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Abstract. The radiative return offers the unique possibility for a measurement of the cross section of
electron–positron annihilation into hadrons over a wide range of energies. The large luminosity of present
φ- and B-factories easily compensates for the additional factor of α due to the emission of a hard photon.
Final states with photons at large angles can be easily identified. The rate for events with collinear photons,
however, is enhanced by a large logarithm and allows, in particular at lower energies, for a complementary
measurement. The Monte Carlo generator PHOKHARA, which includes next to leading order corrections
from virtual and real photon emission, has been extended from large photon angles into the collinear re-
gion, using recent results for the virtual corrections. In addition, the present version includes final state
radiation for muon and pion pair production and final states with four pions. Implications for the experi-
mental analysis at three typical energies, 1.02, 4 and 10.6 GeV, are presented: the magnitude of these new
corrections is studied, possibilities for the separation of initial and final state radiation are proposed, and
the differences with respect to the previous treatment based on structure functions are investigated.

1 Introduction

Measurements of the cross section for electron–positron
annihilation into hadrons are essential for the interpreta-
tion of the recent, precise results for the muon anomalous
magnetic moment aµ [1]. Similarly they are relevant for
our knowledge of the running of the fine structure constant
and thus crucial for the analysis of electroweak precision
measurements at high energy colliders [2,3,4].

Of particular importance for these two applications is
the low energy region, say from threshold up to centre-of-
mass system (cms) energies of approximately 3 GeV for
aµ and 10 GeV for α(MZ). Recent measurements based
on energy scans between 2 and 5 GeV have improved the
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accuracy in part of this range [5]. Similar, or even further
improvements below 2 GeV would be highly welcome. The
region between 1.4 GeV and 2 GeV, in particular, is poorly
studied and no collider will cover this region in the near
future. Improvements on the precise measurements of the
pion form factor in the low energy region by the CMD2
and DM2 collaborations [6], or even an independent cross-
check, would be extremely useful, in particular in view
of the disagreement between e+e−data and the analysis
based on isospin-breaking-corrected τ decays [4].

Traditionally the energy dependence of the cross sec-
tion was deduced from experiments, where the beam en-
ergy was varied over the range dictated by the energy
reach of the collider. This ‘energy scan’ allows, at a first
glance, a fairly simple interpretation of the measurement
in terms of the so called R-ratio, which enters the afore-
mentioned applications. Nevertheless also in this case ini-
tial state radiative corrections (ISR) give rise to complica-
tions and require a complicated unfolding procedure dis-
cussed below.

As an alternative the ‘radiative return’ has been sug-
gested [7,8,9,10] as a particularly attractive option for φ-
and B-meson factories. These collider experiments oper-
ate at fixed energies, albeit with enormous luminosities.
BABAR and BELLE at 10.6 GeV, CLEO-C in the region
between 3 and 5 GeV and KLOE at 1.02 GeV are the
experiments of interest for the subsequent considerations.
This peculiar feature of a ‘factory’ allows the use of the
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radiative return, i.e. the reaction

e+(p1) + e−(p2) → γ(k1) + γ∗(Q) (→ hadrons) , (1)

to explore a wide range of Q2 in a single experiment.
Nominally invariant masses of the hadronic system be-

tween the production threshold of the respective channel
and the cms energy of the experiment are accessible. In
practice, to clearly identify the reaction, it is useful to con-
sider only events with a hard photon–tagged or untagged–
which lowers the energy significantly.

To arrive at reliable predictions for differential and for
partially integrated cross sections, including kinematical
cuts as used in experiments, a Monte Carlo generator is
indispensable. The inclusion of radiative corrections in the
generator and in the experimental analysis is essential for
the precise extraction of the cross section. For hadronic
states with invariant masses below 2 to 3 GeV, it is desir-
able to simulate the individual channels with two, three
and up to six mesons, i.e. pions, kaons, η’s, etc., which
requires a fairly detailed parametrisation of various form
factors.

A first program called EVA was constructed some time
ago [7] to simulate the production of a pion pair together
with a hard photon. It includes initial state radiation, final
state radiation (FSR), their interference, and the domi-
nant radiative corrections from additional collinear radi-
ation through structure function (SF) technique [11]. A
similar program that simulates the production of four pi-
ons together with a hard photon has been developed in
[9]. More recently a new Monte Carlo generator called
PHOKHARA [12] was developed. It includes, in contrast
to the former generators, the complete next-to-leading or-
der (NLO) radiative corrections.

The first version of PHOKHARA incorporates ISR
only and is limited to π+π−γ(γ) and µ+µ−γ(γ) as final
states. PHOKHARA exhibits, however, a modular struc-
ture that simplifies the implementation of additional ha-
dronic modes or the replacement of the current(s) of the
existing modes. Its first version was designed to simulate
configurations with photons emitted at relatively large an-
gles, θ2 ≫ m2

e/s. In this case it is legitimate to drop terms
proportional to m2

e, an assumption that leads to a consid-
erable simplification of the virtual corrections [13]. Subse-
quently analytical results for the virtual corrections, that
are also valid into the small angle region, were obtained
in [14]. The extension of the program PHOKHARA into
this small angle region, incorporating these new analytic
results are the central topic of the present paper. The de-
scription of this new feature and numerous tests of the
program stability and technical precision are contained in
Section 2.

Final state radiation can affect the measurement of the
pion form factor, and quite generally of the R-ratio. How-
ever, using suitable cuts, its effects can be significantly
reduced. Moreover, given sufficiently large event rates its
magnitude can be extracted experimentally by varying the
cuts and/or comparing events with different photon angles
with respect to beam and pion directions, respectively.
The charge asymmetry that arises from ISR–FSR inter-

ference provides another important handle on this ‘back-
ground’. For this reason FSR from π+π− and µ+µ− has
been incorporated in the upgrade of the program and will
be discussed in Section 3. The µ+µ− final state is still
limited to its QED part, e.g. the narrow resonances (J/ψ)
are not (yet) included.

The program has also been extended to include final
states with four pions, following the lines discussed in [9].
The implementation of these new channels will be dis-
cussed in Section 4.

2 The radiative return for small-angle

emission and tests of the program

The study of events with photons emitted under both large
and small angles, and thus at a significantly enhanced
rate, is particularly attractive for the π+π− final state
with its clear signature [15,16,17,18,19,20]. In contrast
events with a tagged photon, emitted at a large angle,
have a clear signature particularly suited to the analysis
of hadronic states of higher multiplicities [21,22].

The inclusion of radiative corrections is essential for
the precise extraction of the cross section, which is nec-
essarily based on a Monte Carlo simulation. The com-
plete NLO corrections have recently been implemented in
the program PHOKHARA. However, just like the earlier
EVA, this program was designed for photon emission at
large angles (‘tagged photons’). For nearly collinear pho-
tons, corrections from virtual and real photon emission, as
well as Born terms, must include those contributions pro-
portional to m2

e/s and even to m4
e/s

2, which are enhanced
by their highly singular angular dependence and thus in-
tegrate to terms of order 1 and proportional to α/π for
Born and NLO terms respectively. These mass-suppressed
terms are significantly smaller than the leading, logarith-
mically enhanced pieces; they must nevertheless be taken
into account for a consistent treatment. The evaluation
of corrections from virtual plus soft photon emission to
reaction (1), valid for the full angular region, has been
treated in [14]. Essentially it consists of the calculation
of the leptonic tensor Lµν , which has to be multiplied by
the hadronic tensor Hµν , so that a fully differential dis-
tribution is obtained. To arrive at a reasonably compact,
numerically stable result, the limit m2

e/s ≪ 1 for Lµν is
considered. However, terms proportional to m2

e must be
kept if these exhibit the singular angular dependence dis-
cussed above.

The differential rate for the virtual and soft QED cor-
rections is thus cast into the product of a leptonic and
a hadronic tensor and the corresponding factorised phase
space:

dσ =
1

2s
LµνdΦ2(p1 + p2;Q, k1)

× HµνdΦn(Q; q1, · · · , qn)
dQ2

2π
, (2)

where dΦn(Q; q1, · · · , qn) denotes the hadronic n-body
phase space, including all statistical factors, Q2 is the in-
variant mass of the hadronic system and dΦ2(p1+p2;Q, k1)
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Fig. 1. Comparison of the Q2 differential distribution for different values of the soft photon cutoff: w = 10−3 vs. 10−4 and
w = 10−4 vs. 10−5 , at

√
s = 1.02 GeV. One of the photons was required to have energy > 10 MeV. No further cuts were

applied.
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Fig. 2. Comparison of the Q2 differential distribution for different values of the soft photon cutoff: w = 10−3 vs. 10−4 and
w = 10−4 vs. 10−5 , at

√
s = 10.6 GeV. One of the photons was required to have energy > 100 MeV. No further cuts were

applied.

is the two-body phase space of the photon and the hadronic
system. The tensor Lµν depends on the four-vectors p1,
p2, Q, k1 and the soft photon cutoff w ≡ Emax

γ /
√
s. Its

explicit functional form is given in [14]. The description
of the hadronic system is model-dependent. It enters only
through the hadronic tensor

Hµν = JµJν† , (3)

where the hadronic current has to be parametrised through
form factors [9,23,24,25]. The running of α is not taken
into account in this program and can be included trivially
in the final experimental analysis.

The matrix element for the emission from the initial
state of two real hard photons, i.e. Eγi

> w
√
s, with i =

Table 1. Total cross section (nb) for the process e+e− →

π+π−γ at NLO for different values of the soft photon cutoff.
Only initial state radiation. One of the photons with energy
larger than 10 MeV for

√
s = 1.02 GeV and larger than 100

MeV for
√

s = 10.6 GeV. Q2 < 1GeV. No further cuts applied.

w
√

s =1.02 GeV 10.6 GeV
10−3 36.999 (3) 0.15557(7)
10−4 37.021 (3) 0.15548(6)
10−5 37.021 (3) 0.15545(6)

1, 2,

e+(p1) + e−(p2) → γ∗(Q) + γ(k1) + γ(k2) , (4)
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is calculated numerically following the helicity amplitude
method with the conventions introduced in [26,27]. The
results from [12], which were used for tagged photon events
are equally applicable for the present purpose.
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Fig. 3. Comparison of the virtual+soft and hard contributions
to the π+π− differential cross section with inclusive analytical
results. Soft photon cutoff: w = 10−4.

The virtual plus soft photon contribution and the hard
one depend separately on the soft photon cutoff w used to
regulate the infrared divergences of the virtual diagrams.
The former shows a logarithmic w-dependence. The latter,
after numerical integration of the phase space, exhibits the
same behaviour, whereas their sum must be independent
of w. To show that this indeed occurs is therefore a ba-
sic test of the performance of the program. The value of
w that optimises the efficiency of the event generation,
avoiding at the same time the appearance of the negative
weights, is determined by this procedure.

Table 1 presents the total cross section for radiative
production of a pair of pions calculated for several values
of the soft photon cutoff at two different cms energies. The
energy of one of the photons was required to be larger than
10 MeV for

√
s = 1.02 GeV and larger than 100 MeV for√

s = 10.6 GeV. No further kinematical cuts were applied,
thus allowing to test in particular the small photon angle
region.

For
√
s = 1.02 GeV the comparison between w = 10−3

and 10−4 indicates a residual w-dependence. The excellent
agreement between w = 10−4 and 10−5, within the error
of the numerical integration, confirms the w-independence
of the result. A value around w = 10−4 seems to be the

best choice as observed before for large angle photons [12,
28].

In Figs. 1 and 2 the Q2 dependence of the differential
cross section dσ/dQ2 is compared for different choices of
the cutoff, after integration over the remaining kinematic
variables. Again for

√
s = 1.02 GeV the comparison be-

tween w = 10−3 and 10−4 shows a residual w dependence
(Fig. 1a), which disappears beyond w = 10−4 (Fig. 1b).
At a cms energy of 10.6 GeV the result is numerically sta-
ble for w = 10−3 already (Fig. 2a). Stable results are also
obtained for w around and below 10−4 (Fig. 2b). Thus
w = 10−4 is used as the default value in the program.
Similar tests were performed for the four-pion channels
(see Section 4).

The present implementation of PHOKHARA covers
the full angular region for photon emission. This allows for
a number of tests and comparisons with analytical results
that were not possible with the previous version. In Fig. 3
the results of the program are compared with the analyti-
cal results from Ref. [30]. We use their Eqs. (2.25)+(2.26)
for the virtual plus soft part and Eq. (2.28) for the hard
emission part. As it was necessary to change several cou-
plings in the original formulae, we repeat (Appendix B)
the expressions actually used for the comparison. Agree-
ment within the statistical uncertainty and in any case
better than 10−3 is evident from this comparison.

Initial state radiation is dominated by photons at small
angles. Inclusion of events with nearly collinear photons
thus leads to a significant enhancement of the observed
event rate. The comparison between the differential cross
sections for large angle photon events (30◦ < θγ < 150◦)
and without restriction on θγ is shown in Fig. 4. The pion
angles are always assumed to be restricted to the region
30◦ < θπ± < 150◦. Results are presented for two different
cms energies (

√
s = 1.02 and 10.6 GeV). There is a big

quantitative difference between these two energies. For
√
s

= 1.02 GeV a huge contribution from small angle photons
is observed for the full range of Q2. In contrast the gain in
the cross section for

√
s = 10.6 GeV is small as a conse-

quence of the conflicting kinematical constraints of small
photon and large pion angles. FSR has not been included
in these figures. For 10.6 GeV its contribution is negligi-
ble, while for 1.02 GeV and for the cuts used for Fig. 4
it is sizeable, but can be reduced using the cuts discussed
below.

The R-ratio can in principle be deduced either from
the measurement of the hadronic cross section, which re-
quires a precise control of the luminosity, or from the ratio
between hadronic and µ+µ− event rates. Various radiative
corrections, e.g. from the running of the electromagnetic
coupling and from ISR cancel in the ratio between the
hadronic and µ+µ− rates. Indeed, one obtains by con-
struction unity, if one considers the properly normalised
ratio

ρπµ ≡
4(1 + 2m2

µ/Q
2)βµ

β3
π | Fπ |2

dσπ+π−γ(γ)

dσµ+µ−γ(γ)

, (5)

where



Henryk Czyż et al.: The radiative return at φ- and B-factories: small-angle photon emission at next to leading order 5

30Æ < �

�

< 150Æ

p

s = 1.02 GeV

e+e� ! �

+

�

�

()

Q2 (GeV)

d�
dQ2 (nb=GeV2)

10:90:80:70:60:50:40:30:20:1

120

100

80

60

40

20

0

30Æ < �

�

< 150Æ

p

s = 10.6 GeV

e+e� ! �

+

�

�

()

Q2 (GeV)

d�
dQ2 (nb=GeV2)

1:41:210:80:60:40:2

0:05

0:045

0:04

0:035

0:03

0:025

0:02

0:015

0:01

0:005

0

Fig. 4. Comparison of the Q2 differential cross sections for
√

s = 1.02 (left) and 10.6 GeV (right). The pion angles are restricted
to 30◦ < θπ± < 150◦, while the photon(s) angles are not restricted (upper curves) and restricted to 30◦ < θγ < 150◦ (lower
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βi =

√

1 − 4m2
i

Q2
, i = π, µ ,

and Fπ is the pion form factor.
The result ρπµ = 1 is independent of the restrictions

on the photon angular region and is true in Born and NLO
approximations. The phase space of hadronic and µ+µ−

final states, however, must be fully integrated (Fig. 5a).
For realistic cuts on pion and muon angles the ratio devi-
ates significantly from 1, a consequence of their markedly
different angular distributions. The size of this effect de-
pends on the details of the cuts on photon, pion and muon
angles as demonstrated in Figs. 5b and 5c. In both figures,
one observes a significant, few per cent, difference between
Born and NLO predictions for ρπµ, depending on the de-
tails of the cuts on the photon and charged particle angles.
At 10.6 GeV the ratio ρπµ is of course again equal to 1 if
pions and muons are fully integrated (Fig. 6a). In contrast
to the situation at lower energies, the inclusion of realistic
cuts does not alter this picture drastically, a consequence
of the high correlation between photon and pion or muon
angles: photon and charged particles are essentially emit-
ted back to back (Fig. 6b).

The shape of these curves depends only on the pion
and muon angular distributions, but not on the form fac-
tor itself. These results can thus be directly used to de-
duce efficiencies of specific experimental cuts in a model-
independent way, since pion and muon angular distribu-
tions are fixed by general considerations. For more com-
plicated final states (e.g. 4π, KKπ, · · ·) the correspond-
ing ratio would, instead of |Fπ |2β3

π/4, directly involve the
corresponding R-ratio, if no cuts on the hadrons are ap-
plied. Otherwise the results depend on the model for the
hadronic form factor implemented in the program. An im-
portant advantage of the radiative return is implicit in all

these considerations: by measuring Q2 directly, the invari-
ant squared mass of the hadronic final state, one has direct
access to R at the corresponding value of Q2. This differs
from the measurement of the inclusive cross section as a
function of

√
s (energy scan). To extract the true R(s), an

unfolding has to be performed, which requires in princi-
ple the knowledge of the cross section over the full energy
range below and a precise knowledge of the radiator func-
tion. In contrast, using the radiative return method, it is
still necessary to know the QED radiator function, but
no unfolding is required as one measures the Q2 of the
hadronic system, and thus has ‘access’ to the hadronic
cross section at that given Q2.

Let us discuss those αm2
e/s and α(m2

e/s)
2 terms, which

in combination with their singular angular dependence in-
tegrate to corrections of order α/π. These are included in
the present version of PHOKHARA. The corresponding
leading order corrections proportional to m2

e are typically
of the order of a few per cent [31], while the non-leading
ones are of order 0.1%. This can be seen from Fig. 7. The
size of these effects is consistent with the expectations for
α/π terms without logarithmic enhancement. These terms
will become important when the precision of the measure-
ment will be below 1%. Their proper treatment is in that
case crucial as they do depend on Q2 and do change the
Q2 distribution from which the hadronic cross section is
extracted.

3 Initial versus final state radiation

A potential complication for the measurement of the pion
form factor or generally of the R-ratio may arise from the
interplay between photons from ISR and FSR. Their rel-
ative strength is strongly dependent on the photon angle
relative to the beam and the pion directions, the cms en-
ergy of the reaction and the invariant mass of the hadronic
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angles; b: with angular cuts on pion and muon angles.

system. FSR from hadronic final states cannot be pre-
dicted from first principles and thus has to be modelled.
The model amplitude can nevertheless be tested by consid-
ering charge-asymmetric differential distributions, which
arise from the interference between ISR and FSR ampli-
tudes [7]. In leading order the complete matrix element
squared is given by

|M|2 = |MISR|2 + |MFSR|2 + 2Re[MISRM
†
FSR] , (6)

which is still independent of the model for FSR.
FSR and its interference with ISR were already in-

cluded in EVA [7] for the two-pion case. The pions were
assumed to be point-like, and scalar QED was applied to
simulate photon emission off the charged pions. It was
demonstrated there that ISR dominates for suitably cho-
sen final states, namely those with hard photons at small
angles relative to the beam, well separated from the pi-
ons. FSR can therefore be reduced to a reasonable limit,
and moreover, can be controlled by the simulation (see
also [32]). Similar results can be obtained using the new
version of PHOKHARA, were FSR and ISR–FSR interfer-
ence are included for two pions and muons (see Appendix
A for details) at LO. The photon emission from pions is
again modelled by a point–like pion-photon interaction.
The upper two curves of Fig. 8 describe the differential
cross section with arbitrary photon and pion angles. The
contribution of FSR is clearly visible. Once photon emis-
sion is restricted to angles close to the beam and if the
pion- and photon-allowed angular ranges do not overlap
(lower curve), FSR is clearly negligible.

The third term in the right-hand side of Eq. (6), ISR–
FSR interference, is odd under charge conjugation, and
its contribution vanishes after angular integration. It gives
rise, however, to a relatively large charge asymmetry and,
correspondingly, to a forward–backward asymmetry

A(θ) =
Nπ+

(θ) −Nπ+

(π − θ)

Nπ+(θ) +Nπ+(π − θ)
. (7)

The asymmetry can be used for calibration of the FSR am-
plitude, and fits to the angular distribution A(θ) can test
details of its model dependence. Given sufficiently large
event rates this procedure can be performed for different
θγ , thus allowing for an unambiguous reconstruction of
the FSR amplitude.

This is illustrated in Figs. 9 and 10, where the an-
gular distributions of π+ and µ+ respectively are shown
for different kinematical cuts. The angles are defined with
respect to the incoming positron. If no angular cut is
applied, the angular distribution in both cases is highly
asymmetric as a consequence of the ISR–FSR interfer-
ence contribution. If cuts suitable to suppress FSR, and
therefore the ISR–FSR interference, are applied, the dis-
tributions become symmetric.

These investigations can also be performed for different
photon energies, thus exploring FSR in different regions of
Q2. We will return to this aspect in a future publication.

At B-factories, where one has to deal with very hard
tagged photons, the kinematic separation between the pho-
ton and the hadrons becomes very clear. For events where
hadrons and photon are produced mainly back to back,
the suppression of FSR is naturally accomplished and no
special angular cuts are therefore needed to control FSR
versus ISR at higher energies (Fig. 11). The relative size of
the FSR is of the order of a few per mil, but does depend
on the value of the pion form factor at

√
s = 10 GeV,

which is extrapolated from the low energy data.

The suppression of FSR contributions to π+π−γ events
is also a consequence of the rapid decrease of the form
factor above ∼ 1 GeV. It is therefore instructive to study
the corresponding distributions for µ+µ−γ final states. For
√

Q2 ≤ 1 GeV FSR is still tiny. Around 3 GeV a small
charge-asymmetric interference term becomes visible (Fig.
12), which is still irrelevant after averaging over µ+ and
µ−. At large Q2, however, FSR plays an important role
both for the charge-asymmetry and the charge symmetric
term.
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4 The four-pion mode

Because of the modular structure of PHOKHARA, ad-
ditional hadronic modes can be easily implemented. The
four-pion channels (2π+2π− and 2π0π+π−), which give
the dominant contribution to the hadronic cross section
in the region from 1 to 2 GeV, are a new feature of our
event generator.

Isospin invariance relates the amplitudes of the e+e− →
2π+2π− and e+e− → 2π0π+π− processes and those for τ
decays into π−3π0 and π+2π−π0 [33,9]. The description
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of the four-pion hadronic current follows [9,24]. The basic
building blocks of this current are schematically depicted
in Fig. 13 and described in detail in [9].

Results obtained with PHOKHARA for these channels
have been compared with the Monte Carlo, which simu-
lates the same process at LO [9] and includes additional
collinear radiation through the SF technique. Typically,
differences of order 1% are found (see Figs. 14 and 15),
which are of the expected size and of the same order as
for the two-pion final state [12].

The generation of the pion four momenta is however
different from the one described in [9]. In the present ver-
sion of the program we absorb the most prominent peaks
in the four-pion hadronic current to obtain a more efficient
Monte Carlo generation. The Q2 distribution is peaked

around
√

Q2 = 1.5 GeV, with a large width of ∼ 0.5
GeV. This is the result of an interplay between several
resonances present in that region. Nevertheless one Breit–
Wigner resonance provides an adequate approximation for
efficient generation. For the approximant and the genera-
tion of the Q2 distribution we use

f3(Q
2) =

s

s−Q2
+

s2

(Q2 −m2)2 + Γ 2m2
, (8)

with m = 1.5 GeV and Γ = 0.5 GeV.
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It takes care of soft photon emission (s − Q2 ∼ Eγ )
and the aforementioned resonant behaviour. For the pro-
cess e+e− → 2π0π+π−γ(γ) we furthermore absorb the
ω peaks in the four momentum squared Q2

0+− = p2
ω =

(p0 + p+ + p−)2. The approximant used for that pur-
pose, according to which the three-particle four momenta
squared are generated, reads

Table 2. Total cross section (nb) for the process e+e− → 4πγ

at NLO for different values of the soft photon cutoff at
√

s =
1.02 GeV. Only initial state radiation. One of the photons with
energy > 10 MeV. Q2 < 1GeV. No further cuts applied.

w 2π+2π− 2π0π+π−

10−3 0.170167(15) 0.55725(5)
10−4 0.170413(14) 0.55844(5)
10−5 0.170431(15) 0.55845(5)

f4(Q
2
134, Q

2
234) = 2

+
mωΓω

(Q2
134 −m2

ω)2 + Γ 2
ωm

2
ω

+
mωΓω

(Q2
234 −m2

ω)2 + Γ 2
ωm

2
ω

,

(9)

where Q134 and Q234 are the four momenta of the two
π0π+π− subsystems. The other variables are generated as
described in [9].

Also for the four-pion modes, we have tested the in-
dependence of the result of the soft–hard separation pa-
rameter w. The results are very much similar to the π+π−

mode and are summarised in Table 2 and Figs. 16 and 17.
Again the choice w = 10−4 is the proper one.

5 Conclusions

The Monte Carlo generator PHOKHARA, which simu-
lates the radiative return at electron–positron colliders,
has been extended from large angles into the collinear
region using recent results for the virtual corrections to
photon emission, which are valid for all photon angles.
Comparing the program with analytical results, a tech-
nical precision better than 0.5 × 10−3 is demonstrated.
The importance of NLO corrections for the extraction of
a correct value for the R-ratio is emphasised.

A number of corrections vanish if the ratio between
hadron and muon pair cross section is considered. For low
energies, around 1 GeV, the ratio depends strongly on the
cuts on the charged particles and corrections have to be
applied. At higher energies, around 10 GeV, and for low
Q2, the dependence on these cuts is drastically reduced.

In the new version of PHOKHARA, described in this
article, final state radiation in leading order treatment is
included. We discuss the implications for the measurement
of the pion form factor. Suitable cuts allow, on the one
hand, the determination of this model-dependent ampli-
tude, on the other hand it is possible to select configura-
tions that are entirely dominated by initial state radiation.

Finally we extend the program final states with four-
pions configuration as a first step towards the inclusion of
a multitude of exclusive states.



10 Henryk Czyż et al.: The radiative return at φ- and B-factories: small-angle photon emission at next to leading order

p

s = 1.02 GeV

a)

e+e� ! 2�0
�

+

�

�

()

Q2 (GeV2)

1� d�(w=10�4)
dQ2 =

d�(w=10�3)
dQ2

10:90:80:70:60:50:4

0:004

0:003

0:002

0:001

0

�0:001

�0:002

�0:003

�0:004

�0:005

p

s = 1.02 GeV

b)

e+e� ! 2�0
�

+

�

�

()

Q2 (GeV2)

1� d�(w=10�5)
dQ2 =

d�(w=10�4)
dQ2

10:90:80:70:60:50:4

0:004

0:003

0:002

0:001

0

�0:001

�0:002

�0:003

�0:004

�0:005

Fig. 16. The relative difference of the differential cross sections for two different values of the soft photon cutoff at
√

s = 1.02
GeV. One of the photons was required to have energy > 10 MeV. No further cuts were applied.

p

s = 1.02 GeV

a)

e+e� ! 2�+2��()

Q2 (GeV2)

1� d�(w=10�4)
dQ2 =

d�(w=10�3)
dQ2

10:90:80:70:60:50:4

0:002

0:001

0

�0:001

�0:002

�0:003

�0:004

p

s = 1.02 GeV

b)

e+e� ! 2�+2��()

Q2 (GeV2)

1� d�(w=10�5)
dQ2 =

d�(w=10�4)
dQ2

10:90:80:70:60:50:4

0:002

0:001

0

�0:001

�0:002

�0:003

�0:004

Fig. 17. The relative difference of the differential cross sections for two different values of the soft photon cutoff at
√

s = 1.02
GeV. One of the photons was required to have energy > 10 MeV. No further cuts were applied.

Acknowledgements

We would like to thank: Nicolas Berger, Stanley Brod-
sky, Oliver Buchmüller and Dong Su for very interesting
discussions, the members of KLOE collaboration for their
continued interest in the subject, and Achim Denig for
discussions and a careful reading of the manuscript. Spe-
cial thanks also to Suzy Vascotto for careful proof-reading
the manuscript.

A The implementation of the final state

emission

Final state emission of one photon and the final-initial
state interference terms are implemented in the present

program in lowest order by means of the helicity ampli-
tude method for both π+π−γ and µ+µ−γ final states. The
notation is the same as in [12] and will not be repeated.
The pion-photon interaction is adopted from scalar elec-
trodynamics.

The helicity amplitudes describing the initial emission
read

MISR(λe+ , λe− , λ1) =
(4πα)

Q2

{

v†I(p1, λe+)A uI(p2, λe−) + v†II(p1, λe+)B uII(p2, λe−)

}

,

(10)
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where

A =

(

ε∗(k1, λ1)
−k+

1 − 2ε∗(k1, λ1) · p1

)

J−

2k1 · p1

+
J−

(

2ε∗(k1, λ1) · p2 − k+
1 ε

∗(k1, λ1)
−

)

2k1 · p2
(11)

and

B =

(

ε∗(k1, λ1)
+k−1 − 2ε∗(k1, λ1) · p1

)

J+

2k1 · p1

+
J+

(

2ε∗(k1, λ1) · p2 − k−1 ε
∗(k1, λ1)

+
)

2k1 · p2
. (12)

The current Jµ for π+π− in the final state reads

Jµ
2π = ieF2π(Q2) (qπ+ − qπ−)µ , (13)

while for µ+µ− in the final state it is given by

Jµ
2µ(λµ+ , λµ−) = ieū(q1, λµ−)γµv(q2, λµ+) . (14)

The part of the amplitude that comes from the final
state emission can be written as

MFSR(λe+ , λe− , λ1) =
(4πα)

s

{

v†I(p1, λe+)D−uI(p2, λe−) + v†II(p1, λe+)D+uII(p2, λe−)

}

,

(15)

where the four-vector Dµ reads

Dµ(λ1) = ieF2π(s)

{

(q1 + k1 − q2)
µ q1 · ε∗(k1, λ1)

q1 · k1

+ (q2 + k1 − q1)
µ q2 · ε∗(k1, λ1)

q2 · k1
− 2ε∗µ(k1, λ1)

}

, (16)

for π+π− in the final state, while for µ+µ− in the final
state it is

Dµ(λ1, λµ+ , λµ−) = ie

{

u†I(q2, λµ−)ÃµvI(q1, λµ+) + u†II(q2, λµ−)B̃µvII(q1, λµ+)

}

,

(17)

with

Ãµ =

(

ε∗(k1, λ1)
−k+

1 + 2ε∗(k1, λ1) · q2
)

σµ−

2k1 · q2

− σµ−
(

2ε∗(k1, λ1) · q1 + k+
1 ε

∗(k1, λ1)
−

)

2k1 · q1
, (18)

and

B̃µ =

(

ε∗(k1, λ1)
+k−1 + 2ε∗(k1, λ1) · q2

)

σµ+

2k1 · q2

− σµ+
(

2ε∗(k1, λ1) · q1 + k−1 ε
∗(k1, λ1)

+
)

2k1 · q1
. (19)

The FSR matrix element squared and the FSR–ISR
interference for pions in the final state agrees numerically
(15 digits) with the code of EVA [7], if non-leading mass
terms ∼ m2

e missing in EVA are added. The largest rel-
ative change of the matrix element squared due to those
missing terms is however as small as 10−6. The sum over
polarisations of the squared matrix element for muon fi-
nal states is numerically identical to the result obtained
by means of the trace method using FORM [34]. For both
final states the external gauge invariance was checked nu-
merically, while one can see at a glance that the above
analytical formulae have that property.

To analyse the contribution from FSR the program
can be run in three different options: initial state radia-
tion only, initial state radiation plus final state radiation
without interference and complete result with interference
terms. In the last two cases it is necessary to change the
generation of the phase space to absorb final state emis-
sion peaks. For these two options we use three channels
to absorb the peaks in Q2 and in pion (muon) angular
distributions. For the muon case we use the approximant

f1(q
2, cos(θµ)) =

1

1 − q2
+

1

q2

+
1

1 − q2

(

1

1 − v(mµ) cos(θµ)
+

1

1 + v(mµ) cos(θµ)

)

,

(20)

where

v(m) =

√

1 − 4m2

s
, q2 =

Q2

s
, (21)

For the pion case we use

f2(q
2, cos(θπ)) =

1

1 − q2
+

1

(q2 −m2
ρ/s)

2 + Γ 2
ρm

2
ρ/s

2

+
1

1 − q2

(

1

1 − v(mπ) cos(θπ)
+

1

1 + v(mπ) cos(θπ)

)

.

(22)

An appropriate change of variables allows for a smooth-
ing of the aforementioned peaks. The q2 and cos(θµ(π)) are

generated according to the functions f1(2)(q
2, cos(θµ(π))).

These very simple approximants work well enough to al-
low for relatively fast event generation.

B The analytical formulae used in Section 2

The formulae resulting from the analytical evaluation of
the integration over photon angles are adopted from Refs.
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[29,30] (see also Section 2 for details). The contributions
of the virtual + soft corrections to the hadronic invariant
mass (Q2) differential distribution are given by

Q2 dσ

dQ2
=

4α3

3s
R(Q2)

{

1 + q4

1 − q2
(L− 1)

×
(

1 +
α

π

[

log(4w2)(L − 1) +
3

2
L− 2 +

π2

3

])

+
α

π

[

− 1 + q4

2(1 − q2)
log(q2) L2

+

{

1 + q4

1 − q2

(

Li2(1 − q2) + log(q2) log(1 − q2)

− log2(q2)

2
+

5

2
log(q2)

)

− (1 − q2) log(q2) +
q2

2

}

L

+
1 + q4

1 − q2

(

S1,2(1 − q2) +

[

log(q2) − 3

2

]

Li2(1 − q2)

+

[

log(q2) log(1 − q2) − log2(q2)

3
+ log(q2)

− 3 log(1 − q2) − 8

]

log(q2)

2

)

+ (1 + q2)

(

2Li3(1 − q2) − S1,2(1 − q2)

− log(1 − q2)Li2(1 − q2) +
log2(q2)

4

)

+
1 − 7q2

2

(

Li2(1 − q2) + log(q2) log(1 − q2)

)

− 1 − 5q2

4

(

log2(1 − q2) +
2π2

3

)

+
3 − 2q2

2
log(1 − q2) +

7 − 5q2

2
log(q2) − 1

]}

, (23)

While the emission of two hard photons, i.e. both photons
with energy larger than w

√
s, contributes as

Q2 dσ

dQ2
=

4α3

3s
R(Q2)

α

π

×
[

1 + q4

1 − q2

{

2 log(
1 − q2

2w
) − log(q2)

2

}

(L − 1)2

+

{

− (1 − q2) + (1 + q2)
log(q2)

2

}

L2

+

{

7

2
(1 − q2) − q2 log(q2) + (1 + q2)

log2(q2)

4

}

L

+
1 + q4

1 − q2

(

− S1,2(1 − q2) − log(q2)

2
Li2(1 − q2)

− 3 log2(q2)

2
+

(π2

6
+

5

3

)

log(q2)

)

− (1 + q2)

(

Li3(1 − q2)

2
+ S1,2(1 − q2)

)

− π2q2

9

−
(

1

2
+

2q2

3

)

Li2(1 − q2) − (10 − 25q2)
log(q2)

6

+

(

2

(1 − q2)2
− 1

4
− 7q2

3

)

log2(q2)

+
1 − q2

2
− 2

3

q2

1 − q2

(

1 +
log(q2)

1 − q2

)2]

, (24)

with L = log(s/m2
e) and S1,2 the Nielsen’s generalised

polylogarithm function

Sn,p(z) =
(−1)n+p−1

(n− 1)! p!

∫ 1

0

logn−1(t)
logp(1 − zt)

t
dt , (25)

Lin(z) = Sn−1,1(z) being the polylogarithms

Lin(z) =

∞
∑

k=1

zk

kn
, |z| < 1 , (26)

and

S1,2(1 − z) =
1

2
log2(z) log(1 − z) + ζ(3)

+ log(z)Li2(z) − Li3(z) . (27)

The function R(Q2) is related to the hadronic current
Jem through

∫

Jem
µ (Jem

ν )∗ dΦ̄n(Q; q1, . . . , qn) =

1

6π

(

QµQν − gµνQ
2
)

R(Q2) , (28)

where dΦ̄n(Q; q1, . . . , qn) denotes the n-body phase space
with all statistical factors coming from the hadronic final
state included.

The ratio R(Q2) = σ(e+e− → hadrons)/σpoint for
hadrons = π+π− is equal to

R(Q2) = |F (Q2)|2β
3
π

4
. (29)
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11. M. Caffo, H. Czyż and E. Remiddi, Nuovo Cim. 110A

(1997) 515 [hep-ph/9704443]; Phys. Lett. B 327(1994)369.
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