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1. Introduction

Recent improvements [1] of the next-to-leading log x (NLx) results [2] in the BFKL

framework, have stabilized the small-x behaviour in QCD, so that a phenomenological

analysis of deep inelastic processes (DIS) seems now possible.

However, both the gluon density (satisfying the improved equation) and the

impact factors are needed in order to use k-factorization (Sec. 2) to compute DIS or

double DIS processes. So far, NLx impact factors have been found for the unphysical

case of massless initial quarks and gluons only [3, 4]. Partial features for massive

quarks [5] and for colourless sources [6] are known too.

In this paper we derive complete results for the case of initial massive quarks,

with a twofold purpose. First, we want to check the validity of the k-factorization

scheme introduced in Ref. [4], or, in other words, to derive the same gluon Green’s

function with an explicit massive quark impact factor which satisfies the expected

collinear properties. Secondly, we develop as a byproduct some analytical techniques

which are needed to deal with two-scale problems, which are hopefully useful to cope

with the physical cases also.

The results of the paper rest on two observations. The first one, motivated

in Sec. 3, is that the factorized scale relevant in a high-energy two-scale process

coupled to heavy quarks is s0 = Max(k1, m1)Max(k2, m2), where k1 and k2 denote

the relevant gluon virtualities, rather than s0 = k1k2, as in the massless quark case.

In fact, by subtracting the kernel contribution with such a scale we are able in Sec. 4.2

to derive a result for the massive quark impact factor which is finite for s→ ∞, and

has all the desired properties.

The second observation is that we are able to disentangle the (m/k)-dependence

of the impact factor by explicitly computing its Mellin transform and its inverse.

Given the singular energy dependence of the squared amplitude and of the phase

space in the intermediate steps, this is by no means a trivial result and requires

a careful handling of Mellin transform integrals in dimensional regularization, as

explained in Sec. 4.1.

The outcome of such analysis is that the NLx constant H-kernels, previously

introduced in the gluon Green’s function [4], are indeed probe-independent, and

that the ensuing impact factors only contain factorizable single logarithmic collinear

singularities. The use of such information in the improved small-x equation and the

left-over problems are discussed in Sec. 5.

2. k-Factorization in dijet production

We consider the high-energy scattering of two partons a and b with momenta p1

and p2 respectively. Following [3], the colour averaged differential cross section is

factorized in a gauge-invariant way into a Green’s function Gω and impact factors ha
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and hb (Fig. 1)

dσab

d[k1] d[k2]
=

∫

dω

2πiω
ha(k1)Gω(k1,k2)hb(k2)

(

s

s0(k1,k2)

)ω

. (2.1)

We adopt d[k] = d2+2εk/π1+ε as transverse space measure. The transverse plane is

defined with respect to the incoming momenta p1 and p2. The transverse momenta k1

and k2 play the role of hard scales of the process. By definition, the impact factors

are free of high-energy gluon exchanges, which are subtracted out, but can still

contain collinear singularities which need to be factored out. The Green’s function

Gω incorporates all the Regge-gluon exchanges between the two partons. The energy-

scale s0(k1,k2) will be chosen later on.

At the next-to-leading log x (NLx) accuracy the Green’s function Gω has the

following general form

Gω = (1 + αsHL)

[

1 − αs

ω
(K0 +KNL)

]−1

(1 + αsHR) , (2.2)

where K0 and KNL are the leading log x

ha

Gω

hb

k1

k2

p1

p2

Figure 1: Diagrammatic representa-

tion of k-factorization.

(Lx) and the NLx BFKL kernels [2] respec-

tively, HR(HL) are operator factors introduced

in [4] and

αs =
αsNc

π
, αs =

g2Γ(1 − ε)µ2ε

(4π)1+ε
,

is the dimensionless strong coupling constant.

As explained in [4], the identification of

the second order impact factors, h
(1)
a and h

(1)
b ,

is affected by a double factorization scheme

ambiguity, due to both the choice of the scale

s0 and of the kernels HR(HL). The latter were

introduced by Ciafaloni and Colferai (CC) in [4]

so as to provide partonic impact factors free of

double log collinear divergences for the factor-

ized scale choice s0 = k1k2. It was also shown that the left-over single logarithmic

divergences could be factorized by the usual DGLAP approach. A different factoriza-

tion scheme, allowing double logarithmic divergences, was used instead in [5], where

an integral representation for the massive quark impact factor was presented also.

In this paper we extend the CC scheme to the massive quark case, by showing

that the gluonic Green’s function stays the same and that the collinear divergences

of the massive impact factor stay single logarithmic too. Although the use of the H

2



kernels is optional for colourless sources [6], for which they can be incorporated in

the impact factors, we think that they help in stabilizing the collinear behaviour of

the gluonic Green’s function, as already noticed in [3].

In the following we use the notation p1, p2 (λ1, λ2) for the initial parton’s mo-

menta (helicities) and the indices 3, 4 (possibly 5) for the final ones, with the Sudakov

parametrization

k1 = p1 − p3 = z1p̄1 −
k2

1

(1 − z1)s
p̄2 + k1⊥ ,

k2 = p2 − p4 = − k2
2

(1 − z2)s
p̄1 + z2p̄2 + k2⊥ ,

where we have introduced Sudakov variables zi and transverse spacelike vectors ki⊥

perpendicular to the plane of the initial particle momenta light-cone basis 〈p̄1, p̄2〉

p1 = p̄1 +
m2

1

s
p̄2 , p2 = p̄2 +

m2
2

s
p̄1 ,

p̄i ·kj⊥ = 0, p̄2
i = 0, p2

i = m2
i , with D − 2 Euclidean components ki : k2

i = −k2
i⊥ > 0.

We also define q = k1 + k2 as the transverse momentum of parton 5. For simplicity,

we use in the sequel q = |q|, ki = |ki| and we consider parton b as massless, m2 = 0,

m1 = m.

3. Factorization scheme and calculational procedure

Let’s consider first the high-energy scat-

p1

p2

p3

p4

p5=q

k2

Figure 2: Real gluon emission in the

fragmentation region of quark a.

tering of two partons a and b where a = q is a

heavy quark of mass m with real emission of

an extra gluon g that we assume in the heavy

quark fragmentation region (Fig. 2). In terms

of invariants, we work in the kinematical re-

gion s2 = (q + p4)
2 ≃ z1s ≫ s1 = (p3 + q)2 ≃

q2/z1, so that z1 > q/
√
s is the fragmentation

phase space boundary. The Born differential

cross section in this high energy region can

be calculated in a straightforward way (e.g.,

by eikonal coupling to the incoming parton b),
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and results to be

dσqgb

dz1 d[k1] d[k2]
= Aε h

(0)
b (k2)

× 1

Nc

[

CF

(

Pgq(z1, ε)
z2
1

[q2 +m2z2
1 ] [(q − z1k2)2 +m2z2

1 ]

− m2

k2
2

z3
1(1 − z1) [(2q − z1k2)·k2]

2

[q2 +m2z2
1 ]

2
[(q − z1k2)2 +m2z2

1 ]
2

)

+Nc

(

Pgq(z1, ε)
(1 − z1) [q ·(q − z1k2) +m2z2

1 ]
[

k2
1 +m2z2

1

]

[q2 +m2z2
1 ] [(q − z1k2)2 +m2z2

1 ]

− m2

k2
2

z1(1 − z1)
2k2 ·(2q − k2)

[

k2 ·(2q − k2) − z1k
2
2

]

[

k2
1 +m2z2

1

]2
[q2 +m2z2

1 ] [(q − z1k2)2 +m2z2
1 ]

)]

, (3.1)

where

Pgq(z1, ε) =
1

2z1

[

1 + (1 − z1)
2 + εz2

1

]

, (3.2)

is related to the quark to gluon splitting function,

h(0)(k) =

√

π

N2
c − 1

2CFαsNε

k2 µ2ε
, Nε =

(4π)ε/2

Γ(1 − ε)
, (3.3)

is the leading order impact factor, being the same for quarks and gluons, µ is the

renormalization scale, and

Aε = k2 h(0)(k)
αs

Γ(1 − ε)µ2ε
, (3.4)

is a constant that contains the dependence on the strong coupling constant and some

colour factors.

Though complicated at first sight, eq.(3.1) has some simple features that we now

comment upon. First of all, only the Nc part is really relevant to our purposes, the

CF part being canceled with virtual correction upon z1 and k1 integration (see the

following). We consider

dσqgb

dz1 d[k1] d[k2]

∣

∣

∣

∣

Nc

= Aε h
(0)
b (k2)

×
[

Pgq(z1, ε)
(1 − z1) [q ·(q − z1k2) +m2z2

1 ]
[

k2
1 +m2z2

1

]

[q2 +m2z2
1 ] [(q − z1k2)2 +m2z2

1 ]

− m2

k2
2

z1(1 − z1)
2k2 ·(2q − k2)

[

k2 ·(2q − k2) − z1k
2
2

]

[

k2
1 +m2z2

1

]2
[q2 +m2z2

1 ] [(q − z1k2)2 +m2z2
1 ]

]

, (3.5)

The latter expression reduces, as expected to the known [4] result for m → 0, and

matches the Lx differential cross section

dσ
(L)
qgb

dz1 d[k1] d[k2]
= h(0)

q (k1) h
(0)
b (k2)

αs

q2Γ(1 − ε)µ2ε

1

z1
, (3.6)
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in the limit z1 → 0. However, for eq.(3.6) to be a good approximation to eq.(3.5),

we should require

z1 ≪ q/k1 , z1 ≪ q/m , z1 ≪ k1/m . (3.7)

The first two cutoffs can be summarized by z1 < q/Max(k1, m), which is a coherence

condition for the case of heavy quarks, saying that the rapidity of the gluon cannot

exceed that of the final quark. By integrating the leading expression (3.6) with the

constraints (3.7) in the fragmentation region z1 > q/
√
s, we obtain

1

h
(0)
b (k2)

dσ
(L)
qgb

d[k1] d[k2]
=

αsh
(0)
q (k1)

q2Γ(1 − ε)µ2ε

(

log

√
s

Max(k1, m)
− log

q

k1
Θqk1

)

. (3.8)

This expression is an estimate of the leading contribution contained in the complete

result eq.(3.1), which should be subtracted out in order to yield the impact factor in

the massive quark case.

Compared to the subtraction (or factorization) scheme adopted in [4] for m = 0,

the expression (3.8) differs by the replacement k1 → Max(k1, m), which leads, by

adding the symmetrical fragmentation region, to the choice for the factorized scale

in eq.(2.1)

s0 = Max(k1, m1)Max(k2, m2) , (3.9)

m1 being the mass of quark a and m2 the mass of quark b.

By considering now both real and virtual contributions to the fragmentation

function Fq(z1,k1,k2), we are led to introduce the following definition of the impact

factor h
(1)
q (k):

∫ 1

q/
√

s

dz1

∫

d[k1]Fq(z1,k1,k2)

=

∫

d[k1]αs h
(0)
q (k1)K0(k1,k2)

(

log

√
s

Max(k1, m)
− log

q

k1
Θqk1

)

+ h(1)
q (k2) ,

(3.10)

where

αsK0(k1,k2) =
αs

q2Γ(1 − ε)µ2ε
+ 2ω(1)(k2

1)δ[q] , δ[q] = π1+εδ2+2ε(q) ,

(3.11)

is the leading kernel, with

ω(1)(k2) = −g
2Nck

2

(4π)2+ε

∫

d[p]

p2(k − p)2
= −αs

2ε

Γ2(1 + ε)

Γ(1 + 2ε)

(

k2

µ2

)ε

, (3.12)
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the gluon Regge trajectory. Eq.(3.10) reduces for m = 0, to the definition adopted in

Ref. [4], and in particular contains the subtraction term log q/k1Θqk1
which provides

the expression (HR = H†
L = H)

H(k1,k2) = − 1

q2Γ(1 − ε)µ2ε
log

q

k1

Θqk1
, (3.13)

for the H kernel in the k-factorization formula.

In order to simplify our subsequent calculations, we shall then use the known

result [4] for m = 0

h
(1)
q,m=0(k2) = h(0)

q (k2)ω
(1)(k2

2)

[(

11

6
− nf

3Nc

)

+

(

3

2
− 1

2
ε

)

−
(

67

18
− π2

6
− 5nf

9Nc

)

ε

]

, (3.14)

and we shall explicitly compute only the difference for a non vanishing mass. For

this reason, we write the fragmentation vertex for a heavy quark as the massless

fragmentation vertex plus an extra quark mass dependent contribution that cancels

out for m = 0

Fq(z1,k1,k2) = Fm=0
q (z1,k1,k2) + ∆Fq(z1,k1,k2) . (3.15)

Then, we find the following relationship between the massless quark impact factor

and the heavy quark impact factor

h(1)
q (k2) = h

(1)
q,m=0(k2) +

∫ 1

0

dz1

∫

d[k1]∆Fq(z1,k1,k2)

+

∫

d[k1]αs h
(0)
q (k1)K0(k1,k2) log

m

k1
Θm k1

. (3.16)

The most complicated integral that remains in the r.h.s. of eq.(3.16) is the one for

∆Fq which will be calculated through its Mellin transform in k2. Notice also that

the integration limits in z1 have been extended down to z1 = 0. Since ∆Fq is regular

at z1 = 0 this change introduces only a negligible error of order 1/s.

4. Mellin transform and its inverse

In order to perform the calculation outlined in eq.(3.16), we proceed in two steps.

First, we perform analytically the k1 integration of eq.(3.1) by reducing the k1-

integrals to two denominators, as explained in detail in Appendix A. Then, we

consider the virtual contributions [7] quoted in Appendix B, and we organize them

in terms of momentum fraction integrals only. Finally, summing up real and virtual

6



contributions to the fragmentation vertex (see eq.(A.6) and eq.(B.6) at the appen-

dices) (helicity non conserving not included) we obtain the following expression for

the difference ∆Fq(k2), arising from the second term in the r.h.s. of eq.(3.16)

∆Fq(k2) = ∆Fq,real(k2) + ∆Fq,virt(k2) = Aε

[

Γ(−ε)
2(1 + 2ε)

(m2)ε

k2
2

+
Γ(1 − ε)

2

{
∫ 1

0

∫ 1

0

dz1 dx

(

1 − z1
z1

+
1 + ε

2
z1

)

×
[

1
[

x(1 − x)k2
2 +m2z2

1

]1−ε − 1
[

x(1 − x)k2
2

]1−ε

]

+
2m2

k2
2

∫ 1

0

∫ 1

0

z1(1 − z1) dz1 dx
[

x(1 − x)k2
2 +m2z2

1

]1−ε

}

]

, (4.1)

where in ∆Γ
(+)
qq (k2), eq.(B.5) of Appendix B, the integration variable x has been

identified with z1 to simplify the sum. Note again that, because of the subtraction

of the m = 0 part, the z1-integrals are convergent at z1 = 0.

4.1 Mellin integrals

To perform the last integrations in eq.(4.1) we first calculate its Mellin transform

∆F̃q(γ) = Γ(1 + ε) (m2)−ε

∫

d[k2]

(

k2
2

m2

)γ−1

∆Fq(k2) ,

yielding

∆F̃q(γ) = Aε (m2)εΓ(γ + ε)Γ(1 − γ − 2ε)Γ2(1 − γ − ε)

8Γ(2 − 2γ − 2ε)

×
[

1 + ε

γ + 2ε
+

2

1 − 2γ − 4ε

(

1

1 − γ − 2ε
− 1

3 − 2γ − 2ε

) ]

. (4.2)

Although this Mellin transform is finite for ε → 0 the limit ε = 0 cannot be taken

in this expression. In fact, it is straightforward, though not trivial, to show that the

r.h.s. of eq.(4.1) behaves as

∆Fq(k2) ≃
k2≪m

(k2
2)

ε−1 , ∆Fq(k2) ≃
k2≫m

(k2
2)

−1(m2)ε . (4.3)

Therefore, the Mellin transform converges only in the small band 1−2ε < Reγ < 1−ε
and the ε dependence should be kept until the end.

To recover ∆Fq(k2) we should calculate the following inverse Mellin transform

∆Fq(k2) =
1

m2

∫

1−2ε<Reγ<1−ε

dγ

2πi

(

k2
2

m2

)−γ−ε

∆F̃q(γ) .

7



We consider first the limit k2
2 > m2. Then, we displace the integration contour

around the positive real semiaxis, enclosing all the poles placed in γ ≥ 1 − ε, the

smaller one giving the smaller power in m/k2. The first pole, at γ = 1− ε, yields the

following result

∆Fq(k2) = αs h
(0)
q (k2)

{

− 2 + 3ε+ 2ε2

4ε2(1 + 2ε)

(

m2

µ2

)ε

+ O(m/k2)

}

. (4.4)

For k2
2 < m2 we displace the integration contour around the negative real semiaxis,

enclosing all the poles placed in γ ≤ 1 − 2ε. As before, the first pole, at γ = 1 − 2ε,

gives the answer at order O(k2/m)

∆Fq(k2) = h(0)
q (k2)

{

ω(1)(k2
2)

[

− 1 + 5ε− 2ε2

2(1 + 2ε)
− log

(

k2
2

m2

)

+ ψ(1 − ε) − ψ(1) − 2ψ(ε) + 2ψ(2ε)

]

+ O(k2/m)

}

. (4.5)

Since ω(1) ∼ 1/ε is infrared singular (cf. eq.(3.12)), both formulas show double

logarithmic singularities of type 1/ε2 and 1/ε log(k2
2/m

2).

The last ingredient we need in order to extract the next-to-leading quark impact

factor is the last term in the r.h.s. of eq.(3.16). For the real emission contribution

to K0 we get the integral

Im =

∫

d[k1]
αsh

(0)
q (k1)

q2Γ(1 − ε)µ2ε
log

m

k1
Θm k1

. (4.6)

We use the following representation

log
a

b
Θab = lim

α→0+

∫ +i∞

−i∞

dλ

2πi

1

(λ+ α)2

(a

b

)λ

≡
∫

d[λ]
(a

b

)λ

,

valid for a, b > 0, which allows us to write

Im =
Aε

2

∫

d[λ] (m2)λ

∫

d[k1]

q2 (k2
1)

1+λ

=
Aε

2

∫

d[λ]
Γ(1 + λ− ε)Γ(ε)Γ(ε− λ)

Γ(1 + λ)Γ(2ε− λ)
(m2)λ(k2

2)
−1−λ+ε . (4.7)

The integrand vanishes for |λ| → ∞ in all directions apart from the real axis. As

before, we consider first the case k2
2 > m2 and displace the integration contour around

the positive real semiaxis enclosing all the poles placed in λ > 0. The smaller pole,

at λ = ε, gives us the result at order O(m/k2)

Im = αs h
(0)
q (k2)

{

1

2ε2Γ(1 − ε)Γ(1 + ε)

(

m2

µ2

)ε

+ O(m/k2)

}

. (4.8)
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On the other hand, for k2
2 < m2, we consider the poles placed at the negative real

semiaxis and therefore the residue at λ = −α with α → 0+. By taking into account

also the virtual contribution to K0 in this case, we obtain

Im − h(0)
q (k2)ω

(1)(k2
2) log

(

k2
2

m2

)

= h(0)
q (k2)

{

ω(1)(k2
2)

[

log

(

k2
2

m2

)

+ 2 [ψ(1) − ψ(1 − ε) + ψ(ε) − ψ(2ε)]

]

+ O(k2/m)

}

. (4.9)

Eq.(4.8) and eq.(4.9) show double log singularities also.

4.2 Impact factors

Finally, summing up all the pieces according to eq.(3.16), the impact factor for heavy

quarks at the next-to-leading level can be written as

hq(k2) = h(0)
q (k2) + h(1)

q (k2) , (4.10)

where

h(1)
q (k2) = h

(1)
q,m=0(k2) + h(0)

q (k2)

×
{

ω(1)(m2)
Γ(1 + 2ε)

εΓ2(1 + ε)

[

2 + 3ε+ 2ε2

2(1 + 2ε)
− 1

Γ(1 − ε)Γ(1 + ε)

]

+ O(m/k2)

}

,

(4.11)

is valid in the limit k2
2 > m2, and

h(1)
q (k2) = h

(1)
q,m=0(k2) + h(0)

q (k2)

×
{

ω(1)(k2
2)

[

ψ(1) − ψ(1 − ε) − 1 + 5ε− 2ε2

2(1 + 2ε)

]

+ O(k2/m)

}

, (4.12)

is valid for k2
2 < m2.

We notice, in the first place, that all double log contributions of type 1/ε2

and 1/ε log(k2
2/m

2) appearing in eqs. (4.4-4.5) and (4.8-4.9) have canceled out in

eqs. (4.11) and (4.12). This means that indeed our subtraction of the leading kernel

was effective, thus lending credit to the scale (3.9) and to the H-kernel (3.13).

The remaining singularities of the impact factor are single logarithmic ones ∼ 1/ε,

having the structure

h(1)
q (k2)

∣

∣

sing
= h(0)

q (k2)

(

3

2
ω(1)(k2

2) −
1

2
ω(1)(m2)Θk2 m − 1

2
ω(1)(k2

2)Θm k2

)

.

(4.13)

Here the first term has the customary collinear interpretation [4], as coming from

the finite part of the q → g anomalous dimension

γgq −
CFαs

πω
= −CFαs

2π

(

3

2
− 1

2
ε

)

, (4.14)
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while the remaining ones – depending on the scale Min(k2, m) – do not have such

interpretation. Note, however, that a finite mass scale change m→ cm, will produce

exactly this type of contributions from the singular integration of the K0 kernel

in eq.(3.10) acting on h
(0)
q (k1) over the region 0 < k1 < Min(k2, m), leading to the

expression

δh(1)
a (k2) = h(0)

q (k2) a(c)

[

ω(1)(m2)Θk2 m + ω(1)(k2
2)Θm k2

]

. (4.15)

Therefore, the singularities (4.13) can finally be interpreted in the form

h(1)
q (k2)

∣

∣

sing
= h(0)

q (k2)
3

2

[

ω(1)(k2
2) − ω(1)(m2)

]

Θk2 m + δh
(1)
1 (k2)

= h(0)
q (k2)

αsNc

2π

(

−3

2
log

k2
2

m2

)

Θk2 m + δh
(1)
1 (k2) , (4.16)

meaning that h
(1)
q is actually finite, with the log(k2

2/m
2) dependence predicted by

the DGLAP equations, apart from a proper mass scale change in eq.(3.13). In other

words, the scale leading to a finite massive quark impact factor differs from eq.(3.9)

by a finite renormalization of the quark mass, which is a normal ambiguity in this

type of problems.

Our final result for the heavy quark impact factor at the next-to-leading level

reads

hq(k2) = h(1)
q (k2)

∣

∣

sing
+ hq(k2)|finite , (4.17)

where the singular piece is defined in eq.(4.16) and

hq(k2)|finite = h(0)
q (αs(k2))

×
{

1 +
αsNc

2π

[

K − π2

6
−

(

3

2
+

∑

Reγ>1

Res[h̃(γ)]

)

Θk2 m

+

(

2 +
∑

Reγ<1

Res[h̃(γ)]

)

Θm k2

]}

, (4.18)

is the finite contribution to the heavy quark impact factor, with

K =
67

18
− π2

6
− 5nf

9Nc
, (4.19)

the constant term of the impact factor for massless quarks, eq.(3.14), and

h̃(γ) =

(

k2
2

m2

)1−γ {

Γ(γ)Γ3(1 − γ)

4Γ(2 − 2γ)

[

1

γ
+

2

1 − 2γ

(

1

1 − γ
− 1

3 − 2γ

) ]

− 1

(1 − γ)2
[ψ(1 − γ) + ψ(γ) − 2ψ(1)]

}

. (4.20)
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The compact expression (4.20) was obtained by adding to the Mellin transform (4.2)

the contribution of eq.(4.7), with λ → −1 + γ + 2ε, and the Mellin transform of

the virtual piece of the last term at the r.h.s of eq.(3.16). The sum of these three

terms, apart from γ = 1 − ε, 1 − 2ε, whose contributions have already been treated

separately, is finite and therefore was expanded for ε→ 0. As for the massless case,

the singularities proportional to (11/6 − nf/3Nc), the beta function, were absorbed

by the running strong coupling constant αs(k2). The function h̃(γ) provides the

corrections of order O(m/k2) and O(k2/m) to the impact factor for m2 < k2
2 and

m2 > k2
2 respectively, yielding the following final result

∑

Reγ>1

Res[h̃(γ)] = Li2

(

m2

k2
2

)

+
∞

∑

n=1

Γ(2n+ 2)

Γ2(n+ 1)

(

−m
2

k2
2

)n

×
{

1

n2
− 1

2(n+ 1)2
− 1

2(2n− 1)2
− 6

(2n+ 1)3
− 3

2(2n+ 1)2

+

(

2

n
− 1

n + 1
− 1

2(2n− 1)
− 3

(2n+ 1)2
− 3

2(2n+ 1)

)

×
(

ψ(n+ 1) − ψ(2n+ 2) − 1

2
log

m2

k2
2

)}

, (4.21)

and

∑

Reγ<1

Res[h̃(γ)] = Li2

(

k2
2

m2

)

− 3π2

8

√

k2
2

m2
+

k2
2

m2

(

5

6
− 1

4
log

k2
2

m2

)

+
∞

∑

n=1

Γ2(n+ 1)

Γ(2n+ 2)

(

− k2
2

m2

)n+1 (

1

n
+

2

n + 1
− 3

2n+ 1
− 1

2n+ 3

)

. (4.22)

5. Conclusions

Starting from the explicit squared matrix element for gluon emission in eq.(3.1) we

have motivated the subtraction of the leading term in eq.(3.8), and we have performed

the k1 and z1 integrals needed to provide an explicit result for the heavy quark impact

factor in eq.(4.16) and eq.(4.18).

Even if the cross section being investigated is unphysical, the relevance of our

results stems from the consistency of the following features: (i) the validity of the

k-factorization formula (2.1) with scale s0 = Max(k1, m1)Max(k2, m2); (ii) the ex-

plicit expression of the impact factor with factorizable single logarithmic collinear

divergences, and (iii) the probe-independence of the subleading H-kernels of the CC

scheme [4], defined in eq.(3.13).

Even if such universal extra kernels can be reabsorbed in the impact factors for

colourless sources [6], they help clarifying the structure of the collinear limits for

two-scale processes as elaborated at length by CCS [1]. Here, it was shown that the

11



gluonic Green’s function including such kernels, is free of double logs of collinear type

for both k1 ≫ k2 and k2 ≫ k1. As a consequence, even colourless impact factors

will show, in the present scheme, simple collinear properties, as expected from their

DGLAP analysis [8].

Of course, the real problem is to provide an explicit expression for the DIS

impact factors. But – if the lesson learned form the L and NL kernels is still valid

– the impact factor’s magnitude is not expected to be much different from their

approximate collinear evaluation.
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A. Real contribution to the fragmentation vertex

The differential cross section for real gluon emission off a heavy quark, eq.(3.1), can

be simplified by using identities of the following type

z3
1(1 − z1) [(2q − z1k2)·k2]

2

[q2 +m2z2
1 ]

2
[(q − z1k2)2 +m2z2

1 ]
2 = z1(1 − z1)

{

1

[q2 +m2z2
1 ]

2

+
1

[(q − z1k2)2 +m2z2
1 ]

2 − 2

[q2 +m2z2
1 ] [(q − z1k2)2 +m2z2

1 ]

}

, (A.1)

to split the full expression into several contributions with at most two different prop-

agators free of q dependences at the numerator. After some algebra, we obtain the

following expression for the real contribution to the fragmentation vertex of quark q

Fq,real(z1,k1,k2) = Aε

{

− z1(1 − z1)
m2

k2
2

[

CF

Nc

(

1

[q2 +m2z2
1 ]

2

+
1

[(q − z1k2)2 +m2z2
1 ]

2

)

+
1

[

k2
1 +m2z2

1

]2

]

+

(

CF

Nc

− 1

2

)

z2
1Pgq(z1, ε) + 2z1(1 − z1)(m

2/k2
2)

[q2 +m2z2
1 ] [(q − z1k2)2 +m2z2

1 ]

+
Pgq(z1, ε) + 2z1(1 − z1)(m

2/k2
2)

2
[

k2
1 +m2z2

1

]

[q2 +m2z2
1 ]

+
(1 − z1)

2Pgq(z1, ε) + 2z1(1 − z1)(m
2/k2

2)

2
[

k2
1 +m2z2

1

]

[(q − z1k2)2 +m2z2
1 ]

}

. (A.2)
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According to eq.(3.10), this expression has to be integrated first in k1 and then in

z1, for z1 > q/
√
s. To perform the first integration we use

∫

d[k1]
[

k2
1 +m2z2

1

]α
[(k1 + p)2 +m2z2

1 ]
β

=

Γ(α+ β − 1 − ε)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1 − x)β−1

[x(1 − x)p2 +m2z2
1 ]

α+β−1−ε
, (A.3)

then, we obtain

Fq,real(z1,k2) =

∫

d[k1]Fq,real(z1,k1,k2)

= AεΓ(1 − ε)

{

−
(

2CF

Nc

+ 1

)

z−1+2ε
1 (1 − z1)

(m2)ε

k2
2

+

∫ 1

0

dx

[ (

CF

Nc
− 1

2

)

z2ε
1 Pgq(z1, ε) + 2z−1+2ε

1 (1 − z1)(m
2/k2

2)
[

x(1 − x)k2
2 +m2

]1−ε

+
Pgq(z1, ε) + 2z1(1 − z1)(m

2/k2
2)

2
[

x(1 − x)k2
2 +m2z2

1

]1−ε

+
(1 − z1)

2Pgq(z1, ε) + 2z1(1 − z1)(m
2/k2

2)

2
[

x(1 − x)(1 − z1)2k2
2 +m2z2

1

]1−ε

]}

. (A.4)

By subtracting the massless contribution

∆Fq,real(z1,k2) = Fq,real(z1,k2) − Fm=0
q,real(z1,k2) , (A.5)

we get an expression that is regular at z1 = 0 and therefore can be integrated down
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to z1 = 0 without changing the final result. Let’s define

∆Fq,real(k2) =

∫ 1

0

dz1 ∆Fq,real(z1,k2)

= Aε

[

(

CF

Nc
+

1

2

)

Γ(−ε)
1 + 2ε

(m2)ε

k2
2

−
(

CF

Nc
− 1

2

)

Γ(−ε)
2

{ (

1

1 + 2ε
+
ε

2

)

×
∫ 1

0

dx

[

1
[

x(1 − x)k2
2 +m2

]1−ε − 1
[

x(1 − x)k2
2

]1−ε

]

+
2(m2/k2

2)

1 + 2ε

∫ 1

0

dx
[

x(1 − x)k2
2 +m2

]1−ε

}

+
Γ(1 − ε)

2

{
∫ 1

0

∫ 1

0

dz1 dx

(

1 − z1
z1

+
1 + ε

2
z1

)

×
[

1
[

x(1 − x)k2
2 +m2z2

1

]1−ε − 1
[

x(1 − x)k2
2

]1−ε

+
(1 − z1)

2

[

x(1 − x)(1 − z1)2k2
2 +m2z2

1

]1−ε − (1 − z1)
2

[

x(1 − x)(1 − z1)2k2
2

]1−ε

]

+
2m2

k2
2

∫ 1

0

∫ 1

0

z1(1 − z1) dz1 dx

[

1
[

x(1 − x)k2
2 +m2z2

1

]1−ε

+
1

[

x(1 − x)(1 − z1)2k2
2 +m2z2

1

]1−ε

]}

]

. (A.6)

Notice that some of the integrations has been kept undone. This long expression,

although cumbersome, will be drastically simplified after adding the virtual contri-

bution before doing any further integration.

B. Virtual contribution to the fragmentation vertex

The correction to the cross section due to virtual emission, including subleading

effects, for general parton-parton scattering, can be extracted from the amplitude of

Ref. [7] (t = −k2
1)

Mab = 2sg2(tc
at

c
b)

[

δλ3,λ1

(

1 + Γ(+)
aa

)

+ δλ3,−λ1
Γ(−)

aa

]1

t

[

1 + ω(−t) log
s

−t

]

×
[(

1 + Γ
(+)
bb

)

δλ4,λ2
+ Γ

(−)
bb δλ4,−λ2

]

, (B.1)

were Γ(+) and Γ(−) are the helicity conserving and the helicity non-conserving con-

tributions respectively. At the order we are working, the virtual terms contribute to
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the fragmentation vertex as follows

Fq,virt(z1,k1,k2) = h(0)
q (k1) 2Γ(+)

qq (k1)δ(1 − z1)δ[q] . (B.2)

As for real emission, we split Γ
(+)
qq into a massless contribution plus a quark mass

dependent extra term

Γ(+)
qq = Γ

(+)
qq,m=0 + ∆Γ(+)

qq , (B.3)

where ∆Γ
(+)
qq cancels for m = 0, being

Γ
(+)
qq,m=0(k) =

ω(1)(k2)

2

{

ψ(1 − ε) − 2ψ(ε) + ψ(1)

+
1

1 + 2ε

(

1

4(3 + 2ε)
− 2

ε
− 7

4
− nf

Nc

1 + ε

3 + 2ε

)

− 1

2

+
2

ε

CF

Nc

(

1

1 + 2ε
+
ε

2

) }

, (B.4)

and

∆Γ(+)
qq (k) =

αs

4Γ(1 − ε)µ2ε

[

Γ(−ε)
(

CF

Nc

− 1

2

) {(

1

1 + 2ε
+
ε

2

)

×
∫ 1

0

dx

[

1
[

x(1 − x)k2 +m2
]1−ε − 1

[

x(1 − x)k2
]1−ε

]

+
2(m2/k2)

1 + 2ε

∫ 1

0

dx
[

x(1 − x)k2 +m2
]1−ε

}

− CF

Nc

2Γ(−ε)
1 + 2ε

(m2)ε

k2

− Γ(1 − ε)

{
∫ 1

0

∫ 1

0

dx dy(1 − x)2

(

1 − x

x
+

1 + ε

2
x

)

×
[

1
[

y(1 − y)(1 − x)2k2 +m2x2
]1−ε − 1

[

y(1 − y)(1 − x)2k2
]1−ε

]

+
2m2

k2

∫ 1

0

∫ 1

0

x(1 − x)dx dy
[

y(1 − y)(1 − x)2k2 +m2x2
]1−ε

}

]

. (B.5)

We define

∆Fq,virt(k2) =

∫ 1

0

dz1

∫

d[k1]∆Fq,virt(z1,k1,k2)

= h(0)
q (k2) 2∆Γ(+)

qq (k2) . (B.6)

Adding up together the real, eq.(A.6), and the virtual, eq.(B.6), contributions to

∆Fq(k2) most of the terms cancel. To see this cancellation it is enough to identify

the integration variable x appearing in ∆Γ
(+)
qq (k2), eq.(B.5), with the momentum

fraction z1 appearing in eq.(A.6). In particular, the CF contribution fully cancels

and the Nc part gives the the simplified result presented in eq.(4.1).

15



References

[1] G.P. Salam, JHEP 9807(1998)019, hep-ph/9806482; M. Ciafaloni and D. Colferai,

Phys. Lett. B 452 (1999) 372, hep-ph/9812366; M. Ciafaloni, D. Colferai and G.P.

Salam, Phys. Rev. D 60 (1999) 114036, hep-ph/9905566.

[2] V.S. Fadin and L.N. Lipatov, Phys. Lett. B 429 (1998) 127, hep-ph/9802290; M.

Ciafaloni and G. Camici, Phys. Lett. B 430 (1998) 249, hep-ph/9803389.

[3] M. Ciafaloni, Phys. Lett. B 429 (1998) 363, hep-ph/9801322.

[4] M. Ciafaloni and D. Colferai, Nucl. Phys. B 538 (1999) 187, hep-ph/9806350.

[5] V.S. Fadin, R. Fiore, M.I. Kotsky and A. Papa, hep-ph/9908265.

[6] V.S. Fadin and A.D. Martin, Phys. Rev. D 60 (1999) 114008, hep-ph/9904505.

[7] V.S. Fadin and L.N. Lipatov, Nucl. Phys. B 406 (1993) 259; V.S. Fadin, R. Fiore

and A. Quartarolo, Phys. Rev. D 50 (1994) 2265; Phys Rev. D 50 (1994) 5893; V.S.

Fadin, R. Fiore and M.I. Kotsky, Phys. Lett. B 359 (1995) 181; B 387 (1996) 593;

B 389 (1996) 737.

[8] M. Taiuti, University of Florence Thesis (February 2000), unpublished.

16

http://arXiv.org/abs/hep-ph/9806482
http://arXiv.org/abs/hep-ph/9812366
http://arXiv.org/abs/hep-ph/9905566
http://arXiv.org/abs/hep-ph/9802290
http://arXiv.org/abs/hep-ph/9803389
http://arXiv.org/abs/hep-ph/9801322
http://arXiv.org/abs/hep-ph/9806350
http://arXiv.org/abs/hep-ph/9908265
http://arXiv.org/abs/hep-ph/9904505

