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Abstract. Virtual corrections for electron–positron annihilation into one real and one off-shell photon of
invariant mass Q2 are evaluated. Special attention is paid to those configurations where the real photon is
collinear with the beam direction. This calculation is an important ingredient of a Monte Carlo program,
which simulates events with tagged photons from initial-state radiation, including NLO corrections.

1 Introduction

The total cross section for electron–positron annihilation
into hadrons is one of the fundamental observables in par-
ticle physics. Its high energy behaviour provides one of the
first and still most convincing arguments for the point-
like nature of quarks. Its normalization was evidence for
the existence of quarks of three different colours, and the
recent, precise measurements even allow for an excellent
determination of the strong coupling at very high [1] and
intermediate energies (e.g. [2] and refs. therein) through
the influence of QCD corrections.

Weighted integrals over the cross section with prop-
erly chosen kernels are, furthermore, a decisive input for
electroweak precision tests. This applies, for example, to
the electromagnetic coupling at higher energies or to the
anomalous magnetic moment of the muon.

Of particular importance for these two applications is
the low energy region, say from threshold up to centre-of-
mass (cms) energies of approximately 3 GeV and 10 GeV,
respectively. Recent measurements based on energy scans
between 2 and 5 GeV have improved the accuracy in part
of this range. However, similar, or even further improve-
ments below 2 GeV would be highly welcome. The region
between 1.4 GeV and 2 GeV, in particular, is poorly stud-
ied and no collider will cover this region in the near future.
Improvements or even an independent cross-check of the
precise measurements of the pion form factor in the low en-
ergy region by the CMD2 and DM2 collaborations would
be extremely useful, since this dominates in the analysis
of the muon anomalous magnetic moment.
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b Supported in part by E.U. TMR grant HPMF-CT-2000-

00989; e-mail: german.rodrigo@cern.ch

Experiments at present electron–positron colliders op-
erate mostly at fixed energies, albeit with enormous lumi-
nosity, with BaBar and BELLE at 10.6 GeV and KLOE
at 1.02 GeV as most prominent examples.

This peculiar feature allows the use of the radiative
return, i.e. the reaction

e+(p1) + e−(p2) → γ(k) + γ∗(Q)(→ hadrons) , (1)

to explore a wide range of Q2 in a single experiment [3,4,
5,6,7,8,9].

Nominally masses of the hadronic system between 2mπ

and the cms energy of the experiment are accessible. In
practice it is useful to consider only events with a hard
photon — tagged or untagged — to clearly identify the
reaction, which lowers the energy significantly.

The study of events with photons emitted under both
large and small angles, and thus at a significantly en-
hanced rate, is particularly attractive for the π+π− final
state with its clear signature, an investigation performed
at present at DAΦNE [10,11,12]. Events with a tagged
photon, emitted under a large angle with respect to the
beam, have a clear signature and are thus particularly
suited to the analysis of hadronic final states of higher
multiplicity [13].

The inclusion of radiative corrections is essential for
the precise extraction of the cross section, which is neces-
sarily based on a Monte Carlo simulation. A first program,
called EVA, was constructed some time ago [3]. It includes
initial-state radiation (ISR), final-state radiation (FSR),
their interference, and the dominant radiative corrections
from additional collinear radiation through structure func-
tion techniques [14].

The complete NLO corrections have recently been im-
plemented in a program called PHOKHARA [15]. Both
programs, however, were designed to simulate reactions

http://arxiv.org/abs/hep-ph/0204283v1
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with tagged photons, i.e. at least one photon was required
to be emitted under large angles.

An important ingredient in the extension of the NLO
Monte Carlo program PHOKHARA to small photon an-
gles is the evaluation of the virtual corrections to the re-
action (1) in the limit m2

e/s ≪ 1, which are equally valid
for large and small angles. Compact results for the one-
loop two-, three- and four-point functions that enter this
calculation can be found in the literature [16,17] for arbi-
trary values of m2

e/s. However, the combination of these
analytical expressions with the relevant coefficients is nu-
merically unstable in the limit of small mass and angles. A
compact, numerically stable result, valid for an arbitrar-
ily small photon angle, is therefore required. As a conse-
quence of the highly singular kinematic coefficients, terms
proportional to m2

e and even m4
e must be kept in the ex-

pansion, which after angular integration will contribute to
the total cross section even in the limit m2

e/s → 0.
The present paper extends the analysis of Ref. [18]

where the corrections from virtual and soft photons were
presented for the case of large angles. In section 2 we re-
call the basic definitions and describe the systematic pro-
cedure used in the expansion of the results for small m2

e/s
and small angles simultaneously. The analytic results for
real and imaginary parts of the leptonic tensor, expressed
in an angular momentum basis, are presented in section 3
and compared with results for related quantities that can
be found in the literature. After summation over the po-
larizations of the virtual photons, our result agrees with
the one of Berends, Burgers and van Neerven [20,21]. The
result of Kuraev, Merenkov and Fadin [22] for the real
part of the tensor, which was obtained for virtual Comp-
ton scattering γ∗ + e− → γ + e− is related to our case
by proper analytic continuation; and indeed after analytic
continuation we find agreement for the real part1. Section
4 contains our summary and the conclusions. The mass-
dependent terms proportional to m2

e and m4
e, expressed in

the Cartesian basis, are given in Appendix A. The scalar
loop integrals needed for the calculation are listed in Ap-
pendix B.

2 The leptonic tensor for the radiative return

Consider the e+e− annihilation process

e+(p1) + e−(p2) →γ∗(Q) + γ(k1) , (2)

where the virtual photon decays into a hadronic final state,
γ∗(Q) → hadrons, and the real one is emitted from the ini-
tial state. The differential rate can be cast into the product
of a leptonic and a hadronic tensor and the corresponding
factorized phase space

dσ =
1

2s
LµνHµνdΦ2(p1, p2; Q, k1)dΦn(Q; q1, ·, qn)

dQ2

2π
,

(3)

1 We disagree, however, with eq.(30) of the translated ver-
sion [23] which contains a missprint.

e-(p2)

e+(p1) γ (k1)

γ*(Q)

M 0 a M 0 b

Fig. 1. Initial-state radiation in the annihilation process
e+e− → γ+ hadrons at the Born level.

e-(p2)

e+(p1) γ (k1)

γ*(Q)

M 1 a M 1 b M 2 a

M 2 b M 3 a M 3 b

M 4 a M 4 b

Fig. 2. One-loop corrections to initial-state radiation in e+e−

annihilation with the emission of a virtual photon.

where dΦn(Q; q1, ·, qn) denotes the hadronic n-body phase
space, including all the statistical factors coming from the
hadronic final state.

For an arbitrary hadronic final state, the matrix ele-
ment for the diagrams in Fig. 1 can be written

M0 = Mµ
0 Jµ ,

where Jµ is the hadronic current and Mµ
0 is the leptonic

current in lowest order. Summing over the polarizations
of the real photon, averaging over the polarizations of
the initial e+e− state, and using current conservation,
QµJµ = 0, the leptonic tensor

Lµν
0 = Mµ

0 Mν+
0

can be written in the following form:

Lµν
0 =

(4πα/s)2

q4

[(

2m2q2(1 − q2)2

y2
1y

2
2

− 2q2 + y2
1 + y2

2

y1y2

)

gµν

+

(

8m2

y2
2

− 4q2

y1y2

)

pµ
1pν

1

s
+

(

8m2

y2
1

− 4q2

y1y2

)

pµ
2pν

2

s

−
(

8m2

y1y2

)

pµ
1pν

2 + pν
1pµ

2

s

]

, (4)
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with

yi =
2k1 · pi

s
, m2 =

m2
e

s
, q2 =

Q2

s
. (5)

It is symmetric under the exchange of the electron and the
positron momenta. Expressing the bilinear products yi by
the photon emission angle in the cms frame

y1,2 =
1 − q2

2
(1 ∓ β cos θ) , β =

√

1 − 4m2 ,

and rewriting the two-body phase space

dΦ2(p1, p2; Q, k1) =
1 − q2

32π2
dΩ , (6)

it is evident that expression (4) contains several singular-
ities: soft singularities for q2 → 1 and collinear singulari-
ties for cos θ → ±1. The former are avoided by requiring
a minimal photon energy. The latter are regulated by the
electron mass.

The physics of the hadronic system, whose description
is model-dependent, enters only through the hadronic ten-
sor

Hµν = JµJν+ , (7)

where the hadronic current has to be parametrized through
form factors. For two charged pions in the final state, the
current

Jµ
2π = ieF2π(Q2) (qπ+ − qπ−)µ , (8)

where qπ+ and qπ− are the momenta of the π+ and π−

respectively, is determined by only one function, the pion
form factor F2π [24]. The hadronic current for four pions
exhibits a more complicated structure and has been dis-
cussed in [5,25,26].

At NLO, the leptonic tensor receives contributions both
from one-loop corrections arising from the insertion of vir-
tual photon lines in the tree diagrams of Fig. 1 and from
the emission of an extra real photon from the initial state.
In this paper, we consider only the emission of soft pho-
tons. The implementation of these results in the program
PHOKHARA and the discussion of their physical conse-
quences will be considered in a separate work [27].

At NLO, the leptonic tensor has the following general
form2:

Lµν =
(4πα/s)2

q4

[

a00 gµν + a11
pµ
1pν

1

s
+ a22

pµ
2pν

2

s

+ a12
pµ
1pν

2 + pµ
2pν

1

s
+ iπ a−1

pµ
1pν

2 − pµ
2pν

1

s

]

. (9)

Terms proportional to Qµ are absent as a consequence of
current conservation. The scalar coefficients aij and a−1

allow the following expansion

aij = a
(0)
ij +

α

π
a
(1)
ij , a−1 =

α

π
a
(1)
−1 . (10)

2 The present convention differs from the one in Ref. [18] by
a factor 1/(y1y2).

The LO coefficients a
(0)
ij can be directly read from eq. (4)

a
(0)
00 =

2m2q2(1 − q2)2

y2
1y

2
2

− 2q2 + y2
1 + y2

2

y1y2
,

a
(0)
11 =

8m2

y2
2

− 4q2

y1y2
, a

(0)
22 = a

(0)
11 (y1 ↔ y2) ,

a
(0)
12 = −8m2

y1y2
. (11)

The imaginary antisymmetric piece proportional to a−1

appears for the first time at NLO. The leptonic tensor
therefore remains fully symmetric only at LO.

As an alternative one can replace the Cartesian basis
(eq. (9)) by a basis derived from the three circular polar-
ization vectors of the virtual photon εL and ε±, defined
through

εµ
L =

2
(

qµqν − gµνq2
)

√

s q2(1 − q2)
k1ν ,

εµ
1 =

2
(

qµqν − gµνq2
)

√
s q2(1 − q2)2β sin θ

,

×
(

(y1 − q2y2)p1ν − (y2 − q2y1)p2ν

)

,

εµ
2 =

2
(

qµqν − gµνq2
)

√
s3 q2(1 − q2)β sin θ

ǫνηρσkη
1pρ

1p
σ
2 ,

εµ
± =

1√
2

(εµ
1 ± iεµ

2 ) , (12)

where ǫνηρσ is the four-dimensional totally antisymmetric
Levi-Civita tensor, ǫ0123 = −1. The leptonic tensor is thus
given by

Lµν =
(4πα/s)2

q4

∑

aij ε∗µ
i εν

j , i, j = L,± . (13)

Only four of the scalar coefficients are independent

aL− = aL+ , a−L = a+L = a∗

L+ ,

a−− = a++ , a−+ = a+− .

The trace of the leptonic tensor

Lµν(qµqν − gµνq2) =
(4πα/s)2

q2
(aLL + 2a++) (14)

is related to the cross section after angular averaging of
the hadronic tensor.

The relations between the components in the Cartesian
and the circular basis read as follows:

aLL = −a00 +
1

4q2(1 − q2)2
[

(y2 − q2y1)
2a11

+ (y1 − q2y2)
2a22 + 2(y1 − q2y2)(y2 − q2y1)a12

]

,

aL+ =
β sin θ

4
√

2q2(1 − q2)

[

(y2 − q2y1)a11 − (y1 − q2y2)a22

+ (1 + q2)(y1 − y2)a12 − iπa−1

]

,

a+− =
β2 sin2 θ

8
(a11 + a22 − 2a12) ,

a++ = a+− − a00 . (15)
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Conversely

a00 = a+− − a++ ,

a11 =
4

(1 − q2)2

[

q2(aLL + a+− − a++) ,

+
2
√

2q2(y1 − q2y2)

(1 − q2)β sin θ
Re(aL+)

+
2(y1 − q2y2)

2

(1 − q2)2β2 sin2 θ
a+−

]

,

a22 = a11(y1 ↔ y2) , a12 =
a11 + a22

2
− 4 a+−

β2 sin2 θ
,

a−1 = − 4
√

2q2

π(1 − q2)β sin θ
Im(aL+) . (16)

The scalar coefficients in the circular basis are given at
LO by

a
(0)
LL =

2q2β2 sin2 θ

y1y2
,

a
(0)
L+ =

√

q2(y1 − y2)β sin θ√
2(1 − q2)y1y2

(

1 + q2 − 2m2(1 − q2)2

y1y2

)

,

a
(0)
+− =

β2 sin2 θ

y1y2

(

−q2 +
m2(1 − q2)2

y1y2

)

,

a
(0)
++ = a

(0)
+− +

2q2 + y2
1 + y2

2

y1y2
− 2m2q2(1 − q2)2

y2
1y

2
2

. (17)

The one-loop matrix elements (Fig. 2) contribute to
the leptonic tensor through their interference with the low-
est order diagrams (Fig. 1). They contain ultraviolet (UV)
and infrared (IR) divergences, which are regularized using
dimensional regularization in D = 4− 2ε dimensions. The
UV divergences are renormalized in the on-shell scheme.
The IR divergences are cancelled by adding the contribu-
tion of an extra soft photon emitted from the initial state
and integrated in the phase space up to an energy cut-
off Eγ < w

√
s far below

√
s. The result, which is finite,

depends, however, on this soft photon cutoff. Only the
contribution from hard photons with energy Eγ > w

√
s

would cancel this dependence.
The algebraic manipulations have been carried out with

the help of the FeynCalc Mathematica package [28]. Us-
ing standard techniques [29], it automatically reduces the
evaluation of the one-loop contribution to the calculation
of a few scalar one-loop integrals and performs the Dirac
algebra.

Since we consider the small angular region, mass terms
proportional to y−2

i and even y−3
i arise. Terms propor-

tional to m2 and even m4 must be kept, if they are mul-
tiplied by y−2

i and y−3
i respectively. In the expansion of

the one-loop integrals, functions that depend on the ratio
m2/yi cannot be expanded, in contrast to functions of m2

or yi separately. To arrive at a systematic approach we
therefore make the replacements m2 → λm2, yi → λyi,
perform the expansion for small λ up to the appropriate
order, and set λ = 1 at the end.

3 The NLO leptonic tensor

Combining the one-loop and the soft contribution we now
arrive at the leptonic tensor in NLO. It will be convenient

to split the coefficients a
(1)
ij into a part that contributes

at large angles and a part proportional to m2 and m4,

denoted by a
(1,0)
ij and a

(1,m)
ij respectively:

a
(1)
ij = a

(0)
ij

[

− log(4w2)[1 + log(m2)]

− 3

2
log(

m2

q2
) − 2 +

π2

3

]

+ a
(1,0)
ij + a

(1,m)
ij . (18)

The factor proportional to the LO coefficients a
(0)
ij con-

tains the usual soft and collinear logarithms. The expres-
sions are particularly compact in the circular basis. For

completeness we also repeat the results for a
(1,0)
ij , which

can be found in [18]3, albeit in the Cartesian basis:

a
(1,0)
LL =

2q2

(1 − q2)2

{

− y1

1 − y1
− 2 log(q2) + 2L(y1)

+

[

1 − 1 − q2

1 − y2
− q2

(1 − y2)2

]

log(
y1

q2
) + [y1 ↔ y2]

}

,

(19)

a
(1,0)
L+ =

β sin θ

4
√

2q2(1 − q2)

{

y1(1 + q2)2

(1 − y1)(1 − y2)
− (1 − q2)2

y2

− 2q2(2 + q2)

y2
log(q2) +

[

2(1 − q2)

(

1

y1
− q2

y2

)

− 2(1 + q2)

1 − y2
− q2(1 + q2)2

(1 − y2)2

]

log(
y1

q2
)

− 2q2

[

1 + 2q2

y1
+

y1

y2
2

]

L(y1) −
iπq2

y1y2

[

2 log(1 − y1)

y1

+
1 − q2

1 − y1
+

q2

(1 − y1)2

]

− [y1 ↔ y2]

}

, (20)

a
(1,0)
++ =

1

2

{

1 − y2

y1
+

1

(1 − q2)2

(

1 + q4

1 − y1
− 2 + 2 log(q2)

)

+

+
1

1 − q2

[

1 + q4

1 − q2

(

q2

(1 − y2)2
− 1

)

+
3 − q4

1 − y2

]

log(
y1

q2
)

+
2

1 − q2

[

(1 + q4)y2

(1 − q2)y1
+

2

y2

]

L(y1) + [y1 ↔ y2]

}

,

(21)

3 The result for the imaginary part of aL+ differs from a
−1

in the original version of [18].
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a
(1,0)
+− =

q2

(1 − q2)2

{

1 + q4

2q2(1 − y1)
− 1

q2
− y2

y1
log(q2)

−
[

1 +
(1 − q2)2

y2
− q2(1 − q2)

1 − y2
− 1 + q4

2(1 − y2)2

]

× log(
y1

q2
) −

[

2 +
(1 − q2)2

y2
2

]

L(y1) + [y1 ↔ y2]

}

,

(22)

with

L(yi) = Li2(
−yi

q2
) − Li2(1 − 1

q2
) + log(q2 + yi) log(

yi

q2
) ,

where Li2 is the Spence or dilogarithm function. The re-
sult in the Cartesian basis has been given in Ref. [18]. The
terms proportional to powers of m2 are given by

a
(1,m)
LL = 0 , (23)

a
(1,m)
L+ =

√

q2β sin θ

4
√

2

{

4m2

y2
1

[

log(q2) log(
y4
1

m4q2
)

+ 4Li2(1 − q2) +
3

2

(

Li2(1 − y1

m2
) − π2

6

)]

− n(y1,
2(1 − 3q2)

q2
) +

2m2N(y1)

y1(m2(1 − q2) − y1)

− [y1 ↔ y2]

}

, (24)

a
(1,m)
++ = −m2q2

y2
1

[

log(q2) log(
y4
1

m4q2
) + 4Li2(1 − q2)

+ Li2(1 − y1

m2
) − π2

6

]

− m2(1 − q2)

y2
1

[

1 − log(
y1

m2
)

+
m2

y1

(

Li2(1 − y1

m2
) − π2

6

)]

+
q2

2
n(y1,

1 − 3q2

q2
)

+ [y1 ↔ y2] , (25)

and

a
(1,m)
+− =

β2 sin2 θ

8

{

4m2

y2
1

[

log(q2) log(
y4
1

m4q2
) + 4Li2(1 − q2)

+ 2

(

Li2(1 − y1

m2
) − π2

6

)]

− 1 − q2

q2
n(y1,

3 − 7q2

1 − q2
)

+
2m2(1 − q2)

y1(m2(1 − q2) − y1)

[

1

q2
log(

y1

m2
) +

log(q2)

1 − q2

+

(

3 − q2

1 − q2
+

m2

m2(1 − q2) − y1

)

N(y1)

]

+ [y1 ↔ y2]

}

. (26)

The coefficient aL+ is antisymmetric with respect to the
exchange [y1 ↔ y2], while all the others are symmet-

ric. Only a
(1,0)
L+ contributes to the imaginary part. Notice

that the mass-suppressed terms are all real. The functions
n(yi, z) and N(yi) are defined through

n(yi, z) =
m2

yi(m2 − yi)

[

1 + z log(
yi

m2
)

]

+
m2

(m2 − yi)2
log(

yi

m2
) , (27)

N(yi) = log(q2) log(
yi

m2
) + Li2(1 − q2)

+ Li2(1 − yi

m2
) − π2

6
. (28)

The apparent singularity of n inside the limits of phase
space is compensated by the zero in the numerator. For
the numerical evaluation in the region yi close to m2 we
use

n(yi, z)
∣

∣

yi→m2 =
1

yi

[

1 + z log(
yi

m2
)

]

− 1

m2

∑

n=0

(

1

n + 2
+

z

n + 1

)

(

1 − yi

m2

)n

.

(29)

For the conversion from the circular to the Cartesian
basis, and to ensure finite results in the limit sin θ → 0, it
is important that aL+ and a+− vanish at ∼ sin θ and sin2 θ
respectively. This corresponds to the requirement that the
factors in curly brackets do not diverge for small sin θ, i.e.
in the limit (m2(1 − q2) − yi) → 0. This is guaranteed by
the behaviour of N(yi) for yi → m2(1 − q2):

m2N(yi)

m2(1 − q2) − yi

∣

∣

∣

∣

yi→m2(1−q2)

= − log(1 − q2)

q2
− log(q2)

1 − q2
,

(30)

The results for a
(1,m)
ij in the Cartesian basis are listed in

Appendix A.

We note that the imaginary part of Lµν , which is
present in the coefficients aL+ or a−1 only, is of interest
for those cases where the hadronic current receives contri-
butions from different amplitudes with non-trivial relative
phases. This is possible, e.g. for final states with three or
more mesons or for pp̄ production.

4 Tests of the result

After summation over the polarizations of the virtual pho-
ton the differential rate is given by the properly contracted
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leptonic tensor:

q2

(4πα/s)2
Lµν(qµqν − gµνq2) = aLL + 2a++

= −3 a00 + (
1

4q2
(1 − y1)

2 − m2) a11

+ (
1

4q2
(1 − y2)

2 − m2) a22

+ (
1

2q2
(1 − y1)(1 − y2) − (1 − 2m2)) a12

= L0

{

1 +
α

π

[

− log(4w2)[1 + log(m2)]

− 3

2
log(

m2

q2
) − 2 +

π2

3

]}

+
α

π

{

4

(

1 + (1 − y2)
2

2y1y2
L(y1)

+
1 − 2q2

2(1 − q2)2
log(q2) +

[

1 − y1 − 2y2

2(1 − y2)
− y1y2

4(1 − y2)2

]

× log(
y1

q2
) − 1

2(1 − q2)
+

1

4(1 − y1)
+

1 − y2

4y1

+ [y1 ↔ y2]

)

− 2a
(1,m)
++

}

, (31)

where

L0 =
q2

(4πα/s)2
Lµν

0 (qµqν − q2gµν) =

− 2

y1y2

[

2q2 + y2
1 + y2

2 − 2m2q2(1 − q2)2

y1y2

]

, (32)

Lµν
0 being the leptonic tensor at LO. In L0 only the rel-

evant terms in the limit m2 → 0 have been kept. Large
angle terms and mass corrections are in agreement with
Berends et al. [20,21]. After proper analytic continuation
and using the substitutions

t → −y1 + iη , s → −y2 + iη , u → s + iη , (33)

the leptonic tensor in eq. (9) is closely related4 to the ten-
sor Tµν , which describes “virtual Compton scattering” and
has been calculated by Kuraev et al. [22]. After performing
this analytical continuation, the results are in agreement
(However, the result for T12 printed in [23] contains a typo
and would give rise to a discrepancy.).

5 Conclusions

Compact analytical formulae have been obtained for the
virtual corrections to the process e+e− → γγ∗, which are
valid for photon emission under both large and small an-
gles. After proper analytic continuation the results are in
agreement with those obtained in [22] for the reaction
γ∗ + e− → γ + e−. In polarization averaged form they
are in agreement with those for e+e− → γZ from [20,21].

4 We thank N.P. Merenkov for drawing our attention to this
reference.
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A The leptonic tensor in the Cartesian basis

For the convenience of the reader we list the mass-suppressed

terms a
(1,m)
ij also in the Cartesian basis. The large-angle

contributions have been given in [18]. The component pro-
portional to gµν reads

a
(1,m)
00 = −a

(1,m)
++ , (34)

see eq. (25). The coefficient a+− does not contribute at
this order to a00. The remaining components are given by

a
(1,m)
11 =

q2

1 − q2

{

4m2

y2
1

[

1 − log(
y1

m2
)

+
m2

y1

(

Li2(1 − y1

m2
) − π2

6

)]

− n(y1, 1)

+
2m2q2

y1(m2(1 − q2) − y1)

[

1

q2
log(

y1

m2
) +

log(q2)

1 − q2

+

(

1 +
m2

m2(1 − q2) − y1

)

N(y1)

]}

+

+
1

1 − q2

{

4m2(1 − q2)

y2
2

[

log(q2) log(
y4
2

m4q2
)

+ 4Li2(1 − q2) + 2

(

Li2(1 − y2

m2
) − π2

6

)]

+
4m2q2

y2
2

[

1 − log(
y2

m2
) +

(

1 +
m2

y2

)(

Li2(1 − y2

m2
)

− π2

6

)]

− 1 − 2q4

q2
n(y2,

3 − 8q2 + 6q4

1 − 2q4
)

+
2m2

y2(m2(1 − q2) − y2)

[

1

q2
log(

y2

m2
) +

log(q2)

1 − q2

+

(

3 +
m2

m2(1 − q2) − y2

)

N(y2)

]}

, (35)

a
(1,m)
22 = a

(1,m)
11 (y1 ↔ y2) , (36)
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a
(1,m)
12 =

q2

1 − q2

{

4m2

y2
1

[

1 − log(
y1

m2
)

+

(

1

2
+

m2

y1

)(

Li2(1 − y1

m2
) − π2

6

)]

− 1 − q2

q2
n(y1,

1

1 − q2
) +

2m2

y1(m2(1 − q2) − y1)

×
[

1

q2
log(

y1

m2
) +

log(q2)

1 − q2

+

(

2 +
m2

m2(1 − q2) − y1

)

N(y1)

]}

+ [y1 ↔ y2] .

(37)

and

a
(1,m)
−1 = 0 . (38)

B Scalar one-loop integrals

A few two-, three-, and four-point scalar one-loop inte-
grals enter our calculation. Expression for the two-point
scalar integrals are simple and well known. The notation
from [18], where the corresponding results valid for large
photon angles (m2 ≪ 1, q2, yi) can be found, is used in the
following. The general three-point scalar one-loop integral
is defined by

C0(p
2
a, (pa − pb)

2, p2
b , m

2
1, m

2
2, m

2
3) = −i16π2µ4−D

×
∫

dDk

(2π)D

1

[k2 − m2
1][(k − pa)2 − m2

2][(k − pb)2 − m2
3]

.

(39)

Four different three-point scalar one-loop integrals are needed

C01 = C0((pi − k1)
2, 0, m2

e, 0, m2
e, m

2
e) ,

C02 = C0(m
2
e, s, m

2
e, 0, m2

e, m
2
e) ,

C03 = C0((pi − k1)
2, Q2, m2

e, 0, m2
e, m

2
e) ,

C04 = C0(Q
2, s, 0, m2

e, m
2
e, m

2
e) , (40)

i = 1, 2, and one scalar box

D0 = −i16π2µ4−D

∫

dDk

(2π)D
(41)

× 1

k2[(k + pi)2 − m2
e][(k + pi − k1)2 − m2

e][(k − pj)2 − m2
e]

,

with j 6= i.

The following simple expressions are used, from where
the limits (m2 ≪ 1, q2, yi) or (m2 ≪ 1, q2 but m2 ∼ yi)

are obtained:

C01 =
s−1

yi

[

Li2(1 − yi

m2
) − π2

6

]

,

C02 =
s−1

β

[(

∆ − 2 log(β) − log(c)

2

)

log(c)

− 2Li2(c) −
2π2

3
+ iπ

(

∆ − 2 log(β)

)]

,

C04 =
s−1

1 − q2

[

log(c)

2
− log(cq)

2
+ iπ log(

c

cq

)

]

,

D0 =
s−2

βyi

[

−
(

∆ + 2 log(
m

yi

)

)

log(cq) + log2(c)

+ 2Li2(1 − cq

c
) + 2Li2(1 − c cq) − Li2(1 − c2

q) − π2

− iπ

(

∆ + 2 log(
m

c yi

)

)]

, (42)

with

∆ =
(4π)ε

ε Γ (1 − ε)

(

µ2

s

)ε

, (43)

and

β =
√

1 − 4m2 , c =
1 − β

1 + β
,

βq =

√

1 − 4m2

q2
, cq =

1 − βq

1 + βq

. (44)

Our expression for the C03 function is rather cumbersome:

C03 =
s−1

q2(z1 − z2)

[

log(
yi

q2
) log

(

(1 − z1)z2

(1 − z2)z1

)

+

{

Li2(
1

z1
) − log((z3 − z1)(z4 − z1)) log(1 − 1

z1
)

+ Li2(
1 − z1

z3 − z1
) − Li2(

−z1

z3 − z1
)

+ Li2(
1 − z1

z4 − z1
) − Li2(

−z1

z4 − z1
) − [z1 ↔ z2]

}]

,

(45)

where

z1,2 =
q2 + yi

2q2

(

1 ±

√

1 − 4(m2 − iη)q2

(q2 + yi)2

)

,

z3,4 =
1

2

(

1 ±

√

1 − 4(m2 − iη)

q2

)

, (46)

being

Im(C03) =
π

q2(z1 − z2)
log

(

(z3 − z1)(z4 − z2)

(z4 − z1)(z3 − z2)

)

, (47)

its imaginary part. As for the other scalar one-loop func-
tions, this expression is expanded up to terms of order m2

and m4.
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24. J. H. Kühn and A. Santamaria, Z. Phys. C 48 (1990) 445.
25. R. Decker, M. Finkemeier, P. Heiliger and H. H. Jonsson,

Z. Phys. C 70 (1996) 247 [hep-ph/9410260].
26. G. Ecker and R. Unterdorfer, hep-ph/0203075.
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