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1 Introduction

In the Standard Model of electroweak interactions all ferminasses are free parameters and
their origin, although linked to the spontaneous symmetepaking mechanism, remains secret.
Masses of charged leptons are well measured experimeatallpeutrino masses, if they exist,
are also bounded. In the case of quarks the situation is noonglecated because free quarks
are not observed in nature. Therefore, one can only get saairect information on the values
of the quark masses. For light quarks,(< 1 GeV, the scale at which QCD interactions be-
come strong), that is, far-,d- ands-quarks, one can define the quark masses as the parameters
of the Lagrangian that break explicitly the chiral symmedfithe massless QCD Lagrangian.
Then, these masses can be extracted from a careful andlyseson spectra and meson decay
constants. For heavy quarks &ndb-quarks) one can obtain the quark masses from the known
spectra of the hadronic bound states by using, e.g., QCD sl@sor lattice calculations. How-
ever, since the strong gauge coupling constant is stilelatghe scale of heavy quark masses,
these calculations are plagued by uncertainties and ntumpative effects.

It would be very interesting to have some experimental miaiion on the quark masses
obtained at much larger scales where a perturbative quass hefinition can be used and,
presumably, non-perturbative effects are negligible. measurements at LEP will combine
this requirement with very high experimental statistics.

The effects of quark masses can be neglected for many olbéesva LEP studies, as usu-
ally quark masses appear in the raﬁ@/mQZ. For the bottom quark, the heaviest quark produced
at LEP, and taking &-quark mass of about 5 GeV this ratio(i$)03, even if the coefficient in
front is 10 we get a correction of about 3%. Effects of thiseordre measurable at LEP, how-
ever, as we will see later, in many cases the actual masstbaldsbe used in the calculations
is therunning mass of thé-quark computed at the.; scale:m,(mz) ~ 3 GeV rendering the
effect below the LEP precision for most of the observables.

While this argument is correct for total cross sections fardpiction ofb-quarks it is not
completely true for quantities that depend on other vagisbln particular it is not true for jet
cross sections which depend on a new variapl¢the jet-resolution parameter that defines the
jet multiplicity) and which introduces a new scale in the Igss, £. = mz,/y.. Then, for
small values ofy. there could be contributions coming like?/E? = (m;/mz)?/y. which
could enhance the mass effect considerably. In additiors eifects could also be enhanced by
logarithms of the mass. For instance, the ratio of the phpaeesfor two massive quarks and
a gluon to the phase space for three massless particles i&(m,/m)? log(m,/mz). This
represents a 7% effect fat, = 5 GeV and a 3% effect fom, = 3 GeV.

The high precision achieved at LEP makes these effectsamievn fact, they have to be
taken into account in the test of the flavour independence, @f.) [[IH]. In particular it has
been shown[]6] that the biggest systematic error in the nreasnt ofa’(my) (o, obtained
from bb-production at LEP from the ratio of three to two jets) conresif the uncertainties in
the estimate of the quark mass effects. This in turn meansrthss effects have already been
seen. Now one can reverse the question and ask about theiptyssi measuring the mass of
the bottom quarksn,,, at LEP by assuming the flavour universality of the strongriattions.

Such a measurement will also allow to check the runninggf:) from = mytou = my
as has been done before for(x). In additionm,(my) is the crucial input parameter in the
analysis of the unification of Yukawa couplings predictedngny grand unified theories and
which has attracted much attention in the last years [7].

The importance of quark mass effects4rboson decays has already been discussed in the
literature [B]. The complete order, results for the inclusive decay rate6f— bb+bbg+- - - can



be found in [B]. The leading quark mass effects for the inclusimvidth are known to order
a2 for the vector part[[J1] and to orde# for the axial-vector par{[12]. Quark mass effects for
three-jet final states in the process~ — ¢gg were considered first if JIL3] for the photonic
channel and extended later to thechannel in [I§] and[[15]. Recently J[16] calculations of
the three-jet event rates, including mass effects, were danthe most popular jet clustering
algorithms using the Monte Carlo approach.

In this paper we will discuss the possibility of measuring dfquark mass at LEP, in par-
ticular, we study bottom quark mass effectsZdrdecays into two and three jets. In section 2
we calculate the inclusive decay rate— bb + bbg + - - - at ordera, by summing one-loop
virtual corrections taZ — bb and the real gluon bremsstrahlung contribution. Dimeraion
continuation is used to regularize both infrared (IR) andawviolet (UV) divergences. Phase
space integrations are also donelindimensions. This calculation allows us to understand
the details of the cancellation of IR divergences and howesgotentially large, logarithms
of the quark mass are absorbed in the running quark mgags. 7). In section 3 we calculate
analytically the two and three-jet event rates in terms efj#i-resolution parameter. and
the mass of the quark for a slight modification of the wellAkmaJADE algorithm [1]7] suit-
able for analytic calculations with massive quarks. We alsgsent numerical results for this
scheme and for some of the most popular jet-clustering itgos (DURHAM (K ), JADE and
E), estimate higher order contributions and compare wigfegrmental results obtained by the
DELPHI Collaboration[[R] for 1990-1991 data. If the gluongan be identified with good effi-
ciency a very interesting observable, which strongly desein the quark mass, is the angular
distribution with respect to the angle formed between trerkjand the gluon jets. This distri-
bution is calculated for massless quarks in section 4: &nally for JADE-type algorithms and
numerically for the DURHAM algorithm. We also compute nuinally the ratio of massive to
massless angular distributions for the four jet-clustpalyorithms. In section 5 we summarize
the results obtained in the paper and comment on the passifiusing them to measure the
b-quark mass in LEP experiments. Finally in the four appesslize collect all the functions
and formulae needed in the body of the paper.

2 The inclusive decay rateZ — bb

The main purpose of this paper is to investigatpiark mass effects i@ decays into two and
three jets. Since at order, the inclusive decay rat& — bb + - - - is given by the sum of the
two- and three-jet decay widths we will start by studyingthuantity.

To calculate the total decay rate to orderone has to sum up the virtual one-loop gluonic
corrections to theZ — bb with the real gluon bremsstrahlung. Both contributions sepa-
rately infrared divergent for massless gluons, therefeweje regularization method for the IR
divergences is needed. The sum is, however, IR finite.

Since there are many subtleties in this calculation, wecbkietin this section. Both pro-
cessesZ — bb at one loop and — bbg, are calculated in arbitrary dimensiéh= 4 — 2¢ and
dimensional regularization is used to regularize the IRe@jences[[18]. At ordet, and for
massive quarks all IR divergences appear as simple ppte¥Ve show how the the divergences
cancel in the sum and obtain the total inclusive rate.

The first step is to compute the decay width— bb at tree-level in dimensiof. Since
there are no IR divergences in this case it is not necessaty the calculations in arbitrary

!The ordera, corrections to the vector part, including the complete nugEendences, were already known
from QED calculationg[30].



space-time dimensions. However, there are IR divergertd#® ane-loop level and factors
could lead to finite contributions when multiplied by theefigent terms.
The amplitude for the deca¥ — bb in D dimensions is

7Y = /f%ﬂm(gv + gays)v2e(q) (2.1)
cw
where the factop. has been included to make the gauge weak couplidignensionless irD
dimensionsyu; andwv, are short-hand notations for the quark (antiquark) spinars= u(p;)
andvy = v(p2), €(q) stands for the polarization vector of tlieboson and;, (¢g4) are the
vector (axial-vector) neutral current couplings of the ggan the Standard Model. At tree
level and for the-quark we have

4
gy =—1+ gs%,v , ga=1. (2.2)
Here we denote by, andsy, the cosine and the sine of the weak mixing angle.
Taking the square of the amplitude, averaging over initetlespolarizations, summing over
final state polarizations, and adding the phase space famtdhe two-body decay given in
appendix A [IB] we obtain the following decay width indimensions,

Ty = Cy A3~ (2.3)
with
2 2 —¢
_ g I'(1—e) mz
Co=m2 3 6 T2 — 20 \amp2) (24)
and .
Ay = 5(3 — 3 —2e)g7 + 2 (1 — €)g - (2.5)

In these expressionsis the relative velocity of the produced quarks
mi
B=v1-—dr, "= o (2.6)
Z

At the one-loop level (see diagrams in fi§. 1b), and after meadization of the UV diver-
gencef§, the amplitude can be conveniently parameterized in terfitisree form factors,fy/,

fa andfr,

e 9 _ 1 1 0w q” 1
Ty =p - <9v ((1 + §Cgfv)% + ZQCng ;mb ) +9ga(l+ icng)%%) v2et(q)
(2.7)
whereC, is defined as follows,
o = (mz )" _1 (2.8)
I o \dmp2) T(1—¢) '

Here and below we will conventionally use = «,(m ) to denote the value of the running
strong coupling at the:;-scale.

2Note that conserved currents or partially conserved ctsr@nthe vector and axial currents do not get renor-
malized. Therefore, all UV divergences cancel when one sunogerly self-energy and vertex diagrams. The
remaining poles i correspond to IR divergences. One can see this by sepacatiafylly the poles correspond-
ing to UV divergences from the poles corresponding to IR idjeaces.



The form factorsfy, f4 and fr, are related by

fv=»Ffa+[fr. (2.9)

The two functions,f,, and f4, contain an IR divergence, whilgr is finite. Separating the
divergent parts, we can rewrite the real parts of the forntofacas follows (at ordes, the
imaginary parts will not contribute)

Re{fv} = —%feJerf, (2.10)
Re{fa} = _%fs‘FfAf, (2.11)
Re{fr} = fry, (2.12)

where all functions, fvs, fay and fr; are given in appendix B. Note that, as expected, the IR
divergent part of the amplitude is proportional to the timeel amplitude eq.[(Z.1). As the IR
divergence manifests itself as a single pole,iclearly, we only need to keep everywhere terms
linear ine.

From the amplitude[(2 7) we obtain the one-loop correcteitiwin D dimensions

0 1
ry =1y + 13",

with
1
v = ¢, firg‘” + CyCy(g2 Fy + A Fy) | (2.13)

where the finite functiong}, and 4 are given in appendix B in terms of the form factors and
I\ is given by eq.[[Z]3)

The O(«,) result, eq.[(2-33), is divergent fer— 0 because the IR divergences associated
with massless gluons running in the loops. To get a finite anawthis order we also need
to include gluon bremsstrahlung from the quarks. This hdseteomputed by working i
dimensions.

The amplitude for the process— bbg (the two corresponding diagrams are given inffig. 1c)
can be written as

2 9 (Wt H A+ my)vu(gv 4 9as)
Toy = 1 Egs Uy < )
P ) O CE R D

Here\* are the Gell-ManrbU (3) matrices, and (k) is the gluon polarization vector.

The square of the amplitude, in dimensibn gives a rather involved expression that can
be conveniently simplified when one realizes that the magrdent part of it factorizes com-
pletely, even inD dimensions, due to the factorization theorems for soft aitihear diver-
gences.

Adding the three-body phase space (see appendix A) we findhdaecay width ot/ —
bbg in D dimensions can be written as

Ty = CyCyCr / diyydys0(hy)h Ay | (2.15)

whereCr = 4/3istheSU(3) group factory; andy, are defined in terms of the energy fractions
of the two outgoing quarks

y1 = 2(pik)/m%y =1—2E,/my , Yo = 2(pak)/my =1 —2E; /my (2.16)

N



andA;, comes from the square of the matrix element,

h

Apy = AbyQ—”Q +gohy + giha - (2.17)
192

Here A, is the same combination of couplings and masses that apipeties tree-level decay

width to two quarks, eq[(3.5), and the functibpis given by

hy = y1ya(1 — y1 — y2) — (1 + 42)% (2.18)

and it is exactly the same function that defines the phaseespaailable for the three-body
decay (see eq[ (2]15) and appendix A). After phase spaagatien this term will contain an
IR divergence which comes from the singularityat= y, = 0.

The functionshy andh 4 describe the vector and the axial-vector parts of the redeaiaf
the square of the amplitude which do not generate any IR givere. In the limit = 0 they
are given by:

hy = 1<@+ﬂ> , (2.19)
2\y1 Yo
ha = (14 2r)hy + 27y . (2.20)

To perform the phase space integration it is convenientamgé variables as follows

= g(x)w,
Y2 = g(Z)Z’lU P
Wi (+22 1 (-d(-c)
. Z—Tp z . Z —C — CZ
9(2) = 2(14+2) (14+0)?  2(1+2) (2.21)
and -5
=175 (2.22)

Then, bothy, andh 4 only depend on the variable and the functiork,, which defines phase
space and appears explicitly in eff. (2.17), factorizes detely

hy, = g(2)*2(1 + 2)w?(1 — w) . (2.23)

The functiong(z) has zeros at; = c andz, = 1/c. As phase space is defined by > 0 we
obtain that the phase space in terms of the new variablegas @y

c<z<l1/ec and O<w<l1. (2.24)

After this change of variables eg. (4.15) can we rewritten as

1/c 1
Ty = C4CyCr / dzg(z)? /0 dwwh; Ay, . (2.25)

Now thew integration is very simple and leads to Beta functions. Reiimtegration of the term
of the amplitude proportional td, (see eq.[(2.17)) we get

1/c 1

l/cd ld hl—s 1 d 3 1—e 226
o o g = B2 =) | e (020 2) L @29



where the functionB(—2¢,2 — ¢) has a single pole im = 0. In this way, all the divergent
behaviour has been factorized in the Beta function. Thepetéorm thez integration we can
expand the integrant for smalland keep only terms linear in The integrations can be easily
performed and the results written in terms of logarithms dihatyarithmic functions. The rest
of the integrals do not lead to any divergence and can be aatigut problem, putting equal
to zero.

After phase space integration, the decay widthAor- bbg can be written in the following
form

1
Loy = CyfeTy + CoCy (61Gv +64Ga) | (2.27)

where the first term contains the IR divergent part and therdReffunctionsGy,, andG 4 are
given in appendix B.

The IR divergent part of eq[ (2]27) is identical, but witheesed sign, to the one obtained
for I\, therefore in the sum they will cancel, as it should be:

Ty =T + T4 + Doy =T} + G0, (63T + 63Th) (2.28)

with
Ty = Fy+Gy, (2.29)
Ty = Fo+Ga. (2.30)

From the results of the appendix B we can easily obtain thi bfithese functions for small
guark massesy;, < my (r, < 1)

TV ~ 1+ 127’(,, (231)
Ty =~ 1—6r,(2logr,+1). (2.32)
If we plug this result into eq[(2.28) we obtain the well-krmoresult [11]

2

g
Ty = my—r—
b= M2 6an

Qg Qg
il (1 + 20+ 127‘1,)) ) (1 — 6+ 22 (1= 6 (2log , + 1)))] .

(2.33)
It is interesting to note the presence of the large logaritlug(m?/m?%), proportional to the
quark mass in the axial part of the QCD corrected width, E@32 The mass that appears in
all above calculations should be interpreted as the pextudypole mass of the quark. But in
principle the expression (2]33) could also be written imtgiof the so-calledunning quark
mass at then, scale by using

m2 = m2(my) [1 +o% (log (m—%> + %)] . (2.34)
T mj

Then, we see that all large logarithms are absorbed in th@ngrof the quark mass from the
my, Scale to then, scale [I]l] and we have

2
g 2 Qs — 2 — Qg _
I, = - 1+ —(1+12 1-— —(1—22 2.
= ma gt o (14 20+ 12m) ) 1 ad (1-6n+ C0-2m))] (239
wherer, = m2(myz)/m%.
This result means that the bulk of the QCD corrections deipgnon the mass could be
accounted for by using tree-level expressions for the dedgdsh but interpreting the quark

ag



mass as the running mass at the scale. On the other hand, singe,(mz;) ~ 3 GeV is
much smaller than the pole mass, ~ 5 GeV, it is clear that the quark mass corrections are
much smaller than expected from the naive use of the treztlesult withm, ~ 5 GeV, which
would give mass corrections at the 1.8% level while in faoeoQCD corrections are taken
into account, the mass corrections are only at the 0.7%.level

The final results of this section are well known but we find theuld illuminate the dis-
cussion of mass effects in the two- and three-jet event eatdsn the angular distribution with
respect to the angle formed between the quark and gluorMetsover the intermediate results
of this section will be used in the rest of the paper.

3 Two- and three-jet event rates

According to our current understanding of the strong irdoas, coloured partons, produced
in hard processes, are hadronized and, at experiment, dynelmerves colourless particles. It
is known empirically that, in high energy collision, finalrpeles group in several clusters by
forming energetic jets, which are related to the primorgeaitons. Thus, in order to compare
theoretical predictions with experiments, it is necessagefine precisely what is a jet in both,
parton level calculations and experimental measurements.

As we have seen in the previous section, at ordethe decay widths of into both two and
three partons are IR divergent. The two-parton decay rafigesgent due to the massless gluons
running in the loops. Th&-boson decay width into three-partons has an IR divergeecause
massless gluons could be radiated with zero energy. Thelsmngver, is IR finite. Then it is
clear that at the parton-level one can define an IR fimitejet decay rate, by summing the two-
parton decay rate and the IR divergent part of the threepalcay width, e.g. integrated over
the part of the phase space which contains soft gluon emifs8}. The integral over the rest
of the phase space will give thbree-jet decay rate. Thus we need to introduce a “resolution
parameter” in the theoretical calculations in order to defiR-safe observables. Obviously, the
resolution parameter, which defines the two- and the theepgrts of the three-parton phase
space should be related to the one used in the process oinguigds from real particles.

In the last years the most popular definitions of jets aredagsehe so-called jet clustering
algorithms. These algorithms can be applied at the paria ie the theoretical calculations
and also to the bunch of real particles observed at expetirttdras been shown that, for some
of the algorithms, the passage from partons to hadronsd¢hadtion) does not change much
the behaviour of the observablds][20], thus allowing to carapgheoretical predictions with
experimental results. In what follows we will use the wordtjzées for both partons and real
particles.

In the jet-clustering algorithms jets are defined as follostarting from a bunch of particles
with momentg; one computes, for example, a quantity like

EE;
S

yij =2 (1 — COS Hw)

for all pairs(, j) of particles. Then one takes the minimum ofwglland if it satisfies that it is
smaller than a given quantity. (the resolution parameter, y-cut) the two particles whiefirge
this y;; are regarded as belonging to the same jet, therefore, tieeyeaombined into a new
pseudoparticle by defining the four-momentum of the pseadimte according to some rule,
for example

Dk =Di +Dj -



Algorithm | Resolution Combination

EM 2(pip;)/s Pk =Di +Dj
JADE Q(EZEJ>/S (1 — COS 1913) Pk = Pi —ij
E (pi +p;j)*/s PR =Di +Dj

DURHAM | 2 min(E?, Ef)/s (1 —cos?yj) | pr=pi +pj

Table 1: The jet-clustering algorithms

After this first step one has a bunch of pseudopatrticles amdltforithm can be applied again
and again until all the pseudoparticles satigfy> .. The number of pseudoparticles found in
the end is the number of jets in the event.

Of course, with such a jet definition the number of jets foumcmn event and its whole
topology will depend on the value gf. For a given event, larger values f will result in a
smaller number of jets. In theoretical calculations onedfine cross sections or decay widths
into jets as a function of., which are computed at the parton level, by following exatile
same algorithm. This procedure leads automatically to Iliefoquantities because one excludes
the regions of phase space that cause trouble. The sucdbsgettclustering algorithms is due,
mainly, to the fact that the cross sections obtained afeehtdronization process agree quite
well with the cross-sections calculated at the parton lededn the same clustering algorithm
is used in both theoretical predictions and experimentalyses.

There are different successful jet-clustering algorittand we refer to refs[]20, P1] for a
detailed discussion and comparison of these algorithntsicase of massless quarks.

In the rest of the paper we will use the four jet-clusteringpaithms listed in the tablg 1,
where /s is the total centre of mass energy. In addition to the wetiviam JADE, E and
DURHAM algorithms we will use a slight modification of the J&cheme particularly useful
for analytical calculations with massive quarks. It is defirby the two following equations

Dip;
Yij = 2—L
5

and

Dk = Pi + Dj
We will denote this algorithm as the EM scheme. For masslastcfes and at the lowest
order E, JADE and EM give the same answers. However alreautglata? they give different
answers since after the first recombination the pseudofestare not massless anymore and
the resolution functions are different.

For massive quarks the three algorithms, E, JADE and EM aeady different at ordet,.
The DURHAM (K1) algorithm, which has been recently considered in ordevaodeexponen-
tiation problems present in the JADE algoritim]|[£0, 22],fisaurse completely different from
the other algorithms we use, both in the massive and the esssshses.

In figure[2 we plotted the phase-space for two valueg. ¢f. = 0.04 andy, = 0.14) for all
four schemes (the solid line defines the whole phase space ferggg with m, = 10 GeV).

There is an ongoing discussion on which is the best algoritrjet clustering in the case
of massless quarks. The main criteria followed to choose thiee based in two requirements:

1. Minimize higher order corrections.



2. Keep the equivalence between parton and hadronized sosens.

To our knowledge no complete comparative study of the jestering algorithms has been done
for the case of massive quarks. The properties of the difteakyorithms with respect to the
above criteria can be quite different in the case of massingks from those in the massless
case. The first one because the leading terms containindedtngarithms of y-cutlpg®(y.))
that appear in the massless calculation (at ondgand somehow determine the size of higher
order corrections are substituted in the case of massivé&g b single-logarithms af.. times
a logarithm of the quark mass. The second one because haationicorrections for massive
quarks could be different from the ones for massless quarks.

Therefore, we will not stick to any particular algorithm ather present results and com-
pare them for all the four algorithms listed in the tafjle 1.

3.1 The analytic calculation for the EM scheme

Here we calculate analytically, at leading order, the the¢eecay rate of th&-boson by using
the EM clustering algorithm.

At the parton level the two-jet region in the decay— bbg is given, in terms of the variables
y; andys, by the following conditions:

Y1 < Ye or Yo < Ye or L=2m—y1 — Y2 < Ye. (3.1)

This region contains the IR singularity, = y» = 0 and the rate obtained by the integration of
the amplitude over this part of the phase space should beldaddee one-loop corrected decay
width for Z — bb. The sum of these two quantities is of course IR finite andtiésso-called
two-jet decay width at ordeti,. The integration over the rest of the phase space defines the
three-jet decay width at the leading order. It is obvious tha sum of the two-jet and three-jet
decay widths is independent of the resolution parametdR finite and given by the quantity

I, = ['(Z — bb + bbg + - - ) calculated in section 2. Therefore we have

Iy = ng(yc) + ng (yc) +

Clearly, at ordery,, knowingI', andI'}; (y.) we can obtail™; (y.) as well.

The calculation ofl“gj(yc) at ordera, is a tree-level calculation and does not have any
IR problem since the soft gluon region has been excluded fshase space. Therefore the
calculation can be done in four dimensions without trouble.

We will start with equation[(Z2.15) taking= 0 and with the phase space constrained by the
cuts defined in eq[(3.1).

ng = (CngCF/dyldy29PS‘90Abg) ) (3.2)

=0

where the) function
Ops = 0(h,) (3.3)

gives the whole phase space, and the produétfohctions
Oc = 0(y2 — ye)0(y1 — ye)O(1 — 21 — y1 — Y2 — Ye) (3.4)

introduces the appropriate cuts for the EM scheme. The sopfahe amplituded,,, is given
in eq. {Z.I]7). The phase space and the cuts are represeiedfirst plot of fig.[P.



Depending on the value af. the limits of integration are different, there are threeesas
which correspond to three different topologies of the aygping of the phase space and the
area defined by the cuts:

Ye < 27’1,
2Tb < Ye < gc
Yo < Yo , (3.5)

whereg, = /(1 — \/ry) + O(r\/y) is given by a solution of the following equation
A1 = 2y, — 2r)* (2 + 413) = y2(2 — ye — 81p)”. (3.6)

Since the integrant is symmetric under the exchange: 1y, we can restrict the region of
integration to the region, > y, (multiplying the result by a factor 2). In addition it is uséto
change variables as befoig,= zy;. We will not discuss the technical details of the calculatio
here; all of the integrals can be reduced to logarithmic alegydrithmic functions and the final
result can be written in the following form

Th; = CoCy (GEHY (yerms) + G5 HY (yerm)) (3.7)

where the superscript) in the functionsH‘(/O()A) (ye, rp) reminds us that this is only the lowest

order result. Analytical expressions for the functidﬂg) (Yer 73) andHff) (ye, 1) are given in
appendix C. Obviously, the general forfn {3.7) is indepehdémwhat particular jet-clustering
algorithm has been used.

In the limit of zero masses; = 0, chirality is conserved and the two functioHé,O) (Ye, )
andHﬁlo) (ye, ) become identical

HY (ye,0) = HY (3., 0) = AO(y,) .

In this case we obtain the known result for the JADE-type @llgos, which is expressed in
terms of the functiom© (y,) also given in appendix {

To see more clearly the size of mass effects we are going dy stk following ratio of jet
fractions

I3, (ye) /T° HOor)  HO (o)
B = (o = VIOl e AT (14 Gryeq +O(i)) . (3.8)
S Tg(ye) /T " A0 (y,) AT A0 () ( ea+0(1}))
where we have defined
2 2
gv i 9+ g4

In eq. (3.8) we have kept only the lowest order termsjrandr,. The last factor is due to
the normalization to total rates. This normalization is artpnt from the experimental point
of view but also from the theoretical point of view becaus¢hiese quantities large weak cor-
rections dependent on the top quark m@sp [23] cancel. Nateftn massless quarks, the ratio
ng(yc)/Fd is independent on the neutral current couplings of the quanid, therefore, it is
the same for up- and down-quarks and given by the functiSh This means that we could
equally use the normalization to any other light quark ori® $um of all of them (including
also the c-quark if its mass can be neglected).

3Note that with our normalizatiod® (y.) = L A(y.), with A(y.) defined in ref. [20].
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3.2 Estimate of higher order contributions

All previous results come from a tree-level calculationwkger, as commented in the introduc-
tion, we do not know what is the value of the mass we shouldmusasi final results since the
difference among the pole mass, the running mags-atm, or the running mass at = my
are next-order effects in,.

In the case of the inclusive decay rate we have shown that ome account (with very
good precision) for higher order corrections by using thenimg mass at the:, scale in the
lowest order calculations. Numerically the effect of rurmthe quark mass from, to m is
very important.

One could also follow a similar approach in the case of jetgand try to account for
the next-order corrections by using the running quark maskff@rent scales. We will see
below that the dependence Bf¢ on the quark mass is quite strong (for all clustering schgmes
using the different masses (e, or m;(M)) could amount to almost a factor 2 in the mass
effect. This suggests that higher order corrections coeldniportant. Here, however, the
situation is quite different, since in the decay rates te ye¢ have an additional scale given by
Yer E. = myzy/ye, €.9. fory, = 0.01 we havel, = 9 GeV and fory, = 0.05, £, = 20 GeV.
Perhaps one can absorb large logarithims(m,/m) by using the running coupling and the
running mass at the = m  scale, but there will remain logarithms of the resolutiorepaeter,
log(y.). For not very smally. one can expect that the tree-level results obtained by using
the running mass at the, scale are a good approximation, however, as we alreadytbaid,
situation cannot be settled completely until a next-talieg calculation including mass effects
is available.

Another way to estimate higher order effectsRf is to use the known results for the
massless casg ]40] 271} 24]

Including higher order corrections the general form of BglXis still valid with the change
H‘(,O()A) (Yer15) — Hy(ay(ye, 7). Now we can expand the functiod$, 4(y., ) in o, and
factorize the Ieadlng dependence on the quark mass as follow

Qs
Hn (e 1) = A0 + AN )+ (B ) + B ) ) - @9)

In this equation we already took into account that for masstpiarks vector and axial contri-
butions are identicfl
Then, we can rewrite the rati®}?, at ordera;, as follows

o B wer) (s (BY ><yc,rb> AV
A(O) (yc) T BV ( Ye, b A yc)
Bz(f)(ymrb) Qg Bz(éx)(ym yC)

tep————= |14+ —

A0 (y,) 7 \BO(yry)  AO(y)

<1 + 6ry, <CA(1 + 2— log(ry)) — cv2%> (3.10)

Rgd:1+7“b

From the calculations in this paper we kncEQ,O) (ye,rp) and B(A(])(yc,rb); the lowest order
function for the massless cas¢”) (y.), is also known analytically for JADE-type algorithms,

4This is not completely true ab(a?) because the triangle anomaly: there are one-loop triariglgrams
contributing toZ — bbg with the top and the bottom quarks running in the loop. Simge# m,; the anomaly
cancellation is not complete. These diagrams contributka@xial part even fom;, = 0 and lead to a deviation
from AS)(yC) = Ai‘l)(yc) [Bg]. This deviation is, however, small [25] and we are nangdo consider its effect
here.
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eq. (C.IB) and refs[[2[0,21], and for the DURHAM algoritfmd]2A parameterization of the
function AM (y,) can be found in[[20] for the different algorithfhsAs we already mentioned
this function is different for different clustering algthrims. The only unknown functions in
eq. (3.ID) are?x(})(yc, ry) andBY (y., ), which must be obtained from a complete calculation
at ordera? including mass effects (at least at leading order,)n

Nevertheless, in order to estimate the impact of higherrazdeections in our calculation
we will assume thaB{ s (ye, )/ Byoa (Yes 7o) < AD () /A (y,) and takeA™ (y.)/A©)(y,)
fromf] [20,[21]. Of course this does not need to be the case but dtileages an idea of the
size of higher order corrections. We will illustrate the rermal effect of these corrections for
RY in the next subsection. As we will see, the estimated effécteat-order corrections is
quite large, therefore in order to obtain thiguark mass from these ratios the calculation of the
functionsB‘(},A(yc, rp) IS mandatory[[26].

3.3 Numerical results for R} for different clustering algorithms

To complete this section we present the numerical result&f6 calculated with the different

jet-clustering algorithms. For the JADE, E and Durham athars we obtained the three-jet
rate by a numerical integration over the phase-space giy¢hebcuts (see fig] 2). For the EM
scheme we used our analytical results which were also emagltwycross check the numerical
procedure.

In fig. § we present the rati®}?, obtained by using the tree-level expression, Eq] (3.8),
againsty, for m, = 5 GeV andm; = 3 GeV. We also plot the results given by eff. (8.10)
(with B%(ym rb)/B‘(/(?ll(yc, ry) = 0) for m, = 5 GeV, which gives an estimate of higher order
corrections. Fog,. < 0.01 we do not expect the perturbative calculation to be valid.

As we see from the figure, the behaviour®f is quite different in the different schemes.
The mass effect has a negative sign for all schemes excefhtedt-algorithm. Fog,. > 0.05
the mass effects are at the 4% leveli#ay = 5 GeV and at the 2% level for, = 3 GeV (when
the tree level expression is used). Our estimate of higliaraffects, with the inclusion of the
next-order effects i, for massless quarks, shifts the curvesday = 5 GeV in the direction of
the 3 GeV result and amounts to about of 20% to 40% of the éifiee between the tree-level
calculations with the two different masses. For both E and $€lemes we used the higher
order results for the E scheme.

For the JADE algorithm we have also plotted in fi. 3 the experital results forR}
obtained by the DELPHI group][2] on the basis of the data ctaleéin 1990-1991. The experi-
mental errors, due to the limited statistics analyzed, atfeer large. However, one can already
see the effect of the quark mass. If thguark mass would be zero, one should obtain a ratio
R constant and equal to 1. It is clearly seen from the figureftvay. < 0.08 the data are
significantly below 1. For larger values @f, the number of events decreases, the errors become
too large and the data are consistent with 1. When larger atradwdata is analyzed and the
experimental error is decreased, it will be very interestmsee if data will exhibit the different
signs of the mass effect iR%? (positive for the E scheme and negative for the other schemes
as predicted by our parton level calculations (se€fig. 3).

In spite of the fact that the effect of the quark mas&if has been seen, it is too early, in
our opinion, to extract now the value of thequark mass from the data. As discussed above
the higher order corrections ! are presumably rather large and should be included in the

SWith our choice of the normalizatioA") (y.) = B(y.)/4, whereB(y.) is defined in [2].
SFor the EM algorithm this function has not yet been computednake an estimate of higher order corrections
we will use in this case the results for the E algorithm.
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Algorithm | &7 kP k@ | ED kD kP

EM -2.72 -14.64 -28.58 -2.61 -13.54 -30.67
JADE -2.01 -5.19 -13.25-1.90 -4.13 -15.47
E 468 19.04 2597 4.71 19.81 23.39

DURHAM | -1.69 -4.76 -12.70-1.65 -4.28 -15.4§

Table 2: Results of the tree parameter fits of the functid®)(y.,7)/A(y.) =
Y2, k% log™ v, in the range).01 < y, < 0.2

theoretical calculations. However, it is clear, that orfee éssential next-to-leading order cor-
rections will be available and all LEP data will be includecte analysis, the ratia&}’ will
certainly allow for a reasonable determination of &kguark mass and for a check of its running
from my; tomy.

To simplify the use of our results we present simple fits tortttE)sB‘(/(fA(yc, 1) /A0 (1.,
which defineR% at lowest order, for the different clustering algorithmse Wse the following
parameterization:

2
B, (4o, ) /A () = S kS log™ e (3.11)

n=0
and the results of the fits for the ran@@1 < y. < 0.2 are presented in tabf¢ 2.

In fig. B we plot the ratiosB\, (y., 7,)/A® (y.) as a function ofy, for the different algo-
rithms (dashed lines fan, = 5 GeV, dotted lines form, = 3 GeV and solid curves for the
result of our fits). As we see from the figure the remnant magemtience in these ratios (in the
range of masses we are interested in and in the rangeveé have considered) is rather small
and for actual fits we used the average of the ratios for thedifferent masses. We see from
these figures that such a simple three-parameter fit workemaaly well for all the algorithms.

Concluding this section we would like to make the followiregrark. In this paper we
discuss theZ-boson decay. In LEP experiments one studies the precess— (Z+*) — bb
and, apart from the resona#texchange cross section, there are contributions from tine p
~v-exchange and from the— Z-interference. The non-resonapexchange contribution at the
peak is less than 1% for muon production and in the cadeqefark production there is an
additional suppression fact@¥? = 1/9. In the vicinity of theZ-peak the interference is also
suppressed because it is proportionaDt¢s —m?%) (/s is thee™ e~ centre of mass energy). We
will neglect these terms as they give negligible contritmisi compared with the uncertainties in
higher order QCD corrections to the quantities we are cemisig.

Obviously, QED initial-state radiation should be takemiatcount in the real analysis; the
cross section fob-pair production at theZ resonance can be written as

op(8) = /U?I;(S/)F(S//S)ds/ (3.12)

where F'(s'/s) is the well-known QED radiator for the total cross sectip#][@nd, the Born
cross section, neglecting puyeexchange contribution and the- Z-interference, has the form

127T.T s

0
KT A T

(3.13)
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with obvious notation. Note thdt, in this expression can be an inclusive width as well as some
more exclusive quantity, which takes into account somerkatéal restrictions on the final
state.

4 Angular distribution

If the gluon jet can be identified with enough efficiency, aterasting quantity which is very
sensitive to the IR behaviour of the amplitudes is the angiitribution with respect to the
angle formed between one of the quark jets and the glu@inlfet, (,) is the angle between
the quark (antiquark) and the gluon jets we define- min(v;, ;). We want to obtain the
angular distribution with respect th The starting point is eq[ (3.2) where we change variables
from one of they, or they, variables taj. To do this we take into account that the amplitude is
completely symmetric iy; andys,, therefore we can restrict the integration only to the regio
y2 > y; and add a factor 2. In that regiah= J,. Therefore to obtain the distribution with
respect ta} it is enough to obtain the distribution with respect#obut constraining the phase
space integration tg, > ;.

Fory, > y; we can easily expresg in terms ofcos ¢ = cosJ; as follows

Yo (1 — Yp — COS 19\/(1 —y2)? — 4rb) 4.1)
Y = . .
I+y + cosﬂ\/(l — y9)? — 4ry

Adding the Jacobian of the transformation we find from dql)(@akinge = 0 as this quantity
is IR convergent)

are,
dv

295 [(1 = ) — ory)
(1 + Yy + cosﬁ\/(l —y9)? — 477,)

5 Abg . (4.2)

= ,CyCr2 / dy20psl. 0(y2 —y1) sin

wherey; is expressed in terms obs 1) andy, using eq. [4]1).
In order to see how large mass effects are in this angularaigbn we define the following
ratio of angular distributions:
b _ 1Ay [ 1dlg
VT dy ) T4 dy
In the case of massless quarks the integration limits in&) €an be found analytically
for the JADE-type schemes and the result of the integratiar g, is expressed in terms of
logarithms involving? andy... We find

(4.3)

ﬁ a0 ?fﬁ(yc)a (4-4)

where the functioryy(y.) is given analytically in appendix D for the JADE-type schenaad
represented in fig] 5 for the JADE-type and the Durham allgost for different values of.

(y. = 0.02 (solid line), y. = 0.04 (dashed line),. = 0.06 (dotted line ) andy. = 0.08
(dash-dotted line)). We observe a very sharp peak, for bgtrithms, in the region 0§0°—

100° depending on the value of, for y. = 0.04 the peak is at abow2° for the JADE-type
algorithms and at abow9° for the Durham algorithm. We see that the absolute size of the
peak is a factor two larger in the case of the JADE-type allgors (for the same value of)

"We thank J. Fuster for suggesting us the study of this obbkrva
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than in the case of the DURHAM scheme. This is due to the diffee of phase spaces for two
schemes.

For massive quarks, although the integrations can stilldstopmed analytically in the EM
scheme, some of the integration limits are solutions of pagial equations of the third degree
and the analytical result is not especially enlighting. T;hee have computed the ratit}? by
doing the one-dimensional integration jn {4.2) numerjcall

Numerical results for% are presented in fid] 6 for the different algorithms fpr= 0.04
and for bothm, = 5 GeV (solid line) and forn, = 3 GeV (dashed line). In all cases we plot
the ratios for the interval of angles for which the diffeiahtross section is still sizable (see
fig. B), i.e. ¥ = 45° — 120° for JADE-type schemes antl ~ 50° — 130° for the DURHAM
algorithm. For small angles and, = 5 GeV the effect can be as large as 10% of the ratio.
Note, however, that the angular distribution, fig. 5, dropal rapidly for such small angles. In
addition, since the ratio changes very fast in this regi@netkact size of the effect will depend
on the angular resolution achieved at experiment.

As in the case of ratios of three-jet event rat&4?, the variation of the ratio of angular
distributions,R%, for m;, = 5 GeV andm,, = 3 GeV gives a measure of the size of higher order
corrections.

We observe in all the ratios the irregular behaviour in tiggae where the massless angular
distribution peaks. This is due to the fact that in the massase the position of the peak is
slightly shifted with respect to the massless case. The atdmbetween the two peaks appears
as a discontinuity in the ratio when seen from large scales.

It will be interesting to see if data really follow these jeaits forR%’. A preliminary analysis
performed by the DELPHI grouf [P8] seems to indicate thatead, data do follow these
angular distributions, at least qualitatively, and exhibe variations present in the different
algorithms.

5 Discussion and conclusions

In this paper we have presented a theoretical study of guads effects in the decay of the
Z-boson into bottom quarks.

First, we have reproduced, with the complete mass depeadgihe results for the inclusive
decay rate of th&Z — bb + - - - to ordera, by adding gluon bremsstrahlung from theuarks
to the one-loop corrected decay widthf— bb. Although the sum of the two contributions is
finite, each of them is separately IR divergent. We used déno@al continuation to regularize
the IR divergences and gave a complete analytical resutbitrary space-time dimensions for
each of the two contributions.

The main contribution of this paper is, however, the analg§isome three-jet observables
which are more sensitive to the value of the quark masses.

For a slight modification of the JADE algorithm (the EM algbhm) we have calculated
analytically the three-jet decay width of th&-boson intob-quarks as a function of the jet
resolution parameter,., and theb-quark mass. The answer is rather involved, but can be
expressed in terms of elementary functions. Apart fromalethat these analytical calculations
are interesting by themselves, they can also be used to @msteMCarlo simulations. For the
EM, JADE, E and DURHAM clustering algorithms we have obtalitige three-jet decay width
by a simple two-dimensional numerical integration. Nurmarand analytical results have been
compared in the case of the EM scheme.
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We discussed quark-mass effects by considering the quantit

bd ng(yc)/rb - mz%
B g~ g e )
which has many advantages from both the theoretical andxiberienental point of views. In
particular, at lowest order, the functidf(m,, y.) is almost independent on the quark mass (for
the small values of the mass in which we are interested inpas@bsolute values ranging from
10 to 35 (depending on. and on the algorithm), where the larger values are obtaioeg. fof
about0.01.

At the lowest order invy, we do not know what is the exact value of the quark mass that
should be used in the above equation since the differeneeebatthe different definitions of
theb-quark mass, the pole mass, ~ 5 GeV, or the running mass at the,-scale,m,(myz) ~
3 GeV, is ordera,. Therefore, we have presented all results for these twaesabf the mass
and have interpreted the difference as an estimate of haylder corrections. Conversely one
can keep the mass fixed and includefitn,, y.) higher order corrections already known for
the massless case. According to these estimateg(hg corrections can be about 40% of the
tree-level mass effect (depending on the clustering schesttough we cannot exclude even
larger corrections.

By using the lowest order result we find that for moderateeshf the resolution parameter,
y. ~ 0.05, the mass effect in the ratiB% is about4% if the pole mass value of thequark,
my ~ 5 GeV, is used, and the effect decreases to 2/,if= 3 GeV.

We have compared our predictions #}” for the JADE algorithm, with the results obtained
from the 1990-1991 data by the DELPHI grodip [2]. Althoughéhers obtained in the analysis
of this limited sample of data are rather large, especiallyyf > 0.08, one clearly sees that
for small values of y-cuty. < 0.08) the experimental points are systematically below 1, thus
clearly exhibiting the effect of the mass of the quark, asrf@ssless quark’’ = 1. The
size of the effect agrees roughly with the predictions. Oae expect the reduction of the
experimental error by, at least, a factor two when the dataaed in 1992 are included in the
analysis. Then, mass effects will be more clearly seen awillibe very interesting to see if
data follow the different qualitative behaviour of the caft}? as a function ofy. as predicted
by the parton model calculations (positive effect for theckesne and negative mass effect for
the other algorithms). However, in order to extract a megfuinvalue of theh-quark mass from
the data it will be necessary to include next-to-leadingombrrections since the leading mass
effect we have calculated does not distinguish among tlerdift definitions of the quark mass
(pole mass, running mass at thg scale or running mass at the; scale). We believe that the
future analysis of the whole LEP statistics and its comparigith the theoretical predictions
for the three-jet ratios, which meet the future experimleptacision, will allow for a good
determination of thé-quark mass at the highest energy scale and for a check afritsng
from m;, tomy.

The high precision achieved at LEP allows for a good separaif the gluonic and quark
jets and a measurement of the angular distribution of thexted gluon with respect to the
quark momenta. This angular distribution has been caledlfdr massless quarks analytically
for the JADE-type schemes and numerically for the DURHAMbaiidhm. We have studied the
mass effects, for the different jet-clustering algorithimghe quantity

pa_ 1dlg; /1 dTg
VU dy /) Td dY

We have shown that, for a reasonable value of the resolutoanpetery. = 0.04, the mass
effects in this ratio can be as large as 10% of the rationipr= 5 GeV (depending on the
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algorithm, the angle) and the angular resolution). The larger values are obtdmedmall
angles where, however, the angular distribution falls deery rapidly. A fit to this ratio can
be used to extract the value of thequark mass. It will be interesting to see if data really
follow the predictions for the angular distributions anthié mass effects in the ratio of angular
distributions are well described by our results.

Concluding, we have raised the question of the possibifitmeasuring thé-quark mass
at LEP by using three-jet observables. In our opinion, thia big challenge for both experi-
mentalists and theorists. Clearly, more work has to be dooeder the precision of theoretical
predictions meet the experimental accuracy, in particoteera? calculations and studies of
hadronization corrections including mass effects will leeded. However, this effort is worth
since it will allow for an independent measurementigfat much larger energies where, pre-
sumably, non-perturbative effects are negligible.
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APPENDICES

A Phase space i) = 4 — e dimensions

The phase space farparticles in the final state i-dimensions[[I8] D = 4 — 2¢) has the
following general form

d(PS,) = (QW)D 1_1[ W_IZZE(SD (C] - Z p,-) (A.1)

= 0" ] g — mHe(s)s” (q— > pi) . a2

i=1n i=1,n
Then doing several trivial integrations we have the follegiphase-space factor for the process
Z — bb
1 3T —¢) (B*m%\ "
PSy=—= A.3
5 4 2 T'(2 — 2¢) ( 47 ’ (A-3)

where3 = /1 — 4ry, with r, = m? /m?%, )
For the case of the decay into three particles; bbg, we have

2 2\ —2e
L 1 (mz —e
d(PSs) = 62 T2~ 20 ( 47T) O(hy)h, “dy1dys (A.4)

where the functio, which gives a phase-space boundary in terms of varighles2(p; k) /m?,
andy, = 2(p2k)/m?% has the form

hy = y1y2(1 — y1 — y2) — ro(n + y2)2 . (A.5)

B Inclusive decay rate functions

In this section we collect the functions needed in sectiohh relevant form factors are:

2
o= a1 ) 6.
32
fo = CF1 2ﬁﬁ log(c), (BZ)
2
fag = felog(ry) + Cr l—Q 2 ;ﬁﬁ log(c)
+ ! 262 (Lig(C) + %2 - %log2(c) + log(c) log (1 — c))] . (B.3)

In the expression fof 47, the first term, proportional tvg(r;), comes because our election for
the term proportional to the divergence. The vector fornidiag’ ; can be written in terms of
the other two form factors,

fvg = far+ fry. (B.4)
In terms of these form factors the functioAs and F'4 that appear in eq[ (Z]L3) are
3 — 32 3
o= (B e 2] ®5)

Fy = Bfas. (B.6)
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The functions that come from real bremsstrahlung can beenmrés follows,

Gv = 5(56-7)Gr+Gu) | ®7)
Ga = 0 (52GP +GAh) , (B.8)

where
Gp=Gpp+2f(141og(B)) . (B.9)

The terms proportional t¢. come again from our choice of the coefficient of the divergenc
and G py, is the finite part coming from the integration of the term pdjwnal to, in the

amplitude

C 1/e 1
Gpn = —L dzg(z) tz

1og( (2)*2(1+2)) . (B.10)

The result of the integration gives

3 2
Gp, = Cp [—2log<14_ﬁﬁ2>+2_2+ﬁﬁ log(c)
1+62 w2 : .9
5 <4log (c )+? — Lis(c) — Lig(c®) — 3log(c) log(l%—c))] : (B.11)

The functiong7y, andG 4, come from the integration of thie, andh 4 terms respectively

c _ 2 4
Gn="15 [ deater (4 1) =% (9 R log<c>) . (B12
and 1
Gan = 5(3 — Gyn + (1= )G an , (B.13)
where o c 052 .
Gap = 4—; : dzg(2)* = 8F <3 6%+ # log(c)) ) (B.14)

C Three-jet event rate functions

The functionsH‘(/O) andHff), which give the leading contribution to the three-jet detatg in
the EM algorithm, can be written in the following form

(3—5%

HY (ye,rs) = Cr Y 06, [

K@+K@]
1=1,3

B0
2

HY (ye,r) = Cr Y 6, [52K§+ <1—ﬁ2>KA] - (C.1)
i=1,3
with

91 - 9(?]0 - yc)
o = —0(y.—213)0(¥c — ye)
93 = H(yc - gc)

10



andy. ~ \/ry(1 — \/ry). Here K corresponds to the soft part afd, ,, to the vector (axial)
hard part. These functions are given by

K

+

2

dye(z5" = 1) =2 (1 =5y 2yc> log(z5) + 45 log (1 6_;;>

2 -1 -1 C(1+Z )(1+C)
(1-75%) ll + 257 — 225+ (Zﬁ - Zﬁ) log (%% — c)ﬁ(l — 23¢) )] (€2

2(1+ %) B log(z3) log <y02(1Z7;Lc)4> — 71T—; — Liy(—23) — Lis <%> + Lig(zgc)]

1+M —2(1—|-Zg)_1—|— (1_6 )8(3""5 >(Zﬁ—2’5_1)

. _325 L2 —a) - (1 + % —y3> log(25) (C.3)
I R SN AR

(1 — 52)8( 3) log(2) .4

—2(1+ 2 = 2y,) log(za) + 45 1og (1261_2 CC)
. (1+6° = 2ye)za(l +0)?
(1 =0z, — 2a) [2+log< 2(zq — ¢)(1 — c2q) )]

(1+ 06— 2y)(1 + @2) L, (Z—) 4 u2<cza>] (C.5)

2(14 5% llog(za) log <

2
) (I=z) , 01=8 5

—(1+ 5" = vy c( s )+ 32 (7" — 2a)

(1— ﬂ2)8(3 + 62) (2 — byz — 414 z4)~ )

<(1 - 62)8(7 ) et B )log(za) (C.6)

LI RS R VRS
16 (Zoz - ZO‘) + 2 (1 + Za)
(1 —52)(3+62)(_1 +2(1+ 20) " 4 log(za)) (C.7)
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L+87)7m* (1= —45%) 1-2) (1438201 - 5)z)

Ky = —% - - (1122 (11 22) log(z)
+ (1473 [log2 <1 fzﬂ) + 2L <1 fZVN (C.8)
(L4322 [ 3(1—22) 2
kv 8 <_ (1+22)2  (1+22) log(27)> (C.9)
o+ 12\
Ki = 3 (1 n 2%) ! (C.10)

where we used the following notation,

1
Ra = _<yc_\/y2_4rg> )

27’(,
1
2 = 2—n<1—yc—27“b—\/(1—yc)2—4rb>,
P Ye
7 1—2r, — 2y,
1—p
= = C.11
¢ 1+ 8 (€11

In the limit of massless quarks, — 0, from the functionsH‘(/O) andHﬁlo) given above we
obtain

H‘(/O) (Yeyp — 0) = Hﬁ{” (Yo, 75 — 0) — A© (C.12)
Here the functiom®(y.) is the known resulfT2@; 21] for the JADE algorithm
2 5 9 Y
AO(y) = 20 =T 12 6y — Sy2 + (3 — 6y.)1 ¢
(e) CF[ 5+ 5~ 0% — 5y + (3~ Gyc)log =
+ 210g2< Ye >+4Li2< Ye )] . (C.13)
1- Ye 1- Ye

The functionA(y,) given in refs. [2P[21] differs from oun(®)(3.) in a factor 2 because we
chose a different normalization for it.

D Angular distribution functions

The angular distribution studied in section 4 is given, ia thassless case, by the function
f9(ye). In the JADE-type algorithms it can be written as follows

fﬂ(yc) = C(F Sln(ﬁ) Z ezfz(yc) s (Dl)

i=1,2

where theheta; functions have the form

_ 2
0, = ¢9<C0879+ Ye )(9(%—@0819),
(1_yc)

Ye 1— Ye
6, = 60| — — AN U ,
5 ( (1 — yc) CcoS ) (COS + T+ yc>

1




and

1+0)% [y.+8 -3
filye) = ( b) ly 4 \/(1_y0)2_4byc
B T 9 b+
log<x2)+(1+b+2b)log <b+x2>] , (D.2)
(1+b)2 (yc_b)(y3+2yc_26yc_5b2)
f2ye) =
b 4(b+ y.)
— b(1+2b)1o 2 ) g (220 (D.3)
& b+yc s l_yc . .
In these equations we defined
o 1+ cos v
1 —cos?’
1
Ty = §<l_yc_\/(1_yc)2_4by0)a

1
Ty = §<1—yc+\/(1—yc)2—4byc)-

N
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Figure 1: Feynman diagrams contributing to the decay r4tes bb, Z — bbg at ordero.

Figure 2: The phase space far — bbg in the planey, andy, with cuts (. = 0.04 and
y. = 0.14) for the different algorithms. The mass of the quark has o 10 GeV to
enhance mass effects in the plot.

Figure 3: The ratiosk?y¢ (see eq.[(3]8)) for the four algorithms. Solid lines corcesp to
my = 5 GeV, dashed lines correspondig = 3 GeV and dotted lines give our estimate of
higher order corrections to the, = 5 GeV curve. For the JADE algorithm we have also
included the results of the analysis of the data collectathdul990-1991 by the DELPHI

group [2].
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Figure 4: The functions3\” /A© and BY) /A© for the four algorithms. Dashed lines for
my = 3 GeV, dotted lines fom;, = 5 GeV and solid lines for our three-parameter fit, €q. (3.11).

Figure 5: Normalized angular distributions (€[q. [4.4))hwitspect to the angle formed between
the quark and the gluon jets for the massless case for JAp&Edpd DURHAM algorithms.
Solid line fory,. = 0.02, dashed line fog. = 0.04, dotted line fory. = 0.06 and dash-dotted
line for y. = 0.08

Figure 6: The ratios of angular distributiofi? (see eq.[(4]3)) foy. = 0.04 for the different
algorithms. Solid line forn, = 5 GeV and dashed line fon, = 3 GeV.
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1 Introduction

In the Standard Model of electroweak interactions all fermion massee® parameters and
their origin, although linked to the spontaneous symmetry breaking mechanism, rep@aits
Masses of charged leptons are well measured experimentally and neutrsesimbthey exist,

are also bounded. Inthe case of quarks the situation is more complicated beeaugeafks are

not observed in nature. Therefore, one can only get some indirect information calules wof

the quark masses. For light quarks,(< 1 GeV, the scale at which QCD interactions become
strong), that is, for-,d- and s-quarks, one can define the quark masses as the parameters of
the Lagrangian that break explicitly the chiral symmetry of the massled3 Lagrangian.
Then, these masses can be extracted from a careful analysis of mesoa apdctreson decay
constants. For heavy quarks @ndb-quarks) one can obtain the quark masses from the known
spectra of the hadronic bound states by using, e.g., QCD sum rules or lattice teahsula
However, since the strong gauge coupling constant is still large at the scalewf teark
masses, these calculations are plagued by uncertainties and nonperturbetige ef

It would be very interesting to have some experimental information on the quaskes
obtained at much larger scales where a perturbative quark mass definitidoe ecesed and,
presumably, non-perturbative effects are negligible. The measurement® avilEombine
this requirement with very high experimental statistics.

The effects of quark masses can be neglected for many observables irudi&3 sas usually
quark masses appear in the rati§)/m?7. For the bottom quark, the heaviest quark produced at
LEP, and taking &-quark mass of about 5 GeV this ratidi®03, even if the coefficient in front
is 10 we get a correction of about 3%. Effects of this order are measurable gta&E&ver, as
we will see later, in many cases the actual mass that should be usedaalt¢héations is the
running mass of theé-quark computed at the ; scale:m,(mz) ~ 3 GeV rendering the effect
below the LEP precision for most of the observables.

While this argument is correct for total cross sections for productickapfarks it is not
completely true for quantities that depend on other variables. In particunit true for
jet cross sections which depend on a new variaRléthe jet-resolution parameter that defines
the jet multiplicity) and which introduces a new scale in the analyBis= mz,/y.. Then,
for small values of. there could be contributions coming like / E? = (ms/mz)?/y. which
could enhance the mass effect considerably. In addition mass effects cmuttea#nhanced by
logarithms of the mass. For instance, the ratio of the phase space for twoengqisarks and
a gluon to the phase space for three massless particles &m,/mz)*log(m,/mz). This
represents a 7% effect fet, = 5 GeV and a 3% effect fomn, = 3 GeV.

The high precision achieved at LEP makes these effects relevant. tjrifeg have to be
taken into account in the test of the flavour independenee @fz) [1-5]. In particular it has
been shown [6] that the biggest systematic error in the measuremebtmof) («, obtained
from bb-production at LEP from the ratio of three to two jets) comes from the unoéeaiin
the estimate of the quark mass effects. This in turn means that masts éif@e already been
seen. Now one can reverse the question and ask about the possibility of measeinmass of
the bottom quarksz,, at LEP by assuming the flavour universality of the strong interactions.

Such a measurement will also allow to check the runningggfc) fromp = mpytop = my
as has been done before f®)(x). In additionm;,(mz) is the crucial input parameter in the
analysis of the unification of Yukawa couplings predicted by many grand unified theades a
which has attracted much attention in the last years [7].

The importance of quark mass effects4rboson decays has already been discussed in the
literature [8]. The complete orde, results for the inclusive decay rate f— bb 4 bbg + - - -



can be foundlin [9]. The leading quark mass effects for the inclusiavidth are known to
ordera? for the vector part[11] and to ordef for the axial-vector part[12]. Quark mass effects
for three-jet final states in the proces®~ — ¢gg were considered first in [13] for the photonic
channel and extended later to tHechannel in [14] and [15]. Recently [16] calculations of
the three-jet event rates, including mass effects, were done for the mostipgepualastering
algorithms using the Monte Carlo approach.

In this paper we will discuss the possibility of measuring thguark mass at LEP, in
particular, we study bottom quark mass effect&idecays into two and three jets. In section
2 we calculate the inclusive decay radfie— bb + bbg + - - - at ordera, by summing one-loop
virtual corrections taZ — bb and the real gluon bremsstrahlung contribution. Dimensional
continuation is used to regularize both infrared (IR) and ultraviolet (UVégrdignces. Phase
space integrations are also donelindimensions. This calculation allows us to understand
the details of the cancellation of IR divergences and how some, potentially, lgarithms
of the quark mass are absorbed in the running quark ma&s 7). In section 3 we calculate
analytically the two and three-jet event rates in terms of the jetlugen parametey. and the
mass of the quark for a slight modification of the well-known JADE algorithm [17ablatfor
analytic calculations with massive quarks. We also present numericsdtsrésr this scheme
and for some of the most popular jet-clustering algorithms (DURHAR4 )X, JADE and E),
estimate higher order contributions and compare with experimental resultsiebtay the
DELPHI Collaboration [2] for 1990-1991 data. If the gluon jet can be identified with good
efficiency a very interesting observable, which strongly depends on the quag make
angular distribution with respect to the angle formed between the quark anduire jgls.
This distribution is calculated for massless quarks in section 4: arallytior JADE-type
algorithms and numerically for the DURHAM algorithm. We also compute numigritdze
ratio of massive to massless angular distributions for the four jet-cingtalgorithms. In
section 5 we summarize the results obtained in the paper and comment on theipoesibi
using them to measure tlhequark mass in LEP experiments. Finally in the four appendices we
collect all the functions and formulae needed in the body of the paper.

2 The inclusive decay rateZ — bb

The main purpose of this paper is to investigatguark mass effects i# decays into two and
three jets. Since at ordey, the inclusive decay ratg — bb + - - - is given by the sum of the
two- and three-jet decay widths we will start by studying this quantity.

To calculate the total decay rate to orderone has to sum up the virtual one-loop gluonic
corrections to theZ — bb with the real gluon bremsstrahlung. Both contributions are sepa-
rately infrared divergent for massless gluons, therefore, some regtilamirzaethod for the IR
divergences is needed. The sum is, however, IR finite.

Since there are many subtleties in this calculation, we sketch it insggion. Both
processes?Z — bb at one loop and — bbg, are calculated in arbitrary dimensidh= 4 — 2¢
and dimensional regularization is used to regularize the IR divergences [l&]déra, and for
massive quarks all IR divergences appear as simple ppdedVe show how the the divergences
cancel in the sum and obtain the total inclusive rate.

The first step is to compute the decay width— bb at tree-level in dimensio®. Since
there are no IR divergences in this case it is not necessary to do the talwila arbitrary

'The ordera, corrections to the vector part, including the complete niegsendences, were already known
from QED calculations [10].



space-time dimensions. However, there are IR divergences at the onesebarlde factors
could lead to finite contributions when multiplied by the divergent terms.
The amplitude for the deca¥ — bb in D dimensions is

T,,(O) = ,tf%ﬁwu(gv + ga7s)v2€”(q) (2.1)
cw

where the factoi© has been included to make the gauge weak couplidgnensionless iD

dimensionsyu; andv, are short-hand notations for the quark (antiquark) spinarss «(p;)

andv, = v(ps), €*(q) stands for the polarization vector of ti#eboson andyy (g4) are the

vector (axial-vector) neutral current couplings of the quarks in the Standard Maidede level

and for theb-quark we have

4
gv=—lt3sly, ga=1. (2.2)

Here we denote byy, andsy the cosine and the sine of the weak mixing angle.

Taking the square of the amplitude, averaging over initial state polarizasomsning over
final state polarizations, and adding the phase space factor for the two-body desayngiv
appendix A [18] we obtain the following decay width ihdimensions,

1 = ¢, 4,8 %, (2.3)
with
2 2 —€
- g F(l - 6) my
O =mz ek, 64m T'(2 — 2¢) \ dmp? ’ (2.4)
and )
A =53~ B —2e)gy + B*(1—€)g5 - (2.5)

In these expressionsis the relative velocity of the produced quarks

2

8= \1—4r, =2 (2.6)

myz

At the one-loop level (see diagrams in fig. 1b), and after renormalization ofJthe
divergencel the amplitude can be conveniently parameterized in terms of three fatorsa
fv, fa andfr,

v

e 9 _ 1 1 O q 1
Ty =p Eﬂq <9V <(1 + §ngV)'7u + z§ngT ;mb > +ga(l+ §ngA)'7u75> v2e*(q) ,
(2.7)
whereC, is defined as follows,
O i B (2.8)
¢ 1 \dmp? T(1—¢) '

Here and below we will conventionally use = a,(mz) to denote the value of the running
strong coupling at the: z-scale.

?Note that conserved currents or partially conserved ctsras the vector and axial currents do not get
renormalized. Therefore, all UV divergences cancel whensoms properly self-energy and vertex diagrams. The
remaining poles il correspond to IR divergences. One can see this by sepacatiefylly the poles corresponding
to UV divergences from the poles corresponding to IR divecgs.
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The form factorsfy, f4 andfr, are related by

fv=7Ffa+fr. (2.9)

The two functions,fy and f4, contain an IR divergence, whilgr is finite. Separating the
divergent parts, we can rewrite the real parts of the form factors asv®lat ordera, the
imaginary parts will not contribute)

Re{fv} = —%fﬁfw, (2.10)
Re{fA} = _%fe‘l'fAf) (211)
Re{fr} = fry, (2.12)

where all functions., fv, fa; andfr; are given in appendix B. Note that, as expected, the IR
divergent part of the amplitude is proportional to the tree-level amplitude eq. (®slthe IR
divergence manifests itself as a single pole,ialearly, we only need to keep everywhere terms
linear ine.

From the amplitude (2.7) we obtain the one-loop corrected widihh thamensions

ry =1 + 13,

with
1
03 = =Gy fe Iy + GColgh Fv + 65 F4) (2.13)

where the finite functiongy and F4 are given in appendix B in terms of the form factors and
1 is given by eq. (2.3)

The O(a,) result, eq. (2.13), is divergent fer— 0 because the IR divergences associated
with massless gluons running in the loops. To get a finite answer at this order aveesd
to include gluon bremsstrahlung from the quarks. This has to be computed by workihg in
dimensions.

The amplitude for the process— bbg (the two corresponding diagrams are given in fig. 1c)
can be written as

T, = w2 g, (vu(m K+ m)yulav + gars)
dew 2(p1k)

Yu(gv + gays)(— Po— ¥ +mp)v | A° ) )
2(p2k) ) - vz €,(k)e"(q) - (2.14)

2 a
HereA® are the Gell-Manr$U(3) matrices, and’(k) is the gluon polarization vector.

The square of the amplitude, in dimensibngives a rather involved expression that can be
conveniently simplified when one realizes that the most divergent part ofarfaes completely,
even inD dimensions, due to the factorization theorems for soft and collinear divergences

Adding the three-body phase space (see appendix A) we find that the decay width ébg
in D dimensions can be written as

_|_

Ty, = CsC,Cr / dysdys0(hy)h* Ay , (2.15)

whereCr = 4/3 istheSU(3) group factory, andy, are defined in terms of the energy fractions
of the two outgoing quarks

y; = 2(p1k)/my =1 —2E;/myz , Yo = 2(p2k)/my =1 —2E; /my (2.16)
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and A4;, comes from the square of the matrix element,

h
Abg = AbZ—ZJZ + g%/hv + gjhA . (217)
1Y2
Here 4, is the same combination of couplings and masses that appears in the tree-dayel de
width to two quarks, eq. (2.5), and the functikpnis given by

hp = y1yz(1 — Y1 — yz) - T‘b(y1 + y2)2 5 (2-18)

and it is exactly the same function that defines the phase space available toretdody
decay (see eq. (2.15) and appendix A). After phase space integration this feoontain an
IR divergence which comes from the singularityat= y, = 0.

The functionshy andh 4 describe the vector and the axial-vector parts of the remainder of
the square of the amplitude which do not generate any IR divergence. In the kmitthey
are given by:

1

o= (). (2.19)
2\y1 2

hA = (1 + 27'b)hV + 27‘5 . (220)

To perform the phase space integration it is convenient to change variabtgloas f

1 = g(z)w,
y2 = g(z)zw,
. (+:F 1 (-g-c)
_Z—Tp —|—z2_ zZ—cC —cz
g(z) = 12 019 0+ (2.21)
and 18

Then, bothhy andh 4 only depend on the variable and the functiork,,, which defines phase
space and appears explicitly in eq. (2.17), factorizes completely

hp = g(2)%2(1 + 2)w?(1 — w) . (2.23)

The functiong(z) has zeros at; = ¢ andz, = 1/c. As phase space is defined by > 0 we
obtain that the phase space in terms of the new variables is given by

c<z<l1/e and O<w<l. (2.24)

After this change of variables eqg. (2.15) can we rewritten as

1/e 1
Ty, = C4C,Cr / dzg(z)? / dwwh Ay, . (2.25)
c 0

Now thew integration is very simple and leads to Beta functions. For the integratitwe ¢étm
of the amplitude proportional td, (see eq. (2.17)) we get

1/e 1 e 1 1/e 1 3 1—e
/c dZ/O dwhp W = B(—2€,2 — 6) ] dZW (g(Z) Z(]. ‘|‘ Z)) 5 (226)



where the functiomB(—2¢,2 — €) has a single pole im = 0. In this way, all the divergent
behaviour has been factorized in the Beta function. Then, to performititegration we can
expand the integrant for smalland keep only terms linear in The integrations can be easily
performed and the results written in terms of logarithms and dilogarithumictions. The rest
of the integrals do not lead to any divergence and can be done, without problem, petjual
to zero.

After phase space integration, the decay widthZor bbg can be written in the following
form

1
Ty = Cofe Ty + O, (6 Gv + g5Ga) (2.27)

where the first term contains the IR divergent part and the IR finite functignandG, are
given in appendix B.

The IR divergent part of eq. (2.27) is identical, but with reversed sign, to thelotaened
for Fél), therefore in the sum they will cancel, as it should be:

Ty = I} + I§ + Tyy = T + CuC, (g2 Ty + 93T4) (2.28)

with
Tv = Fy+Gy, (2.29)
Ty = Fi+Gy. (2.30)

From the results of the appendix B we can easily obtain the limit of these funétoemall
quark massesyp, < mz (r, < 1)

Ty ~ 1+ 127y, (231)
TA ~ 1-— 6Tb(210g Ty + 1) . (232)

If we plug this result into eq. (2.28) we obtain the well-known result [11]

2
Ty = mz—o— [g%, <1 + 21+ 12rb)> + g2 <1 — 6y + = (1 — 6ry(2log b + 1)))] :
cyy 64w ™ T

(2.33)
It is interesting to note the presence of the large logaritleg(;m2/m%), proportional to the
guark mass in the axial part of the QCD corrected width, eq. (2.33). The maspibedrs in
all above calculations should be interpreted as the perturlbjadieanass of the quark. But in
principle the expression (2.33) could also be written in terms of the so-calteuing quark

mass at then z scale by using

m; = mi(mz) [1 + 2% (log (:L—%) + g)l . (2.34)
b

Then, we see that all large logarithms are absorbed in the running of the quarkroragbé
my, Scale to then; scale [11] and we have

2
g Qg _ o a _
Ty = mzw [g%, <1 + ?(1 + 12rb)> + 45 <1 — 67 + ?(1 — 227«5))] , (2.35)
wherer, = mi(mz)/m3.
This result means that the bulk of the QCD corrections depending on the mass could be
accounted for by using tree-level expressions for the decay width but integptee quark
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mass as the running mass at theg scale. On the other hand, singe,(mz) ~ 3 GeV is
much smaller than the pole mass, ~ 5 GeV, it is clear that the quark mass corrections are
much smaller than expected from the naive use of the tree-level reflutiyi: 5 GeV, which
would give mass corrections at the 1.8% level while in fact, once QCD canscare taken
into account, the mass corrections are only at the 0.7% level.

The final results of this section are well known but we find they could illuminiage
discussion of mass effects in the two- and three-jet event rates and amdiéar distribution
with respect to the angle formed between the quark and gluon jets. Moreovatahmediate
results of this section will be used in the rest of the paper.

3 Two- and three-jet event rates

According to our current understanding of the strong interactions, coloured partons, groduce
in hard processes, are hadronized and, at experiment, one only observes colottitdss. pa

is known empirically that, in high energy collision, final particles group wesal clusters by
forming energetic jets, which are related to the primordial partons. Thugder to compare
theoretical predictions with experiments, it is necessary to define pheeibat is a jet in both,
parton level calculations and experimental measurements.

As we have seen in the previous section, at osdethe decay widths of into both two and
three partons are IR divergent. The two-parton decay rate is divergent due tagbless gluons
running in the loops. Th&-boson decay width into three-partons has an IR divergence because
massless gluons could be radiated with zero energy. The sum, however, mt¢R Tihen it
is clear that at the parton-level one can define an IR fimiejet decay rate, by summing the
two-parton decay rate and the IR divergent part of the three-parton decay widtmtegrated
over the part of the phase space which contains soft gluon emission [19]. The iotegrtie
rest of the phase space will give tineee-jet decay rate. Thus we need to introduce a “resolution
parameter” in the theoretical calculations in order to define IR-safe wdisles. Obviously, the
resolution parameter, which defines the two- and the three-jet parts of tieephren phase
space should be related to the one used in the process of building jets from tietdpar

In the last years the most popular definitions of jets are based on the so-cadiesiering
algorithms. These algorithms can be applied at the parton level in the tlabczticulations
and also to the bunch of real particles observed at experiment. It has beantsiad, for some
of the algorithms, the passage from partons to hadrons (hadronization) does not change much
the behaviour of the observables [20], thus allowing to compare theoretical poedietith
experimental results. In what follows we will use the word particles foh lpatrtons and real
particles.

In the jet-clustering algorithms jets are defined as follows: startmm f« bunch of particles
with momentgp; one computes, for example, a quantity like

EE,

S

Yi; = 2 (1 — COS ‘91‘7)
for all pairs(z, j) of particles. Then one takes the minimum ofg}land if it satisfies that it is
smaller than a given quantity (the resolution parameter, y-cut) the two particles which define
this y;; are regarded as belonging to the same jet, therefore, they are recombinachewo
pseudoparticle by defining the four-momentum of the pseudoparticle according to some rule,
for example

Pk = Pi + P -



Algorithm | Resolution Combination

EM 2(pip;)/s Pr = Pi T Pj
JADE 2(E;E;)/s (1 — cosdy;) Pk = Pi + P;
E (pi +;)/s Pe = DPi +pj

DURHAM | 2min(E?, E?)/s (1 — cos¥;) | pe = pi + p;

Table 1: The jet-clustering algorithms

After this first step one has a bunch of pseudopatrticles and the algorithm can leslamalin
and again until all the pseudoparticles satigfy> y.. The number of pseudoparticles found in
the end is the number of jets in the event.

Of course, with such a jet definition the number of jets found in an event and itewhol
topology will depend on the value gf. For a given event, larger valuessfwill result in a
smaller number of jets. In theoretical calculations one can define crogsssat decay widths
into jets as a function of., which are computed at the parton level, by following exactly the
same algorithm. This procedure leads automatically to IR finite quantitiesibeone excludes
the regions of phase space that cause trouble. The success of the jet-cluggeritignas is due,
mainly, to the fact that the cross sections obtained after the hadronizatiozspragree quite
well with the cross-sections calculated at the parton level when the skustering algorithm is
used in both theoretical predictions and experimental analyses.

There are different successful jet-clustering algorithms and we refefs. [20, 21] for a
detailed discussion and comparison of these algorithms in the case of rmagsiess.

In the rest of the paper we will use the four jet-clustering algorithms listete table 1,
where /s is the total centre of mass energy. In addition to the well-known JADE, E and
DURHAM algorithms we will use a slight modification of the JADE scheme paldidy useful
for analytical calculations with massive quarks. Itis defined by the twovelig equations
Pip;

S

Yij = 2

and

Pk =Di + P
We will denote this algorithm as the EM scheme. For massless particlest ahd lwest
order E, JADE and EM give the same answers. However already at®jdeey give different
answers since after the first recombination the pseudoparticles are noéssamsymore and
the resolution functions are different.

For massive quarks the three algorithms, E, JADE and EM are already dtfegrerder
a,. The DURHAM (Kr) algorithm, which has been recently considered in order to avoid
exponentiation problems presentin the JADE algorithm [22,20], is of course comulgtehgnt
from the other algorithms we use, both in the massive and the massless cases.

In figure 2 we plotted the phase-space for two valueg ¢§. = 0.04 andy, = 0.14) for all
four schemes (the solid line defines the whole phase space ferggg with m, = 10 GeV).

There is an ongoing discussion on which is the best algorithm for jet clusterihg itase
of massless quarks. The main criteria followed to choose them are basea nequirements:

1. Minimize higher order corrections.



2. Keep the equivalence between parton and hadronized cross sections.

To our knowledge no complete comparative study of the jet-clustering algorithrbsebasione
for the case of massive quarks. The properties of the different algorithmsesiplect to the
above criteria can be quite different in the case of massive quarks fromithtdse massless
case. The first one because the leading terms containing double-logarithms ofogtt ))
that appear in the massless calculation (at osdgand somehow determine the size of higher
order corrections are substituted in the case of massive quarks by singléHogaofy. times
a logarithm of the quark mass. The second one because hadronization correctionsiee mas
guarks could be different from the ones for massless quarks.

Therefore, we will not stick to any particular algorithm but rather preseslts and compare
them for all the four algorithms listed in the table 1.

3.1 The analytic calculation for the EM scheme

Here we calculate analytically, at leading order, the three-jet detayf theZ-boson by using
the EM clustering algorithm.

At the parton level the two-jet region in the decy— bbg is given, in terms of the variables
y1 andy,, by the following conditions:

Y1 < Ye or Y2 < Ye or 1—2ry —y1 — Y2 < Ye - (3.1)

This region contains the IR singularity, = y» = 0 and the rate obtained by the integration of
the amplitude over this part of the phase space should be added to the one-loop cdeeayed
width for Z — bb. The sum of these two quantities is of course IR finite and it is the so-called
two-jet decay width at orde#,. The integration over the rest of the phase space defines the
three-jet decay width at the leading order. It is obvious that the sum of the twogahree-jet
decay widths is independent of the resolution parametdR finite and given by the quantity

T, = T(Z — bb+ bbg + - - -) calculated in section 2. Therefore we have

IVES ng(yc) + ng(yc) + e

Clearly, at order,, knowingI, andl';;(y.) we can obtail's;(y.) as well.

The calculation ofl'};(y.) at ordera, is a tree-level calculation and does not have any
IR problem since the soft gluon region has been excluded from phase space. Therefore the
calculation can be done in four dimensions without trouble.

We will start with equation (2.15) taking= 0 and with the phase space constrained by the
cuts defined in eq. (3.1).

I‘gj = <ObOgOF/dy1dy2‘9PS‘9cAbg> ) (3.2)

e=0

where the function
Ops = 0(hy) (3.3)

gives the whole phase space, and the produéfohctions
0. = 0(y2 — ye)0(y1 — ¥e)0(1 — 27y — y1 — y2 — ¥e) (3.4)

introduces the appropriate cuts for the EM scheme. The square of the ampliyidis, given
ineq. (2.17). The phase space and the cuts are represented in the first plot of fig. 2.



Depending on the value af. the limits of integration are different, there are three cases
which correspond to three different topologies of the overlapping of the phase spatteeand
area defined by the cuts:

Ye < 27‘6
27'6 < Ye < 37c
Je < Ye : (3.5)

whereg. = \/r(1 — \/m) + O(r}/rs) is given by a solution of the following equation
4(1 — 2y — 2m,)*(yg +4mp) = 92(2 — ye — 8rp)". (3.6)

Since the integrant is symmetric under the exchange- y, we can restrict the region of
integration to the regiogy, > y, (multiplying the result by a factor 2). In addition it is useful to
change variables as befotg,= zy;. We will not discuss the technical details of the calculation
here; all of the integrals can be reduced to logarithmic and dilogarithmic turectind the final
result can be written in the following form

1%, = CoCy (g Hy (yerms) + G4 HS (yes ™)) (3.7)

where the superscrip? in the functionsHEf()A)(yc,rb) reminds us that this is only the lowest
order result. Analytical expressions for the functidﬂg)(yc,rb) andHf)(yc,rb) are given in
appendix C. Obviously, the general form (3.7) is independent of what particulaugechg
algorithm has been used.

In the limit of zero masses, = 0, chirality is conserved and the two functiof$” (y., ;)
and HY(y., ) become identical

HP(y.,0) = HY(y.,0) = A9(y,) .

In this case we obtain the known result for the JADE-type algorithms, whickpisessed in
terms of the functiom(®)(y.) also given in appendix €

To see more clearly the size of mass effects we are going to study theifajloatio of jet
fractions

Ry d d = 0 ca 0
I's;(ye)/T AO)(y,) A)(y,)

where we have defined

(0) (0)
M _ ( VHV (yc77'b) HA (yc77'b)) (1 + 6rpca + O(rZ)) , (38)

CV:%7 A= 29312'

9v + 9a 9v + 9a
In eq. (3.8) we have kept only the lowest order termajrandr,. The last factor is due to the
normalization to total rates. This normalization is important from the ewxyetal point of view
but also from the theoretical point of view because in these quantities lardecoa@ctions
dependent on the top quark mass [23] cancel. Note that, for massless quarksy Il’ﬂg(rg@tj/l“d
is independent on the neutral current couplings of the quarks and, therefore, it is theosame f
up- and down-quarks and given by the functiéf?. This means that we could equally use the
normalization to any other light quark or to the sum of all of them (including alsc-theark if
its mass can be neglected).

Note that with our normalizatiod(®)(y.) =  A(y.), with A(y.) defined in ref. [20].
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3.2 Estimate of higher order contributions

All previous results come from a tree-level calculation, however, as canted in the introduc-
tion, we do not know what is the value of the mass we should use in the final resultshence
difference among the pole mass, the running mags-atm,; or the running mass at = myz
are next-order effects i,.

In the case of the inclusive decay rate we have shown that one could accountduyith
good precision) for higher order corrections by using the running mass at ghszale in the
lowest order calculations. Numerically the effect of running the quark mass+h, tomyz is
very important.

One could also follow a similar approach in the case of jet rates and &gdount for the
next-order corrections by using the running quark mass at different scales. Mseawklow that
the dependence d#? on the quark mass is quite strong (for all clustering schemes); using the
different masses (e.@n, or my(Mz)) could amount to almost a factor 2 in the mass effect. This
suggests that higher order corrections could be important. Here, however, thiesisiguite
different, since in the decay rates to jets we have an additional scaie loyy., E. = mz./y.,

e.g. fory. = 0.01 we haveE, = 9 GeV and fory. = 0.05, E. = 20 GeV. Perhaps one can
absorb large logarithméeg(m,/mz) by using the running coupling and the running mass at
the x = myz scale, but there will remain logarithms of the resolution paramkigfy.). For

not very smally. one can expect that the tree-level results obtained by using the running mass
at them ; scale are a good approximation, however, as we already said, the situationlmannot
settled completely until a next-to-leading calculation including masstsffe available.

Another way to estimate higher order effectsiff is to use the known results for the
massless case [24, 20, 21]

Including higher order corrections the general form of eq. (3.7) is still valid thigrchange
Hy()A)(yc,rb) — Hy(4)(ye,75). Now we can expand the functiod®y 4)(y., ) in a, and
factorize the leading dependence on the quark mass as follows

Qg Qg
Hy(a)(5er ) = A®(ye) + —AM(ye) + 74 (BS’@)(yc,rz,) + ;B%(yc,rb)) +-- . (39)
In this equation we already took into account that for massless quarks vectoxiahcdoatri-

butions are identicél
Then, we can rewrite the rati&?, at ordera,, as follows

Bgf())(ycarb) Bgf)(ycﬂ'b) (yc)
VA0 y,) (1+ m (B( ye,m)  AO(e)

o B ([ e (BRers)  AV()
A(O)(yc) ™ B‘(40)( c77'b A( ) yc)

X <1 + 674 < a(1+ 2—log(rb)) — cV2 (3.10)

Rgd:1—|-rb

From the calculations in this paper we kndv\?,o)(yc,rb) and Bff)(yc,rb); the lowest order
function for the massless cas#(®)(y.), is also known analytically for JADE-type algorithms,
eg. (C.13) and refs. [20, 21], and for the DURHAM algorithm [22]. A parameteorzadf the

“This is not completely true aP(a?) because the triangle anomaly: there are one-loop triarigrains
contributing toZ — bbg with the top and the bottom quarks running in the loop. Simge# m; the anomaly
cancellation is not complete. These diagrams contributied@xial part even fom; = 0 and lead to a deviation
from AE})(yc) = qul)(yc) [25]. This deviation is, however, small [25] and we are nangdo consider its effect
here.
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function A®)(y,) can be found in [20] for the different algorithfnsAs we already mentioned
this function is different for different clustering algorithms. The only unknown fians in
eq. (3.10) areB%,l)(yc, ) andij)(yc, ), Which must be obtained from a complete calculation
at ordera? including mass effects (at least at leading ordet,)n

Nevertheless, in order to estimate the impact of higher order correctians calculation
we will assume thaB{', (ye, 7)/ B 4 (ye, ) < AD(y.)/A)(y.) and takeA®(y.)/A)(y.)
from® [20, 21]. Of course this does not need to be the case but at least it gives an idea of the
size of higher order corrections. We will illustrate the numerical effethe$e corrections for
R5 in the next subsection. As we will see, the estimated effect of next-ordezations is
quite large, therefore in order to obtain thquark mass from these ratios the calculation of the
functionsB%,l,L(yc, rp) IS mandatory [26].

3.3 Numerical results for R% for different clustering algorithms

To complete this section we present the numerical result&fbcalculated with the different
jet-clustering algorithms. For the JADE, E and Durham algorithms we obtalresthtee-jet
rate by a numerical integration over the phase-space given by the cuts (e kgr the EM

scheme we used our analytical results which were also employed to croksltbewmerical
procedure.

In fig. 3 we present the rati®%?, obtained by using the tree-level expression, eq. (3.8),
againsty, for m, = 5 GeV andm;, = 3 GeV. We also plot the results given by eq. (3.10)
(with BS), (e, 7s)/ BY ) (ve,m) = 0) for my = 5 GeV, which gives an estimate of higher order
corrections. Fog,. < 0.01 we do not expect the perturbative calculation to be valid.

As we see from the figure, the behaviourRf is quite different in the different schemes.
The mass effect has a negative sign for all schemes except for the E-algofitinm > 0.05
the mass effects are at the 4% level#ey = 5 GeV and at the 2% level forn, = 3 GeV (when
the tree level expression is used). Our estimate of higher order effettigheiinclusion of the
next-order effects i, for massless quarks, shifts the curvesday= 5 GeV in the direction of
the 3 GeV result and amounts to about of 20% to 40% of the difference between theveke-|
calculations with the two different masses. For both E and EM schemes wdehesdigher
order results for the E scheme.

For the JADE algorithm we have also plotted in fig. 3 the experimental rertg3f
obtained by the DELPHI group [2] on the basis of the data collected in 1990-1991. The
experimental errors, due to the limited statistics analyzed, are ratiger However, one can
already see the effect of the quark mass. Ifétggiark mass would be zero, one should obtain
aratioR%? constant and equal to 1. Itis clearly seen from the figure that.fer 0.08 the data
are significantly below 1. For larger values#®f the number of events decreases, the errors
become too large and the data are consistent with 1. When larger amount of datgzecna
and the experimental error is decreased, it will be very interestingetd data will exhibit the
different signs of the mass effect i#? (positive for the E scheme and negative for the other
schemes) as predicted by our parton level calculations (see fig. 3).

In spite of the fact that the effect of the quark massRiA has been seen, it is too early,
in our opinion, to extract now the value of tlhequark mass from the data. As discussed
above the higher order corrections&y are presumably rather large and should be included
in the theoretical calculations. However, it is clear, that once thenéis$ next-to-leading order

5With our choice of the normalizatioA*)(y.) = B(y.)/4, whereB(y.) is defined in [20].
8For the EM algorithm this function has not yet been compulednake an estimate of higher order corrections
we will use in this case the results for the E algorithm.
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Algorithm | & &P B @ gD @

EM -2.72 -14.64 -28.58 -2.61 -13.54 -30.67
JADE -201 -519 -1325-190 -4.13 -15.47
E 468 19.04 2597 471 19.81 23.39

DURHAM | -1.69 -4.76 -12.70-1.65 -4.28 -15.4§

Table 2: Results of the tree parameter fits of the functi(B{,%L(yc,rb)/A(")(yc) =
2 k% log™ y. in the range.01 < y. < 0.2

corrections will be available and all LEP data will be included in the ans\lyisé ratiosks? will
certainly allow for a reasonable determination ofékguark mass and for a check of its running
from my tomy.

To simplify the use of our results we present simple fits to the r&’t@)}}(yc, ) /A (y,),
which defineR%? at lowest order, for the different clustering algorithms. We use the fatigwi

parameterization:
2

Bya(ye, 1)/ AV (ye) = 3 Ky log™ v, (3.11)
n=0
and the results of the fits for the ran@61 < y. < 0.2 are presented in table 2.

Infig. 4 we plot the ratioﬁg,?‘)‘l(yc, ry)/A®)(y.) as a function of. for the different algorithms
(dashed lines fom, = 5 GeV, dotted lines fofn, = 3 GeV and solid curves for the result of
our fits). As we see from the figure the remnant mass dependence in these ratiesréinge
of masses we are interested in and in the rangg @fe have considered) is rather small and
for actual fits we used the average of the ratios for the two different madsesee from these
figures that such a simple three-parameter fit works reasonably well fbealgorithms.

Concluding this section we would like to make the following remark. In this papger w
discuss theZ-boson decay. In LEP experiments one studies the precess— (Zv*) — bb
and, apart from the resonafitexchange cross section, there are contributions from the pure
~-exchange and from the— Z-interference. The non-resonapexchange contribution at the
peak is less than 1% for muon production and in the cadeqefark production there is an
additional suppression fact@? = 1/9. In the vicinity of theZ-peak the interference is also
suppressed because itis proportion@i6s — m%) (/s is theet e~ centre of mass energy). We
will neglect these terms as they give negligible contributions comparedhathricertainties in
higher order QCD corrections to the quantities we are considering.

Obviously, QED initial-state radiation should be taken into account in tHanedysis; the
cross section fob-pair production at th& resonance can be written as

og(s) = /agg(s’)F(s’/s)ds’ (3.12)
where F'(s'/s) is the well-known QED radiator for the total cross section [27] and, the Born

cross section, neglecting puyeexchange contribution and the- Z-interference, has the form

B 127T. T 8
Ty (- mpp +miTy

(3.13)
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with obvious notation. Note thdt, in this expression can be an inclusive width as well as some
more exclusive quantity, which takes into account some kinematical restsabn the final
state.

4 Angular distribution

If the gluon jet can be identified with enough efficiency, an interesting quanlitgh is very
sensitive to the IR behaviour of the amplitudes is the angular distribution wsgiece to the
angle formed between one of the quark jets and the gluénliet; (¥,) is the angle between
the quark (antiquark) and the gluon jets we deffhe- min(+};,%,). We want to obtain the
angular distribution with respect th The starting point is eq. (3.2) where we change variables
from one of they; or they, variables ta?. To do this we take into account that the amplitude is
completely symmetric ig; andy,, therefore we can restrict the integration only to the region
y, > y; and add a factor 2. In that regiah= ¥,. Therefore to obtain the distribution with
respect taf it is enough to obtain the distribution with respec#tobut constraining the phase
space integration tg, > y;.

Fory, > y; we can easily express in terms ofcos ¢ = cos ¢, as follows

Yo (1 — ys — COS 19\/(1 —ys)? — 47'5)
1 = .
1+ y; + cos 19\/(1 —y2)? —4ry

(4.1)

Adding the Jacobian of the transformation we find from eq. (3.2) (takiad) as this quantity
is IR convergent)

21/2\/(1 —y2)? —4mp)
(1 + ys + cos 19\/(1 —ys)? — 47'5)

drt,
dd

2 Ab!]? (42)

= (4C,CFr2 / dy20psb. 0(ys —y1)sin ¢

wherey; is expressed in terms oés ¥ andy, using eq. (4.1).
In order to see how large mass effects are in this angular distributionfine tlee following
ratio of angular distributions:
bd _ idrgj idrgj
P 49 ) Td 4y
In the case of massless quarks the integration limits in eq. (4.2) can be fougticatis
for the JADE-type schemes and the result of the integration gyves expressed in terms of
logarithms involving$ andy.. We find

(4.3)

1 dI'g,
Trd do

where the functiory,(y.) is given analytically in appendix D for the JADE-type schemes and
represented in fig. 5 for the JADE-type and the Durham algorithms for differémvafy.

(y. = 0.02 (solid line),y. = 0.04 (dashed line), = 0.06 (dotted line ) and;. = 0.08 (dash-
dotted line)). We observe a very sharp peak, for both algorithms, in the regigdt-af00°
depending on the value 9f, fory. = 0.04 the peak is at abod2° for the JADE-type algorithms

and at abou®9° for the Durham algorithm. We see that the absolute size of the peak is a factor
two larger in the case of the JADE-type algorithms (for the same valyg @ian in the case of

the DURHAM scheme. This is due to the difference of phase spaces for two stsheme

=~ folye) (4.4)

"We thank J. Fuster for suggesting us the study of this obsrva
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For massive quarks, although the integrations can still be performed andyyiicile EM
scheme, some of the integration limits are solutions of polynomial equations of ttielégree
and the analytical result is not especially enlighting. Then, we have computeatith&}’ by
doing the one-dimensional integration in (4.2) numerically.

Numerical results foR}¢ are presented in fig. 6 for the different algorithms fpr= 0.04
and for bothm, = 5 GeV (solid line) and forn, = 3 GeV (dashed line). In all cases we plot the
ratios for the interval of angles for which the differential cross sectiatilisizable (see fig. 5),
i.e. ¥ ~ 45° — 120° for JADE-type schemes antd~ 50° — 130° for the DURHAM algorithm.
For small angles anat, = 5 GeV the effect can be as large as 10% of the ratio. Note, however,
that the angular distribution, fig. 5, drops down rapidly for such small angles. In@ddince
the ratio changes very fast in this region the exact size of the effectiepknd on the angular
resolution achieved at experiment.

As in the case of ratios of three-jet event ratg%?, the variation of the ratio of angular
distributions,R%?, for m, = 5 GeV andm; = 3 GeV gives a measure of the size of higher order
corrections.

We observe in all the ratios the irregular behaviour in the region where theasassigular
distribution peaks. This is due to the fact that in the massive case theopasitthe peak is
slightly shifted with respect to the massless case. The mismatsle®ethe two peaks appears
as a discontinuity in the ratio when seen from large scales.

It will be interesting to see if data really follow these patternsigst. A preliminary analysis
performed by the DELPHI group [28] seems to indicate that, indeed, data do fokse angular
distributions, at least qualitatively, and exhibit the variations presethig different algorithms.

5 Discussion and conclusions

In this paper we have presented a theoretical study of quark-mass effelsesdeday of the
Z-boson into bottom quarks.

First, we have reproduced, with the complete mass dependences, the reshésifolusive
decay rate of theZ — bb + - - - to ordera, by adding gluon bremsstrahlung from theuarks
to the one-loop corrected decay widthof— bb. Although the sum of the two contributions is
finite, each of them is separately IR divergent. We used dimensional contintatiegularize
the IR divergences and gave a complete analytical result in arbitrary-psedimensions for
each of the two contributions.

The main contribution of this paper is, however, the analysis of some threbgetvables
which are more sensitive to the value of the quark masses.

For a slight modification of the JADE algorithm (the EM algorithm) we have catedla
analytically the three-jet decay width of tH&-boson intob-quarks as a function of the jet
resolution parametey,., and theb-quark mass. The answer is rather involved, but can be
expressed in terms of elementary functions. Apart from the fact that thaelgieal calculations
are interesting by themselves, they can also be used to test MontesPadlations. For the
EM, JADE, E and DURHAM clustering algorithms we have obtained the thredegay width
by a simple two-dimensional numerical integration. Numerical and analy&salts have been
compared in the case of the EM scheme.

We discussed quark-mass effects by considering the quantity

I'%.(y.)/T® m?
Rbd = 2327 14 " P(my,y.
S VIRV CRRR S R

which has many advantages from both the theoretical and the experimental poiwsf \mne
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particular, at lowest order, the functidf{m,, y.) is almost independent on the quark mass (for
the small values of the mass in which we are interested in) and has absalwgs kanging from
10 to 35 (depending of. and on the algorithm), where the larger values are obtaineg foir
about0.01.

Atthe lowest order i, we do not know what is the exact value of the quark mass that should
be used in the above equation since the difference between the differentaledinittheb-quark
mass, the pole massy, ~ 5 GeV, or the running mass at thez-scale,m,(mz) ~ 3 GeV,
is ordera,. Therefore, we have presented all results for these two values of theamdss
have interpreted the difference as an estimate of higher order correctiongerSely one can
keep the mass fixed and include #t{m,, y.) higher order corrections already known for the
massless case. According to these estimate®){lg) corrections can be about 40% of the
tree-level mass effect (depending on the clustering scheme), althoughnet exclude even
larger corrections.

By using the lowest order result we find that for moderate values of the resghatiameter,

y. ~ 0.05, the mass effect in the ratiB%? is about4% if the pole mass value of thiequark,
my, ~ 5 GeV, is used, and the effect decreases to 2f,i= 3 GeV.

We have compared our predictions f§ for the JADE algorithm, with the results obtained
from the 1990-1991 data by the DELPHI group [2]. Although the errors obtained in the analysis
of this limited sample of data are rather large, especiallyyfor 0.08, one clearly sees that
for small values of y-cuty. < 0.08) the experimental points are systematically below 1, thus
clearly exhibiting the effect of the mass of the quark, as for massless dijark 1. The
size of the effect agrees roughly with the predictions. One can expect the medottine
experimental error by, at least, a factor two when the data collected inar®98cluded in the
analysis. Then, mass effects will be more clearly seen and it will beiageresting to see if
data follow the different qualitative behaviour of the rafff as a function of. as predicted
by the parton model calculations (positive effect for the E scheme and negatsseafiect for
the other algorithms). However, in order to extract a meaningful value éttjuark mass from
the data it will be necessary to include next-to-leading order correctionsthi@teading mass
effect we have calculated does not distinguish among the different definitionsepidine mass
(pole mass, running mass at thg scale or running mass at the; scale). We believe that the
future analysis of the whole LEP statistics and its comparison with the tivgadngredictions
for the three-jet ratios, which meet the future experimental precisiohallow for a good
determination of thé-quark mass at the highest energy scale and for a check of its running from
my t0mz.

The high precision achieved at LEP allows for a good separation of the gluonic arld quar
jets and a measurement of the angular distribution of the radiated gluon vp#ttés the quark
momenta. This angular distribution has been calculated for massless qudykisalhafor the
JADE-type schemes and numerically for the DURHAM algorithm. We have stubeethass
effects, for the different jet-clustering algorithms, in the quantity

bd idrgj idrgj
ST 4y /) T4 Y

We have shown that, for a reasonable value of the resolution parameter).04, the mass
effects in this ratio can be as large as 10% of the rationtpr= 5 GeV (depending on the
algorithm, the anglé# and the angular resolution). The larger values are obtained for small
angles where, however, the angular distribution falls down very rapidlyt t& this ratio can

be used to extract the value of thequark mass. It will be interesting to see if data really
follow the predictions for the angular distributions and if the mass effectseingtio of angular
distributions are well described by our results.
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Concluding, we have raised the question of the possibility of measuringdqark mass
at LEP by using three-jet observables. In our opinion, this is a big challenge for Xjuehi-e
mentalists and theorists. Clearly, more work has to be done in order theipnesfisheoretical
predictions meet the experimental accuracy, in particular axfl@alculations and studies of
hadronization corrections including mass effects will be needed. Howewegftbrt is worth
since it will allow for an independent measurementrnaf at much larger energies where,
presumably, non-perturbative effects are negligible.
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APPENDICES

A Phase space inD = 4 — e dimensions

The phase space farparticles in the final state i-dimensions [18] D = 4 — 2¢) has the
following general form

d(PS,) = (2m)? H %D 12E (q— Zpi) (A1)

=1ln =1,n
= —— = §(p} — m?)O(E;)8P | q — ] . (A2
1_1[ 271- D- 12E ( mz)®( ) (q i:zl;np) ( )
Then doing several trivial integrations we have the following phase-spatoe facthe process
Z — bb
1 BT(1—¢ (BPmy\ "
_ 1k A.
P52 471'2I‘(2—26)( Ar ’ (A-3)
wheres = /1 — 4r, With 7, = m2/m%,

For the case of the decay into three particies;> bbg, we have

m 1 m2 —2¢
d(r . TZ) G (hy)h; dysd w
(PSs3) = 16(27)3 T'(2 — 2¢) ( 471_) (Rp) » AY14Y2 , (A.4)

where the function, which gives a phase-space boundary interms of varighles2(p, k) /m%
andy, = 2(p.k)/m?% has the form

hy = y1y2(1 — y1 — y2) — ro(y1 + 92)° - (A.5)

B Inclusive decay rate functions

In this section we collect the functions needed in section 2. The relevantéotors are:

fo = Crp (1+ 1;;2 log(C)) , (B.1)
fry = OFlgf log(c) (B.2)
far = Rlog(r) + Or |2 21 P rog(o)

;! ;52 (LiZ(c) + %2 - ilog2(c) +log(c)log (1 — c))l . (B.3)

In the expression fofay, the first term, proportional tleg(r;), comes because our election for
the term proportional to the divergence. The vector form fagiey,can be written in terms of
the other two form factors,

fvs = fas + frs . (B.4)

In terms of these form factors the functiofigs and 4 that appear in eq. (2.13) are
Fy = 5(( —# )fo—I- fo) ; (B.5)
Fo = B%fa;. (B.6)
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The functions that come from real bremsstrahlung can be written as follows,

Gy = 8(36-8Gr +G) | (B.7)
Ga = P (52GP + GAh) , (B.8)

where
Gp = Gpr + 2f(1 +1og(8)) . (B.9)

The terms proportional tg. come again from our choice of the coefficient of the divergence,
and Gp;, is the finite part coming from the integration of the term proportionat ton the

amplitude

1/e
Gpp = g—g i dzg(z)l Tz

The result of the integration gives

log (g(z)3z(1 + z)) . (B.10)

433 2+ B2
Gpn = Cr l—2log (1 _52) +2 - 3 log(c)
2 2
1 —;ﬂ (ilogZ(C) + % — Liy(c) — Liy(c®) — 3log(c)log (1 + c))l . (B.11)
The functions=y, andG 4, come from the integration of thie, andh 4 terms respectively
B OF 1/e y 1> B OF . 9 _— 2/82 ‘|‘,84
Gy = E : dzg(z) <z + ~) =% 9+ 8%+ 28 log(c) ) , (B.12)
and ]
Gan = 5(3 — B)Gyr + (1 - B*)Gan , (B.13)
where c ) c g2 _ g
5 Cr e 2 _CF (g 5 3200
Gan = 13 ). dzg(z)* = 3 (3 B+ 28 log(c)) . (B.14)

C Three-jet event rate functions

The functions#{” and H{"), which give the leading contribution to the three-jet decay rate in
the EM algorithm, can be written in the following form

H1(/0)(yc77'b) = (Cp Z 0 l(3—ﬂ )KTS"I‘K%/‘l

1=1,3 2
g _ 2 i (3_52) i 2\ 774
2 (Yese) = Cr Y 60;|B°Ks + 5 Kv+ (1-B°)Ky| - (C.1)
1=1,3
with
91 - e(y_c - yc)
‘92 = _e(yc - 2rb)‘9(y_c - yc)

93 — e(yc - y_c)
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andy, ~ /ry(1 — /7). HereK% corresponds to the soft part aid,  ,, to the vector (axial)
s (4)

hard part. These functions are given by

1— B2
2

Ky = dye(z'—1) -2 ( + 2yc) log(z5) + 48 log (fﬁ — )

— zge
Ye(1 + 20)(1 + C)Z)l

(28 — ¢)(1 — zgc)

+ (1 —52) ll—l—zﬁ_l — 2z + (zﬁ_l —z5> log (

(C.2)

b1+ B [%log(zg)log (yf(l + 0)4) T Lig(—2s) — Lis (i) + Liz(zgc)l

Zlg 12

(1—52)(3+52)( "
3 < zﬁ)

21_ -2
Kp - 14 %1%

2
e E - (10 S e )

—2(1+2z5) ' +

K = _§+yc(1—z51)+ TR —2p) + (14 25)”"
1-B%)(3 + B
n ( 5)8( —I_ﬂ)log(zQ)
K: = —2(1+ 5% - 2y.)log(z) + 481log <1za__z cc>

ot o (=)

L oa1 @) [1og(za)1og ((1+52—2yc)(1+c)2) _L”(i) +Li2(%)l

(1-z) (1-p%

KI2/ = _(1+52_yC)yc(1+z)+ 39 (z;Z—zi)
- (1_5)8(3+52)(2—z;1—I—za—4(1—|—za)_1)

((1 —F )8(7 +5) + vy + By — yf) log(24)

1 — 232
K = | 15)(z;1—za)+

L 4= 52)8(3 B (14214 2a) 4 log(z))

(1482 = ye)ye (1 — z4)
2 (1+ 24)
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(L4872 (18 —4p%) (1-2z) (1438721 - %))

Ks = =%~ - (1+22) (11 22,) log(z,)
L) [1og2(1fz)+zu2(l = )] (€8)

. gy 831-2) o

K e ) ©9

. (48P (15

K, = 3 (H%) ) (C.10)

where we used the following notation,

1
Za = 2—n<yc—\/y3—4rf>,
1
z5 = —<1—yc—2rb—\/(1—yc)2—4rb>,

27‘5

Z. = —yc

7 1—2ry — 2y,
1-8

c = ——. C.11
1+8 (1D

In the limit of massless quarks, — 0, from the functionsHS’) andeO) given above we
obtain

HY (ye,m5 — 0) = HY (gey 7 — 0) — AO) (C.12)
Here the functiom(®)(y,) is the known result [20, 21] for the JADE algorithm
2 5 9 Y
AO(y) = 20F |- + 2 — 6y, — Sy2 + (3 — 6y.)1 ¢
() Fl=g g~ 0% — Sy + (3 —6yc)log =
+ 2log? [ ) 4 4aLi, [ F . (C.13)
1- Ye 1- Ye

The functionA(y.) given in refs. [20, 21] differs from oud(®)(y.) in a factor 2 because we
chose a different normalization for it.

D Angular distribution functions

The angular distribution studied in section 4 is given, in the massless lmadbe function
fs(y.). Inthe JADE-type algorithms it can be written as follows

fo(ye) = Crsin(d) D 6 fi(ye) , (D.1)

1=1,2

where thetheta,; functions have the form

Ye (1_6yc+y2) )
8, = 6 cosz?—l—i)@(—c—cosﬂ ,
' ( (1—yc) (14 9.)?

Ye 1- Ye
9, = 6|——"— —cos? |0 ¥+ ,
2 ( (1 _ yc) COS ) (COS 1 —|— yc)
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and

1+b)? [y.+8—3
O Tl s A
b+ =z
_ z 2 !
log <w2>—|—(1—|—b—|—2b)log (sz)l , (D.2)
(1+8)* [(ye — b)(ye + 2y. — 2by. — 5b%)
fZ(yc) —
b 4(b+y.)
2b 1—5
— —1 . D.3
b(1 + 2b)log (b-l-yc) og (1_%)] (D.3)
In these equations we defined
b — 1+ cos?d
1 —cos?’

1
r, = §<1—yc—\/(1—yc)2—4byc>,

1
Ty = §<1—yc—|—\/(1—yc)2—4byc>.
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Figure 1: Feynman diagrams contributing to the decay ttes bb, Z — bbg at ordera,.
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The phase-space for Z- qqg
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Figure 2: The phase space f@r — bbg in the planey,; andy, with cuts ¢, = 0.04 and
y. = 0.14) for the different algorithms. The mass of the quark has been set to 10 GeV to
enhance mass effects in the plot.
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. bd
The ratios R3
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Figure 3: The ratiosky (see eq. (3.8)) for the four algorithms. Solid lines correspond to
mp = 5 GeV, dashed lines corresponds#g = 3 GeV and dotted lines give our estimate of
higher order corrections to the, = 5 GeV curve. For the JADE algorithm we have also
included the results of the analysis of the data collected during 1990-1991 by the DELPHI

group [2].
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The functions B /A© and B /A©
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Figure 4: The functions3"’/A® and B{’/A® for the four algorithms. Dashed lines for
my = 3 GeV, dotted lines fom;, = 5 GeV and solid lines for our three-parameter fit, eq. (3.11).
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Angular distribution (mq:O)
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Figure 5: Normalized angular distributions (eq. (4.4)) with respect to the &omgeed between
the quark and the gluon jets for the massless case for JADE-type and DURHANtaiger
Solid line fory. = 0.02, dashed line fog. = 0.04, dotted line fory. = 0.06 and dash-dotted

line fory. = 0.08
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The ratios ngd(yC =0.04)
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Figure 6: The ratios of angular distributio®? (see eq. (4.3)) foy. = 0.04 for the different
algorithms. Solid line forn, = 5 GeV and dashed line fon, = 3 GeV.
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