercedes star diagram 4(d) can be expressed in tdramy three—cut contributions or in
terms of three— up to six— cut contributions. However, duthéonon—planar nature of this diagram, the
way of obtaining its dual representation is slightly moneived, whereas the general idea as explained
before stays the same. We achieve for the Mercedes staadiadge following dual representation:

Mercedes p17p27 s 7pN

/g /é /é { Gp(ay, az, ag) Gr(an, as, ag) + Golas Uas Uas) Goar, as) Gr(as)
Loy Je
+ Gp(—a; Uay U ag) Gp(ag, as) Gr(as) + Gp(—as U as U —ag) Gp(ay, as) Gr(ay)
+ Gp(a)[GplasUay) Gp(as) Graz Uag) — Gplag Uas Uay U ag) Gplas)
— GplagUay) Gp(—as U as U —ag)]
+ Gp(a)|[Gp(—ay Uag) Gp(ag) Gr(azs U as) — Gplag Uag Uas U —ag) Gp(ay)
— Gp(—ay Uag) Gplaz Uag U as)]
+ Gp(a3)[Gp(—as Uas) Gp(—ag) Grlag Uay) — Gp(—a; U —as Uay U as) Gp(—ag)
— Gp(—aeUas) Gp(—ag Uay U aﬁ)]} : (41)
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From the inspection of the three—loop case and from the gederivation of the method, it seems
obvious how to extend it to even higher loop orders. Eql (2k) also be used to obtain the FTT
representation of scalar integrals or scattering ampgiat any loop order.

The duality relation can be extended to evaluate not onlkast@op integrals, as discussed so far, but
also complete Feynman diagrams. The extension of the apedwality relation from scalar integrals to
Feynman diagrams was discussed in details in Ref. [12]. &tiension relies on the simple observation
that the duality relation acts only on the Feynman propagatithe loop, leaving unchanged all the other
factors in the Feynman diagram. This is valid in any unitargl bocal field theories. In spontaneously
broken gauge theories, it holds in the 't Hooft-Feynman gaaigd in the unitary gauge. In unbroken
gauge theories, the duality relation is valid in the 't HeBélynman gauge, and in physical gauges where
the gauge vecton” is orthogonal to the dual vectar, i.e.,n - n = 0. This excludes gauges whetg
is time-like. At one-loop order, this choice of gauges agdite appearance of extra unphysical gauge
poles, which in other gauges (e.g. the time-like axial ghage also poles of the second order. Within
the same choice of gauges, additional (unphysical) gaulgs poe absent also at higher-loop level, and
the duality relation can be straightforwardly extendedrfrgcalar integrals to Feynman diagrams.

In Ref. [12], it was also shown how the one-loop duality rielatcan directly be expressed at the
level of full scattering amplitudes (or, more precisely-sfiell Green’s functions). The derivation of
the duality between one-loop and tree-level scatteringlituaes requires a detailed discussion of some
issues related to tadpole and self-energy configuratiomssd (and related) issues become more delicate
at higher-loop levels. We do not pursue further on this poirthis paper, and we postpone detailed
investigations to further studies.

5 Conclusion and Outlook

We have rederived the tree—loop duality theorem at one-doder, which was introduced in Ref. [12],
in a way which is more suitable for extending it to higher lomplers. By iteratively applying the
duality theorem, we have given explicit representationtheftwo— and three—loop scalar integrals. The
method, however, is easily extendible to higher loop ordengond three loops. In general, the dual
representation of the loop integrals can be written as a duerms with exactly the same number of
cuts as the number of loops, and in such a way that the loopatiats opened to a tree—level diagram.
However, this requires to deal with uncut propagators witimplex duak0 prescription depending on
the integration momenta, and thus with complex dual prpsoris that might change sign within the
integration volume. Dual representations of the loop irakgwith complex dual prescription depending
only on the external momenta can be obtained at the costrofiting extra cuts, which break the loop
integrals into disconnected diagrams. This is a new feattitbe duality theorem beyond one—loop,
which does not happen at the lowest order. The number of eMtsato be taken into account depends
on the topology of the loop diagram. The maximal number of agrees with the number of loop lines,
and the cuts are such that it does not appear more than a surgier each internal loop line. These
general facts are true for the application of the dualitatieh to diagrams with an arbitrary number of
loops. The results presented in this paper can also be usddaim the FTT representation of diagrams
at higher orders.

The dual representations obtained in this paper are valar@s only single poles are present when
the residue theorem is applied. At one—loop order, the waijoas of the gauge bosons might generate
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unphysical poles, or even higher order poles. Those noglespoles can be avoided by a convenient
choice of the gauge or of the dual vector|[12]. At two— or higlo®p orders, however, higher order
poles might appear when diagrams with selfenergy insextipested or disjoint) are considered. At two
loops this happens when two of the loop lines are made ofesimglpagators, and no external momenta
are attached to any of the two four-leg vertices of Eig. 3. iyhkr order loops, there are many more
possible topologies showing this feature. Extending tredittheorem to this kind of diagrams requires
to evaluate the contribution of the higher order poles, Widiepends on the topology of the diagram and
on the nature of the internal propagators and on the formepirtteraction vertices. Explicity studies of
these loop diagrams are left to future investigations.

Note added:After completion of this paper, a work [20] dealing with slaritopics appeared. The
author uses retarded boundary conditions, and obtains smmiginatorial factors weighting the different
terms contributing to the loop-tree duality relation. Wevdth checked explicitly, in the two-loop case,
that such combinatorial factors are the result of averagwey the different dual countertparts of the
same loop integral obtained by permuting the loop lings Although many of the terms obtained in
this way are either equivalent or can be related to each atfter shifting the loop momenta, a larger
amount of terms than by using a single dual counterpart a¥deteto be summed up for the same loop
integral or Feynman diagram. By using Hq.|(55) or Eq] (57) gugpagators can be expressed in terms
of advanced or retarded propagators in a straightforwasd ading to an equivalent loop-tree duality
relation as presented in Ref. [20]. In our paper we have rlovfed this procedure, since a main feature
of our duality relation is that the®’ prescription of the dual propagators depends only on thereal
momenta.
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A Derivation of some algebraic relations

In this Appendix, we prove by induction several algebralatiens that have been used in the text. The
basic ingredient of the proof is the following relation:

O(A1) 0N+ X)) ... 0N+ Ao+ -+ N\_q) +cyclic perms. =1, (42)
that holds for any set of real variables\;, with: = 1,2, ..., n, such that
=1

Relation [42) was proven in Appendix B of Ref. [12]. It apglién particular, to\; = np;, and follows
from momentum conservation._, p; = 0, wherep, are external momenta. In the following, we will
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use Eq.[(4R) by setting; = n(q; — qiv1) fori € {1,...,n}, with (n + i) = ¢ modn. The four—-momenta
q; are any arbitrary set of internal momenta, and the realbksa; = 1(g¢; — ¢;1) might still depend on
the loop momenté, and/,. By construction, however, Ed. (43) is automatically flgfil. Thus, Eq..(42)

can also be written as: . n n
D Il —a)=3 1100 -a)=1. (44)

i=1 j=1 i=1 j=1

J#i J#i

We start by deriving the following algebraic identity:

GD(O%) = GA(Oék) — Gp(ak) , (45)
where N
) = Z D) H Gpl(gi;4;) Gary(ou) H Gar . (46)
tEQ jeak icay,
J#i

as defined in Eq[(17). Remember t@(ak) = g(qi) whenqy consists of a single four momentum
Using the identityG4(q;) = Gr(q;) + 6 (¢;), the right-hand side of EJ._(#5), can also be written as

Galor) — Gp(og) = Z H 5 (1) H Gr(a,) , (47)

(1)Ua( )—ak Z1Ea 22604

where the sum runs over all possible partitionsapfnto exactly two subsets,(:) andoz,(f). Additionally,
we allow for the subse:lz ) to be empty, but the subseﬁ1 always contains at least one element, this
means that a term with onIy Feynman propagators is excludie. first non trivial case for Eql_(45)

occurs foray, = {1,2}. By using Eq.[(IB), and (¢; — ¢2) + 0 (¢ — @) = 1, it is straightforward to
prove that

S(Ch) Gp(q1; ¢2) + g(Qz) Gp(;q) = g(%) Gr(g) + g(Qz) Gr(q) + 5~(¢11) g(%) . (48)
Let us now assume that relatidn {45) is correct fotoop momentagy, = {1,..., N}, and show

that it is valid fora, ™ = a, U {N + 1}. We replace the dual propagatais(¢;; qv1) appearing in
Gp(ai ™) by using again Eq[(16). We obtain:

N—+1 N—+1
ap ) Z 0 (¢:) H Gp(ai;4;) = Gplow) Grlgy+1)
J#Z
" N ~ _ N N
+ Flavn) (Z i (aver — ) 5 (@) [ Colasa) + [ GD<qN+1;qj>) - (49)

=1 7=1 7j=1
J#i J#i

Assuming that Eq.[(45) and Eq._(47) are valid férelements, the first term in the right-hand side of
Eq. (49), which is proportional t6'z(gy 1), becomes

Gplar) Grlgn) = [Galar) — Grlaw)] Grlan+a) - (50)
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For the remaining terms in Ed._(49), which are proportion£¢qN+1), we apply again Eq[(16) to all
dual propagators. After some algebra, we find:

Gplog ™) — Gplow) Grlgni1) =

0 (qn41) (GF<ak>+ oo uin+1h) T s I GF<qj2>>, (51)

aél)Uag):ak 71 Gag) jgeaf)

with
O U{N+1h) = ( I1 g(%_%)), (52)

ireaVUIN+1} NisealVU{N+1}
i2F11

where the sum runs over all possible productd déinctions that can be constructed with the four—
momenta in the sei,(j) andqy.;. Obviously, from Eq.[(44),

OV U{N+1}) =1, (53)

for all possible partitions ofy;, into a,(j) andaf). Collecting the results from Ed. (50), E§. {51), and
Eq. (53), we finally obtain

GD(O‘QH_I) = Gplox) Gr(gn41) + g(CINH) (Gr(ar) +Gplar))
= Galox) Galgn1) — Grlaw) Grlgn) (54)

as we wanted to demonstrate.

Another useful relation of advanced and Feynman propag&étdhe following:

Golon) = T ( I GA<qj>) 5 a) ( T am) | 55)

i€ay JEay leay
1<t 1>1

We do not attempt to present a detailed proof here, as[Ef.d@bdpe straightforwardly derived by
reordering some terms from E@. (47). Analogously, we als@ha

GD(—Oék) = GR(ak) - GF(ak) ) (56)

and

Gp(—ax) =) < I1 GR(%‘)) 0 (—q) ( I1 GF(CIZ)) : (57)

i€y jEay lEay,
1<t 1>1

which also hold straightforward by changing the momenturw ftd the four—-momenta fronay, in
Eq. (45) and EqL(85) and taking into account that(—q¢;) = Gr(¢;) andGa(—¢;) = Gr(q:)-

B Massless sunrise two—loop two—point function

We consider, as explicit example of the application of thalidy relation at two—loops, the massless
sunrise two—loop two—point function (Figl 5). From EQ.l(38)e dual representation of the sunrise
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q3

D1 P2
q1

Figure 5:Sunrise two—loop two—point function.
two—loop scalar integral is given by
L) = [ [ {F) Fw) Grla) +5 (=) Grle) Ta9) + 6 (0) 5 ) F1a)} - (58)
After replacingG*(q1) = Gr(q1) + 0 (q1) + 6 (—q1 ), and shifting some momenta, we obtain
L (p1,pa) = /g /g 0 (61) 0 (L) {GF(gl +lo+p1) + Gl + 02— p1) + Gr(ls — by — p1)

+§(£1+£2 +p1)+g(€1+€2—p1)} : (59)

For the integration of the first loop momentuiyy we use the basic integrals already calculated in
Ref. [12]:

/ 3 (6) Gty + k) = dp [K*+i0] " [14+0(k*) 0(—ko) (e —1)] , (60)
£y
and
/ 5(6) 0 (0 + k) =dr [K*+i0] “0(—k?) (e 1), (61)
121
where ,
dF:_c_p 1 1 0p:F<1+€)F (1—¢) (62)

2 €(1 — 2¢) cos(me) ’ (4m)?=<T(1 — 2¢)

which we have reexpressed in a more suitable way in terni®f 0] “. Applying Eq. [60) and
Eq. (61) to Eq.[(59), we find

L(2)(]917P2) = dr/

Z 5 (£2) { (62 + p1)* +i0] (™™ + 1)

+ [(62 -p)’+ iO} - [eme —0((f2 = p1)*)0((£2 — p1)o) (eme - 1)] } . (63)

The new phase-space integrals that we have to evaluate mawefontegration over the second
loop momentunt, are then quite similar to those already encountered at oop—IThe calculation is
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elementary, and we obtain

dr / 5(62) [(ba+ k) +i0] " =

sin(me) e 27

— Gy G (—k* —i0)' 7> [1 + 0(k*)0(—ko) (e —1)] , (64)
and
dr / 5 (62) [(ba + k) +10] ™ 0((Ca + k)?) 0((6 + E)o) =
Lo
, ST (e [0(—k2) — O(k>) 0(ko) e~ 2] (65)
sin(3me)

where s

¢, _ TE1+20T0 =9 (66)

(4m)4=2¢T'(3 — 3e)
Applying Eq. [64) and Eq[(65) to Ed. (63), and summing uplal theta functions, we finally get
L (p1, p2) = — Go (—p} —i0)' %, (67)

which is the well-known result for the massless sunrise te@p-two—point function.
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