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Resumen 

El cáncer de próstata (CaP) es el segundo tumor más frecuente en hombres y la sexta 

causa de muerte por cáncer. Así pues, esta enfermedad constituye un problema socio-

sanitario prioritario para el sistema de Salud Pública. Actualmente, las herramientas 

para orientar el diagnóstico en CaP (PSA y DRE) no son cáncer específicas y presentan 

distintas limitaciones tales como el alto número de falsos positivos (aproximadamente 

un 70% en un rango de PSA de 4-10 ng/ml) que dan lugar a complicaciones asociadas 

con el proceso de biopsia. Además, un gran número de los CaP diagnosticados son 

tumores de bajo grado implicando un sobre-diagnóstico y sobre-tratamiento de esta 

enfermedad. Sin embargo, otros CaP tendrán un comportamiento pronóstico más 

agresivo que dará lugar a la progresión de la enfermedad y en último término a la 

muerte del paciente. Estas diferencias en el comportamiento clínico del CaP se explican 

por una alta heterogeneidad molecular presente en este tumor. En este contexto de 

heterogeneidad molecular nuestro objetivo se centra en la búsqueda de nuevos 

biomarcadores identificables mediante procedimientos no invasivos y capaces de 

clasificar a los pacientes con CaP de acuerdo a biotipos moleculares asociados con 

diferentes parámetros clínico-patológicos y distinto riesgo de progresión. En este 

trabajo exploramos el papel que tienen los miRNAs como nueva fuente de 

biomarcadores en CaP y encontramos que el miR-182 y el miR-187 juegan un papel 

clave en la patogénesis y el desarrollo del CaP en ambos contextos, el diagnóstico (miR-

187) y el pronóstico (miR-182). Además, identificamos ALDH1A3, un gen regulado por 

andrógenos, como diana del miR-187 y como potencial biomarcador en CaP. En 

nuestra búsqueda de nuevos biomarcadores estudiamos también el papel que tiene el 

gen SPOP en CaP confirmando su pérdida de expresión y mutaciones en CaP y siendo 

el primer grupo en describir la asociación de estas alteraciones moleculares con el 

pronóstico en CaP. Además en nuestro trabajo también intentamos ofrecer nuevas 

alternativas terapéuticas para el tratamiento del CaP avanzado de acuerdo con el 

biotipo molecular. Así, nuestro hallazgo de la asociación directa entre IGF-IR y 

TMPRSS2-ERG y la mayor sensibilidad de este grupo a los inhibidores de IGF-IR nos 
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llevaron a  proponer este subgrupo de pacientes como población diana -biotipo- para la 

inhibición de IGF-IR.  

Abstract 

Prostate cancer (PCa) is the second most frequent tumor in men and the sixth cause of 

cancer death. Hence, this disease constitutes a primary socio-sanitary and Public 

Health problem. Currently, the tools to orientate the PCa diagnosis (PSA and DRE) are 

not cancer specific and present several limitations such as the high rate of false 

positives (approximately 70% in the PSA range 4-10 ng/ml) leading to biopsy-

associated complications. Furthermore, a high percentage of diagnosed PCa are low-

grade tumors meaning a high overdiagnosis and overtreatment. On the other hand, 

other PCa will have a more aggressive prognostic behavior that could lead to disease 

progression and patient death. This different clinical behavior is translated into a high 

molecular heterogeneity. In this context of molecular heterogeneity we aimed to find 

new biomarkers identifiable by non-invasive procedures able to classify PCa patients 

according to molecular biotypes associated with different clinico-pathological 

parameters and risk of progression. In this work we explored the role of miRNAs as a 

source of new biomarkers in PCa and we found that miR-182 and miR-187 play a key 

role in the pathogenesis and development of PCa in both the diagnostic (miR-187) and 

prognostic settings (miR-182). Furthermore, we identified ALDH1A3, an androgen-

regulated gene, as a target of miR-187 that also plays a role as biomarker for PCa. In 

our search for new biomarkers we also assessed the role of SPOP gene in PCa 

confirming its loss of expression and mutations in PCa but also being the first group to 

describe the association of these molecular alterations with PCa prognosis.  Moreover 

in our work we also tried to offer new therapeutic alternatives for advanced PCa 

treatment according to the molecular biotype. Our finding of a direct association 

between IGF-IR and TMPRSS2-ERG and the higher sensitivity of this group to IGF-IR 

inhibitor agents lead us to propose this subgroup of patients as a target candidate 

population -biotype- for IGF-IR inhibition. 
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1. Epidemiology of Prostate Cancer (PCa) 

Prostate cancer (PCa) is the first most common cancer in men with around 899000 

diagnosed men each year [1]. Approximately one in three men over the age of 50 years 

shows histological evidence of this tumor, however only 10% will be diagnosed with 

clinically significant PCa [2-4]. 

The strongest risk factors for PCa are older age, a positive family history, and black 

race. The frequencies of PCa increase dramatically with age, beginning with low 

frequencies in middle-aged men and progressing to 90% by age of 90 years [5]. The 

median age at diagnosis is 67 years, and the median age at death is 81 

years. Furthermore the risk of PCa is two times higher among patients who have a 

first-degree relative with a PCa diagnosis than among patients who do not have a first-

degree relative with this diagnosis, indicating a heritage factor in this disease [5, 6]. 

An increase in PCa incidence has been reported during the last 25 years mainly due 

to the increase of the median population age, early diagnosis programs, prostate 

specific antigen (PSA) and image techniques (Figure 1). However in spite of this high 

incidence there is still controversy regarding the detection programs, optimal 

evaluation, classification and treatment for each stage of the disease [7, 8]. 

 

1.1. The diagnostic dilemma of PCa 

Since 1980s, when PSA testing was developed, the current standard for the 

diagnosis of PCa has consisted of a serum test for PSA and digital rectal 

examination (DRE) [9] which will direct to the performance of a transrectal biopsy. 

DRE remains the primary test for the initial clinical assessment of the prostate. DRE 

was the first screening test to be evaluated and is still routinely used along with 

PSA testing. It has the benefit of detecting non-PSA-secreting tumours. In the many 

studies performed since the first investigation of its accuracy in 1956, the positive 

predictive value of DRE has been around 50%. However, the DRE is a test with 

only fair reproducibility, even in the hands of experienced examiners. It misses a 
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substantial number of cancers and, compared with PSA, it detects cancers at a more 

advanced pathological stage  

 

 

Figure 1. Prostate cancer estimated incidence and mortality worldwide in 2012. PCa incidence varies 

more than 25-fold worldwide; the rates are highest in Australia/New Zealand and Northern America and 

in Western and Northern Europe, because the practice of PSA testing and subsequent biopsy has become 

widespread in those regions.  However there are not significant differences in mortality pointing out the 

incapability of the current screening tools to distinguish between indolent and more aggressive tumors.  

Adapted from GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worlwide in 2012 

(http://globocaniarcfr/Defaultaspx)  

http://globocaniarcfr/Defaultaspx
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PSA is a 34-kilodalton (kD), single-chain glycoprotein of 237 amino acids that 

was first described in 1979 as a serine protease, member of the kallikrein gene 

family [10]. It is produced by the prostatic epithelium and periurethral glands and 

is present in large amounts in prostatic secretions.  

PSA serum levels have improved the detection and management of this disease 

but despite screening with PSA is widespread [11] it is clear that PSA has 

significant limitations as an early detection biomarker for PCa [12] as it is not 

cancer-specific . The first normal reference range for serum PSA was set rather 

arbitrarily in a very limited number of patients and probably not attending actual 

rules for biomarkers settling and management as less than 4 ng/mL, with a 

diagnostic grey area between 4 and 10 ng/mL [13]. However serum levels are also 

commonly elevated in benign conditions. Other urological conditions such as 

bening prostatic hyperplasia (BPH), prostatitis, urine infection or vesical lithiasis 

will also lead to a raise of PSA values (>4 ng/ml). On the other hand 15% of 

histologically confirmed PCa will harbor PSA levels below 4 ng/ml and a normal 

DRE.  Hence, only 26% of the biopsies performed with a PSA between 4 -10 ng/ml 

are positive for PCa leading to a 74% of unnecesary biopsies performed [14]. 

Although the use of PSA test for PCa screening since 1990s has led to increased 

early diagnosis, there are several studies in conflict about the risks and benefits of 

routine PCa screening [15].Currently there are two main random screening studies 

based on PSA testing which aimed to reduced mortality however their results are 

contradictory.  The European Randomized Study of Screening for PCa (ERSPC 

ISRCTN49127736) [8, 16, 17], with 13 years of follow-up and 162388 PSA screened 

men showed that absolute reduction in PCa moratlity was 0.13% although 

screening of 781 men is needed to be able to prevent one death from PCa. On the 

other hand the American study (PLCO, NCT00002540) [18], with 7-10 years of 

follow-up and 76693 screened men resulted in a 22% increase in cancer detection 

although it did not show any reduction in overall or PCa mortality. Moreover this 

study has been very criticized due to unacceptable rates of contamination in the 

control group, which makes its results not valuable. These observations confirm 
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that reduction of cancer associated deaths is associated with a higher risk of 

overdiagnosis, leading to the performance of large number of unnecessary biopsies, 

not free of morbidity and constituting important social and health costs [19]. Hence, 

methods to integrate other new markers to improve the cost-effectiveness of 

prostate biopsies and detect clinically significant PCa are needed. In this context the 

emergence of a commercial kit (Progensa PCA3 test) for clinical application to 

detect the expression of PCA3 gene in urine have provided promising results with a 

biopsy sparing rate between 40 and 67% and an area under the curve (ROC) of 0.7 

[20].  

 

1.2. Role of biomarkers in cancer 

The ‘Holy-grail’ of a cancer-screening program is to have a biomarker that 

detects tumors at an early stage and in a sufficiently noninvasive and inexpensive 

way to allow widespread applicability. According to the National Cancer Institute, 

a biomarker is a biological molecule found in blood, other body fluids, or tissues that is a 

sign of a normal or abnormal process, or of a condition or disease such as cancer 

(www.cancer.gov). Cancer cells display a broad spectrum of genetic alterations that 

include gene rearrangements, point mutations and gene amplifications leading to 

disturbances in molecular pathways regulating cell growth, survival, and 

metastasis. When such changes manifest in a majority of patients with a specific 

type of tumor, these can be used as biomarkers. Cancer biomarkers can be DNA, 

mRNA, miRNA, proteins, metabolites or processes. These markers can be used for 

screening purposes, differential cancer diagnosis, estimating risk of disease, 

distinguishing benign from malignant findings or one type of malignancy from 

another, predict disease progression and monitoring the status of the disease, either 

to detect recurrence or determine response or progression to therapy. Hence, an 

ideal biomarker should be measured easily, reliably and cost-effectively with high 

specificity- understood as the proportion of control individuals (without tumor) 

who test negative for the biomarker- and sensitivity –considered as the proportion 

of individuals with confirmed disease who test positive for the biomarker- [21]. A 

common graphical representation to evaluate the sensitivity and specificity of a 
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novel biomarker is based on ROC curve evaluation. This curve is used to evaluate 

the efficacy of a tumor marker at various cut-off points leading to a quantitative 

value known as the maximum area under the curve (AUC)[22] . 

The first step in the search for new biomarkers begins with the development of 

pre-clinical studies comparing tumor tissue with non-tumor tissue. Currently, this 

phase of biomarker identification is frequently performed using a “discovery” 

approach, using techniques such as high-throughput sequencing, gene expression 

arrays and mass spectroscopy (MS) to quickly identify individual or groups of 

biomarkers that differ between cohorts [23]. Once a technically valid assay has been 

developed, the biomarker must be studied to determine if it has clinical or 

“biologic” validity. The potential biomarker should be assessed initially in 

relatively small cohorts of patients (training set) and afterwards  those biomarkers 

that are informative in phase I are tested in larger independent, well-characterized 

cohorts of patients, including retrospective analysis of the material. Candidate 

biomarkers with supportive data from phases I and II are assessed prospectively in 

randomized control trials that usually implies several institutions [24] (Figure 2).  

 

 

Figure 2. Pipeline of biomarker discovery and development. The 

National Cancer Institute strategy for biomarker development starts with 

a discovery phase to identify promising candidates for further 

validation. In the following phase an assay is developed to detect the 

new promising candidate which is initially tested in a training set (Phase 

I) and once utility is demonstrated is further tested in a larger 

independent cohort of patients (Phase II). Candidate biomarkers will be 

assessed prospectively during Phase III and their clinical utility will be 

finally tested in a multi-institutional prospective randomized controlled 

trial (Phase IV). Adapted from [23]. 

 

 

 

 

 

 

 

 



- 26 - 

In the future, the emergence of genetic discoveries, molecular biotyping and 

development in areas of research such as microarrays, proteomics and immunology 

may allow improved identification of men at risk of PCa and personalized 

screening protocols. 

 

2. Pathology of PCa 

Over 95% of PCas are adenocarcinomas that arise from prostatic epithelial cells. 

Other rare histologies have been described, including mucinous or signet-ring cell 

carcinomas, adenoid cystic carcinomas, carcinoid tumors, large prostatic duct 

carcinomas (including the endometrioid type adenocarcinomas) and small-cell 

undifferentiated cancers (Figure 3) [25].  

The prostate is composed of branching glands, with ducts that are lined with 

secretory epithelial cells and basal cells. Secretory epithelial cells represent the major 

cell type in the gland, are androgen-dependent for growth, and produce PSA and 

prostatic acid phosphatase. The main function of the prostate is performed by the 

gland cells which produce the fluid portion of semen and the control of urine flow by 

muscle fibers [26].  

   

 

Figure 3. Schematic view of the cell types within a human prostatic duct during disease progression. 

Within the prostatic epithelium, there are three distinct cell types that can be distinguished by their 

morphological characteristics and functional significance. The predominant cell type is the secretory 

luminal cell, which produces prostatic secretory proteins, followed by basal cells and neuroendocrine cells, 

which provide paracrine signals that support the growth of luminal cells. Prostate cancer progresses from 

an enlargement (BPH) to precursor lesions (prostate intraepithelial neoplasia [PIN]) on to invasive 

carcinomas and ultimately to metastases. Modified from [27]. 

 

Normal PIN Adenocarcinoma 
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Tumors predominantly arise from epithelial cells in the peripheral zone of the 

gland. Tumors that progress, if untreated, will extend into the prostatic capsule and 

seminal vesicles, and will ultimately metastasize to regional and distant sites such as 

lymph nodes and bone [28]. Metastatic hormone-refractory disease is the most 

important cause of morbidity, treatment failure, and subsequent mortality from PCa. 

The two main issues for clinicians and pathologists involved in PCa are early detection 

of the cancer and identification of the prognostic and predictive factors that predict 

outcome in individual patients. 

Since its inception in 1958, the TNM system has provided a standardized, 

anatomical basis for staging cancer disease. This staging system is based on the 

anatomical extent of the disease, which is assessed using a combination of tumor size 

or depth (T), lymph node spread (N), and presence or absence of metastasis (M). It 

provides a basis for prediction of survival, choice of initial treatment and stratification 

of patients [29]. In PCa this staging classification is subdivided into clinical (cT) and 

pathological stage (pT). cT staging  is based on the clinical evaluation of the tumor 

extension performed by the facultative through the physical examination (DRE), 

laboratory analysis, prostate biopsy and imaging techniques, where multiparametric 

magnetic resonance imaging is gaining an important role as the best local/regional 

characterization of cT [30]. While, on the other hand, pT evaluation is based on the 

anatomic and pathological examination of the tissue after the surgery. The numeric 

indexes for both, clinical and pathological, evaluations indicate the extension of the 

tumor [31] (Table 1). 
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Table 1. TNM staging system [31]. 

Tumor size (T)  

T1c Tumor identified on biopsy 

T2a Tumor palpable in half of one lobe 

T2b Tumor palpable in more than half of one lobe 

T2c Tumor palpable in both lobes 

T3a Tumor extends prostatic capsule  

T4 Tumor reaches bladder and/or rectum 

Lymph node spread (N)  

N0 Without extension to lymph nodes 

N1 With extension to lymph nodes 

Metastasis (M)  

M0 There is no distant metastasis 

M1 There is distant metastasis 

 

Another histological evaluation commonly used to assess PCa risk of 

progression is Gleason score. This parameter is based on the evaluation of the 

histology and the loss of normal gland tissue architecture. Five distinct glandular 

patterns are graded progressively from most to least differentiated. The grades of the 

two predominant patterns present in a surgical specimen are added to yield the final 

Gleason score (Figure 4). Patients with well-differentiated lesions (Gleason scores 2-4) 

usually have early-stage disease and a good prognosis. Gleason scores 8-10, however, 

are associated with a poor prognosis. Hence, Gleason score is the main prognostic 

variable for most of the stages of the disease therefore every Department of Pathology 

should follow the ISUP recommendations established in a consensus meeting in 2005 

[32]. 
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Figure 4. Gleason score grading. Gleason grading system 

assigns a score to different histological patterns within the 

prostate gland. The final score is calculated by the addition of 

the scores of the two main predominant histological patterns. 

Small, uniform glands with minimal nuclear changes are 

graded with Gleason score 1. Medium-sized acini, still 

separated by stroma but closely arranged constitute Gleason 

score 2. Score 3 corresponds to those histologies with a marked 

variation in glandular size and organization with stroma 

infiltration. Gleason score 4 is defined by atypical cells with 

extensive infiltration into surrounding tissues. Finally the score 

of 5 is assigned to markedly undifferentiated cancer cells. 

Adapted from [33]. 

 

 

In 1998, D’Amico and colleagues first proposed a three-group risk stratification 

system to predict post-treatment biochemical failure after radical prostatectomy and 

external-beam radiotherapy [34]. This classification is one of the most widely used and 

is a good starting point for risk assessment. This system divided non-metastatic 

patients into low-, intermediate-, and high-risk based on initial PSA, cT and biopsy 

Gleason score. Low-risk PCa was defined as T1/T2a, and PSA ≤10 ng/ ml, and Gleason 

score ≤6. Intermediate-risk PCa was defined as T2b, and/or PSA 10-20 ng/mL and/or 

Gleason 7 disease. High-risk disease was classified as having any one of the following 

high-risk features: cT >T2c, PSA >20 ng/mL or Gleason 8-10 disease. These risk groups 

predict for biochemical relapse based on post-treatment increases in PSA levels, and 

clinical relapse defined as local (to prostatic fossa), regional (to lymph nodes) or distant 

progression (metastasis). The time to biochemical and clinical relapse are defined as 

biochemical progression free survival (BPFS) and clinical progression free survival 

(PFS) respectively. 

The current clinical prognostic factors of T category, PSA and Gleason score explain 

only a moderate proportion of the observed heterogeneity in clinical outcome [35]. 

Clinical phenotypes of PCa vary from an indolent disease requiring no treatment to 

one in which tumors metastasize and escape local therapy even when with early 

detection [36].  Thus far, little is known about what makes some PCa biologically 
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aggressive and more likely to progress to metastatic and potentially lethal disease. 

Heterogeneity exists both within and in between patients, therefore is critical to define 

the different genetic profiles that exists in PCa disease. 

 

3. Genetics of PCa 

The development of solid tumors is generally thought to be a multistep process, 

whereby successive genetic events occur in a normal cell to render it increasingly 

malignant. Recently, high-throughput large-scale genome analysis have demonstrated 

that the mutational landscape of cancer is complex, indicating that cancer may evolve 

through driver mutations in as many as 138 cancer-associated genes [37]. The 

appearance of these new technologies has enabled characterization of individual 

human cancers in an unprecedented level of molecular detail, with potential to identify 

cancer phenotypes and understand the clinically variable behavior of this disease.  The 

high molecular heterogeneity found in cancer explains the diversity in clinical outcome 

and therapeutic response leading to new challenges on clinical practice (diagnosis and 

prognosis) and on the development of new therapeutic strategies [23].  

 

Advances in sequencing technology have initiated several coordinated national and 

international efforts including The Cancer Genome Atlas (TCGA 2008) and the 

International Cancer Genome Consortium (ICGC 2010), to generate comprehensive 

catalogues of genomic, transcriptomic, and epigenomic changes in multiple tumor 

types [23]. The emergence of these new tools leads to a change in the traditional 

classification of cancers based on organ morphology into a “biotype” classification 

according to the molecular profile (Figure 5). Biotyping tumors into a collection of 

homogeneous subtypes identifiable by molecular criteria, associated with distinct risk 

profiles and therapeutic management, will lead to a better understanding of tumor 

biology.  
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Figure 5. Biotype classification of human tumors according to molecular alterations. Emerging 

molecular taxonomy of tumors allows classifying the molecular heterogeneity within each tumor in a 

collection of homogenous subtypes with specific molecular alterations. Understanding this molecular 

heterogeneity will lead to the development of better diagnostic and prognostic tools as well as more 

accurate targeted therapeutic solutions. Adapted from [23]. 

 

Current understanding of PCa molecular heterogeneity is based on the 

emergence and application of these new technologies. Epidemiological studies indicate 

that germline variations caused by dominantly inherited susceptibility genes with high 

penetrance may cause 5% to 10% of all PCa cases [38]. However, the most common 

genetic variations in PCa comprise somatic alterations leading to structural genomic 

changes such as deletions, amplifications and translocations while punctual mutations 

are less common [12]. A large number of important somatic alterations have been 

identified as gains or losses of chromosomal regions, including gains at 8q and losses at 

3p, 8p, 10q, 13q, and 17p. These alterations imply deletions involving the NKX3.1 

(8p21) and phosphatase and tensin homologue tumour suppressor genes (PTEN) 

(10q23), and amplifications of the androgen receptor (AR) (Xq12) and MYC (8q24) 

genes. More recent work reveals that majority of PCas harbor recurrent ETS gene 

fusions [36]. 

In addition to general genes and pathways that are commonly altered in cancer, 

there are some genetic lesions that are highly specific of PCa. Comprehensive 

understanding of these different molecular biotypes will orientate diagnosis, prognosis 

and therapeutics of PCa into an individualized handling of this disease. Hence, 
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amplification or mutation of androgen receptor (AR) (30% of castration-resistant PCa) 

and the fusion of TMPRSS2 (an androgen-dependent serine protease) with the family 

of ETS transcription factors (ERG or ETV4) (50% of PCa) constitute frequent events in 

the development of PCa. It is also well known that the phosphoinositide-3-kinase 

(PI3K) pathway is among the most commonly altered signaling pathway in human 

PCa (25-75% of PCa). Epigenetic perturbations are also believed to represent important 

contributing factors in prostate carcinogenesis, and may provide useful biomarkers for 

disease progression [39]. In this context an emerging field of research in recent years 

has been the microRNAs (miRNAs), which regulate gene expression of mRNAs at the 

post-transcriptional level, and have been found to be deregulated in several tumors 

including PCa [40].  

 

3.1. PCA3 

In 1999, Bussemakers et al. identified PCA3 (also known as DD3) as a potential 

biomarker for PCa [41].  PCA3 (Prostate Cancer Antigen 3) is a long non-coding 

prostate-specific RNA highly expressed (about 34-fold increase) in 95% of prostate 

tumors. PCA3 score (normalized with cellular PSA expression) correlates with the 

likelihood of a positive biopsy, hence constitutes the current most specific clinically 

available biomarker for PCa. PCA3 determination in urine has been translated into 

a commercial assay, APTIMA (Hologic-Gene-Probe®, San Diego, CA, USA; 

PROGENSA in Europe), recently approved by FDA to assess the probability of a 

positive biopsy in the context of a second biopsy. PCA3 has shown great promise in 

the general population as a diagnostic and prognostic marker for PCa since urine 

PCA3 score  has also demonstrated a significant association with extracapsular 

extension, tumor volume, and Gleason score [42, 43].  

In our institution PCA3 testing has been incorporated since 2009, in the context 

of an opportunistic screening program, into the diagnostic routine of decision 

making for the diagnosis of PCa for both initial biopsy (IBx) and follow-up biopsy 

(FUBx) [19, 20]. Since the initiation of the screening program 3865 men (169 men 

were excluded from the original 4034 men recruited) were tested with a median 

follow-up of 19 months, median age of 57 years old, with a mean PSA of 1.53 ng/ml 
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(SD = 1.49) and 19.8% with family history of PCa. Five hundred thirty men (13.7%) 

with normal DRE underwent per protocol PCA3 testing; 447 (84.3%) were enrolled 

at first round, and then 73, 9 and 1 at the 2nd, 3rd and 4th rounds respectively 

(Figure 6).  

 

 

 

Figure 6. Algorithm of the dual protocol applied for the opportunistic screening program 

conducted in our institution (ref. number. 2010-20) and men allocated to each branch. Adapted from 

[44]. 

 

The overall sensitivity for the PCA3 score (cut-off point of 35) assessment in our 

series was 61.6%, the specificity 73.2%, the positive predictive value (PPV) 39%, and 

the negative predictive value (NPV) 87.3%. Furthermore, in our experience the best 

results for PCA3 are obtained at the IBx setting were parameters of sensitivity, 

specificity, PPV, and NPV are better for the subgroup of patients without previous 

biopsy [20]. Our results confirm that the routine use of the PCA3 score both as a 

continuous and categorical variable, complementary to the PSA and rectal 

examination, can advise a patient with suspected PCa whether to undergo biopsy 

or not and make biopsies profitable. 

 

PCA3 >= 35 

n = 182 men

Opportunistic screening; DRE + PSA

4034 men
Recruitment  between October´10-December´13

Regular FU with DRE and PSA at; 

1 year (2-3ng/ml)         

2 years (1-2ng/ml) 

3 years 0.5-1ng/ml) 

4 years (0-0.5ng/ml)           

Men 50-75 years-old (40 if relatives with Pca) and > 10 years life expectancyMen 50-75 years-old (40 if relatives with Pca) and > 10 years life expectancy

Normal DRE and PSA>=3ng/ml

530 men

PCA3 testing

Randomization 1:1*

PCA3+ branch: 5 PCa /28

PCA3- branch: 16 PCa/74

Observation; 191 (54.8%)*

Exclusions; abnormal 

DRE by two 

urologists (n=36)  and 

other reasons (n=133) 

(supplementary data)

Included; 3865 men Normal DRE and PSA < 3ng/ml; 

3335 men

PCA3 < 35 
n = 348 men

Initial Biopsy; 157 (45.1%)*Initial Biopsy; 182 (100%)

PCa; 71 patients

Non  PCa; 111 men 

PCa; 20 patients

Non  PCa; 137 men 

Regular  follow -up of non PCa men

Initial or repeated Biopsies during FU; n =102 
PCa; 21 patients

Non  PCa; 81 men 
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3.2. TMPRSS2-ERG (T2E) 

Chromosomal rearrangements leading to gene fusion have long been known to 

be involved in the pathogenesis of lymphoma, leukemia and sarcomas. In 2005 

Tomlins et al described for the first time in PCa a series of genetic rearrangements 

between the promotor of a serine protease TMPRSS2 (21q22) and some members of 

the ETS family of transcription factors, such as ERG (21q22), ETV1 (7p21), ETV3 and 

ETV4 (17q21) [45]. TMPRSS2 is an androgen regulated gene encoding a 

transmembrane serine protease that is highly expressed in normal and cancerous 

prostate cells (Figure 7). To date more than 20 TMPRSS2-ETS fusion transcripts 

have been described with TMPRSS2 (exon 1) and ERG (exon 4) being the most 

common ones. Although functional overlap among different members of the ETS 

family exists, individual ETS factors also serve distinct roles. Thus, the expression 

pattern of ETS members through development varies, along with their repertoire of 

target genes, biological processes regulated and oncogenic potentials. The networks 

regulated by ERG are associated with cell cycle and DNA replication, whereas 

those controlled by ETV1 are related to synthesis of lipids and other metabolic 

pathways. These different networks controlled by distinct ETS members will lead 

to different pathological consequences. 

 

 

 

 

 

 

 

 

 

 

Figure 7. TMPRSS2-ERG translocation in PCa. Translocation within chromosome 21 between the 

androgen-regulated promotor of TMPRSS2 and the transcription factor ERG is a common event in 

PCa. The product of this fusion gene (ERG) is able to control several processes such as genomic 

damage, epigenetic reprogramming, cell invasion, inflammation, and differentiation. 
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The prevalence of ETS rearrangements ranges from 27% to 79% in radical 

prostatectomy and biopsy samples and it is believed to constitute an early event in 

PCa development.  Because of the high prevalence of ETS fusions together with the 

potential association with clinico-pathological parameters [46-48], division into 

ETS-positive and ETS-negative subclasses has been established to molecularly 

subdivide PCa specimens and the association with both clinico-pathological and 

prognostic factors have also been found to be different within each group [46]. In 

this context, the appearance of next-generation sequencing (NGS) technologies has 

supported the classification of ETS-positive and –negative tumors as distinct 

biological entities. Therefore, some molecular alterations such as PTEN or TP53 

deletions are enriched in ETS-positive tumors while mutations in SPOP gene, 

CHD1 deletions or SPINK1 overexpression are events that only occur in ETS-

negative tumors.  

Clinical studies of the prevalence and prognostic significance of ETS fusions in 

PCa have yielded discrepant results, possibly related to differences in the genetics 

of the evaluated populations and diversity in methods used. Several studies 

suggest that ETS fusions are associated with a worse prognosis [47-49], whereas 

others have failed to confirm the correlation with clinical outcome [50].  Despite 

these controversies it is clear that ETS proteins are involved in the regulation of 

essential processes such as cell growth, differentiation and apoptosis. Furthermore, 

T2E plays a critical role in cancer progression by disrupting the AR lineage-specific 

differentiation program of the prostate. Evidence exists that ERG interferes AR 

signaling by inhibiting AR expression via recruiting H3K27 methyltransferase, a 

Polycomb group protein named as enhancer of zeste homolog 2 (Drosophila) 

(EZH2). Therefore, repression of AR by T2E may provide a malignant selection 

pressure contributing to recurrent tumors with AR amplification. 

 

3.3. Androgen receptor (AR) 

The AR is a steroid hormone receptor that is cytoplasmic in its unbound state, 

forming a complex with heat-shock protein (HSP)-90 while upon androgen binding 

it undergoes a conformational change allowing nuclear translocation, DNA binding 
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and regulation of gene transcription through binding to androgen-response 

elements (AREs) within chromatin of AR regulated genes [51]. The most abundant 

androgen is testosterone, which is synthesized by the testis and converted into the 

more active metabolite dihydrotestosterone (DHT) in prostate tissue trough the 

activity of 5α-reductase enzyme [39]. 

AR plays a vital role in development of the normal prostate as well as PCa 

disease progression since gonadal-testosterone-AR axis constitutes a major 

stimulus for prostate growth [52]. The ablation of this axis leads to castration-

resistant PCa (CRPC), an advanced cancer stage where tumors no longer respond 

to androgen-deprivation therapy and are associated with a poor prognosis (mean 

survival of 16-18 months) [53]. The progression of PCa into a castration-resistant 

state evolves from the development of mechanisms of resistance to therapies that 

accumulate different alterations in AR signaling. AR undergoes multiple alterations 

leading to an increased activity such as gene amplification (25% of CRPC), point 

mutations (10-30% CRPC) and splicing variants together with alterations in 

interacting proteins (co-activators) that can modulate AR activity [39, 53]. With AR 

amplification there is increased receptor available for ligand-binding and nuclear 

translocation, gain-of-function mutations of AR may confer increased protein 

stability while AR splice variants results in AR isoforms with constitutive nuclear 

localization despite the absence of ligand-binding. Another mechanism for 

increased AR signaling activity, although not as commonly observed, is the 

endogenous expression of androgen synthetic enzymes by tumor tissue, which can 

lead to de novo androgen synthesis or conversion of weaker adrenal androgens 

into testosterone and DHT. Furthermore, ligand-independent activation of AR 

through different growth factors, cytokines and receptors such as EGFR, IL-6 

receptor, IGF-IR, Her-2 receptor or Src can also take place [53]. In this sense it has 

been described a potential interaction resulting in a negative feedback regulation 

between AR and PI3K/Akt signaling pathways. Carver et al. found that PTEN 

deleted mice showed lower levels of AR and they also described how the inhibition 

of PI3K/Akt with small tyrosine kinase inhibitors (TKIs) such as BEZ-235 up-

regulates AR and leads to the activation of AR gene expression [54]. Hence, the 
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crosstalk between AR and PI3K/Akt pathways supports the rationale for combined 

inhibition of both signaling pathways. 

 

3.4. PI3K pathway 

The PI3K pathway is altered in 25-70% of PCa, with metastatic tumors having a 

higher incidence. This pathway is activated by alterations in different signal 

components and affects cell proliferation, survival and invasion.  

PI3K catalyzes the conversion of membrane phosphoinositide 4,5-biphosphate 

(PIP2) into phosphoinositide 3,4,5-triphosphate (PIP3). The accumulation of PIP3 

creates a docking site for Akt which induce a conformational change leading to Akt 

phosphorylation and activation. The activation of PI3K can be counterbalanced by 

the action of PTEN a lipid phosphatase and tumor suppressor that 

dephosphorylates PIP3 back to PIP2, controlling the activation of Akt [36]. 

In nearly 50% of PCas, the PI3K-Akt survival pathway has been shown to be 

constitutively up-regulated because of loss of function and/or mutations of PTEN. 

Heterozygous and homozygous deletions of PTEN occur in approximately 40% of 

primary PCa while inactivating mutations are more common in advanced disease 

and occur in 5-10% of PCa. Hence, PTEN loss is an early event in prostate 

carcinogenesis and it has also been described to be correlated with the progression 

to CRPC. Inactivation of PTEN has been shown to cooperate with loss of function of 

the NKX3.1 homeobox gene, up-regulation of the c-MYC proto-oncogene, or the 

T2E fusion [39].  

Like PTEN, there are other genes such as PIK3CA, PHLPP1, MAGI2, CDKN1, 

and GSK3B that also harbor mutations or deletions in PCa. The presence of several 

recurrent lesions in multiple nodes of the PI3K pathway reinforces the important 

role of this pathway in PCa [36]. 

 

3.5. IGF pathway 

Different growth factors like insulin growth factor (IGF) and epidermal growth 

factor (EGF) represent important mitogens for PCa. IGF and EGF bind to a tyrosine 

kinase receptor at the cell surface and activate downstream signal cascades like 
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PI3K/Akt pathway to increase PCa cell growth and proliferation [55]. The IGF 

family consists of two ligands (IGF-I and IGF-II), IGF-I and IGF-II receptor (IGF-IR 

IGF-IIR), six high-affinity IGF-binding proteins (IGFBP1-6), and other low-affinity 

IGFBP-related proteins (IGFBPrP). The effects of IGF-I are mediated by the 

receptors, IGF-IR and IGF-IIR  [56]. The main event following IGF-IR 

phosphorylation is the stimulation of PI3K-Akt signaling pathway, leading to cell 

survival. The second pathway consists of Ras, Raf and extracellular signal-

regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) activation, 

leading to tumor growth and proliferation [57] (Figure 8). 

 

 

 

Figure 8. IGF system. The IGF system is composed by different ligands (IGF-I and IGF-II), receptors 

(IGF-IR and IGF-IIR) and binding proteins (IGFPB). Ligand binding to the IGF-IR induces its 

phosphorylation and activates two main signaling pathways (PI3K and MAPK) leading to cell 

proliferation and/or survival. 

 

In prostate, IGF-IR plays a critical role in normal gland growth and 

development as well as in cancer initiation and progression [58]. Epidemiologic 

studies have associated levels of circulating IGF-I to risk of developing disease [59-

61]. There is, however, no consensus regarding relative levels of IGF-IR expression 
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in benign and malignant prostate epithelium and the role of the IGF-IR in 

metastasis [62]. Analysis of the IGF axis in human PCa tissue specimens has lent 

further support to the hypothesis that activation of IGF-IR plays an important role 

in the pathogenesis of CRPC and IGF-IR was found in several works to be over-

activated in PCa via increased expression of the receptor. 

 

3.6. Speckle-type Poz Protein (SPOP) 

Despite point mutations occur less commonly in PCa, the recently discovered 

gene SPOP has been found to be the most frequently non synonymous mutated 

gene in PCa [63] (Figure 9).  

 

 

Figure 9. SPOP is the most frequently mutated gene in PCa. Exome sequencing analysis of more 

than 100 primary PCa tumors showed that SPOP gene was the most frequently mutated gene. Adapted 

from [63]. 

 

SPOP gene encodes for the substrate-recognition component of a Cullin3-based 

E3-ubiquitin ligase (Cul3) involved in the ubiquitination system. SPOP was first 

discovered in Hela cells in 1997, although it was also found to be expressed in other 

tissues such as brain, breast, lung, liver, pancreas, kidney and prostate [64].  

SPOP gene is located in the 17q21 locus, which has been described to be a 

region with a high allelic imbalance in primary tumors [65]. Structurally, SPOP 

consists of an N-terminal MATH domain that recruits substrate proteins and a C-

terminal BTB (Bric-a-brac/Tamtrack/Broad complex) domain that interacts with 

Cul3, which belongs to the ubiquitination scaffold [66] (Figure 10). 

 



- 40 - 

 

 

 

 

 

Figure 10. SPOP structure. SPOP protein is composed by two domains, an N-terminal MATH domain 

that recruits substrate proteins and a C-terminal BTB domain that interacts with Cul3. The BTB 

domain allows the binding to the cullin scaffold while the MATH domain specifically interacts with 

the substrate or protein to ubiquitinate.  

 

SPOP is involved in several signaling pathways, including Hedgehog, c-Jun-N-

terminal kinase and steroid signaling pathway [67].  

Recurrent mutations in SPOP occur in 6–12% of PCa and are exclusively found in 

the substrate- binding cleft (MATH domain) of the protein, which is involved in the 

binding of those substrates to ubiquitinate. Hence, mutations in the MATH domain 

of SPOP gene will block the ubiquitination and degradation in the proteasome of 

the target proteins leading to its accumulation. In this sense, the oncogene SRC-3 

has been described to be a target of SPOP in PCa, reinforcing the potential role of 

this gene as a tumor suppressor in prostate tumors [68]. 

Furthermore, SPOP mutations have been found to be mutually exclusive with 

other common alterations in PCa such as T2E fusion, PI3K pathway or TP53 

alterations supporting the role of these alterations as a new molecular biotype in 

PCa [36, 69]. 

 

3.7. miRNAs 

In cancer cells, genes and their functional products are either modified by 

mutations, or through epigenetic modifications that alter gene-expression patterns. 

In this context, an emerging field of research in recent years has been the miRNAs. 

miRNAs are small (17–27 nt) non-coding single-stranded RNA molecules that 

negatively regulate gene expression by binding to imperfect complementary sites 
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within the 3’ untranslated region (UTR) of their mRNA target at the post-

transcriptional level [70]. 

miRNA biogenesis initiates with the transcription of a miRNA gene by RNA 

Polymerase II (Pol II) into a large molecule called pri-miRNA. A complex 

consisting of the proteins DGCR8 and Drosha processes the pri-miRNA to pre-

miRNA, which is then exported by Exportin 5 to the cytoplasm and cleaved by the 

protein Dicer into a small dsRNA duplex (miRNA:miRNA*). This duplex is 

composed of a mature miRNA and a complementary strand (miRNA*). The mature 

miRNA is subsequently incorporated in an RNA-induced silencing complex (RISC) 

where it is free to interact with various mRNA targets [70] (Figure 11). 

 

Figure 11. miRNA biogenesis. miRNA gene is transcribed by Pol II into a pri-miRNA which is 

processed by enzymes Drosha and Pasha into an immature miRNA called pre-miRNA.  The pre-

miRNA is exported into the cytoplasm by Exportin 5 where it is further processed by enzyme Dicer 

into a single strand mature miRNA. The mature miRNA is incorporated into the RISC complex and 

cleaves its target mRNAs. Adapted from [70]. 

 

miRNA binding is based in the perfect complementary binding of miRNA’s 

first nucleotides (2–7 nt) to their corresponding mRNA and a needless equal binding 

of miRNA’s flanking regions. This process allows a complex regulatory network in 
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which the individual miRNA may target more than 200 different mRNAs and, vice 

versa, a particular target could be regulated by different miRNAs [40].  Given that 

miRNAs can bind to multiple mRNA species, and that over 1400 human miRNAs 

have been identified, the miRNA repertoire of a cell can profoundly impact gene 

expression programs. Indeed, it has been estimated that approximately 60% of all 

protein-coding genes are directly targeted by miRNAs [71]. Since miRNAs can have 

several mRNA targets that are involved in the oncogenic process, dysregulation of 

miRNAs have been associated with the development of cancer. In fact, up to 50% of 

miRNA genes are located in cancer-related genomic locations [72]. 

 

In 2002, Calin et al. showed the first evidenced connecting miRNAs and cancer 

when they found that miR-15 and miR-16 are the target genes of the 13q14 deletion 

that is common in chronic lymphatic leukemia [73]. After this finding several works 

showed how miRNAs control fundamental cellular processes, such as 

differentiation of cells and timing of development of the organism indicating  that 

aberrations of miRNAs are involved in various human diseases, including cancer 

[74]. In fact, several studies demonstrate that miRNA expression patterns serve as 

phenotypic signatures of different cancers and could be used as diagnostic, 

prognostic and therapeutic tools [75, 76].  Hence, miRNA expression-profiling 

studies have identified cancer-specific signatures demonstrating that miRNA 

signatures of cancers of different cellular origin seem to be unique underlying its 

potential role as disease biomarkers [77]. Changes in miRNA expression are related 

with its oncogenic function. Hence, it has been suggested that those miRNAs whose 

expression is increased in tumors may be considered as oncogenes while those who 

are found down-regulated are considered as tumor suppressors [78]. The oncogenic 

miRNAs usually promote tumor development by negatively inhibiting tumor 

suppressor genes or genes that control cell cycle, or apoptosis while the tumor 

suppressor miRNAs prevent tumor development by negatively inhibiting 

oncogenes or genes that control cell proliferation and differentiation.  

In 2007 Porkka et al. identified for the first time a miRNA signature for PCa 

performing an oligonucleotide array hybridization study to assess the expression of 
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319 human miRNAs in PCa and found 51 miRNAs that were differentially 

expressed [79]. Since then, several groups have established different miRNA 

profiles for PCa [80-82]. The emergence of NGS technologies have offered a new 

approach for the identification of previously unknown miRNAs and qRT-PCR has 

been established the most suitable technology to validate miRNA expression-

profiling results [83]. Despite this, there is no consensus in which will be the 

miRNA-profiling signature of PCa although the relevance of some miRNAs is 

already patent. Hence, the expression of several miRNAs has been found to 

influence androgen signaling in PCa. For instance, the expression of miR-125b, 

miR-21 and miR-141 has been found to be regulated by androgens [84, 85]. 

Moreover, other miRNAs have been correlated with different clinico-pathological 

parameters and progression in PCa. Several miRNAs have been associated with 

metastasis (miR-143 and miR-145, miR-16, miR-34a, miR-200 family) [86], Gleason 

score (miR-141, miR-1, miR-200 family) [87] or T2E translocation (miR-221) [88] in 

PCa. Implication of miRNAs in tumor initiation, progression and metastasis has 

pointed them out as potential candidates for therapeutic strategies. In this sense, 

different approaches have been developed to modulate the gain or loss of miRNA 

functions. To inhibit miRNA expression one of the approaches consisted in the 

introduction of anti-miRNA oligonucleotides (AMO), which are able to interact 

between the miRNA and its target through competitive inhibition of base-pairing 

[89]. Another strategy was based in the introduction of a modified mRNA carrying 

multiple pairing sites for endogenous miRNAs (miRNA sponge), inhibiting the 

function of some miRNAs through its targets [90]. Besides the already described 

approaches, the most frequently used strategies to down-regulate or recover the 

expression of miRNAs is based in the introduction of a synthetic miRNA molecule 

(miRNA inhibitor or miRNA mimic) which is able to interact by complementarity 

with the endogenous miRNA and inhibit or recover its function [91]. 

In all these contexts, miRNAs may be useful biomarkers as they have been 

found not only in cells and tissues but also in extracellular fluids such as plasma, 

serum, saliva and urine [92, 93]. Furthermore, their relative small size protects them 

from RNAse degradation and its presence in extracellular fluids allows them to 
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monitor physiopathological status of the patients being informative of disease 

progression and therapeutic response [87].  

 

4. Therapeutics of PCa 

Conventional treatment regimens for PCa basically depend on the stage of the 

disease. In localized low or intermediate risk PCa, radical prostatectomy or 

radiotherapy constitute the first options. In the case of advanced cancer, these regimens 

are usually followed or substituted with androgen deprivation therapy (ADT) [94]. 

ADT may be also employed as neoadjuvant treatment (before radical prostatectomy or 

radiation therapy) to reduce tumor burden or as adjuvant hormone therapy (after 

surgery or radiation) with the goal of providing symptomatic control of PCa for 

patients in whom definitive treatment with surgery or radiation is not possible or 

acceptable [95]. For those patients who develop metastatic or recurrent disease, 

palliative treatment including ADT, chemotherapy, secondary hormonal manipulation 

using Enzalutamide or Abiraterone, systemic radionuclides (Ra223) or immunotherapy 

(sipuleucel-T) has led to improved PFS [35, 39].  

In 1941 Huggins and Hodges first reported the dramatic clinical effects of 

suppressing serum testosterone levels in men with advanced PCa [96]. From that first 

observation several strategies for androgen ablation have been developed and 

nowadays ADT is commonly accepted as first-line treatment of symptomatic 

metastatic PCa and there are also several evidences that prove that neoadjuvant ADT is 

also useful in increasing disease-specific and overall survival in men with clinically 

localized PCa [97, 98]. ADT could be achieved by surgical castration (orchiectomy) or 

suppression of luteinizing hormone-releasing hormone (LHRH) production at the level 

of the hypothalamus with LHRH agonists (i.e. diethylstilbestrol, DES), antiandrogens 

(flutamide, bicalutamide and nicalutamide) or other testosterone biosynthesis-

inhibiting drugs [94, 95] (Figure 12). 

 Several studies have shown that extratesticular sources of testosterone represent an 

important alternative source of androgen stimulation in a significant proportion of 

patients with PCa. As much as 10% of baseline circulating testosterone remains in 

castrated men, due to peripheral conversion of adrenal steroids to testosterone. 
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Therefore, complete androgen blockage implicates suppressing also adrenal produced 

androgens [95].  

Development of CRPC status is commonly driven by the use of adrenal remaining 

hormones or through intracrine synthesis of androgens. The 17α-hydroxylase/C17,20-

lyase (CYP17) is a key enzyme for androgen and estrogen synthesis, therefore several 

inhibitors have been designed to modulate its activity (Figure 12). In this context 

ketoconazole and the aromatase inhibitor aminoglutethimide have been evaluated as 

possible agents to decrease production of adrenal steroids although they just showed a 

modest inhibition of CYP17 [99]. Hence, Abiraterone acetate was designed as a new 

potent, selective and irreversible inhibitor of CYP17. Abiraterone acetate is a CYP17 

inhibitor that blocks androgen synthesis in the testes and adrenal glands in PCa. It has 

been shown to prolong survival in men before chemotherapy [100] and also in men 

with CRPC who have progressed after chemotherapy with docetaxel, and it has 

recently been approved by the FDA for this indication [101]. In this search of new 

drugs for second generation androgen ablation Enzalutamide (also known as MDV-

3100) has also been developed. Enzalutamide is a nonsteroidal antiandrogen rationally 

designed to target AR that has recently been approved by FDA for metastatic CRPC 

following docetaxel [102, 103], and it has also demonstrated an increase in overall 

survival in the pre-chemotherapy scenario [103]. It competitively binds to the ligand-

binding domain of the receptor and leads to inhibition of AR translocation to the cell 

nucleus, recruitment of AR cofactors and AR binding to DNA. 

 

The current recommendation for metastatic PCa is based in the second line of new 

hormonal manipulations and in the treatment based on the use of the taxanes 

Docetaxel and Cabazitaxel [104]. The taxanes act by stabilising microtubules in the cell 

cytoskeleton. The binding of taxane molecules to microtubules prevents their 

disassembly, which leads to cell cycle arrest and apoptosis. Despite the already 

demonstrated efficacy and toxicity of these compounds there are different mechanisms 

of resistance that could be developed. For instance, Cabazitaxel was designed to 

address taxane resistance based on the increased transport of the drug out through up-

regulation of P-glycoprotein transport molecule [104]. 
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Figure 12. Androgen production and hormonal manipulations. About 90% of the androgen 

stimulation is due to testosterone production by the testis. Hence, one of the first hormonal maneuvers 

to control androgen signaling consists in the surgical castration (orchiectomy) or suppression of the 

gonadotropin LHRH at the hypothalamus level by the use of LHRH agonists (i.e DES, leuprolide). 

However 5-10% of androgens are produced by adrenal glands, therefore androgen blockage by the use 

of antiandrogens (i.e flutamide, bicalutamide) is needed to block the effects of adrenal androgens at the 

AR. Moreover upon CRPC stage, where tumors no longer respond to ADT, development of CYP17 

inhibitors able to act at numerous points in the hypothalamic-pituitary-adrenal axis allows hormonal 

control. Adapted from [105]. 

 

At present there are no effective biomarkers in PCa to distinguish between 

indolent and aggressive disease and/or predict treatment outcome. Therefore the 

search for better predictors for treatment response and tumor prognosis is required to 

individualize PCa treatment and provide the optimal therapy with minimal side 

effects.  

Increasingly, the development of novel targeted therapies involves defining 

drug-diagnostic combinations where the presence of a molecular marker identifies 
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patients who are most likely to respond to the new treatment. This model of 

developing treatment and biotype combinations in order to target patient populations 

with a greater chance of benefiting from treatment was first exemplified in breast 

cancer [23]. The HER2+ subset of breast cancer is characterized by the expression of 

high concentrations of the receptor Her2 (ErbB2), which is the target of the therapeutic 

monoclonal antibody Trastuzumab [106], in the same sense ER+ breast tumors respond 

specifically to Tamoxifen [107] or aromatase inhibitors [108]. These approaches could 

be also translated into other tumor types if classifying them into molecular biotypes. 

Hence, SHIVA phase II trial (NCT01771458), a randomized multicentric trial 

comparing molecularly targeted therapy vs. conventional chemotherapy (Figure 13), is 

a proof of this concept which demonstrates that the establishment of a comprehensive 

tumor molecular profile is safe, feasible and compatible with clinical practice in 

refractory cancer patients [109]. 

 

Figure 13. Molecular biotype classification vs. conventional treatment.  Conventional treatment of 

tumors is based on organ classification which will dictate a specific chemotherapeutic regimen or a 

particular targeted therapy. However, recently the SHIVA clinical trial has changed the classical approach 

in cancer therapeutics basing its approach in the molecular profile present in each tumor. Patients are 

classified according to their molecular profile or biotype and depending on the molecular abnormalities 

found a particular targeted therapy is administered to those patients. Modified from [110] 
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5. Molecular profiling of different biotypes in PCa towards a precision medicine. 

The emergence of the ‘omics’ technologies has been a revolution for the current 

understanding of cancer genomes. The disposal of a broad range of new tools to deeply 

explore the molecular heterogeneity of cancer provides new insights for the 

comprehensive understanding of this disease. In this sense the sequencing of the 

human genome in 2001 was a revolutionary step in the understanding of our genetic 

fingerprint [111].  

To understand the molecular basis of disease a multidisciplinary approach that 

elucidates the genetic anomaly as well as its functional consequences is required. 

Hence, here we explore some of the current approaches that could be used to better 

elucidate PCa molecular heterogeneity.After the human sequence was completed 

several efforts have been made to understand functional genomics, which aims to 

decode dynamic aspects of the genome such as gene expression. For measuring gene 

expression at transcriptional level traditional techniques are available: Northern blot, 

PCR applications (such as quantitative real-time PCR [qPCR]) or in situ hybridization. 

However these techniques have the limitation of being able to study the behavior of a 

single gene at a time. Therefore to capture a more complete picture of the molecular 

state of cancer the characterization of global expression profiles or the screening of 

significant differences in the abundance of several mRNA is needed. Among the most 

powerful tools for monitoring gene expression are microarrays. Typically, a DNA array 

consists of rows of oligonucleotide strands, or complementary DNAs, lined up in dots 

on a miniature silicon chip or glass slide. These dots are labelled with a fluorescent dye 

and are hybridized against the public available probe sets. After hybridization, the 

fluorescence from each spot on the array provides a measure of the relative abundance 

of a given transcript and so reflects the relative expression level of the corresponding 

gene (Figure 14). Expression levels can be compared across many samples, normal and 

pathological, and differences in abundance could be represented as Fold-Change (FC). 

Moreover, clusters of genes that are regulated together can be identified in this way, 

whose functional relationships can uncover new aspects of cancer biology. 
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Figure 14. Overview of microarray technology. Microarray construction involves placing thousands of 

gene sequences in known locations on a glass slide called a gene chip. During sample preparation DNA or 

RNA samples from different biological specimens (i.e. normal and tumor tissues) are placed in contact 

with the gene chip. During the hybridization process complementary base pairing between the sample and 

the gene sequences on the chip produces light that is scanned and measured. Areas on the chip producing 

light identify genes that are up-regulated, equal expressed or down-regulated in the sample. Adapted from 

(http://aniluguerra.blogspot.com.es/). 

 

The current knowledge of cancer genomes makes patent the clinical significance of 

genomic alterations in the development of the disease. Therefore, identification of 

cancer-associated mutations has become a standard care for cancer diagnosis and risk 

stratification [112].  Since 1977 when Frederick Sanger developed DNA sequencing 

technology, based on chain-termination method [113], laboratory and commercial 

sequencing applications were developed with its basis. In the past thirty years, DNA 

sequencing technologies and applications have undergone tremendous development 

and the emergence of the known as NGS has overcome the limitations in scope and 

low data yield of previous approaches. NGS technologies exploit these weaknesses 

with high-throughput capabilities, and with the ability to screen an entire genome, 

transcriptome and methylome in search of abnormalities and alterations [114]. 

Furthermore, NGS technologies allow massively parallel analysis, high throughput, 

and reduced cost. The NGS workflow consists of multiple steps, including library 

preparation and enrichment, sequencing, base calling, sequence alignment, and variant 

calling [112]. 

http://aniluguerra.blogspot.com.es/
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Roche 454 was the first commercially successful NGS system. This sequencer uses 

pyrosequencing technology which relies on the detection of pyrophosphate (PPi) 

released during nucleotide incorporation. The library DNAs with 454-specific adaptors 

are denatured into single strand and captured by amplification beads followed by 

emulsion PCR. Then on a picotiter plate, one of dNTP (dATP, dGTP, dCTP, dTTP) will 

complement to the bases of the template strand with the help of ATP. During this 

process the release of PPi will be equal to the amount of incorporated nucleotide [115] 

(Figure 15). The acceptable thresholds for data quality and depth of coverage should be 

determined during the assay development and validation process. The minimum 

depth of coverage depends on the required sensitivity of the assay, sequencing 

method, and type of mutations to be detected. But in any case, confirmation of variants 

via a second independent established technology (i.e. Sanger sequencing) is an 

important quality assurance step in NGS. 

 

 

Figure 15. Roche 454 NGS workflow. Roche 454 is based on a pyrosequencing system which starts with a 

PCR to amplify the sequence of interest using specific primers to construct a DNA library. Once the library 

has been constructed an emulsion PCR is conducted in amplification beads to generate multiple copies of 

our DNA strand. Finally, on a picotiter plate sequencing is performed by sequencial incorporation of 

dNTPs that releases PPi in an amount which is proportional to the incorporated nucleotides. Adapted from 

www.roche-applied-science.com. 
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However, our phenotype is a manifestation of the proteome, the full complement 

of gene products, which execute the biological processes of the cell. Protein expression 

and function is dynamically regulated in health and dysregulation may result in 

disease. Therefore several low-throughput and high-throughput techniques have 

emerged on the forefront of proteomics research and are in various stages of clinical 

application. Improvements over the years have provided us with a more sensitive 

high-throughput gel-based technique termed as two-dimensional difference gel 

electrophoresis (2D-DIGE) which has been widely used to identify potential 

biomarkers, drug targets, or crucial mediators of disease by comparing spot intensities 

between diseased and normal states. 2D-DIGE separates proteins initially according to 

charge and then by molecular weight in the second dimension [116]. In this technique, 

two different protein samples (control and diseased) and one internal control (mixture 

of control and diseased sample in equal proportion) are labelled with any of the three 

fluorophores: Cy2, Cy3, or Cy5. These fluorophores have the identical charge and 

molecular mass but unique fluorescent properties. This allows us to discriminate them 

during scanning using appropriate optical filters. The labelled samples are then mixed 

together and separated on a single gel which is scanned with different wave lengths: 

488nm (Cy2), 532nm (Cy3), and 633nm (Cy5) so each of the samples will generate its 

unique image (Figure 16). To investigate the identity of peptide and proteins mass 

spectrometry (MS) has been the proteomics gold standard. MS determines the 

molecular mass of a charged particle by measuring its mass-to-charge (m/z) ratio. 

Basically, a mass spectrometer consists of an ion source that converts molecules to 

ionized analytes, which are resolved according to m/z ratio, and a detector that 

registers the number of ions at respective m/z value. Finally, correlating the sequence 

ions generated from tandem MS data with sequence information available in protein 

databases, peptide sequence of unknown protein could be elucidated [117]. 
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Figure 16. Scheme of a proteomic 2D-DIGE approach.  Proteins are extracted from the samples and 

labelled with different fluorophores (Cy3 for sample 1, Cy5 for sample 2, and Cy2 for the pooled internal 

standard). All the samples are resolved in the same 2D gel by isoelectric focusing according to molecular 

weight and pH range. The protein spot pattern is detected by scanning the gel in the respective 

wavelength for the Cy dyes. The images are analyzed  with the corresponding software to get potential 

candidates of interest that could be further identified by MS. Adapted from [117]. 
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Premises 

 

 Per incidence and mortality, PCa constitutes a primary socio-sanitary and Public 

Health problem.  

 Currently, the tools to orientate PCa diagnosis (PSA and DRE) are not cancer 

specific and present several limitations leading to biopsy-associated complications.  

 A high percentage of diagnosed PCa are low-grade tumors with an indolent 

behavior meaning that the current diagnostic process is associated with 

overdiagnosis and overtreatment. On the contrary, other PCa will have a more 

aggressive prognostic behavior, which finally leads to disease progression and 

patient death.  

 Nowadays molecular features do not direct the treatment of CRPC. 

 This different clinical behavior is associated to characteristic PCa molecular 

biotypes.  

 

Hypothesis 

The comprehensive characterization of PCa molecular biotypes would optimize 

PCa diagnosis and patient management according to the molecular characteristics of 

the tumor. Hence, the inclusion in the diagnostic setting of new biomarkers 

identifiable by non-invasive procedures would classify patients according to 

optimized risk factors that could be validated within the framework of an opportunist 

program of early diagnosis and active surveillance. In addition, this molecular 

complexity would also constitute the rational for new therapeutic alternatives in the 

advanced PCa setting  

 

 

 

 

 



 

- 56 - 

Objectives 

1. To identify miRNAs that could be used as potential biomarkers for PCa 

diagnosis and prognosis using a discovery approach based on miRNA 

microarray analysis (Studies I and II). 

2. To perform a proteomic approach based on 2D-DIGE and MS analysis to 

identify new mRNA targets of miR-187 and to evaluate the potential role of 

these targets as novel biomarkers for PCa (Study III). 

3. To evaluate the molecular alterations of SPOP gene in PCa by NGS technology 

to determine its role as a new prognostic and therapeutic biomarker and 

implications as new PCa biotype (Study IV). 

4. To determine the relationship between T2E and IGF-IR in PCa and evaluate the 

potential implications of this cross-talk for the design of new therapeutic 

strategies (Study V).  
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Study I. miRNAs as biomarkers in prostate cancer 
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Study II. Identification of miR-187 and miR-182 as 

Biomarkers of Early Diagnosis and Prognosis in 

Patients with Prostate Cancer Treated with Radical 

Prostatectomy 
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Study III. miR-187 targets the androgen-regulated 

gene ALDH1A3 in prostate cancer. 
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Figure 1S. ALDH1A3 expression in an independent cohort of PCa fresh tissue. 

With the aim of performing a validation in an independent set of PCa patients, 

overexpression of ALDH1A3 mRNA was confirmed in a cohort of human fresh 

prostate tumors (n=10). There was an inverse correlation (p<0.0001) between the 

down-regulation of miR-187 found in these samples and the up-regulation of 

ALDH1A3. 

 

 

Table 1S.  Putative miR-187 predicted targets 
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Study IV. Clinico-pathological significance of the 

molecular alterations of the SPOP gene in prostate 

cancer. 
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Study V. ERG deregulation induces IGF-IR 

expression in prostate cancer cells and affects 

sensitivity to anti-IGF-IR agents 
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Summary of results and discussion 
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In this section the summary of the results will be exposed according to the established 

objectives highlighting those aspects with a translational potential into the clinical 

setting. 

Objective 1: To identify miRNAs that could be used as potential biomarkers for PCa 

diagnosis and prognosis using a discovery approach based on miRNA microarray 

analysis (Studies I and II). 

The current tools for PCa diagnosis (PSA and DRE) are limited by a low predictive 

value and a low rate of specificity leading to disease overdiagnosis and a high 

probability of mistaken results. In this context, the identification of new biomarkers for 

PCa diagnosis is a constant need. Besides of improving diagnosis accuracy it is also 

imperative to have biomarkers able to distinguish between indolent and aggressive 

disease. In this line, miRNAs have emerged as a new source of biomarkers since they 

have been found to be de-regulated in different types of tumors including PCa [77]. 

Several studies have already described that the aberrant expression of miRNAs is 

related with the development of PCa and they have also been found to be correlated 

with disease stage and prognosis (Table 1. Study I). For instance, miR-125b plays an 

important role in CRPC since its expression is directly regulated by androgen signaling 

(Figure 2. Study I), which consequently will modulate the expression of its targets 

implicated in the apoptotic pathway. Other miRNAs have been described to be 

associated with advanced tumor stages. For instance, up-regulation of miR-141 and 

miR-375 seems to be a common event in the progression of PCa to metastatic disease 

[76, 87].  Despite the increasing number of miRNA profiling studies there is still no 

agreement in which will be the miRNA specific signature for PCa. Hence, considering 

the important role of miRNA in the biology and progression of PCa we designed a 

strategy to identify miRNAs that could distinguish between cancer and healthy 

patients and could be also useful in both diagnostic and prognostic settings.  

With this aim we performed a miRNA microarray approach to identify miRNAs 

differentially expressed between normal and PCa tissue (GEO (Gene Expression 

Omnibus) database Accession No. GSE45604. http://www.ncbi.nlm.nih.gov/geo/). A 

total of 11 smallRNAs (sRNAs) were found to be differentially expressed (Bonferroni 

test p<0.05) between PCa and normal tissue. From these sRNAs 5 miRNAs were 
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significantly down-regulated in PCa (miR-187, miR-224, miR-34a*, miR-221 and miR-

34c) while there was just one miRNA found over-expressed (miR-182) (Figure 1. Study 

II).  Our results were also consistent with previous works where miR-187, miR-224, 

miR-34 and miR-221 under expression was already described [139]. According to our 

data the up-regulation of miR-182 was also previously reported in PCa and other 

tumors [140, 141]. To confirm our findings miR-182 and miR-187, that were the most 

significantly regulated miRNAs in our series with a FC of +4.7 and -12 respectively, 

were selected for further validation. The differential expression of both miRNAs was 

further demonstrated by RT-qPCR in a training set of samples comprising 50 prostate 

tumors and 10 normal fresh tissues as well as in a retrospective cohort of 273 primary 

tumors with more than 5 years of follow-up. We also assessed the relationship between 

the expression of these 2 miRNAs and different clinico-pathological parameters such as 

pT, cT, Gleason score and T2E status as well as patient outcome (BPFS and PFS).  

Interestingly, we found for the first time an inverse association between miR-187 

expression, pT (p=0.0002) and Gleason score (p=0.003) (Figure 4S. Study II). Moreover, 

to date the only association between T2E status and miRNAs was found by 

Gornadpour et al.  who found how miR-221 loss was associated with the presence of 

the translocation [88]. However, we were also able to find a significant inverse 

correlation between miR-187 and T2E (p=0.003) (Figure 4S. Study II). Despite previous 

studies have found significant association between miR-182 and different clinico-

pathological parameters [142] we could just found a significant association between 

miR-182 and Gleason score in our microarray data but not in the validation cohort of 

samples. However a robust and independent correlation between miR-182 expression 

and PCa prognosis for both BPFS (p=0.02) and PFS (p=0.04) was found (Table 2. Study 

II). The higher expression of miR-182 was significantly associated with a higher risk of 

biochemical recurrence and distant progression. This association of miR-182 with 

prognosis was also described in other tumors such as glioma and colorectal cancer 

[140, 141]. Considering that miR-182 was associated with Gleason score in our 

microarray data we proposed a new variable combining miR-182 expression (taking 

median values as cut-off)  and Gleason score and we found that this combined variable 

was able to discriminate between groups at different risk of progression inside each 
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Gleason score category (p<0.0001) (Figure 17). Hence, in the group of patients with a 

Gleason score of 7 we could distinguish 2 populations with different risk to progress 

depending on miR-182 expression levels and could suggest the definition of a new risk 

category to better distinguish patients who are suitable candidates for active 

surveillance from those who will need a more radical treatment.  

 

Figure 17. miR-182 expression classifies patients in groups at different risk of progression within each 

Gleason score. 

Since miRNAs have been described to be also stable in different body fluids such as 

plasma, serum or urine [92], we aimed to study the potential role of the selected 

miRNAs (miR-182 and miR-187) as biomarkers in an easy and non-invasive diagnostic 

context. Therefore, we further analyze a cohort of 92 urine samples to assess the 

expression of miR-182 and miR-187 together with other already known biomarkers like 

PCA3, T2E, GOLPH2 and SPINK1. As Laxman et al. showed in their study we also 

reported the utility of generating a multiplexed urine based diagnostic test combining 

several biomarkers [143]. In our case we established a prediction model including 

serum PSA, urine PCA3 and miR-187 and we found that it could predict a positive 

prostate biopsy with a higher probability than PSA alone. Our model achieved 88.6% 

sensitivity and 50% specificity with 69.3% diagnostic precision (Figure 18). Therefore, 

miR-187 appears to be a promising biomarker for early diagnosis in PCa.  
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Figure 18. A multivariate combined model incorporating the expression of miR-187 improves the 

sensitivity and specificity of PSA alone to predict the result of a prostate biopsy in post-DRE urines of 

patients. 

 

Milestones: 

 

 

 

 

Translational impact derived from Objective 1: 

In the prognostic context, we are currently developing in collaboration with 

Panomics (Affymetrix®) an in-situ hybridization assay to discriminate in needle biopsy 

PCa specimens, according to miR-182 expression, patients with a different clinical 

outcome. The application of this assay into the clinical practice would distinguish 

patients with indolent disease from those with tumors with a more aggressive 

behavior. 

 

Our results suggest that both miR-182 and miR-187 play a key role in the 

pathogenesis and development of PCa, and that especially miR-182 constitute a 

promising biomarker for PCa prognosis and miR-187 could be a useful 

biomarker for the PCa diagnostic setting. 
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Objective 2: To perform a proteomic approach based on 2D-DIGE and MS analysis 

to identify new mRNA targets of miR-187 and to evaluate the potential role of these 

targets as novel biomarkers for PCa (Study III). 

Despite we could demonstrate the utility of miR-187 in the diagnostic setting the 

fact that we found this miRNA down-regulated in PCa complicated its translation into 

a clinical applicable test. Nevertheless, miRNAs are known to regulate gene expression 

through translational repression and mRNA cleavage of more than 60% of protein 

coding genes.  Therefore we hypothesized that if we would be able to identify miR-187 

targets in PCa, that were not experimentally confirmed to date, we could find a 

potential biomarker whose expression will be up-regulated upon loss of miR-187 

expression. To identify potential targets of miR-187 in PCa a proteomic approach based 

on 2D-DIGE followed by matrix-assisted laser desorption-ionization tie-of-flight mass 

spectrometry (MALDI-TOF MS) analysis was performed. The use of this methodology 

allows us to identify physiological miRNA-mRNA relationships that cannot be 

predicted using in silico algorithms. In fact, results from previous works confirmed 

than less of 10% of proteins identified by a proteomic approach could have been 

predicted by commonly used algorithms such as Pictar, Targetscan and miRanda [122, 

130]. Therefore to assess which proteins were regulated by miR-187 we performed a 

DIGE and LC-MS/MS analysis in an in vitro PCa model (PC-3 cell line) where we have 

synthetically recovered the expression of miR-187 by transfecting a miRNA mimic.  

After separating the protein extracts from PC-3 transfected with miR-187 mimic and 

PC-3 transfected with the negative control and fluorescence scanning, 9 differentially 

spots were detected. From these 9 spots detected, 7 of them showed a down-regulation 

upon miR-187 recovery (PC-3 miR-187 mimic transfected cells), which was consistent 

with the expected inhibitory effect of the miRNA through its targets (Figure 19).  
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Figure 19. A proteomic approach based on 2D-DIGE followed by MS analysis lead to the identification 

of ALDH1A3 as a potential target of miR-187. 

 

Among the 7 putative targets identified we selected ALDH1A3 for further 

validation. ALDH1A3 is an aldehyde dehydrogenase that was already described to be 

important for normal prostate development [134]. Aldehyde dehydrogenase family 

catalyzes the oxidation of retinal to retinoic acid and has been linked with cell 

proliferation, differentiation and survival. Furthermore the expression of ALDH1A3 

has been described to be directly regulated by androgens [132]. Therefore, since 

ALDH1A3 was found to be correlated with both important parameters of cancer such 

as proliferation, survival and pluripotency [135, 136] together with essential signaling 

pathways for the prostate such as the androgens we decided to first study its role as a 

potential target for miR-187 in PCa.  To demonstrate the role of ALDH1A3 as a 

potential miR-187 target we first confirmed the presence of putative miR-187 binding 

sites in ALDH1A3 mRNA sequence using RNA22 mRNA-miRNA heteroduplex 

prediction software (Figure 3A. Study III). Furthermore, three different cell line models: 

PC-3, LNCaP and DU-145 were transfected with miR-187 mimic to confirm the effect of 

the miRNA on ALDH1A3 expression. Western blot analysis confirmed a reduction in 
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ALDH1A3 expression upon re-introduction of miR-187 in all the studied models 

(Figure 3B. Study III). This inhibitory effect of miR-187 through ALDH1A3 was further 

confirmed in a luciferase reporter assay, where those cells with a recovered expression 

of miR-187 (PC-3 miR-187 mimic) experienced a decrease in luciferase signal when a 

firefly luciferase reporter plasmid under the control of ALDH1A3 3’UTR region was co-

transfected into the cells (Figure 3C. Study III). In addition, the RT-qPCR analysis of the 

expression of ALDH1A3 demonstrated the up-regulation of this mRNA in a cohort of 

96 FFPE and 10 fresh tissue PCa patients who also shared a strongly down-regulation 

of miR-187 (Figure 3D and Figure 1S. Study III). However, no correlation between 

clinico-pathological parameters or prognosis and ALDH1A3 mRNA expression was 

found. ALDH1A3 protein expression was also assessed by immunohistochemistry 

(IHC) in a cohort of 195 PCa patients where it was found to be significantly over-

expressed (p<0.0001) and directly correlated with Gleason score (p=0.05) (Figure 20). 

 

Figure 20. ALDH1A3 evaluation by IHC in prostatectomy pieces of PCa and normal prostate showed a 

differential expression, indicating its potential role as new biomarker in PCa. 
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Since we have previously postulated a potential role of miR-187 in the diagnostic 

setting we further analyze the role of its target ALDH1A3 as a potential biomarker for 

PCa diagnosis. For this purpose, ALDH1A3 expression was evaluated using an ELISA 

immunoassay in urine samples from patients with suspicious of PCa. These results 

were translated into a univariate logistic regression model where the predictive 

capability of this biomarker, together with PSA, for the presence of PCa in diagnostic 

biopsies was evaluated. Interestingly, in the same way than miR-187 expression in 

urine was cooperating with other biomarkers to predict appositive prostate biopsy, we 

found that ALDH1A3 was also cooperating with PSA and at a significance level of 10% 

both of them were significantly associated with a positive biopsy of PCa (Figure 5. 

Study III). Therefore, our results are in agreement with previous reports [22, 143] that 

postulate that a combination of multiple biomarkers may increase sensitivity and 

specificity over use of individual markers. Moreover, in the context of miRNAs it is 

also important to remember that a single miRNA can modulate several genes [40, 121, 

144] and probably the effects of miR-187 expression is broader than the observed in a 

single target gene. 

Milestones: 

 

 

 

Translational impact derived from Objective 2: 

 In order to translate our results into the clinical practice we aim to evaluate the 

utility of ALDH1A3 as a new biomarker for PCa in both body fluids and tumor 

samples (prostate biopsies) to apply it into a diagnostic context. 

 Moreover we would also like to explore the role in PCa diagnostic and 

prognostic settings of other proteins identified in our proteomic approach as potential 

targets of miR-187 

 

Our data illustrate for the first time the role of ALDH1A3 as a miR-187 target in 

PCa and provide insights in the utility of using this protein as a new biomarker 

for PCa. 
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Objective 3: To evaluate the molecular alterations of SPOP gene in PCa by NGS 

technology to determine its role as a new prognostic and therapeutic biomarker and 

implications as new PCa biotype (Study IV). 

In our aim to translate the molecular heterogeneity found in PCa into a collection of 

homogeneous molecular subtypes (“biotypes”), we also studied the molecular 

alterations of the recently discovered SPOP gene in our cohort of PCa patients.  Since 

SPOP gene was described to be the most common non-synonymous mutation in PCa 

we decided to assess both the expression profile and mutational status of SPOP gene 

together with the relationship with clinico-pathological parameters in a retrospective 

cohort of 265 primary PCa patients with more than 5 years of follow-up.  

SPOP expression was evaluated by RT-qPCR and relative expression was 

determined using normal prostate as control calibrator. Interestingly we found that 

SPOP gene was down-regulated in 93.5% of the studied samples when compared with 

normal tissue (Figure 1. Study IV). Moreover SPOP down-regulation was inversely 

correlated with Gleason score (p=0.045) and log-rank analysis for both BPFS and PFS 

showed a significant association between prognosis and SPOP expression. The lower 

expression of SPOP gene was found to associate with a higher risk of biochemical 

recurrence (p=0.003) and distant progression (p=0.023) after prostatectomy and lower 

levels of SPOP were even able to independently predict a worse prognosis in the Cox 

proportional hazard multivariable analysis (BPFS HR: 0.5; CI 95% [0.4-0.8], p=0.005. 

PFS HR: 0.6; CI 95% [0.4-1], p=0.045).  This association with prognosis was even 

stronger in the subgroup of tumors negative for the translocation T2E (Figure 21). It is 

already well known that T2E defines a subgroup of PCa patients with different clinico-

pathological parameters and it has also been found to be mutually exclusive with the 

presence of certain lesions [46]. For instance, SPOP mutants have only been found in 

those patients that do not harbor the T2E translocation [63, 145]. Although previous 

studies performed in smaller cohorts of patients have already showed a down-

regulation of SPOP gene and protein in PCa [63, 145, 146] none of them found any 

association with neither clinico-pathological parameters nor prognosis. Therefore we 
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have described for the first time how the loss of expression of SPOP is related with a 

worse patient outcome confirming its role as tumor suppressor in PCa.  

 

 

Figure 21. Loss of SPOP expression is associated with a higher risk of biochemical progression in PCa 

and this result is more evident in the subgroup of patients not expressing the T2E fusion gene. 

 

Besides the expression analysis we also performed a mutational profile of SPOP 

gene in T2E negative tumors. Since it has already been reported that SPOP mutations 

were mutually exclusive with the presence of the T2E fusion gene, we only evaluated 

the presence of mutations in 90 cases already assessed as negative for T2E by RT-PCR, 

FISH and qPCR. Mutations were identified using the 454 GS-Junior NGS platform and 

confirmed by Sanger sequencing. SPOP gene was found to be mutated in 10% of the 

specimens and mutations were located in exons 5 and 6, which is in line with previous 

studies [63, 145]. Despite some of the mutations found were already described in 

previous works we were able to report for the first time mutations p.F104V, p.D153N 

and p.Q120Stop. When analyzing the prognostic role of SPOP mutations in PCa we 

found a significant direct correlation between SPOP mutants and a worse BPFS 

(p=0.009) (Figure 22). Moreover, SPOP mutations also constituted an independent 

variable of poor prognosis after Cox proportional hazard multivariable analysis (HR: 

3.4; IC 95% [1.5-7.6], p=0.004). In a previous work performed by Blattner et al. they also 

studied the association between SPOP mutations and prognosis however they did not 
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find any statistically significant correlation [145]. The discrepancy with our results 

could be explained because of the differences in the patient cohorts analyzed. The 

distribution of higher risk PCa patients is significantly different between the two 

studies since the proportion of these tumors is very low in the specimens collected in 

our institution.  

 

 

Figure 22. The presence of mutations in SPOP gene confers a higher risk of biochemical progression. 

 

Additionally we also studied the association between SPOP mutations and loss of 

expression but no significant correlation was found. However, we interestingly found 

that all the mutated cases showed a down-regulation of SPOP gene. This result 

indicated us that besides the presence of mutations there should be other mechanisms 

leading to the loss of expression of this gene. Genomic loss of SPOP gene locus has 

already been described and in fact the 17q21 chromosome, where SPOP gene is located, 

has been reported to be a region with a high allelic imbalance in different tumors 

including PCa [65]. Moreover, miR-145 has recently been described to regulate SPOP 

expression what could also explain part of this loss of expression [147]. 

Our findings give more strength to the fact that SPOP gene is defining a new 

biotype in PCa that could be also associated with different risk of progression and 

could be subjected to different therapeutic options.  
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Milestones: 

 

 

 

Translational impact derived from Objective 3: 

One of our future objectives consists on the assessment of SPOP expression by IHC 

in prostate biopsies in order to classify patients at different risk of progression. 

Furthermore, upon the characterization of mutations found in SPOP gene, a high 

sensitive genetic test could be designed (RT-qPCR, digital PCR) in order to detect these 

alterations in body fluids such as urine or plasma that can be useful for monitoring 

patient outcome. 

 

 

 

 

 

 

 

 

 

 

 

Loss of expression and alterations in SPOP gene demonstrate that it acts as a 

tumor suppressor gene in PCa and defines a new subtype of PCa tumors 

associated with a worse prognosis. 



 

- 157 - 

Objective 4: To determine the relationship between T2E and IGF-IR in PCa and 

evaluate the potential implications of this cross-talk for the design of new 

therapeutic strategies (Study V). 

T2E represents the most common event in PCa being expressed in 40-70% of 

tumors. Moreover several studies have defined distinct gene expression profiles in ETS 

fusion-positive and ETS fusion-negative PCas [45, 49, 148]. Therefore, the attempts to 

molecularly characterize PCa into distinct biotypes often begin with division into 

subgroups according to T2E status.  

T2E has been described to represent an early event in PCa development and has 

been reported to be mutually exclusive with certain molecular lesions (i. e. PTEN, 

SPOP) or cooperate with others (i.e AR signaling). Furthermore, due to the high 

prevalence of this translocation in PCa there is also an increasing interest in potential 

therapeutic targeting of this subgroup of patients. In this context we aimed to study the 

relationship between T2E and IGF system. 

IGF system has already been extensively studied in PCa although most of the 

works have produced controversial evidences [149]. Nevertheless, there is a broad 

consensus in the critical role played by IGF-IR in normal prostate development as well 

as in cancer initiation and progression [150, 151]. In fact, several phase II studies have 

been developed in PCa using IGF-IR inhibitors, although none of them reported any 

promising results [152, 153].  

In our work we have assessed the expression of the two main receptors of IGF 

system (IGF-IR and insulin receptor [IR]) at mRNA and protein level in a panel of PCa 

cell lines comprising 5 tumor cell lines (VCaP, DU-145, PC-3, LNCaP and 22RV1) and a 

non-malignant prostate cell line model (RWPE-1) (Figure 1. Study V). We interestingly 

found that IGF-IR expression was predominantly low in most of the cell lines analyzed 

but VCaP model, which is the only cell line that harbors the translocation T2E. 

Therefore, to further investigate the relationship between the presence of the fusion 

gene and the expression of IGF-IR we developed a model where we modulated the 

expression of ERG by siRNA transfection in VCaP cells. We analyzed IGF-IR 
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expression upon ERG silencing by Western blot and a decrease of receptor expression 

was found at 96 and 120 h. Moreover we also confirmed that the modulation of IGF-IR 

expression was dependent of T2E status in other two models where tERG (the protein 

product of T2E translocation) expression was re-introduced by stably transfection 

(RWPE-1 tERG and PC-3 tERG) (Figure 23). To confirm the observed effect of T2E on 

IGF-IR levels an anti-ERG chromatin immunoprecipitation (ChIP) assay was 

performed. This assay confirmed the binding of T2E into IGF-IR promoter leading to 

the modulation of its expression (Figure 2. Study V). 

 

 

Figure 23. The expression of IGF-IR is dependent on the levels of ERG since its modulation notably 

affects the levels of IGF-IR. 

 

To confirm the clinical relevance of the observed cross-talk between ERG and IGF-

IR we also assessed IGF-IR expression profile by RT-qPCR in our retrospective cohort 

of 270 primary PCa. Interestingly we found a direct correlation between IGF-IR 

expression and the presence of T2E (p=0.008) implicating that those tumors harboring 

the fusion gene showed increased levels of IGF-IR. This association was further 

confirmed at protein level since we also analyzed ERG and IGF-IR by IHC in the same 

cohort of patients (Figure 5. Study V) 

There are several studies evidencing the interaction between T2E and androgen 

signaling axis. In fact, TMPRSS2 promoter is known to be directly regulated by 

androgens. Therefore we decided to study the effect of ERG and IGF-IR expression 

upon Abiraterone treatment. An strong ERG down-regulation together with a decrease 
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of IGF-IR expression was showed after treatment at different time points (72, 96 and 

120 h) with the higher used concentration of Abiraterone (10 µM) (Figure 2. Study V). 

Although the decrease of ERG expression upon Abiraterone treatment was already 

described [154] any other work has ever showed the consequent inhibition of IGF-IR 

which confirms the presence of a T2E/IGF-IR androgen regulated axis.  

In parallel we also assessed the effect of IGF-IR inhibition in PCa cell lines. Hence 

when exposing the panel of PCa cell lines to different concentrations of the IGF-IR 

human monoclonal antibodies (HAbs) CP-751,871 and AVE1642 or the IGF-IR TKI 

NVP-AEW541 only VCaP showed a remarkably high sensitivity to the treatment. 

Moreover, when silencing ERG in VCaP cells this effect upon IGF-IR inhibition was 

lost. Moreover, PC-3 cells transfected with tERG also showed a higher sensitivity to the 

treatment with CP-751,871 (Figure 3. Study V). Our data confirmed for the first time that 

the level of ERG expression significantly influenced the efficacy of anti-IGF-IR agents 

(Figure 24).   

 

Figure 24. The treatment with different HAbs anti-IGF-IR or TKIs only showed efficacy in the cell line 

model harboring the translocation T2E (VCaP).  

 

 



 

- 160 - 

Taken together our results confirming the presence of a T2E-IGF-IR–AR axis we 

also proposed a combination therapy administrating simultaneously anti-IGF-IR CP-

751,871 HAbs and Abiraterone or Cabazitaxel in PCa cell lines. We found that IGF-IR 

inhibition together with Abiraterone treatment induced synergistic antiproliferative 

effects in VCaP cells while no beneficial effect was observed in other cell line models 

negative for T2E translocation such as DU-145 or LNCaP (CI= 2.88±1.17 vs CI > 100). 

From a clinical perspective, this mechanism provides the rationale for the selective use 

of anti-IGF-IR agents for patients expressing T2E. In fact, several clinical trials have 

been developed for IGF-IR inhibitors, in CRPC patients, such as Cixutumumab (Phase 

II, NCT00520481 and NCT00683475) and Figitumumab (Phase I, NCT00313781) as a 

single agent or in combination with other drugs. However, patients only experienced a 

partial response to therapy and a lot of side toxicities (neutropenia, diarrhea, 

hyperglycemia,etc.) were found [155]. Probably, the clinical efficiency of these 

compounds could be notably improved if we would be able to determine those 

respondent tumors with specific alterations or biotypes such as T2E status. Moreover, 

due to the molecular complexity observed in human tumors, multiple drugs in 

combination are often administered simultaneously to hit different pharmacological 

targets and thus improve efficacy and decrease resistance. This is the rationale behind 

the so called polymer-based combination therapy that becomes an excellent tool for 

developing this interesting concept [156].  

Milestones: 

 

 

 

 

 

 

 

T2E expression directly modulates IGF-IR levels in PCa. As a consequence, the 

subgroup of patients harboring the T2E gene fusion is more sensitive to IGF-IR 

inhibition, and its cytotoxic effect becomes enhanced if combined with 

androgen ablation with Abiraterone. 
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Translational impact derived from Objective 4: 

In view of our results we are currently developing a polymer-based combined 

therapy using two targetable drugs, Abiraterone that blocks the AR pathway; and a 

humanized monoclonal antibody anti-IGF-IR that affects the PI3K pathway among 

others in the subtype of CRPC tumors that harbor the fusion gene T2E. 
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Conclusions 
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Our work demonstrates and gives support to the highly molecular heterogeneity found 

in PCa. The possibility of identifying new biotypes in PCa, able to stratify patients in 

different subgroups according to their molecular profile, represents a big impact for 

diagnosis, prognosis and therapeutic intervention, making the concept of precision 

medicine a reality.  

1. Many miRNAs are de-regulated in PCa and play a role in tumor progression, 

highlighting its role as potential biomarkers in PCa. 

2. miR-182 plays a role as prognostic biomarker for both biochemical and clinical 

progression. The categorization of Gleason score according to the expression 

level of miR-182 identifies patient groups with different risk of progression. 

Our findings suggest that the miR-182 overexpression could potentially be 

incorporated into the clinical decision making algorithms once its role as 

biomarker has been validated on prospective series of patients. 

3. miR-187 has been shown to be a potential diagnostic biomarker in urine 

samples by improving the PCa detection rate compared with PSA alone.  

4. Restoration of miRNA expression in cell models followed by a proteomic 

approximation constitutes a useful tool for the functional identification of 

miRNA targets that can be tested as potential biomarkers. 

5. For the first time, we have identified ALDH1A3 as a miR-187 target in PCa and 

described its role as potential new biomarker in PCa. 

6. Approximately 10% of T2E-negative PCa harbors SPOP mutations defining a 

group of patients with special worse prognosis. 

7. We have been the first group in describing a prognostic role for SPOP 

alterations in PCa progression suggesting its translation into the clinical context 

by the identification of patients with poor prognosis that could benefit from 

more radical treatments. 

8. Herein it has been evidenced for the first time that IGF-IR is directly regulated 

by T2E and how the impact of this association affects to the response to IGF-IR 
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inhibition. Hence, we suggest that T2E PCa patients are sensitive to IGF-IR 

inhibition and become potential candidates to IGF-IR directed therapies.  

9. The cross-talk found in the T2E-IGF-IR–AR axis leads us to design a 

combination therapy able to target both IGF-IR and AR in a subgroup of PCa 

patients (‘biotype’) with synergistic effects.  
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